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Abstract—Image-based rendering methods synthesize novel
views given input images captured from multiple viewpoints
to display free viewpoint immersive video. Despite significant
progress with the recent learning-based approaches, there are
still some drawbacks. In particular, these approaches operate
at the still image level and do not maintain consistency among
consecutive time instants, leading to temporal noise. To address
this, we propose an intra-only framework to identify regions of
input images leading to temporally inconsistent synthesized views.
Our method synthesizes better and more stable novel views, even
in the most general use case of immersive video transmission. We
conclude that the network seems to identify and correct spatial
features at the still image level that produce artifacts in the
temporal dimension.

Index Terms—image-based rendering, temporal consistency,
immersive video transmission

I. INTRODUCTION

The moving picture experts group (MPEG) has been ac-
tively developing the MPEG Immersive Video (MIV) standard
[1] to efficiently transmit 6 degrees of freedom for realistic
and virtual environments. The MIV is a concrete step towards
a complete chain for immersive video coding, delivery, and
rendering. Figure 1 shows the workflow of immersive video
transmission. The views in the server are transmitted through
MIV reference software to the client side. The retrieved views
on the client side are input in the synthesizer, and the generated
novel views are visualized using a head-mounted display
(HMD) or a monitor.

The MIV reference software has non-normative encoding,
normative decoding, and non-normative rendering techniques.
The non-normative rendering techniques use depth maps to
perform novel view synthesis. The quality of the synthesized
view highly depends on the quality of the depth maps in such
depth image-based rendering (DIBR) techniques. The DIBR
techniques can be broadly classified as conventional depth
estimators [2, 3] and learning-based depth estimators [4, 5,
6]. As shown in [7, 8], the conventional and learning-based
depth estimators have various limitations. The conventional
depth estimation requires high computational complexity, high
energy requirements, and slower run-time. The learning-based
depth estimators underperform quality-wise as the ground-
truth depth maps used for training the network (especially
that of real-world scenes) are nowhere near perfect, and these
imperfect depth maps may lead to disocclusions, ghosting

artifacts in the novel synthesized view. Also, the learning-
based methods only try to improve the quality of the depth,
but they should be trained end-to-end with the synthesized
view quality as a loss function. This is not feasible due to the
synthesis being non-differentiable. On the other hand, image-
based rendering techniques (IBR) [9] have been proposed for
novel view synthesis. These techniques are compatible with a
MIV transmission of the immersive video (using the Geometry
Absent profile [7]).

In IBR methods, the source views are usually warped,
resampled, and/or blended to obtain target viewpoints. Such
methods enable high-resolution rendering, but they typically
require dense input views or explicit proxy geometry. With-
out this, it is challenging to estimate high-quality views,
resulting in artifacts in rendering. Earlier, researchers used
dense sampling from the scene to create light fields [12,
13]. IBR techniques [14, 15] use proxy geometry of the
scene to generate novel views. The next-generation techniques
introduced better modeling of the scene structure [16, 17, 18].
Since the dawn of deep learning, learning-based methods [19,
20, 21, 22, 23] have generated promising results. Recently,
techniques that combine novel representations [10, 24, 25, 26,
27, 28, 29, 30] with a differentiable rendering have produced
high-quality novel views. Of those techniques, the prominent
one is neural radiance fields (NeRF) [10], which encodes the
3D scene structure in a continuous 5D volumetric function.
Although NeRF produces high-quality view synthesis results,
it has to overfit every scene and requires tedious per-scene
optimization. Besides, the network parameters must be trans-
mitted for each time instant of the video. This is not practical
for immersive video transmission.

Very recently, a new learning-based method called IBRNet
[11] that leverages ideas from IBR and NeRF was introduced.
Unlike NeRF, which embeds the signal in the network, IBRNet
is a pure processor. It does not need per-scene optimization
and operates as a general synthesizer which is able to work
with any new content. The main idea of IBRNet is to obtain
colors and densities by aggregating information present in
the neighboring views. IBRNet can be divided into three
steps: 1. Selecting the neighboring views of the target view
and extracting dense features from each neighboring view
2. Predicting volume densities and colors at continuous 5D
locations 3. Compositing the extracted colors and densities
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Fig. 1. The workflow of immersive video transmission along with the various use cases

along each camera ray to produce the target image. During
training, the color is rendered along each camera ray, and
the mean squared error is minimized between the ground-
truth pixel color and the rendered pixel color. As IBRNet is a
pixel-by-pixel rendering and produces state-of-the-art results,
we are using it to synthesize novel views for immersive video
transmission.

Even though IBRNet is a state-of-the-art rendering method,
it has three main limitations. First, it is challenging to generate
high-quality novel views based on a sparse set of input
views. Second, it mainly considers static images with non-
moving objects in the scene. Third, it suffers from intra-frame-
based processing: views from a given temporal instant are
synthesized only from views at the same instant, preventing
any kind of temporal stability. As can be seen in videos [38],
visually annoying artifacts appear temporally. Although they
have a small magnitude and are almost invisible in a still
image, they are quite visible when the video is displayed.
To overcome this problem while maintaining the practical
convenience of processing the views at intra level only, we
propose an intra-framework to IBRNet, which synthesizes
temporally consistent novel views. The remainder of the paper
is structured as follows. Section 2 introduces the pipeline of
our novel intra-framework. Section 3 shows the experimental
details of our experiments. Section 4 reports the result, and
section 5 concludes the paper.

II. INTRA-FRAMEWORK APPROACH

To improve the temporal consistency among the consecutive
frames, we constrain the fine-tuning phase of IBRNet to use
original image pixels coming only from the temporal artifacts
region of the image. To identify these pixels, we propose a
temporal artifacts extraction method. As shown in Figure 2,
the extraction can be carried out in four steps:

In the first step, we obtain the motion mask (Fig 2[b])
by taking a pixel-by-pixel difference between the t, t+1

consecutive frames of an original view (Fig 2[a]). As shown
in Algorithm 1, if the absolute difference value of the pixel is
larger than an arbitrary threshold Th1 then the value is changed
to white pixels (255, 255, 255). Otherwise, it is set to black
pixels (0, 0, 0). In the motion mask, black pixels are identified
as having negligible motion: these are the pixels that should be
synthesized with more temporal stability. In the second step,
we synthesize the original view at t from neighboring views
using IBRNet. This synthesized view (Fig 2[c]) has both static
and temporal artifacts: static ones are due to the inability of
IBRNet to fully reconstruct the signal, and other ones have



Fig. 2. The production of a temporal guidance map.

a temporal incoherent behaviour which are detectable to the
human eye. In the third step, we add the mask obtained in
step 1 to both the original and synthesized view (Fig 2[d]),
which allows us to remove pixels affected by the original
motion. Finally, in the fourth step, we extract only the region
of temporal artifacts (Fig 2[e]). As shown in Algorithm 2,
if the distance between the original and synthesized value of
a pixel is larger than a second threshold Th2, we keep the
pixels as they are. Otherwise, the pixels are substituted by
white pixels. Table 1 shows the values of threshold used for
each sequence. The thresholds are chosen experimentally such
that the amount of active motion pixels is roughly similar to
the number of pixels which are affected by temporal noise
(typically, between 15 to 30 percent of the entire image, but
this may vary between sequences).

Thus, we are able to isolate pixels affected by temporal
incoherence, and the final output is a temporal guidance map
with only relevant pixels in temporally unstable regions. There
is one temporal guidance map associated with each original
image. During fine-tuning, the input to the IBRNet network
will be original views along with their temporal guidance maps
and camera parameters: each pixel of the temporal guidance
map is read, and if a white pixel is found, its corresponding
pixel in the original view is simply skipped.

III. EXPERIMENTS

A. Experimental Settings

To study the performance of the proposed method in the
context of immersive video transmission, we consider three
use cases, as shown in Figure 1.

Sequence Type Resolution Frames Camera Setup Th1 Th2
Fan Real-World 1920x1080 97 5x3 25 10

Mirror Synthetic 1920x1080 97 5x3 25 10
Frog Real-World 1920x1080 300 13x1 35 20

Shaman Synthetic 1920x1080 300 5x5 25 10
Carpark Real-World 1920x1088 150 9x1 25 10
Street Real-World 1920x1088 150 9x1 25 10

Table 1. The MPEG-I sequences used for evaluation along with their type,
resolution, number of frames, and the threshold utilized for tests.

a) Use Case 1: In this case, the fine-tuning is carried
out on the server side. We fine-tune and test on the same
set of frames of a sequence, and assume that the fine-tuning
parameters can be transmitted losslessly to the client.

b) Use Case 2: This is a per-scene fine-tuning on the
client side where the fine-tuning and testing are done on a
different set of frames of the same sequence. In this use
case, it is not necessary to transmit any parameter as the fine-
tuning can be done in the client (at the expense of substantial
complexity).

c) Use Case 3: This is a universal solution where we use
five different sequences to fine-tune the network and then test
it with a new sequence. This is the most realistic scenario, as
the resulting synthesizer is not data dependent: the parameters
are retrained once and for all (using the temporal guidance
maps). After, it can be used as a classical IBRNet.

B. Dataset

For our experiments, we have used the following MPEG-I
test sequences: Fan, Mirror, Frog, Shaman, Carpark, and
Street. All the sequences are multi-view captured by a sparse
camera setup. In these sequences, Fan and Shaman are syn-



MPEG-I MSE ↓ PSNR ↑
Sequences Anchor UC1 UC2 UC3 Anchor UC1 UC2 UC3

Fan 507.61 343.54 361.82 486.19 22.67 24.05 23.64 22.93
Mirror 722.53 601.39 645.24 702.41 23.15 24.68 23.91 23.46
Frog 4517.12 3341.92 3402.54 3845.92 13.55 17.21 16.38 14.92

Shaman 321.89 186.33 214.82 299.43 23.41 25.97 24.37 23.82
Carpark 1419.26 1128.47 1206.31 1397.21 16.22 17.85 17.02 16.68
Street 1628.44 1541.85 1595.26 1633.75 17.48 18.52 17.98 17.65

Table 2. The comparison of average quality of synthesized views using MSE (lower means better), and PSNR (higher means better) metrics with respect to
various use cases.

MPEG-I VMAF ↑ MS-SSIM ↑ PSNR ↑
Sequences Anchor UC1 UC2 UC3 Anchor UC1 UC2 UC3 Anchor UC1 UC2 UC3

Fan 52.62 53.05 55.28 53.86 0.9177 0.9203 0.9365 0.9248 27.18 27.72 27.96 27.53
Mirror 64.26 65.28 66.85 65.92 0.9311 0.9365 0.9483 0.9426 28.17 29.36 29.16 28.48
Frog 49.38 61.52 63.74 56.48 0.8928 0.9223 0.9509 0.9342 22.97 25.11 25.35 23.65

Shaman 57.72 64.85 64.32 58.54 0.9816 0.9894 0.9852 0.9821 32.84 33.12 32.91 32.86
Carpark 65.35 68.70 70.18 67.11 0.9426 0.9458 0.9528 0.9491 28.34 29.25 29.97 29.12
Street 73.63 75.28 76.81 74.92 0.9501 0.9546 0.9612 0.9558 29.01 29.67 29.82 29.38

Table 3. The comparison of average quality of synthesized views using VMAF (higher means better), MS-SSIM (higher means better), and PSNR (higher
means better) metrics with respect to various use cases.

Fig. 3. A specialized MSE calculation only in the region of temporal
inconsistency of the image. The top row contains original and synthesized
views and the bottom row contains the temporal guidance map.

thetic or computer-generated sequences and the rest are real-
world sequences. Table 1 shows the characteristics of the
selected MPEG-I sequences.

C. Quality Metrics

For our analysis, we have used the following metrics to
determine the performance of our method. These metrics are
reliable and have been evaluated as relevant for estimating the
subjective quality of temporal coherence [37].

a) Video Multimethod Assessment Fusion (VMAF) [31]:
It predicts the subjective video quality based on a reference
and synthesized video sequence by combining various quality
metrics such as Visual Information Fidelity (VIF) [32], Detail
Loss Metric (DLM) [33], Mean Co-Located Pixel Difference
(MCPD) [34]. The MCPD metric measures the temporal
difference between the frames.

b) Multi-scale Structural Similarity (MS-SSIM) [35]:
The structural similarity (SSIM) [36] index quantifies the
SSIM between an image and a reference image to determine

perceived quality. The MS-SSIM index is calculated by merg-
ing the SSIM index of various versions of the image at various
scales with the multissim function.

c) Mean Squared Error (MSE): It measures the average
squared difference between the estimated pixels and original
pixels. The MSE is calculated only in the region of temporal
inconsistency. As shown in Figure 3, we keep the temporal
guidance map as a reference and select only the region of
temporal artifacts by skipping the white pixels in the synthe-
sized and original images to measure the MSE.

d) Peak Signal-to-Noise Ratio (PSNR): It is a quality
measurement between an original and synthesized view. In our
experiments, the PSNR is calculated for both the full image
and only the region of temporal artifacts.

IV. RESULTS AND DISCUSSION

The quality of synthesized views for various use cases
is presented in Table 2 and Table 3. Quality measures are
produced by synthesizing each existing view (without using
the target view) and computing the measure over this view. The
final measure is averaged over all views. The anchor column
corresponds to the views synthesized using a model fine-tuned
on other MPEG-I test sequences to avoid domain adaptation
issues. All the use cases are compared to the anchor views. As
shown in Figure 4, our novel views consistently appear sharper
and are less noisy than the anchor views [38]. The novel views
in all the use cases tend to synthesize more details from the
original views than the anchor, for instance, the background
wallpaper of the frog sequence.

In Table 2, the MSE is computed only on the active pixels
of the temporal guidance map. This is to evaluate whether we
did improve the performance locally as intended. As shown
in Table 2, UC1 has better quality views than all use cases
in every sequence: this is expected as the fine-tuning is done
on the same frames as the inference. The UC2 still produces
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Fig. 4. Qualitative comparison of temporal artifacts in synthesized views of Fan, Frog and Shaman (top to bottom)

a substantial improvement over the anchor, even when the
fine-tuning is done on previous frames. The most interesting
result is UC3, where the fine-tuning is done on all sequences
except the evaluated sequence: in this scenario, a gain in MSE
is still observed. It is likely that because of the temporal
guidance maps, the network is able to identify the specific
spatial features of the signal at a given time instant that are
producing temporal artifacts in relation to subsequent frames.
Since the fine-tuned IBRNet is not data-dependent, it can be
deployed once (there is not parameter transmission) and still
produce an improvement.

Since we have shown that the temporal guidance maps based
fine-tuning can help to improve the synthesis over the specific
areas subject to temporal incoherence, the next question is
whether it impacts the rest of the synthesized view. To answer,
we show in Table 3 that VMAF, MS-SSIM and PSNR are
calculated on full images. In UC1 and UC2, an increase in
quality are obtained on both measures. UC2 performs better,
which could be explained by the fact that UC1 is a rather
extreme form of local fine-tuning which could be done at the
expense of the rest of the view. Here again, the most important
result is in UC3: there is still an improvement in the synthesis
quality compared to the anchor in all sequences. This seems
to confirm that the fine-tuning using temporal guidance maps
has allowed the network to improve the synthesis, even in an
intra-frame synthesis approach and in the most general case
of offline fine-tuning. This allows the fine-tuned IBRNet to be
deployed in the same way as the anchor version.

V. CONCLUSION

In this paper, we propose a novel intra-framework approach
to improve temporal consistency in IBRNet for immersive
video transmission. Our technique is easy to implement, re-
quires no architectural changes to the network, and shows that

the proposed method significantly improves temporal stability
in all use cases. Despite the intra-frame nature of IBRNet,
the experiments show that temporal synthesis performance can
be improved even in the most general case of offline fine-
tuning, which leads us to suggest that the network was able to
pick up better spatial features that inherently produce temporal
artifacts. In future work, we would like to continue improving
the temporal stability by incorporating the motion information
as an input to the synthesis network.
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