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Image-based rendering methods synthesize novel views given input images captured from multiple viewpoints to display free viewpoint immersive video. Despite significant progress with the recent learning-based approaches, there are still some drawbacks. In particular, these approaches operate at the still image level and do not maintain consistency among consecutive time instants, leading to temporal noise. To address this, we propose an intra-only framework to identify regions of input images leading to temporally inconsistent synthesized views. Our method synthesizes better and more stable novel views, even in the most general use case of immersive video transmission. We conclude that the network seems to identify and correct spatial features at the still image level that produce artifacts in the temporal dimension.

I. INTRODUCTION

The moving picture experts group (MPEG) has been actively developing the MPEG Immersive Video (MIV) standard [START_REF]Test Model 4 for Immersive Video[END_REF] to efficiently transmit 6 degrees of freedom for realistic and virtual environments. The MIV is a concrete step towards a complete chain for immersive video coding, delivery, and rendering. Figure 1 shows the workflow of immersive video transmission. The views in the server are transmitted through MIV reference software to the client side. The retrieved views on the client side are input in the synthesizer, and the generated novel views are visualized using a head-mounted display (HMD) or a monitor.

The MIV reference software has non-normative encoding, normative decoding, and non-normative rendering techniques. The non-normative rendering techniques use depth maps to perform novel view synthesis. The quality of the synthesized view highly depends on the quality of the depth maps in such depth image-based rendering (DIBR) techniques. The DIBR techniques can be broadly classified as conventional depth estimators [START_REF] Juarez | Manual of Depth Estimation Reference Software[END_REF][START_REF] Mieloch | Immersive video depth estimation[END_REF] and learning-based depth estimators [START_REF] Zhang | GA-Net: Guided aggregation net for end-to-end stereo matching[END_REF][START_REF] Yao | MVSNet: Depth inference for unstructured multi-view stereo[END_REF][START_REF] Wei | AA-RMVSNet: Adaptive aggregation recurrent multi-view stereo network[END_REF]. As shown in [START_REF] Mieloch | Overview and Efficiency of Decoder-Side Depth Estimation in MPEG Immersive Video[END_REF][START_REF] Smitha | A Study of Conventional and Learning-Based Depth Estimators for Immersive Video Transmission[END_REF], the conventional and learning-based depth estimators have various limitations. The conventional depth estimation requires high computational complexity, high energy requirements, and slower run-time. The learning-based depth estimators underperform quality-wise as the groundtruth depth maps used for training the network (especially that of real-world scenes) are nowhere near perfect, and these imperfect depth maps may lead to disocclusions, ghosting artifacts in the novel synthesized view. Also, the learningbased methods only try to improve the quality of the depth, but they should be trained end-to-end with the synthesized view quality as a loss function. This is not feasible due to the synthesis being non-differentiable. On the other hand, imagebased rendering techniques (IBR) [START_REF] Hedman | Deep blending for free-viewpoint imagebased rendering[END_REF] have been proposed for novel view synthesis. These techniques are compatible with a MIV transmission of the immersive video (using the Geometry Absent profile [START_REF] Mieloch | Overview and Efficiency of Decoder-Side Depth Estimation in MPEG Immersive Video[END_REF]).

In IBR methods, the source views are usually warped, resampled, and/or blended to obtain target viewpoints. Such methods enable high-resolution rendering, but they typically require dense input views or explicit proxy geometry. Without this, it is challenging to estimate high-quality views, resulting in artifacts in rendering. Earlier, researchers used dense sampling from the scene to create light fields [START_REF] Steven J Gortler | The lumigraph[END_REF][START_REF] Levoy | Light field rendering[END_REF]. IBR techniques [START_REF] Buehler | Unstructured lumigraph rendering[END_REF][START_REF] Paul E Debevec | Modeling and rendering architecture from photographs: A hybrid geometry-and imagebased approach[END_REF] use proxy geometry of the scene to generate novel views. The next-generation techniques introduced better modeling of the scene structure [START_REF] Shade | Layered depth images[END_REF][START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF][START_REF] Davis | Unstructured light fields[END_REF]. Since the dawn of deep learning, learning-based methods [START_REF] Flynn | Deepstereo: Learning to predict new views from the world's imagery[END_REF][START_REF] Hedman | Deep blending for free-viewpoint imagebased rendering[END_REF][START_REF] Khademi Kalantari | Learning-based view synthesis for light field cameras[END_REF][START_REF] Niklaus | 3d ken burns effect from a single image[END_REF][START_REF] Xu | Deep view synthesis from sparse photometric images[END_REF] have generated promising results. Recently, techniques that combine novel representations [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF][START_REF] Flynn | Deepview: View synthesis with learned gradient descent[END_REF][START_REF] Jiang | Local implicit grid representations for 3d scenes[END_REF][START_REF] Lin | Deep multi depth panoramas for view synthesis[END_REF][START_REF] Lombardi | Neural volumes: Learning dynamic renderable volumes from images[END_REF][START_REF] Mildenhall | Local light field fusion: Practical view synthesis with prescriptive sampling guidelines[END_REF][START_REF] Vincent Sitzmann | Deepvoxels: Learning persistent 3d feature embeddings[END_REF][START_REF] Pratul | Pushing the boundaries of view extrapolation with multiplane images[END_REF] with a differentiable rendering have produced high-quality novel views. Of those techniques, the prominent one is neural radiance fields (NeRF) [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF], which encodes the 3D scene structure in a continuous 5D volumetric function. Although NeRF produces high-quality view synthesis results, it has to overfit every scene and requires tedious per-scene optimization. Besides, the network parameters must be transmitted for each time instant of the video. This is not practical for immersive video transmission.

Very recently, a new learning-based method called IBRNet [START_REF] Wang | IBRNet: Learning multi-view image-based rendering[END_REF] that leverages ideas from IBR and NeRF was introduced. Unlike NeRF, which embeds the signal in the network, IBRNet is a pure processor. It does not need per-scene optimization and operates as a general synthesizer which is able to work with any new content. The main idea of IBRNet is to obtain colors and densities by aggregating information present in the neighboring views. IBRNet can be divided into three steps: 1. Selecting the neighboring views of the target view and extracting dense features from each neighboring view 2. Predicting volume densities and colors at continuous 5D locations 3. Compositing the extracted colors and densities along each camera ray to produce the target image. During training, the color is rendered along each camera ray, and the mean squared error is minimized between the groundtruth pixel color and the rendered pixel color. As IBRNet is a pixel-by-pixel rendering and produces state-of-the-art results, we are using it to synthesize novel views for immersive video transmission.

Even though IBRNet is a state-of-the-art rendering method, it has three main limitations. First, it is challenging to generate high-quality novel views based on a sparse set of input views. Second, it mainly considers static images with nonmoving objects in the scene. Third, it suffers from intra-framebased processing: views from a given temporal instant are synthesized only from views at the same instant, preventing any kind of temporal stability. As can be seen in videos [38], visually annoying artifacts appear temporally. Although they have a small magnitude and are almost invisible in a still image, they are quite visible when the video is displayed. To overcome this problem while maintaining the practical convenience of processing the views at intra level only, we propose an intra-framework to IBRNet, which synthesizes temporally consistent novel views. The remainder of the paper is structured as follows. Section 2 introduces the pipeline of our novel intra-framework. Section 3 shows the experimental details of our experiments. Section 4 reports the result, and section 5 concludes the paper.

II. INTRA-FRAMEWORK APPROACH

To improve the temporal consistency among the consecutive frames, we constrain the fine-tuning phase of IBRNet to use original image pixels coming only from the temporal artifacts region of the image. To identify these pixels, we propose a temporal artifacts extraction method. As shown in Figure 2, the extraction can be carried out in four steps:

In the first step, we obtain the motion mask (Fig 2 [b]) by taking a pixel-by-pixel difference between the t, t+1 consecutive frames of an original view (Fig 2[a]). As shown in Algorithm 1, if the absolute difference value of the pixel is larger than an arbitrary threshold Th1 then the value is changed to white pixels (255, 255, 255). Otherwise, it is set to black pixels (0, 0, 0). In the motion mask, black pixels are identified as having negligible motion: these are the pixels that should be synthesized with more temporal stability. In the second step, we synthesize the original view at t from neighboring views using IBRNet. This synthesized view (Fig 2 [c]) has both static and temporal artifacts: static ones are due to the inability of IBRNet to fully reconstruct the signal, and other ones have ). As shown in Algorithm 2, if the distance between the original and synthesized value of a pixel is larger than a second threshold Th2, we keep the pixels as they are. Otherwise, the pixels are substituted by white pixels. Table 1 shows the values of threshold used for each sequence. The thresholds are chosen experimentally such that the amount of active motion pixels is roughly similar to the number of pixels which are affected by temporal noise (typically, between 15 to 30 percent of the entire image, but this may vary between sequences).

Thus, we are able to isolate pixels affected by temporal incoherence, and the final output is a temporal guidance map with only relevant pixels in temporally unstable regions. There is one temporal guidance map associated with each original image. During fine-tuning, the input to the IBRNet network will be original views along with their temporal guidance maps and camera parameters: each pixel of the temporal guidance map is read, and if a white pixel is found, its corresponding pixel in the original view is simply skipped.

III. EXPERIMENTS

A. Experimental Settings

To study the performance of the proposed method in the context of immersive video transmission, we consider three use cases, as shown in Figure 1. Table 1. The MPEG-I sequences used for evaluation along with their type, resolution, number of frames, and the threshold utilized for tests.

a) Use Case 1: In this case, the fine-tuning is carried out on the server side. We fine-tune and test on the same set of frames of a sequence, and assume that the fine-tuning parameters can be transmitted losslessly to the client. b) Use Case 2: This is a per-scene fine-tuning on the client side where the fine-tuning and testing are done on a different set of frames of the same sequence. In this use case, it is not necessary to transmit any parameter as the finetuning can be done in the client (at the expense of substantial complexity). c) Use Case 3: This is a universal solution where we use five different sequences to fine-tune the network and then test it with a new sequence. This is the most realistic scenario, as the resulting synthesizer is not data dependent: the parameters are retrained once and for all (using the temporal guidance maps). After, it can be used as a classical IBRNet.

B. Dataset

For our experiments, we have used the following MPEG-I test sequences: Fan, Mirror, Frog, Shaman, Carpark, and Street. All the sequences are multi-view captured by a sparse camera setup. In these sequences, Fan and Shaman are syn- Table 3. The comparison of average quality of synthesized views using VMAF (higher means better), MS-SSIM (higher means better), and PSNR (higher means better) metrics with respect to various use cases. thetic or computer-generated sequences and the rest are realworld sequences. Table 1 shows the characteristics of the selected MPEG-I sequences.

C. Quality Metrics

For our analysis, we have used the following metrics to determine the performance of our method. These metrics are reliable and have been evaluated as relevant for estimating the subjective quality of temporal coherence [START_REF] Jung | Evaluation of objective quality metrics on HEVC, VVC and AV1 contents" m59384[END_REF].

a) Video Multimethod Assessment Fusion (VMAF) [START_REF] Vmaf | Perceptual video quality assessment based on multi-method fusion[END_REF]: It predicts the subjective video quality based on a reference and synthesized video sequence by combining various quality metrics such as Visual Information Fidelity (VIF) [START_REF] Sheikh | A visual information fidelity approach to video quality assessment[END_REF], Detail Loss Metric (DLM) [START_REF] Li | Image quality assessment by separately evaluating detail losses and additive impairments[END_REF], Mean Co-Located Pixel Difference (MCPD) [START_REF] Li | Toward a practical perceptual video quality metric[END_REF]. The MCPD metric measures the temporal difference between the frames. b) Multi-scale Structural Similarity (MS-SSIM) [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF]: The structural similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] index quantifies the SSIM between an image and a reference image to determine perceived quality. The MS-SSIM index is calculated by merging the SSIM index of various versions of the image at various scales with the multissim function.

c) Mean Squared Error (MSE): It measures the average squared difference between the estimated pixels and original pixels. The MSE is calculated only in the region of temporal inconsistency. As shown in Figure 3, we keep the temporal guidance map as a reference and select only the region of temporal artifacts by skipping the white pixels in the synthesized and original images to measure the MSE.

d) Peak Signal-to-Noise Ratio (PSNR): It is a quality measurement between an original and synthesized view. In our experiments, the PSNR is calculated for both the full image and only the region of temporal artifacts.

IV. RESULTS AND DISCUSSION

The quality of synthesized views for various use cases is presented in Table 2 and Table 3. Quality measures are produced by synthesizing each existing view (without using the target view) and computing the measure over this view. The final measure is averaged over all views. The anchor column corresponds to the views synthesized using a model fine-tuned on other MPEG-I test sequences to avoid domain adaptation issues. All the use cases are compared to the anchor views. As shown in Figure 4, our novel views consistently appear sharper and are less noisy than the anchor views [38]. The novel views in all the use cases tend to synthesize more details from the original views than the anchor, for instance, the background wallpaper of the frog sequence.

In Table 2, the MSE is computed only on the active pixels of the temporal guidance map. This is to evaluate whether we did improve the performance locally as intended. As shown in Table 2, UC1 has better quality views than all use cases in every sequence: this is expected as the fine-tuning is done on the same frames as the inference. The UC2 still produces Original Anchor UC1 UC2 UC3 a substantial improvement over the anchor, even when the fine-tuning is done on previous frames. The most interesting result is UC3, where the fine-tuning is done on all sequences except the evaluated sequence: in this scenario, a gain in MSE is still observed. It is likely that because of the temporal guidance maps, the network is able to identify the specific spatial features of the signal at a given time instant that are producing temporal artifacts in relation to subsequent frames. Since the fine-tuned IBRNet is not data-dependent, it can be deployed once (there is not parameter transmission) and still produce an improvement. Since we have shown that the temporal guidance maps based fine-tuning can help to improve the synthesis over the specific areas subject to temporal incoherence, the next question is whether it impacts the rest of the synthesized view. To answer, we show in Table 3 that VMAF, MS-SSIM and PSNR are calculated on full images. In UC1 and UC2, an increase in quality are obtained on both measures. UC2 performs better, which could be explained by the fact that UC1 is a rather extreme form of local fine-tuning which could be done at the expense of the rest of the view. Here again, the most important result is in UC3: there is still an improvement in the synthesis quality compared to the anchor in all sequences. This seems to confirm that the fine-tuning using temporal guidance maps has allowed the network to improve the synthesis, even in an intra-frame synthesis approach and in the most general case of offline fine-tuning. This allows the fine-tuned IBRNet to be deployed in the same way as the anchor version.

V. CONCLUSION In this paper, we propose a novel intra-framework approach to improve temporal consistency in IBRNet for immersive video transmission. Our technique is easy to implement, requires no architectural changes to the network, and shows that the proposed method significantly improves temporal stability in all use cases. Despite the intra-frame nature of IBRNet, the experiments show that temporal synthesis performance can be improved even in the most general case of offline finetuning, which leads us to suggest that the network was able to pick up better spatial features that inherently produce temporal artifacts. In future work, we would like to continue improving the temporal stability by incorporating the motion information as an input to the synthesis network.
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 1 Fig. 1. The workflow of immersive video transmission along with the various use cases
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 2 Fig. 2. The production of a temporal guidance map.
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 3 Fig. 3. A specialized MSE calculation only in the region of temporal inconsistency of the image. The top row contains original and synthesized views and the bottom row contains the temporal guidance map.
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 4 Fig. 4. Qualitative comparison of temporal artifacts in synthesized views of Fan, Frog and Shaman (top to bottom)
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 2 The comparison of average quality of synthesized views using MSE (lower means better), and PSNR (higher means better) metrics with respect to various use cases.

		MPEG-I				MSE ↓						PSNR ↑
		Sequences	Anchor	UC1	UC2	UC3	Anchor	UC1	UC2	UC3
		Fan		507.61	343.54	361.82	486.19		22.67	24.05	23.64	22.93
		Mirror		722.53	601.39	645.24	702.41		23.15	24.68	23.91	23.46
		Frog		4517.12	3341.92	3402.54	3845.92	13.55	17.21	16.38	14.92
		Shaman		321.89	186.33	214.82	299.43		23.41	25.97	24.37	23.82
		Carpark		1419.26	1128.47	1206.31	1397.21	16.22	17.85	17.02	16.68
		Street		1628.44	1541.85	1595.26	1633.75	17.48	18.52	17.98	17.65
	MPEG-I			VMAF ↑			MS-SSIM ↑					PSNR ↑
	Sequences	Anchor	UC1	UC2	UC3	Anchor	UC1	UC2	UC3	Anchor	UC1	UC2	UC3
	Fan	52.62	53.05	55.28	53.86	0.9177	0.9203	0.9365	0.9248		27.18	27.72	27.96	27.53
	Mirror	64.26	65.28	66.85	65.92	0.9311	0.9365	0.9483	0.9426		28.17	29.36	29.16	28.48
	Frog	49.38	61.52	63.74	56.48	0.8928	0.9223	0.9509	0.9342		22.97	25.11	25.35	23.65
	Shaman	57.72	64.85	64.32	58.54	0.9816	0.9894	0.9852	0.9821		32.84	33.12	32.91	32.86
	Carpark	65.35	68.70	70.18	67.11	0.9426	0.9458	0.9528	0.9491		28.34	29.25	29.97	29.12
	Street	73.63	75.28	76.81	74.92	0.9501	0.9546	0.9612	0.9558		29.01	29.67	29.82	29.38