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Abstract

The ternary mixture of uranium, zirconium and oxygen is investigated as a minimal model for corium,
the mixture that forms after the meltdown of a nuclear reactor. Like corium, U-Zr-O exhibits a liquid-
liquid phase separation between a metal-rich and an oxyde-rich phase at high temperatures. A CALPHAD
database built on an associate model is used to set up a ternary Cahn-Hilliard model, which can describe
two-phase patterns in U-Zr-O and may be coupled to the Navier-Stokes equations for hydrodynamic flows.
The interface structure and properties, which depend on the choice on the gradient energy coefficients in
the free-energy functional, are studied in detail. It is found that interface adsorption is generally present,
but that its magnitude is small, such that the model remains a robust and useful tool for future simulations
of corium pool stratification dynamics.

Keywords: Cahn-Hilliard, CALPHAD, liquid phase segregation, multicomponent diffusion, U-O-Zr
system, in-vessel corium

1. Introduction

During a severe accident in a light-water nuclear reactor, the meltdown of the reactor core can lead to the
creation of corium, a mixture of the nuclear fuel, the cladding, and reactor components made of steel. Due
to residual nuclear decays, the entire material produces heat, and can thus “melt its way” into the ground,
where it can lead to major contamination of the environment. One way to avoid this is to retain the corium5

in the reactor vessel lower head by continuous cooling. For this so-called “In-Vessel Retention” strategy
(IVR) [1], it is important to evaluate the heat flux that needs to be evacuated by the water circulating in
the flooded reactor cavity.

The situation is complicated by the fact that corium exhibits two-phase coexistence between a metallic
and an oxide phase, with very different heat conductivities, and densities that depend on the composition.10

The knowledge of the spatial distribution of these phases (the stratification of the corium pool) is important
for a precise evaluation of the thermal transport. Various global scenarios for stratifications as well as
hydrodynamic instabilities of the two-phase interfaces have been investigated by numerical models and
model experiments. As discussed in [2] and further illustrated in [3] by code-to-code benchmarks, large
uncertainties still exist in the quantitative assessment of such stratification transients and they have a strong15

impact on the overall evaluation of vessel wall melt-through under IVR conditions. In order to reduce this
uncertainty, the few existing integral models [4, 5] that describe stratification transients in severe accident
codes are in need for validation or parameter calibration. While small-scale experiments (using up to a few
kilograms of prototypical materials e.g. depleted uranium) such as MASCA [6] and CORDEB [7] programs
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are crucial to gain knowledge on the thermochemical effects at play for such systems, they cannot capture20

relevant hydrodynamic and thermal phenomena. In particular, considering stratification kinetics, only the
medium-scale MASCA-RCW experiment [8] where 5 kg of molten steel were poured on top of about 45
kg of suboxidized corium has provided relevant information about the coupling between mass transfer and
Rayleigh-Taylor instabilities at the interface between oxide and metal phases. Despite the possible new
experiments [9] under study, it is important to note that experiments at nuclear reactor scale (tens of tons25

of materials, meter-scale length) cannot be conducted. Therefore, computational modelling is needed [10],
and Computational Fluid Dynamics (CFD) simulations appear as an increasingly valuable tool in order to
study pool thermal hydraulics [11, 12].

In this context, the long-term goal of our efforts is to formulate a model capable of simulating the dynamic
evolution of the corium pool. Such a model needs to combine equations for heat and mass transfer (hydro-30

dynamics) with a correct description of thermodynamic phases and interfaces. Diffuse-interface models are
well suited for both purposes. They have become a standard method to simulate two-phase hydrodynamic
flows [13], their advantage being to avoid the explicit tracking of the fluid-fluid interfaces. Furthermore, since
such models are directly derived from out-of equilibrium thermodynamics, the correct two-phase equilibria
are guaranteed. We have previously investigated the coupling with thermodynamic databases and two-phase35

hydrodynamics in simplified systems. A diffuse-interface model for the binary U-O system was developed in
[14]. Phase separation was described by a Cahn-Hilliard equation for the concentration of U, coupled to a
CALPHAD database. Furthermore, simulations of Rayleigh-Taylor instabilities were performed in a coupled
Cahn-Hilliard/Navier-Stokes model, where the thermodynamics of corium was treated in a pseudobinary
approximation [15], and it was shown that a such coupling can capture both the hydrodynamic phenomenon40

of a two-phase liquid pool and the thermochemical phenomenon (mass transfer).
The goal of the present work is the development and validation of a diffuse-interface model for the U-

O-Zr system, which can be seen as a minimal model for corium, in the sense that it exhibits a liquid-liquid
two-phase coexistence between a metal-rich and an oxide-rich phase. It is a further preliminary step towards
the U-O-Zr-steel system that is representative for in-vessel corium. With respect to the simpler systems45

discussed above, the major new aspect is that there are now two independent concentration fields. This
raises two new questions.

First, the thermodynamics of the U-O-Zr system is modeled in the CALPHAD approach by an associate
model which involves the oxide species UO2 and ZrO2 in addition to the pure metals U and Zr, and we
need to establish the link between this description and the diffuse-interface model that is formulated as two50

coupled Cahn-Hilliard equations for the concentrations of U and Zr. A new element here is that there is an
internal degree of freedom, which simply reflects the fact that oxygen can associate with U or Zr, and that
it can switch partners according to the thermodynamic conditions. This problem is solved by a dynamic
local minimization procedure, that is, for each space point and at each time, the “inventory” of components
is distributed between the different constituents such as to minimize the local free energy.55

Second, the structure of the diffuse interfaces also needs to be investigated. Indeed, in a multi-component
Cahn-Hilliard model, the interface profile is determined by the interplay of the composition-dependent bulk
thermodynamic free energy and the so-called gradient energy coefficients, which penalize spatial variations
of the composition. In an n-component system, there are n(n − 1)/2 such coefficients – three for the
ternary case considered here. Physically, these coefficients are related to the interatomic interactions of the60

various species, but since no detailed information about the latter is available, there is no way to calculate
the gradient energy coefficients a priori. Even if the interface free energy is known, this only yields one
constraint, and the question then arises whether there exists an optimal choice for these coefficients.

This question is investigated in detail in the present paper. Progress can be made by taking into account
the desirable properties of such a model. The model is intended to be used on the scale of two-phase pat-65

terns in corium, which are of the order of centimeters [8]. The thickness of the diffuse interfaces, which sets
the mesh size for numerical discretization, has then to be chosen much larger than the physical interface
thickness (typically nanometers). Therefore, complex interfacial profiles (such as non-monotonous concen-
tration fields) should be avoided to prevent spurious couplings to the hydrodynamic flows. Furthermore,
interfacial adsorption, that is, the accumulation of one or several components in the interface, can occur[16].70

This natural physical effect can become a problem in numerical simulations, since it is also amplified by the
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interface upscaling. Therefore, it should ideally be suppressed in the model. Finally, even though the lack
of experimental data makes this difficult, a good agreement with interfacial energy data must be reached.

We investigate three different two-phase equilibria in the U-O-Zr system and systematically vary the
gradient energy coefficients to study their influence on the interface structure and interface adsorption.75

We discuss various criteria for an optimal choice, but do not find a simple “recipee” that would ensure
monotonous concentration profiles and the absence of interface adsorption. Since we thus have to accept
“imperfect” interfaces, we evaluate numerically and analytically the consequences of interface upscaling, and
find that the interface adsorption modifies the two-phase equilibria in systems of finite size. However, a
scale separation between interface thickness and system size that is reasonable in terms of computational80

efficiency (one order of magnitude) yields shifts in equilibrium compositions of the order of only one percent.
If such a precision is deemed sufficient, our model can then be used with any “reasonable” choice of the
gradient energy coefficients.

The remainder of this paper is structured as follows. First, we define the diffuse-interface framework
and detail the connection to the CALPHAD database. Then, we present numerical results for planar85

diffuse interfaces for several different two-phase equilibria, and discuss the influence of the gradient energy
coefficients on the interface structure and interface adsorption. Finally, we study the influence of the finite
interface thickness on two-phase equilibria in closed systems of finite size.

2. Ternary Cahn-Hilliard model

This section is devoted to the presentation of the diffuse-interface model proposed and studied in this90

work. In the following, isothermal conditions are considered and the dependency of all quantities on tem-
perature T will be omitted for simplicity of notations.

2.1. Thermodynamic description of the U-O-Zr system
The phase diagram of the U-O-Zr system presents a liquid miscibility gap as shown on Figure 1. At

thermodynamic equilibrium, an “oxidic” (L2) and a “metallic” liquid (L1) coexist.95

case no1

case no2

case no3

Figure 1: U-O-Zr phase diagram at temperature T = 3073.15K and pressure of 1 bar (adapted from [17]) and locations
associated with the system inventory for the different simulations of Section 3.

In the following, we will consider that the thermodynamic description of the U-O-Zr liquid phase is given
by a Gibbs energy model through a CALPHAD database [18]. More precisely, for the sake of clarity of our
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presentation, a non-ideal associate model will be considered where the associated variables are the molar
fractions of the following five stoichiometric compounds: two oxide species (uranium dioxide UO2, zirconium
dioxide ZrO2), two metallic species (uranium U and zirconium Zr) and “free” oxygen O. Such a model is100

typically used in the NUCLEA database [19, 20] (from which our U-O-Zr thermodynamic representation has
been extracted for numerical simulations) and is special case of the general Compound Energy Formalism
(CEF) model where only one sublattice is considered and where, consequently, constituents and endmembers
(in this case, the stoichiometric compounds) are one and the same. Note that the final form of the Cahn-
Hilliard based model proposed in this paper is not limited to such an associate model.105

In the following, we denote:

• {xi}i∈E the molar fraction of components and E = {U,O,Zr} the set of components;

• {yi}i∈S the molar fraction of constituents and S = {UO2, ZrO2, U, Zr,O} the set of constituents.

As a consequence, the CALPHAD thermodynamic representation of the liquid phase takes the form of a
function representing the Gibbs energy per mole of species and denoted as:110

GliqM : {yi}i∈S 7−→ G (1)

where G is in J·mol−1. From such a representation, another function representing the Gibbs energy per
mole of components can be obtained:

Gliqm : {yi}i∈S 7−→
GliqM
N

(
{yi}i∈S

)
(2)

where N is the total amount of components per mole of constituents i.e. N = 3 (yUO2
+ yZrO2

) + yU +
yZr + yO.

As the constituent molar fractions should obey
∑
i∈S yi = 1, a new function describing the same Gibbs115

energy per mole of components can be defined in terms of independent variables, eliminating for instance
the UO2 molar fraction and considering the associated restricted set of species S̃ = {ZrO2, U, Zr,O}:

G̃liqm : {yi}i∈S̃ 7−→ Gliqm

{yi}i∈S̃ , yUO2
= 1−

∑
i∈S̃

yi

 (3)

When considering a severe accident in a light water reactor, the Zircaloy cladding are only partially oxi-
dised during core degradation in such a way that the overall U-O-Zr corium composition is substoichiometric
in oxygen i.e. xO ≤ 2 (xU + xZr). In this case, as illustrated in Table 1 through a particular equilibrium120

calculation performed with the OpenCalphad software [21], the two phases at thermochemical equilibrium
in the liquid miscibility gap do not contain any “free” oxygen i.e yO = 0.

Table 1: Molar species fraction yα,eqi at thermodynamic equilibrium for xU = 0.35, xZr = 0.25 and T = 3000K

Phase α yα,eqUO2
yα,eqZrO2

yα,eqU yα,eqZr yα,eqO

oxide 0.363 0.156 0.222 0.259 <5.0×10−6

metal 0.046 0.066 0.463 0.425 <5.0×10−7

Under such conditions, the thermodynamic state of the system is completely defined by the following
three constituent molar fractions: yU , yZr and yZrO2

. All these three variables are non-conserved during a
stratification transient, but they can be used to express the conserved component molar fractions under the125

following form: 
xU =

1− (yZr + yZrO2
)

1− 2 (yU + yZr)

xZr =
yZr + yZrO2

1− 2 (yU + yZr)

(4)
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As a consequence, in our diffuse interface model, we have retained xU , xZr and yZrO2 as independent
variables and considered that the thermodynamic state of the ternary system is described by the following
function giving the Gibbs energy per mole of components:

G̃liq : {xU , xZr, yZrO2
} 7−→ G̃liqm

(
yZrO2

, yU =
3xU + xZr − 1

2 (xU + xZr)
+ yZrO2

, yZr =
xZr

xU + xZr
− yZrO2

, yO = 0

)
(5)

2.2. Additional hypothesis on the redox reactions kinetics130

As xU and xZr are conserved variables, a natural choice for describing their evolution as a function of
time in the framework of a diffuse-interface description is to consider a Cahn-Hilliard model (as described in
the next section). However, G̃liq being also a function of the non-conserved variable yZrO2 , the formulation of
a phase-field model for describing the phase segregation in such a system is not completely straightforward.

The extra degree of freedom associated with yZrO2
comes from the fact that component mass transfer135

between the two phases in the liquid miscibility gap of such a suboxidized system can induce modifications

of the local equilibrium of the redox reaction UO2+Zr
(1)−−⇀↽−−
(2)

ZrO2+U. Therefore, the time evolution of this

degree of freedom should follow a local reaction kinetics model. Formulating such a model for yZrO2 would
require some quantitative knowledge about the reaction rate constant that is not available.

Fortunately, past experiments investigating the oxidation of corium by a gaseous atmosphere as reviewed140

in [22, 23] have shown that the overall oxidation kinetics is never limited by the oxidation reaction kinetics
itself, but is controlled by the reactant transport to the reactive interface. As a consequence, we can make
the approximation that local redox reaction equilibrium is maintained at all time. This is consistent with
the fact that the associated local oxygen exchange mechanisms occur at the atomic scale.

Under this hypothesis of instantaneous local equilibrium of the redox processes, yZrO2 can be formally145

described by a function of xU and xZr of the following form:

Y eqZrO2
: {xU , xZr} 7−→ yZrO2 s.t.

∂G̃liq

∂yZrO2

(xU , xZr, yZrO2) = 0 (6)

associated with the local minima of the molar Gibbs energy. Its numerical evaluation is depicted in Figure 2.
Using this solution, the thermodynamic landscape is reduced to the following function:

Ḡliq : {xU , xZr} 7−→ G̃liq
(
Y eqZrO2

(xU , xZr) , xU , xZr
)

(7)

that depends only on the two conserved variables xU and xZr.

y

Figure 2: Illustration of yZrO2
= Y eqZrO2

(xU , xZr) associated with equilibrium of the redox reaction in the U-O-Zr system
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Note that if this local redox equilibrium hypothesis was to be questioned in a later stage of this research150

work, the approach of [24] could be considered to extend the present model and properly define additional
order parameters (obeying Allen-Cahn equations) to take into account the associated reaction kinetics. Some
developments in this direction are further discussed in [25].

2.3. Governing equations
The evolution of xU and xZr is described by two coupled Cahn-Hilliard equations under the classical155

hypothesis that the molar volume (denoted Vm) remains constant. More precisely, denoting Ω the spatial
domain and ∂Ω its boundary, such equations for the order parameters xU and xZr can be written as,
∀i ∈ {U,Zr}, ∀~r ∈ Ω:

∂xi
∂t

= ∇ ·

 ∑
j∈{U,Zr}

Mi,j

a
∇µ̃j

 (8)

µ̃i =
a

Vm

∂Ḡliq

∂xi
−

∑
j∈{U,Zr}

κi,j∆xj (9)

supplemented by homogeneous Neumann conditions for xi. For a closed system, the diffusion potentials µ̃i
are also subject to homogeneous Neumann conditions. The parameters associated with this model are:160

• the symmetric kinetic coefficients {Mi,j}i,j∈{U,Zr} to be related to component self-diffusion coefficients;

• a, an upscaling parameter which allows to treat a larger interface thickness than the characteristic length
scale of the physical interface. As our model is intended for macroscopic simulations, we have considered
large interface upscalings.

• κ = {κi,j}i,j∈{U,Zr}, the energy coefficients associated with the interfacial gradient terms ∇xi ·∇xj of the165

underlying free energy functional:

F =

∫
Ω

1

2

∑
i∈{U,Zr}

∑
j∈{U,Zr}

κi,j∇xi · ∇xj +
a

Vm
Ḡliq

 dV (10)

They are discussed in details in the following sections. At this stage, one should note that a appears in
the kinetic terms Mi,j

a of Eq. 8 in such a way that the macroscopic characteristic time τ obtained through
non-dimensionalization of Eqs. 8 and 9 becomes independent of a i.e.

τ =
L2

0Vm

M0Ḡ
liq
0

(11)

considering characteristic length L0, mobility M0 and energy Ḡliq0 . Indeed, in such a macroscopic model,170

the interface upscaling should not directly impact the transport of components in the bulk phases.

2.4. Kinetic parameters
In accordance with the general frame of linear phenomenological flux-force relationships [26], in the case

of conservation equations expressed in terms of molar fractions and molar fluxes, the mobilities of Eq. 8 can
be written as, ∀i, j ∈ {U,Zr}:175

Mi,j =
Vm
RT

∑
k={U,Zr,O}

(δj,k − xj)(δi,k − xi)xkDk (12)
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in terms of the component self-diffusion coefficients Dk and where δ is the Kronecker symbol. Following
Onsager reciprocal relations, {Mi,j}i,j∈{U,Zr} is symmetric. It means that

MU,Zr =MZr,U =
Vm
RT

[−xZr(1− xU )xUDU − xU (1− xZr)xZrDZr + xUxZrxODO] (13)

In many Cahn-Hilliard based models, these so-called degenerate mobilities are replaced by average con-
stant coefficients. In the present study, the explicit dependency on the order parameter values exhibited
in Eq. 12 is kept in order to ensure that the local constituent molar fractions are kept in their associated180

physical range for all possible initial state of the system at all times. Such an approach is to be distinguished
from Cahn-Hilliard models (typically for multiphase flows description e.g. [27]) where the thermodynamic
landscape Ḡliq and gradient energy coefficients κi,j are constructed in order to ensure such constraints.

In particular, consistency of this ternary model with the underlying binary limiting cases is an important
desired feature because of the component phase segregation in the initial state of the system (illustrated in185

Section 3). For instance, in the U-Zr case, the model should ensure that ∂xO

∂t = 0 in such a way that the
two Cahn-Hilliard equations should give ∂xU

∂t = −∂xZr

∂t . Without further hypothesis on µ̃i, this is enforced
if and only if MU,U = −MU,Zr = −MZr,U = MZr,Zr in the (xO = 0)-plane; one can easily verify that
Eq. 12 satisfies this constraint.

Data on component self-diffusion coefficients Dk in molten corium mixtures are very scarce. In the190

following, for DU and DO, we have used the same data as in [14] (taken from molecular dynamics simulations
of liquid UO2 [28]) and taken DZr equal to DU based on the fact that their atomic radii are close, 1.65 ±
0.12Å(1.55± 0.12Å) for U (resp. Zr). At T = 3150K, one obtains that DU = DZr = 1.9× 10−9m2s−1 and
DO = 3.5× 10−9m2s−1.

2.5. Interface related parameters195

As in our previous work on the binary U-O system [14], this model is intended for macroscopic scale
simulations in such a way that it should be compatible with a large upscaling of the interface. In order to
uncouple interface thickness and energy at steady state, the prefactor a is introduced in the thermodynamic
landscape of Eq. 10 while, for the closure of the interface parameters κ, the original intention is to use
relevant information on the interfacial tension.1 The associated issue of the data or models for evaluating200

interfacial energies in such complex systems was not addressed in this work and, accordingly, only constant
gradient energy coefficients were considered.

Even under such an assumption the selection of κ is not straightforward. The surface energy can be
calculated, but depends on the values of all the three independent gradient coefficients; thus, even if its
value is known, two coefficients remain undetermined. However, thanks to the consistency with the limiting205

binary U-O case we want to enforce, the a and κU,U coefficients can be unambiguously chosen. Indeed, in
the U-O case, MU,Zr = MZr,U = MZr,Zr are zero in such a way that xZr remains uniformly zero and
Eqs. 8 and 9 for U are reduced to:

∂xU
∂t

= ∇ · (MU,U∇µ̃U ) (14)

µ̃U =
a

Vm

∂Ḡliq

∂xU
− κU,U∆xU (15)

In this specific case, considering a planar interface at steady state and assuming that far away from the
interface, bulk molar fractions reach the thermodynamic equilibrium values, the same analytic expressions210

1This “top-down” approach for the model closure is to be distinguished from a “bottom-up” one where detailed microscopic
information are used through a coarse-graining procedure (see, for instance, [29]).
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as in [14] are obtained for the interface thickness ε and interfacial tension σUO defined by:

ε =

∣∣xmet,eqU − xox,eqU

∣∣
maxz∈Ω

(∣∣dxU

dz

∣∣) (16)

σUO = κU,U

∫
Ω

(
dxU
dz

)2

dz (17)

i.e.

ε =

√
κU,U
2a

Aeqε (18)

σUO =
√

2aκU,UA
eq
σ (19)

where Aeqε and Aeqσ are constants that only depend on the thermodynamic equilibrium of the system in terms
of the molar fractions xα,eqU and chemical potentials (µα,eqU µeqO ) of the two coexisting phases α ∈ {met, ox}.
Such an equilibrium is completely defined by the temperature T and element inventory of the system in its215

initial state and can be evaluated through a Gibbs energy minimization procedure (as illustrated in Table 1).
Accordingly, values for κU,U and a can be explicitly evaluated as:

κU,U = σUOε
1

Aeqε A
eq
σ

(20)

a =
σUO
ε

Aeqε
2Aeqσ

(21)

As in [14], σUO is crudely evaluated through the Girifalco model [30]:

σUO = σUO2/G + σU/G − 2
√
σUO2/GσU/G (22)

under the constant molar volume hypothesis with liquid/gas surface tensions for pure liquid UO2 (σUO2/G)
and U (σU/G) taken from [31]. At T = 3200K, it gives σUO = 0.1N.m−1.220

At this stage, the κZr,Zr and κU,Zr = κZr,U coefficients are left unspecified. While the overall idea
would be to use them as additional degrees of freedom to be calibrated for prescribed configurations against
interfacial energy data, as discussed in [25], such quantitative data for high-temperature corium systems are
very scarce. Accordingly, in the following, the coefficients will be the subject of parametric studies.

3. Numerical results and discussion225

In the following, we will study in detail the structure and properties of one-dimensional (1D) interfaces.
After a discussion of the simulation setup in section 3.1, we will first look at interfaces in open systems, that
is, with fixed chemical potentials and no constraints on the mass inventory. In this setting, the interfacial
properties depend only on the free energy landscape and the gradient energy coefficients. We find it useful
to start with a simple example in order to introduce the interface characteristics that are of interest. For230

this purpose, in section 3.2 we will consider the case κ = κU,UI (I being the 2 × 2 identity matrix) and
discuss in details the interface profiles and the quantities of interest that can be used to describe interface
properties. In section 3.3, we will then present a parametrization of κ and discuss its influence on the
interface properties, with the goal to find an “optimal” set of gradient energy coefficients. Finally, closed
systems of finite size will be investigated in section 3.4.235

3.1. Simulation setup
The model has been implemented and tested for 1D slab geometries in a mock-up code. The spatial

discretization is based on a simple staggered grid finite difference scheme that ensures stability while con-
sidering degenerate mobilities [32]. Time discretization is carried out by a fully implicit Euler scheme where
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non-linearity is solved through Newton-Raphson iterations. Second-order derivatives of Ḡliq involved in the240

system Jacobian are evaluated by finite difference formula based on the analytic evaluation of ∂Ḡ
liq

∂xi
.

Regarding these quantities, they have been obtained using the OpenCalphad code as interfaced (see [33])
in the PROCOR platform developed at CEA for corium propagation modelling [4]. Actually, two different
approaches have been tested for this purpose. First, OpenCalphad was used to evaluate

{
G̃liq

m

∂yj

}
j∈S

and,

through the chain rule for derivatives, ∂G̃liq

∂yZrO2
in such a way that using the Brent’s method, the root finding245

problem of Eq. 6 can be solved in order to construct Y eqZrO2
and, finally, evaluate

{
∂Ḡliq

∂xi

}
i∈{U,Zr}

. Then,

as a generalisation of the “local” equilibrium to any redox reactions, it was realised that such an hypothesis
corresponds to Gibbs energy minimization for the liquid phase carried out discarding the possible phase
separation associated with the miscibility gap. With OpenCalphad, such a calculation is made possible by
deactivating the so-called grid minimizer that is normally used to obtain an initial guess (in terms of phase250

compositions) for the iterative algorithm that searches for the global minimum; indeed, it is in this first
step of a global equilibrium calculation that miscibility gaps are detected. As a consequence, for given xU
and xZr, such a local equilibrium calculation can be performed by OpenCalphad and associated component
chemical potentials

{
µloc. eqi

}
can be directly retrieved in order to evaluate, ∀i ∈ {U,Zr}:

∂Ḡliq

∂xi
=
(
µloc. eqi − µloc. eqO

)
(23)

Note that the proposed model could be readily combined with surrogate models (e.g. neural networks as in255

[34]) of the thermodynamic landscape in order to avoid direct calls to a Gibbs energy minimizer and reduce
the computational cost.

This model has been tested for different 1D configurations where two liquids are initially segregated
in a system of size L = hsup + hinf as depicted in Figure 3. Initial tests, not reported here for the sake
of conciseness, were carried out in order to verify that the model behaves consistently when one of the260

component is absent or when the overall inventory is such that the system is out of the miscibility gap; the
reader is referred to [25] for more details. Then, different system compositions were chosen from the ternary
phase diagram inside the miscibility gap (see Figure 1) in order to construct initial configurations presented
in Table 2. Case no1 is located in the central region of the miscibility gap while case no2 (resp. case no3) is
in the U-rich (resp Zr-rich) region. In all cases, the temperature was set to T = 3000K and the initial state265

corresponds to an oxide phase on top of a metallic phase. The interface was initialized with piecewise linear
profiles of the molar fractions with at least six grid points in the interface.

upper phase
(oxide phase)hsup

lower phase
(metallic phase)

hinf

z

Figure 3: Schematics of the 1D simulation setup
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Table 2: Parameters defining the initial system state for the different simulations

case oxide phase metallic phase
U molar fraction Zr molar fraction U molar fraction Zr molar fraction

no1 0.209 0.125 0.506 0.494
no2 0.313 0.020 0.735 0.265
no3 0.123 0.210 0.390 0.610

From Table 2, one can see that the metallic phase does not contain any oxygen (it contains only U and
Zr). In all cases, σUO is kept equal to 0.1N.m−1 in such a way that the “free” model parameters are then ε,
κZr,Zr and κU,Zr = κZr,U . To keep the consistency with the binary system, a and κU,U are obtained from270

Eqs. 20 and 21 based on σUO and ε.
In all the simulations, through sensitivities analyses, it was ensured that the numerical errors introduced

by the time discretization along with the local minimization are at least one order of magnitude lower than
the impact of these model parameters. The reader is referred to [25] for more details. The impact of the
space discretization will be further discussed in Section 3.4.275

3.2. Interface profiles and interface properties: an example case
While the interface solution in the case of binary systems is well known, the interfaces in ternary systems

present some properties that are of importance and should therefore be discussed. In this section, after pre-
senting interface profiles obtained using κ = κU,UI, we discuss their properties, namely, their monotonicity
and interface adsorption. In Figure 4 (a) and (b) the molar fractions of U and Zr are plotted as a function of280

z for the three different cases. First, since the interface is between an oxygen rich region to an oxygen poor
region, both the molar fractions of U and Zr are increasing when going through the interface while the O
molar fraction (not shown) is decreasing. As expected, one can also see that the magnitude of concentration
changes depends on the position with respect to the miscibility gap while the interface thickness is similar
in magnitude in the three cases. In addition, while in case 1 the concentration profiles are monotonous,285

one can see that in case 2 (resp. 3) the Zr (resp. U) profile is no longer monotonous and presents a clear
maximum (resp. minimum) on the metallic (resp. oxide) side. This, in principle should not be an issue.
However, this may lead to a non monotonous density profile when going through the interface and which
may act as a source term for a Rayleigh-Taylor instability while bulk phases stratification is stable. Since we
need to avoid such an unphysical behaviour, we need to prevent the formation of non monotonous profiles.290

When considering in more details the interface structure, one can see that the apparent position of the
interfaces for Zirconium and Uranium are not exactly the same and there is a small offset[16]. This is
associated with interface adsorption as is explained in more details now.
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(b) Zirconium molar fraction profile

Figure 4: Steady-state molar fraction profiles for the three different cases of Table 2 with ε = 4mm and κ = κU,U I.

In a diffuse interface approach, we can define x̄i as the average molar fraction of component i in the
system by:295

x̄i =
1

L

∫ L

0

xidz (24)

With an idealised zero-thickness interface, ∀i ∈ {U,Zr}, x̄i is a function of the position of this interface
zGi that writes:

x̄i =
zGi
L
xoxi +

L− zGi
L

xmeti (25)

Eq. 25 for U and Zr components at equilibrium can be written as follow:{
x̄U =

zGU
L x

ox,eq
U + (1− zGU

L )xmet,eqU

x̄Zr =
zGZr

L xox,eqZr + (1− zGZr

L )xmet,eqZr

(26)

Obviously, zGU and zGZr are not necessarily equal. Therefore, we can define ∆zG as the distance between
both interface positions:300

∆zG = zGU − zGZr (27)

The interface positions zGU , z
G
Zr, the distance ∆zG and the interface adsorption are illustrated qualitatively

in Figure 5.
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Figure 5: Illustration of the adsorption and the positions of the interface

It is important to note that, for our problem under imposed diffusion potentials µ̃i, the value of ∆zG

depends on the interface thickness ε. To reduce this dependency, the following scaling z̃ = z
ε can be

introduced into the Cahn Hilliard equation (Eq. 9) and leads to a system of equations for xU and xZr that305

no longer directly depends on the interface thickness ε. Accordingly, the associated dimensionless quantity

∆z̃G =
∆zG

ε
(28)

only depends on κ and the thermodynamic landscape (through µ̃) which implies that ∆zG is a linear function
of ε as can be seen Figure 6. The expected linear trend is clearly shown with a slope that is directly ∆z̃G

and a convergence towards zero when ε = 0 goes to zero.
From Eq. 26, by taking zGU as a reference for the interface position which is denoted zint, x̄Zr can be310

written as a function of zint and ∆z̃G:

x̄Zr =
[zint
L
xox,eqZr + (1− zint

L
)xmet,eqZr

]
+
ε

L
∆z̃G

(
xmet,eqZr − xox,eqZr

)
(29)

In this expression, the second term of the r.h.s., ε
L∆z̃G

(
xmet,eqZr − xox,eqZr

)
, corresponds to the contribution

of the adsorption of Zr at the interface and varies linearly with ε
L .
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Figure 6: Interface position difference as a function of ε/L for different cases

Hence, for a non-zero interface thickness, surface adsorption is inevitable but can be minimized if ∆z̃G

is minimized. It should be noted that since the adsorption of the interface is proportional to ∆z̃G between315

the positions of the interfaces for both components, the monotonicity of the interface profile is not directly
linked to it. Accordingly, while a small value of ∆z̃G is a desired model feature, it cannot be used as the
only guideline for selecting the gradient coefficient parameters as it will not ensure monotonicity of the
composition profiles.

All the discussion above has been focused on the convergence of the model and its applicability to large320

scale hydrodynamic simulations. However, an important feature of interfaces has not been discussed yet.
Indeed we have not yet mentioned the surface tension or interface excess energy. This is an important
property of the physical system since surface tension may (at least at small scales) have a significant impact
on flow. However the lack of available data, makes it impossible to assess the quality of the model through
comparison with model predictions. Nevertheless, it is an important aspect of the model and will be discussed325

in the following section. The interface energy was evaluated at equilibrium using the standard expression
(see for instance [25]):

σ =

∫ L

0

∑
i∈{U,Zr}

∑
j∈{U,Zr}

κi,j

(
dxi
dz

)(
dxj
dz

)
dz (30)

In the following section we will examine how the changes in κ do affect the monotonicity, the interface
adsorption and the surface tension. To this purpose, we use a simple parametrization of the κ. Indeed, since
κ is symmetric and positive it can be decomposed as:330

κ = αRDRT (31)

where R is a rotation matrix, RT its transpose (and inverse), D a diagonal matrix and α is a prefactor
chosen so that κ is consistent with the U-O binary system. In other words, κU,U in ternary system should
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be the same as κbinU,U calculated in the binary one. Accordingly, these quantities are defined by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(32)

D(d) =

(
2 0
0 d

)
(33)

α =
κbinU,U

2 cos2 θ + d sin2 θ
(34)

and this κ parameterization is fully defined by two coefficients: θ, the rotation angle and d, a diagonal
coefficient that can be seen as a measure of anisotropy in the Gibbs triangle. From Eq. 31 it is clear that κ335

is a π-periodic function of θ and one can check that due to Eq. 34, κ(θ + π, 4/d) = κ(θ, d). Therefore, the
parametric study can be restricted to (d, θ) in the range [0, 2] × [0, π] without any loss of generality. One
should also note that with d = 0, this decomposition is not valid when θ tends to π

2 since α diverges. We now
describe the numerical results obtained. Since the monotonicity of the interface is a requirement, we will
first discuss this point. Thereafter, we will discuss how the changes in d, θ affect the interface adsorption340

and the surface tension.

3.3. “Optimal” gradient energy coefficient matrix for a monotonous profile
The first criterion for choosing κ is the monotonicity of the composition profiles. From the various

simulations performed we have found that, at least in the situations studied here, increasing d, favoured the
appearance of non monotonous profiles as can be seen in Figures 7 and 8 where, for a given value of θ = 45◦,345

both uranium and zirconium molar fraction profiles are depicted when varying d in case no2 and case no3
respectively. In both cases, one can see that for higher values of d, there is an enrichment or depletion (non
monotonicity of the molar fraction profile) in the minority phase. Zr-enrichment in the metallic phase for
case no2 and U-depletion in the oxide phase for case no3 are increasing when d increases. This translates
into the following properties:350

• There exists a case dependent d-threshold value (denoted dlb) above which there exists no θ value that
can enforce monotonicity of the composition profiles. In case no2 (resp. case no3), dlb is about 0.5 (resp.
0.2).

• For a given value of d ≤ dlb, there exists a θ-range in which monotonicity is ensured. This trend is
illustrated in Figures 9 and 10 where the molar fraction profiles are depicted when varying θ ∈ [0, π[ with355

d = 0.5 in case no2 and d = 0.2 in case no3 respectively. It can be observed that for d = 0.5 in case no2,
composition profiles of Zr are monotonous for 40◦ ≤ θ ≤ 70◦ while in case no3 for d = 0.2, composition
profiles of U are monotonous for 0◦ ≤ θ ≤ 40◦.

As a result, for each case there is a region of the parameter range for which the interface profile is monotonous.
This range, at least here, corresponds to values of d below a threshold. In this domain, parameters should360

be chosen in order to both minimize interface adsorption that has adverse effects to convergence and to have
a good approximation of surface tension. We first discuss the effect of the choice of κ on adsorption. Since,
as following Eq. 28, the interface adsorption is linear with interface thickness, the quantity that must be
minimized is the coefficient of proportionality, ∆z̃G. It has been evaluated in all calculations, regardless of
the monotonicity of the profile, as illustrated in Figures 11a and 11b for both case no2 and case no3. For365

a given value of θ, in the range for which monotonicity is possible, it was found that ∆z̃G decreases when
d increases, which implies, that for a given value of θ, the best choice should be dlb. When considering the
variation of ∆z̃G as a function of θ for a given value of d, on retrieves the expected π-periodic behaviour and
one can see that the position of the extrema is case-dependent. However, it was found that in both cases,
the position of the minimum was close to the monotonicity range. The examination of the amplitude of370

variation of ∆z̃G is in our opinion of more interest. Indeed, in both cases one can see that when varying d,
its variations are rather small (about 10 to 20 %), when θ is varied, the changes can be much more significant
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(from 50% to 8 fold). In addition, the changes are much stronger in case n°3 that corresponds to a situation
closer to the critical point.

According to this analysis and the two associated criteria, the “optimal” choice of κ would then correspond375

to d = 0.5, θ = 70◦ in case no2 and d = 0.2, θ = 0◦ in case no3. As it could be anticipated, such an optimal
choice is dependent on the tie-line under consideration. In addition, it must be noted that the discussion
above has been focused on what we can call convergence aspects of the model and has not discussed the
issue of the surface tension that is an important physical constant and can have dramatic effects such as
Marangoni flows. This is mostly due to the lack of data on the surface tension. However, since the approach380

presented here is not limited to the context of corium, we find it necessary to discuss the effects of the choice
of κ on the variation of surface tension.
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Figure 7: Steady-state molar fraction profiles for different values of d while keeping θ = 45◦ in case no2 of Table 2 with ε = 4mm
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Figure 8: Steady-state molar fraction profiles for different values of d while keeping θ = 45◦ in case no3 of Table 2 with ε = 4mm
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Figure 9: Steady-state molar fraction profiles for different values of θ while keeping d = 0.5 in case no2 of Table 2 with ε = 4mm
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Figure 10: Steady-state molar fraction profiles for different values of θ while keeping d = 0.2 in case no3 of Table 2 with
ε = 4mm
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Figure 11: Scaled difference between interface positions of U and Zr as a function of d in (a) for the same value of θ = 45o and
cases 2 and 3. The same quantity is ploted in (b) as function of θ for d = 0.5 in case 2 and d = 0.2 in case 3

First, when considering a given θ angle, and varying d we find that σ is decreasing with d in both cases
no2 and n°3 in the range of θ for which monotonicity is possible. This behaviour is examplified in Figure 12a
where the surface tension is ploted as a function of d for θ = 45◦. This may seem counterintuitive since385

increasing d is increasing the contribution of the squared gradient term to the surface energy. However, one
should not forget that in order to keep consistency with the U-O case, the prefactor α is also varying when d
is increasing. Therefore, it is not be surprising that such dependency is observed. For a given value of d, the
periodic behaviour of σ as a function of θ is also present. In both studied cases, σ(θ) presents a maximum
close to θ = 75o. However, it is worth mentioning that while in both cases the magnitude of σ variations is390

similar (around 4.10−2N.m−1) the relative amplitude is much larger in the case n°3 which is closer to the
critical point that is characterized by a zero surface tension. While with a knowledge of θ as a function of
the tie line, such information would be crucial to choose the κ, here it is of little help and cannot be further
discussed. But this subject will have to be tackled in order to reach a quantitative description of flows since
surface tension plays a significant role in multiphase hydrodynamics and in Rayleigh Taylor instabilities (see395

for instance [15]).
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Figure 12: (a)Surface tension for different values of d with the same rotation angle θ = 45◦ in cases 2 and 3. (b) Surface tension
for different values of θ for given values of d in cases 2 and 3

Finally, as in [25], we depict the composition trajectory associated with the interfacial profiles in the
thermodynamic landscape to highlight its impact. In Figure 13, for both cases no2 and no3 the energy
density defined by

1

Vm

Ḡliq (xU , xZr)−
∑

i∈{U,Zr}

(µeqi − µeqO )xi

 (35)

is depicted with contour lines uniformly spaced every 6.0 × 105J·m−3. On this landscape, the trajectories400

corresponding to the interfacial profiles are plotted for different choices of κ: a diagonal matrix with (d = 2
regardless of θ), a matrix where all the coefficients are equal (d = 0, θ = 45◦) and the case-dependent
“optimal” choice previously defined.
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Figure 13: Steady-state interface profile xZr as a function of xU superimposed over the thermodynamic landscape defined
by Eq. 35 for different forms of κ at ε = 4mm - contour lines associated with the energy density are uniformly spaced every
6.0 × 105J·m−3

First, the lesser density of contour lines indicates that the thermodynamic landscape is more “flat” in
case no3 compared to case no2: the minimum energy wells are less pronounced. In addition, the distance405

between bulk compositions is smaller. This is consistent with the fact the case no3 is closer to the critical
point than the case no2 as can be seen in Figure 1. When considering interfaces paths, profiles present
a deviation from the ideal tie line. This deviation presents two sriking particularities. First, it is always
passing in the vicinity of the saddle point of the energy landscape (the path) and the energy cost associated
with any deviation from this path is apparently too costly. This entails that unless this path is close to the410

ideal tie line, the trajectory in the Gibbs triangle will not be close to the ideal tie line.
All previous calculations for discussing the choice of the gradient energy coefficients have been made

considering Dirichlet boundary conditions for µ̃i, ∀i ∈ {U,Zr}, µ̃i(0) = µ̃i(L) = µ̃eqi in such a way that the
problem to be numerically solved is simpler as it reduces Eq. 9 with µ̃i = µ̃eqi . Indeed, such simulations
pertaining to an open system are adequate to study the interface structure. However, when considering the415

simulation of a closed system, additional important bulk effects are to be taken into account. They will be
discussed next.

3.4. Finite size problem
Unlike the imposed diffusion potential problem considered in the previous sections, the numerical solution

of such a Cahn-Hilliard model for a closed system, as a reactor vessel, requires to impose no flux boundary420

conditions. In the case of the time-dependent Eqs. 8 and 9 this implies homogeneous Neumann boundary
conditions for µ̃i. This system under mass conservation constraint is often referred to as finite size problem.

The same configurations as in Section 3.1 have been considered but only the results of case no3 are
reported because the non-monotonous effect was found the most severe in this case. As expected, the exact
same behaviour as in Figure 4 is found for the composition profiles at steady state inside the interface zone425

for a given value of κ. However the compositions far from the interface are not exactly the equilibrium ones
and vary with the interface thickness. Figure 14 (resp. Figure 15) illustrates this by depicting the relative
deviation ∆xU (resp. ∆xZr) as a function of ε

L for both the bulk oxide and metallic phases. This relative
deviation is obtained by ∀i ∈ {U,Zr} and ∀k ∈ {ox,met},

∆xki (%) = 100× (xk,eqi − xki )

xk,eqi

(36)
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where xk,eqi is the thermodynamic equilibrium value and xki the actual computed value at steady-state.430

These results are presented for different spatial meshes in order to check convergence with respect to
discretization. When decreasing ε, the discrepancy w.r.t. thermodynamic equilibrium is reduced almost
linearly and the asymptotic limit when ε

L → 0 is found consistent with the overall equilibrium values
providing that the spatial mesh is fine enough. The linear dependency in terms of ε

L is observed for both U
and Zr molar fractions. Uranium bulk composition is increasing with ε

L while zirconium one is decreasing,435

which is consistent with the fact that Zirconium is adsorbed at the interface. The same variation (not shown
here) is also noted for chemical potentials with respect to ε

L since chemical potentials and compositions are
linked by Eq. 9.
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Figure 14: Relative deviation between equilibrium and Uranium composition from calculation at steady state as a function of
ε/L for fine (∆z = 10−4 m), medium (∆z = 2 × 10−4 m) and coarse mesh (∆z = 4 × 10−4 m) - case no3
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Figure 15: Relative deviation between equilibrium and Zirconium composition from calculation at steady state as a function
of ε/L for fine (∆z = 10−4 m), medium (∆z = 2 × 10−4 m) and coarse mesh (∆z = 4 × 10−4 m) - case no3

In order to further discuss this asymptotic linear dependency, considering that the Gibbs energy is convex
in the vicinity of the minimum energy wells, ∀i ∈ {U,Zr} and ∀k ∈ {ox,met}, bulk compositions at steady440

state xki are explicitly written as functions of the homogeneous diffusion potentials at steady state under
the form xki = Xk,eq

i (µ̃U , µ̃Zr) where Xk,eq
i are thermodynamic functions that, for a given tie-line defined

by (µ̃U , µ̃Zr), give the associated equilibrium compositions. Accordingly, for this finite size system, let us
take the notation φ =

zGU
L , Eq. 29 becomes:{

x̄U = φXox,eq
U (µ̃U , µ̃Zr) + (1− φ)Xmet,eq

U (µ̃U , µ̃Zr)

x̄Zr = φXox,eq
Zr (µ̃U , µ̃Zr) + (1− φ)Xmet,eq

Zr (µ̃U , µ̃Zr) + ∆z̃G ε
L

[
Xmet,eq
Zr (µ̃U , µ̃Zr)−Xox,eq

Zr (µ̃U , µ̃Zr)
]
(37)

Eq. 37 shows that the offset of Zr composition on the tie-line is conditioned by the interface thickness. In445

order to highlight this dependency of the bulk composition on the interface thickness ε, we can then proceed
with a first-order asymptotic expansion in ε

L by considering
x̄U = x̄0

U + ε
L x̄

1
U

x̄Zr = x̄0
Zr + ε

L x̄
1
Zr

µ̃U = µ̃eq,0U + ε
L µ̃

eq,1
U

µ̃Zr = µ̃eq,0Zr + ε
L µ̃

eq,1
Zr

φ = φ0 + ε
Lφ

1

(38)

where the exponent “0” is used to denote the asymptotic limit of the different quantities when ε
L = 0 i.e.

the thermodynamic equilibrium values.2 Accordingly, ∀i ∈ {U,Zr} and ∀k ∈ {ox,met}, the first-order
expansion of Xk,eq

i is then given by450

Xk,eq
i (µ̃U , µ̃Zr) = xk,eq,0i +

ε

L

(
∂Xk,eq

i

∂µ̃U

∣∣∣∣∣
0

µ̃eq,1U +
∂Xk,eq

i

∂µ̃Zr

∣∣∣∣∣
0

µ̃eq,1Zr

)
(39)

2Note that, in Section 3.2, such an exponent “0” was not used as it would have been redundant with the “eq” exponent; the
reader should keep in mind this difference in the notations between these two sections.
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In the first-order expansion of Eq. 39, on can see that the convergence w.r.t. ε
L directly depends on the

inverse of the Hessian matrix of the Gibbs energy function so that the convergence rate directly depends on
the curvature of thermodynamic landscape in the vicinity of the minimum energy wells. Consistently with
the discussion of Figure 13, it was observed that it is in case no3 where the landscape is more flat that the
effect of a non zero interface thickness of the bulk composition is more pronounced.455

Then, to complete this asymptotic expansion, Eqs. 38 and 39 are injected in Eq. 37 and we obtain:{
x̄0
U = φ0xox,eq,0U + (1− φ0)xmet,eq,0U

x̄0
Zr = φ0xox,eq,0Zr + (1− φ0)xmet,eq,0Zr

(40)

and
x̄1
U = φ0

(
∂Xox,eq

U

∂µ̃U

∣∣∣
0
µ̃eq,1U +

∂Xox,eq
U

∂µ̃Zr

∣∣∣
0
µ̃eq,1Zr

)
+ (1− φ0)

(
∂Xmet,eq

U

∂µ̃U

∣∣∣
0
µ̃eq,1U +

∂Xmet,eq
U

∂µ̃Zr

∣∣∣
0
µ̃eq,1Zr

)
+ φ1(xox,eq,0U − xmet,eq,0U )

x̄1
Zr = φ0

(
∂Xox,eq

Zr

∂µ̃U

∣∣∣
0
µ̃eq,1U +

∂Xox,eq
Zr

∂µ̃Zr

∣∣∣
0
µ̃eq,1Zr

)
+ (1− φ0)

(
∂Xmet,eq

Zr

∂µ̃U

∣∣∣
0
µ̃eq,1U +

∂Xmet,eq
Zr

∂µ̃Zr

∣∣∣
0
µ̃eq,1Zr

)
+ φ1(xox,eq,0Zr − xmet,eq,0Zr ) + ∆z̃G(xmet,eq,0Zr − xox,eq,0Zr )

(41)

For a closed system, x̄U and x̄Zr are imposed so that x̄1
U and x̄1

Zr are 0. Then, to obtain a closed linear
system of equations for

{
µ̃eq,1U , µ̃eq,1Zr , φ

1
}
, the two equations 41 should to be supplemented by the following

Clausius-Clapeyron relation460

µ̃eq,1U

µ̃eq,1Zr

=
xmet,eq,0Zr − xox,eq,0Zr

xox,eq,0U − xmet,eq,0U

(42)

that directly comes from the fact that the grand potential is uniform at equilibrium. The numerical so-
lution of this system was not evaluated in the present study but it is sufficient to note that the solution{
µ̃eq,1U , µ̃eq,1Zr , φ

1
}

of this system is directly proportional to ∆z̃G and, accordingly, becomes {0, 0, 0} if ∆z̃G

is 0. In other words, the rate of convergence w.r.t. ε
L of all quantities of interest (chemical potentials, bulk

compositions) is proportional to the adsorption-related term ∆z̃G that solely depends on the thermodynamic465

landscape and the κ matrix. As such, it reinforces the interest of considering the minimization of ∆z̃G as a
criterion in the choice of κ as discussed in Section 3.3.

With that said, it should be noted that the discrepancy that is observed in Figures 14 and 15 remains
limited (at the most of the order of 1% for a scale separation of about 0.08) and, from this point of view,
the model appears as very robust when considering very large interface upscaling. This is a very important470

feature when considering the anticipated application of such model for corium stratification simulation. For
instance, in the simulations reported in [15], qualitatively representative of the MASCA-RCW stratification
transient, a scale separation of about 0.05 was used.

4. Conclusions and perspectives

In this paper, a model of the isothermal multicomponent mass transfer in a 1D configuration composed475

of two immiscible segregated phases has been proposed considering the liquid miscibility gap of the U-O-Zr
ternary system of interest in the frame of in-vessel corium pool stratification analysis. A diffuse interface
model has been proposed where Cahn-Hilliard equations describing the U and Zr molar fractions evolution

are supplemented by a local equilibrium hypothesis regarding the redox reaction UO2 + Zr
(1)−−⇀↽−−
(2)

ZrO2 +

U in such a way that the thermodynamic landscape can be directly related to the Gibbs energy model of480

the liquid phase given by a CALPHAD database. As this model is intended to be used at a macroscopic
level, an interface upscaling procedure, as previously introduced in our work on the U-O system, was
considered. Enforcing consistency with the limiting binary U-O case, one out the three gradient energy
coefficients associated with the model parameterization was obtained analytically along with the upscaling
parameter as a function of the interface thickness and energy in this binary limiting case. Then, numerical485
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results have been presented focusing first on the impact that the other gradient energy coefficients have on
the composition profiles at steady-state. The analysis was performed in terms of the monotonicity of the
upscaled composition profiles and the interface adsorption (as characterized by the Gibbs construction) in
such a way that case-dependent “optimal” parameters were defined. Additional numerical results were also
reported illustrating the so-called “finite size” effect when bulk compositions at steady-state are compared490

with the thermodynamic equilibrium values as a function of the interface thickness. It was shown that
our model is asymptotically consistent and that even when rather low scale separation are considered, the
discrepancy w.r.t the thermodynamic limit remains limited (of the order of 1%). Accordingly, even if the
model parameterization is not straightforward, it is a very good candidate for coupling with hydrodynamics in
order to simulate multiphase corium stratification. Regarding this long-term research avenue, it is interesting495

to note that under the hypothesis of local redox reaction instantaneous equilibrium, the generalisation of this
ternary model to any n-ary system composed of n − 1 metallic components and oxygen is straightforward
in such a way that it can be applied to the U-O-Zr-steel system [25]. In this context, to follow-up on [15],
the next step will be to introduce such a model in a “Computational Fluid Dynamics” code to further assess
its ability to quantitatively describe the coupling between hydrodynamics and mass transfer in the peculiar500

corium pool system.

5. Data availability

Data presented in this manuscript will be made available upon request to the corresponding author.
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