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Abstract: The usual theory of asset pricing in finance assumes that the
financial strategies, i.e. the quantity of risky assets to invest, are real-
valued so that they are not integer-valued in general, see the Black and
Scholes model for instance. This is clearly contrary to what it is possible
to do in the real world. Surprisingly, it seems that there is no contribu-
tion in that direction in the literature. In this paper, we show that, in
discrete-time, it is possible to evaluate the minimal super-hedging price
when we restrict ourselves to integer-valued strategies. To do so, we only
consider terminal claims that are continuous piecewise affine functions
of the underlying asset. We formulate a dynamic programming principle
that can be directly implemented on an historical data and which also
provides the optimal integer-valued strategy.
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1. Introduction

The problem of super-hedging a European claim, such as a Call option, is
very classical in mathematical finance but has only been solved for real-
valued strategies so that the optimal strategy, corresponding to the minimal
hedging or super-hedging price, is not integer-valued contrary to what it is
allowed to do in the real life. This is why we propose to solve the problem of
super-hedging a European claim with integer-valued financial strategies.

Let us recall that the usual approach of pricing assumes that the financial
market model satisfies a no-arbitrage condition NA, which is equivalent to the
existence of a risk-neutral probability measure Q under which the discounted
asset prices are martingales, see the Dalang-Morton-Willinger theorem [4].
Under NA, we may show that there exists a minimal super-hedging price
P ∗0 (ξT ) for the European claim ξT ≥ 0 given by

P ∗0 (ξT ) = sup
Q∈M(P )

EQ(ξT ), (1.1)

where M(P ) is the set of all risk-neutral probability measures equivalent to
the initial probability measure P of the model. Here, we suppose that the
risk-free interest rate of the model is r = 0. Recall that the formula above
holds in discrete time but also in continuous time with extra-conditions on
the model. Indeed, the no-arbitrage condition needs to be strenghtened and
it is only equivalent to the existence of Q ∼ P under which discounted asset
prices are local martingales, see [5], [6], [7].

In any case, the optimal strategy that achieves the minimal super-hedging
price (1.1) is not, in general, integer-valued. The typical example is the
continuous-time Black and Scholes model where the so-called delta-hedging
strategy for the European call is explicit and lies in the set [0, 1] \ {0, 1}, see
[2].

Clearly, a new approach is necessary to compute the super-hedging prices
for only integer-valued financial strategies. We follow the ideas developed in
[3] where the problem is initially solved without any no-arbitrage conditions.
Then, a no-arbitrage condition AIP naturally appears and means that the
infimum price of the zero claim ( non negative claims more generally) is not
−∞. This condition is clearly necessary for numerical purposes. Actually,
it is shown that AIP is equivalent to the property that the infimum super-
hedging price of any non negative claim is non negative, as observed in the
real markets. In our paper, we do not explicitly suppose such a no-arbitrage
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condition but the form of the conditional supports of the asset price we
assume implies this condition for the model with integer-valued strategies.

Our paper is a first attempt to compute super-hedging prices with only
integer-valued financial strategies. We restrict ourselves to payoffs which are
piecewise affine functions of the underlying asset and we assume specific con-
ditional supports for the asset prices. Problems such as characterizations of
the no-arbitrage condition NA with only integer-valued strategies or gener-
alization of our work to arbitrary conditional supports of the asset prices
remains open.

2. The super-hedging problem:

We consider n ≥ 1 options that we want to super-replicate in discrete time
t = {0, ...T}. Let (Ω, (Ft)0≤t≤T ) be a stochastic basis where (Ft)0≤t≤T is
supposed to be complete. We consider a financial market model composed
of two assets. We suppose, without loss of generality, that the risk-free asset
is S0

t = 1 for all t ∈ {0, ...T}, while the risky asset price is described by a
stochastic process S = (St)0≤t≤T . Recall that a self-financing portfolio process
(Vt)0≤t≤T satisfies by definition:

∆Vt = Vt − Vt−1 = θt−1∆St, t = 1, · · · , T.

In this paper, we consider European options whose payoffs are of the form
ξT = gT (S) ∈ L0(R,FT ), where gT is a continuous piecewise affine function.
The typical example is the European call option, i.e. g(x) = (x−K)+, K > 0.
Our goal is to compute the set of all super-hedging prices of ξT , i.e the set of
all V0, initial values of self-financing portfolio processes (Vt)0≤t≤T , such that
VT ≥ ξT almost surely. Contrarily to what it is usual to do in the literature,
we restrict ourselves to the case of integer-valued strategies, i.e θt ∈ Z almost
surely, for all t ∈ {0, ...T}, where Z = N ∪ (−N) and N is the set of all non
negative integers. In the case of super-hedging an arbitrary number of options
n ≥ 1, the problem reads as VT ≥ nξT , a.s. and it is clearly interesting to
analyse the impact of n on the strategies and the infimum prices, as linearity
is not necessarily preserved with respect to the quantity n of claims.

To solve this problem, we follow the approach of [3], [1] that we adapt
to integer-valued strategies. To do so, we first solve backwardly the super-
hedging problem between two dates t− 1 and t, and we show that the proce-
dure may be propagated backwardly as the minimal super-hedging price we
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obtain at time t − 1 is still a continuous piecewise affine payoff function of
the underlying asset. It is then possible to deduce the minimal super-hedging
price at time t = 0 by induction.

3. The super-hedging problem.

Let t ≤ T and gt be a continuous piecewise affine function, i.e. there exists
a subdivision 0 = a0 < a1 < ... < an−1 < an = ∞ of [0,∞] such that gt is
an affine function for all x ∈ [ai, ai+1),∀i ∈ {0, ..., n− 1}. As the asset prices
are non negative, we suppose without loss of generality that a0 = 0. We first
solve the one step problem: find Vt−1 and θt−1 such that:

Vt−1 + θt−1∆St ≥ gt(St), a.s.

This is equivalent to:

Vt−1 ≥ gt(St)− θt−1∆St,
⇔ Vt−1 ≥ gt(St)− θt−1St + θt−1St−1,

⇔ Vt−1 ≥ ess supFt−1
(gt(St)− θt−1St) + θt−1St−1.

Equivalently, we have:

Vt−1 ≥ Vt−1(θt−1) := sup
x∈suppFt−1

(St)

(gt(x)− θt−1x) + θt−1St−1, (3.2)

where suppFt−1
(St) is the conditional support of St knowing Ft−1, see [3] and

[8] for the definition.
In the following, we suppose that there exist two deterministic numbers

kdt−1 ∈ (0, 1) and kut−1 ∈ (1,∞) such that suppFt−1
(St) = [kdt−1St−1, k

u
t−1St−1].

This model may be seen as a generalization of the Binomial model and the
conditions imposed on the coefficients kdt−1 and kut−1 are equivalent to a no-
arbitrage condition, see [3]. In particular, we have:

Vt−1(θt−1) = sup
x∈[kdt−1St−1,kut−1St−1]

(gt(x)− θt−1x) + θt−1St−1 ∈ L0(R,Ft−1).

We define V ∗t−1 as the infimum of all the superhedging prices at time t − 1
over all integer-valued strategies in Z, i.e.

V ∗t−1 := ess inf
θt−1∈L0(Z,Ft−1)

Vt−1(θt−1).
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Lemma 3.1. We have

V ∗t−1 = inf
θ∈Z

Vt−1(θ). (3.3)

Proof. Let us define γ = inf
θ∈Z

Vt−1(θ) ∈ L0(R,Ft−1), see [3]. As V ∗t−1 ≤ Vt−1(θ),

for all θ ∈ Z, we get that V ∗t−1 ≤ inf
θ∈Z

Vt−1(θ) = γ.

On the other hand, if θt−1 ∈ L0(Z,Ft−1), then:

θt−1 =
∑
θ∈Z

θ1{θt−1=θ},

Vt−1(θt−1) =
∑
θ∈Z

Vt−1(θ)1{θt−1=θ} ≥
∑
θ∈Z

γ1{θt−1=θ} = γ.

We deduce that V ∗t−1 ≥ γ and the conclusion follows.

Theorem 3.2 (One step problem). Let us consider t ∈ {1, ..., T} and suppose
that ξt = gt(St) where gt is a continuous piecewise affine function. Moreover,
we assume that there exists two deterministic numbers kdt−1 ∈ (0, 1) and
kut−1 ∈ (1,∞) such that

suppFt−1
(St) = [kdt−1St−1, k

u
t−1St−1].

Then, V ∗t−1 = gt−1(St−1) where gt−1 is a continuous piecewise linear function.

Proof. By assumption, there exist a subdivision (ai)i=0,··· ,n of [0,∞], with
a0 = 0 < a1 < ... < an−1 < an = ∞, such that gt−1 is an affine function on
each interval. Let us define

xi(St−1) = (kdt−1St−1 ∨ ai) ∧ kut−1St−1, i = 0, · · · , n.

It is straightforward that

Vt−1(θt−1) = sup
i=0,··· ,n

[gt(xi(St−1))− θt−1xi(St−1)] + θt−1St−1.

Note that x0(St−1) = kdSt−1 and xn(St−1) = kuSt−1 and some terms of the
sequence (xi)i may coincide. Let us define the functions

hi(θt−1, St−1) = gt(xi(St−1)) + θt−1(St−1 − xi(St−1)).

The slopes of the affine functions θt−1 7→ hi(θt−1, St−1) are given by the non
decreasing sequence (St−1−xi(St−1))i=n,n−1,··· ,0 such that St−1−xn(St−1) < 0
and St−1 − x0(St−1) > 0.
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By ordering the indices in the decreasing order, we obtain (n + 1) affine
functions θt−1 7→ hi(θt−1) for i ∈ {n, n − 1, ..., 1, 0} with increasing slopes
(St−1−xi)i∈{n,n−1,...,1,0}, such that: St−1−xn < 0 and St−1−x0 > 0. Therefore,
the mapping Vt−1 : θt−1 7→ sup

i=n,...,0
hi(θt−1, St−1) is a piecewise affine function,

i.e. there exists a subdivision:

−∞ = α0 < α1(St−1) ≤ ... ≤ αm−1(St−1) < αm =∞

such that Vt−1 is an affine function of θt−1 on each interval [αi(St−1), αi+1(St−1)],
i = 0, · · · ,m − 1. Note that the function Vt−1 is convex in θt−1 and the ele-
ments of the partition define the intersection points between two distinct and
successive graphs of the affine functions hi+1(θt−1), h

i(θt−1). So, there exists
θ∗t−1 ∈ [α1(St−1)− 1, ..., αm−1(St−1) + 1] ∩ Z such that:

inf
θt−1∈Z

Vt−1(θt−1) = Vt−1(θ
∗
t−1).

It remains to evaluate α1(St−1) and αm−1(St−1). To do so, let us solve the
equations hi(α) = hj(α), i, j = 0, ...,m and xi 6= xj. Since we suppose that
xi − xj 6= 0, we get that

α =
gt(xi)− gt(xj)

xi − xj
.

We deduce that |α| ≤ Lt where Lt > 0 is a Lipschitz constant of the piecewise
affine function gt. We deduce that θ∗t−1 ∈ [−Lt − 1, Lt + 1] ∩ Z and

gt−1(St−1) = Vt−1(θ
∗
t−1(St−1)) = min

θt−1∈[−Lt−1,Lt+1]∩Z
sup

i=0,··· ,n
hi(θt−1, St−1).

We conclude that gt−1 is a continuous piecewise affine function as a finite
minimum of continuous piecewise affine functions.

Corollary 3.3. (The multi-period super-hedging problem) Suppose that, at
time T > 0, the payoff is ξT = gT (ST ) where gT is a continuous piece-
wise affine function. Moreover, we assume that there exists deterministic
numbers kdt−1 ∈ (0, 1) and kut−1 ∈ (1,∞) for each t = 1, · · · , T such that
we have suppFt−1

(St) = [kdt−1St−1, k
u
t−1St−1]. Then, there exists a minimal

super-hedging portfolio process (V ∗t )t=0,··· ,T such that V ∗T ≥ ξT . We have
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V ∗t = g(t, St) where g(t, ·) is a continuous piecewise affine function given
by

g(t, s) = min
θ∈[−Lt+1−1,Lt+1+1]∩Z

sup
i=0,··· ,n(t+1)

(
g(t+ 1, x

(t+1)
i (s)) + θ(s− x(t+1)

i (s))
)
,

x
(t+1)
i (s) = (kdt s ∨ a

(t+1)
i ) ∧ kut s, i = 0, · · · , n(t+1),

where Lt+1 is any Lipschitz constant of g(t + 1, ·) and (a
(t+1)
i )i=0,··· ,n(t+1) is

any partition such that a
(t+1)
0 = 0 < a

(t+1)
1 < ... < a

(t+1)

n(t+1)−1 < a
(t+1)

n(t+1) =∞ and

g(t+1, ·) is an affine function on [a
(t+1)
i , a

(t+1)
i+1 ], i ≤ n(t+1)−1. The associated

super-hedging strategy θ∗ is given by the argmin of the minimisation problem
defining g(t, ·) in the expression above.

3.1. Example in the one step problem: the case of the Call
option

At time t = T , suppose that the payoff is ξnT = ng(ST ) where n ≥ 1 and
g(x) = (x−K)+,K = 500. We suppose that suppFT−1

(ST ) = [kdST−1, k
uST−1]

for some constants kd, ku such that 0 < kd < 1 < ku. Precisely, we sup-
pose that kd = 0.9 and ku = 1.2. Observe that the super-hedging problem
VT−1 + θT−1∆ST ≥ ng(ST ) is equivalent to

VT−1 ≥ VT−1(θT−1) = max
k∈{kd,ku}

[ng(kST−1)− θT−1kST−1] + θT−1ST−1.

In the following we give the explicit expression of VT−1(θT−1) = V n
T−1(θT−1).

If ku ≤ K/ST−1, i.e. ST−1 ≤ K/ku, then

VT−1(θT−1) =

{
θT−1ST−1(1− ku) if θT−1 ≤ 0,

θT−1ST−1(1− kd) if θT−1 ≥ 0.

Therefore, θ∗,nT−1(ST−1) = 0, and V ∗,nT−1(ST−1) = VT−1(θ
∗,n
T−1) = 0.

If kd ≥ K/ST−1, i.e. ST−1 ≥ K/kd,

VT−1(θT−1) =

{
θT−1ST−1(1− ku) + nkuST−1 − nK if θT−1 ≤ n,

θT−1ST−1(1− kd) + nkdST−1 − nK if θT−1 ≥ n.
7



We conclude that θ∗,nT−1(ST−1) = n, and V ∗,nT−1(ST−1) = n(ST−1 −K).

If kd ≤ K/ST−1 ≤ ku, i.e. ST−1 ∈ [K/ku, K/kd],

VT−1(θT−1) =

{
θT−1ST−1(1− ku) + nkuST−1 − nK if θT−1 ≤ nkuST−1−nK

ST−1(ku−kd)
,

θT−1ST−1(1− kd) if θT−1 ≥ nkuST−1−nK
ST−1(ku−kd)

.

Let us define

αnT−1(ST−1) :=
nkuST−1 − nK
ST−1(ku − kd)

,

fn(x, ST−1) := xST−1(1− kd)1{x≥αT−1(ST−1)}

+(xST−1(1− ku) + nkuST−1 − nK)1{x<αT−1(ST−1)}.

We denote by bαnT−1(ST−1)c the lower integer part of αnT−1. Then,

θ∗,nT−1(ST−1) =

{
bαnT−1(ST−1)c if fn(bαT−1(ST−1)c) ≤ fn(bαT−1(ST−1)c+ 1),

bαnT−1(ST−1)c+ 1 otherwise.

So,

V ∗,nT−1(ST−1) = (bαnT−1(ST−1)cST−1(1− ku) + nkuST−1 − nK)1Gn
T−1

(ST−1)

+(bαnT−1c+ 1)ST−1(1− kd)1(Gn
T−1)

c(ST−1),

where

Gn
T−1 := {S : fn(bαnT−1(S)c) ≤ fn(bαnT−1(S)c+ 1)} = {bαnT−1(S)c ≤ βnT−1(S)},

βnT−1(S) := αnT−1(S) +
1− kd

kd − ku
.

A graphic illustration of V ∗,nT−1/n as a function of ST−1 is given in Figure 1.
We observe that V ∗,nT−1 is not a convex function of ST−1 even if the payoff

function is and, moreover, g(T − 1, x, n) 6= ng(T − 1, x, 1).
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Fig 1: The function x = ST−1 7→ g(T − 1, x, n)/n = V ∗,nT−1/n,K = 500, for
n = 1 (black), n = 5 (blue), n = 100 (red).

4. Numerical illustration

In this section, we illustrate the method developed above when the underlying
asset S is the french CAC 40 index and the European claim is the Call option.
The historical data is composed of daily observations of the CAC 40 values
between the 6th of June 2019 and the 16th of June 2021. We use the two first
years of the data set to calibrate the model while we implement the model
on the third year. Here, we suppose that suppFt

St+1 = [kdt St, k
u
t St] where kdt

and kut are estimated as follows:

kdt = min
i=j,··· ,N

S
(j)
t+1/S

(j)
t ,

kut = max
i=j,··· ,N

S
(j)
t+1/S

(j)
t ,

where N is the number of training periods and S
(j)
t are the observed values

at time t during the j-th periods. The algorithms are written in Python.
The main difficulty is to write a code whose execution time is reasonable.
Indeed, recall that the price function g(t, x) is computed backwardly from
g(t+ 1, x). If this function g(t, x) is naively coded from g(t+ 1, x), then the
computation may take more than two weeks ! So it is better to approximate,
at each step, the function g(t, x) as a numpy array consisting of discretized
values following a grid (xi)

Nt
i=0 where xi = step∗ i. Here, we choose step = 0.1
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and Nt is chosen so that xN0 ≤ Smax
0 where Smax

0 is the maximal value for S0

that we observe in our data. At last, xNt ≤ Smax
0 ∗ (maxr≤t k

u
r )t.

The relative hedging error is defined as εT = 100∗(VT−g(T, ST ))/ST where
(V ∗t )t=0,··· ,T is the optimal super-hedging portfolio process whose initial value
is the minimal super-hedging price, as computed in the last section. We
present in Figure 2.1 the distribution of εT when n = 1. Of course, we expect
that εT ≥ 0 a.s. and this is confirmed on our test data set. Note that, we
could have observed some negative values as the model is calibrated from
data values anterior to the test data set.

Fig 2: F1.1: Super-hedging errors with n = 1 and K = 3000. F1.2: Compari-
son of the optimal strategies per unit of claims for n = 1 and n = 10.

Let us denote by g(t, x, n) the price function at time t of the optimal
portfolio process, i.e. V ∗,nt = g(t, St, n) such that V ∗,nT ≥ ξnT a.s., when the
European claim is ξnT := n∗(ST −K)+. The natural question is the following:
Do we have g(t, x, n) = ng(t, x, 1) ? The answer is yes when real-valued
strategies are allowed since the hedging problem is then linear with respect
to the number of claims.

In the case of integer-valued strategies, the answer is not trivial and is
actually negative, see the first example above. By definition of the infimum
super-hedging price, we have g(t, x, n) ≤ ng(t, x, 1). As a first step, we have
computed the relative infimum super-hedging prices per unit of claims, i.e.
V ∗,n0 /n at time 0, for different values of n on each period of the test data set.
Then, computing the average of the V ∗,n0 /n values over all the periods, we
get that the empirical average of V ∗,n0 /n is approximately equal to 49.48%
for n = 1, 5, 10, 15, 20. Nevertheless, we observe that the price function per
unit of unit of claims, i.e. g(0, S0, n)/n is non-increasing when n increases,
see Figure 3. This implies that the equality g(t, x, n) = ng(t, x, 1) does not
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hold. We conjecture that g(t, x, n)/n converges to the price function ĝ(t, x)
of the model where real-valued strategies are allowed, see [3]. This is an
open question we suggest. In Figure 3, we clearly observe the convergence of
x 7→ g(0, x, n)/n as n→∞.

The same question arises for the optimal strategy associated to V ∗,n, i.e.
do we have θ∗(t, St, n) = nθ∗(t, St, 1)? Intuitively, this is a priori not the case
as θ∗(t, St, 1) = θ∗(t, St, n)/n could be not integer-valued. This is confirmed
at time 0 when we compute the optimal strategy θ∗(0, S0, n)/n per unit of
claims. This is illustrated by Figure 2.2 where we compare θ∗(0, S0, n)/n for
n = 10 to θ∗(0, S0, 1). We may observe that the optimal strategy per unit of
claims θ∗(0, S0, n)/n (blue graph) is smaller that θ∗(0, S0, 1) for n = 10.

Fig 3: Super-hedging price mapping x 7→ g(0, x, n)/n of n units of Call option
per unit of claims for different values of n = 1 (black), n = 3 (grey), n = 5
(green), n = 7 (blue), n = 10 (orange), n = 100 (red).
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