

Are alpha beams of interest to produce medical radionuclides?

Arnaud Guertin, Ferid Haddad, Cyrille Alliot, Anne-Cécile Bonraisin, Lèna Brionne, Etienne Nigron, Thomas Sounalet

► To cite this version:

Arnaud Guertin, Ferid Haddad, Cyrille Alliot, Anne-Cécile Bonraisin, Lèna Brionne, et al.. Are alpha beams of interest to produce medical radionuclides?. The 28th International Nuclear Physics Conference (INPC 2022), Sep 2022, Le Cap, South Africa. hal-03834976

HAL Id: hal-03834976 https://hal.science/hal-03834976

Submitted on 31 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 28th International Nuclear Physics Conference Theme: Applications - Nuclear Medicine **Cape Town International Convention Center, South Africa**

CIPE Town, South Africa IN2P3 Institut national de physique nucléaire et de physique des particules

Are alpha beams of interest to produce

medical radionuclides ?

A. Guertin, Haddad F., C. Alliot, A.C. Bonraisin, L. Brionne, E. Nigron, T. Sounalet

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

28th International Nuclear Physics Conference

11-16/09 2022, Cape Town International Convention Center, South Africa

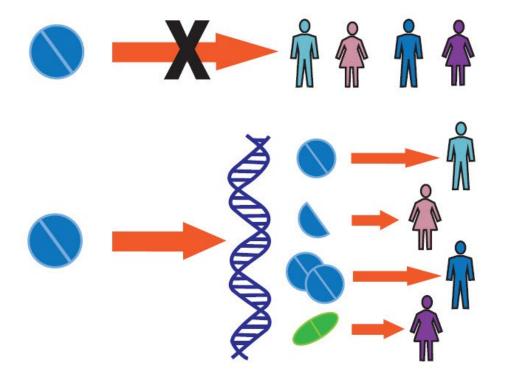
Isotopes in nuclear medicine

Nuclear medicine

- Many useful / potentially useful isotopes identified for applications in nuclear medicine
- Cyclotrons and accelerators being used in an increasing number of countries along with reactors
- A large set of radioisotopes with very different characteristics:
- Radiation type for the different applications Half-life to match the bio-distribution time
 - Chemical properties to attach to the vector molecule

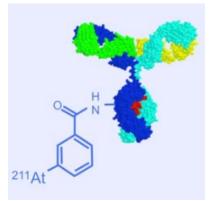
Over the last years, several radionuclides have emerged:

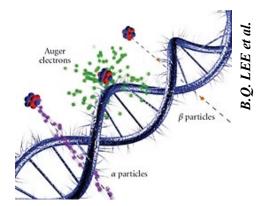
- $β^+$: ⁶⁴Cu, ⁶⁸Ga, ⁸⁹Zr ... γ: ^{117m}Sn ...
- β : ¹⁶⁶Ho, ¹⁷⁷Lu ... α : ²¹¹At, ²¹²Bi, ²¹³Bi, ²²³Ra, ²²⁵Ac ...
- Auger: ^{117m}Sn, ¹⁵⁵Tb
- Theranostic: ⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ⁶⁸Ga/¹⁷⁷Lu ...
- Diagnosis (γ, β^+) SPECT, TEP 99m Tc, 18 F, 64 CuDetecnet (64 Cu dotatate inj.)- Therapy $(\beta^-, \alpha, e_{Auger})$ TAT 117 Lu, 225 AcLutathera (177 Lu oxodotreotide)



Personalized nuclear medicine

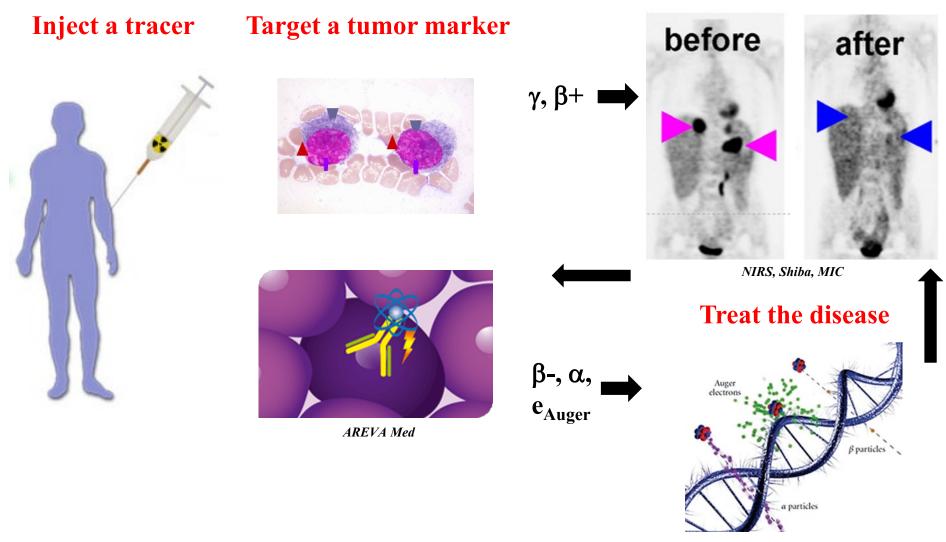
Imaging and diagnosis


Choose the best treatment


Evaluate its efficacy

Therapy

Destroy tumor cells



The Right DrugTo The Right PatientFor The Right DiseaseAt The Right TimeWith The Right Dosage

Imaging and molecular radiotherapies

Detect the disease

Cape Town, South Africa

Μ

E

C

E

THERAN[®]STICS

WANTED

Predictive imaging,

companion diagnostic

Cape Town, South Africa

An adequate therapeutic nuclide

A corresponding positron emitter

= (Available matched) pair of therapeutic and PET nuclides WANTED

Molecules = targeting vectors

Targeted therapy

Identical or similar radiolabelling chemistry

What you see is what you treat

28th International Nuclear Physics Conference

Motivations

Nuclear physicists could have crucial contributions:

- Identify reaction channel [spal., fis., act.] Optimize production process
- Quantify contaminants

- **Produce** the purest product
- Define waste management process
- **Discuss** with physicians to promote its use

Nuclear data

- Accurate and reliable sets of data
- Well defined production routes and decay properties
- Optimum production of specific radionuclides, minimization / elimination of impurities, realistic dose calculations

Nuclear codes

- Provide a large set of nuclear data
 - in terms of targets, projectiles and energy range
- To constrain and develop predictive simulation tools of nuclear reactions

Motivations

Beams

Many medical isotopes are produced using **neutron** induced reactions in reactors

Quick progress and achievements in production using charged particle induced reactions:

proton, deuteron, triton and alpha particle

Protons are more commonly available Still limited applications for d, ³He and alpha particle

Focus on some opportunities with alpha particle beams

- ✓ Avoid radioactive target material ²¹¹At, ⁹⁷Ru
- ✓ Access to a higher cross section ⁴³Sc
- Reuse an existing process : targetry, chemistry
 ⁶⁷Cu
- ✓ Facilitate target manufacturing ¹¹⁷mSn
- ✓ Use a monoisotopic target ¹³⁵La

BR2 reactor @ SCK•CEN

C70XP @ ARRONAX

SPIRAL 2 @ GANIL

²¹¹At for α-targeted internal radiotherapy

58% EC, 42% α $T_{1/2}$ = 7.3 h α-targeted internal radiotherapy

Cape Town, South Africa

Avoid radioactive target and use of a monoisotopic target

z	207At 1.81 H	208At 1.63 H	209At 5.42 H	210At 8.1 H	211At 7.214 H	212At 0.314 S	213At 125 NS	214At 558 NS	215At 0.10 MS
	ε: 91.40% α: 8.60%	ε: 99.45 % α: 0.55%	ε: 95.90% α: 4.10%	ε: 99.82% α: 0.18%	ε: 58.20% α: 41.80%	α: 100.00% ε < 0.03%	α: 190.00%	α: 100.00 %	α: 100.00%
84	206Po 8.8 D	207Po 5.80 H	208Po 2.898 Y	209Po 124 Y	210Po 138.376 D	211Po 0.516 2	212Po 0.299 μS	213Po 3.72 μS	214Po 163.6 μS
	ε: 94.55% α: 5.45%	ε: 99.98 % α: 0.02%	α: 100.00% ε: 4.0E-3%	α: 99.55% ε: 0.45%	α: 100.00 %	α: 1 00.00%	α: 100.00%	α: 100.00 %	α: 100.00%
83	205Bi 15.31 D	206Bi 6.243 D	207Bi 31.55 Y	208Bi 3.68E+5 Y	209Bi 2.01E19 Y 100%	210Bi 5.012 D	211Bi 2.14 M	212Bi 60.55 M	213Bi 45.61 M
	ε: 100.00 %	ε: 100.00%	ε: 100.00 %	ε: 100.00 %	α: 100.0%	β-: 100.00% α: 1.3E-4%	α: 99.72% β-: 0.28%	β-: 64.06% α: 35.94%	β-: 97.80% α: 2.20%

Spallation reaction

- \checkmark lower yield
- \checkmark higher level of impurity

$^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$

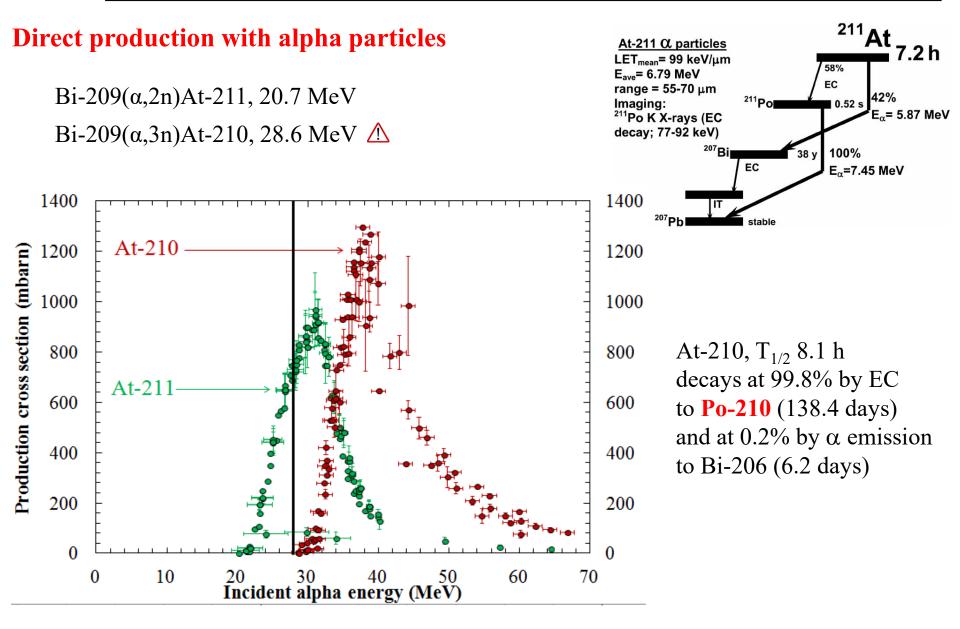
- ✓ monoisotopic target
- \checkmark high radionuclidic purity
- \checkmark GBq quantities

²¹¹At for α-targeted internal radiotherapy

COST NOAR network: European Cooperation in Science & Technology Network for Optimized Astatine labeled Radiopharmaceuticals

²¹¹At production facilities in the world

- Running
- Potentially usable

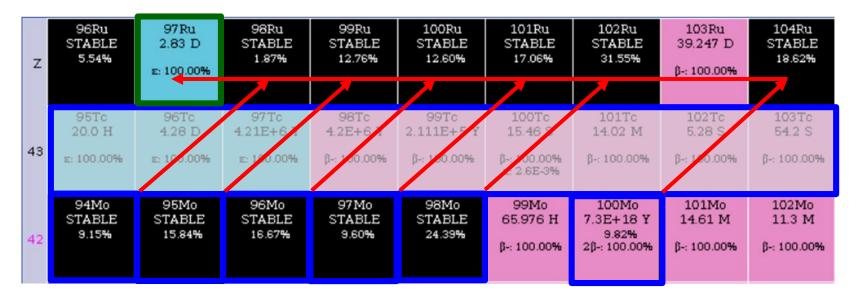


Courtesy of F. Haddad – SUBATECH – GIP ARRONAX

28th International Nuclear Physics Conference

²¹¹At for α-targeted internal radiotherapy

28th International Nuclear Physics Conference

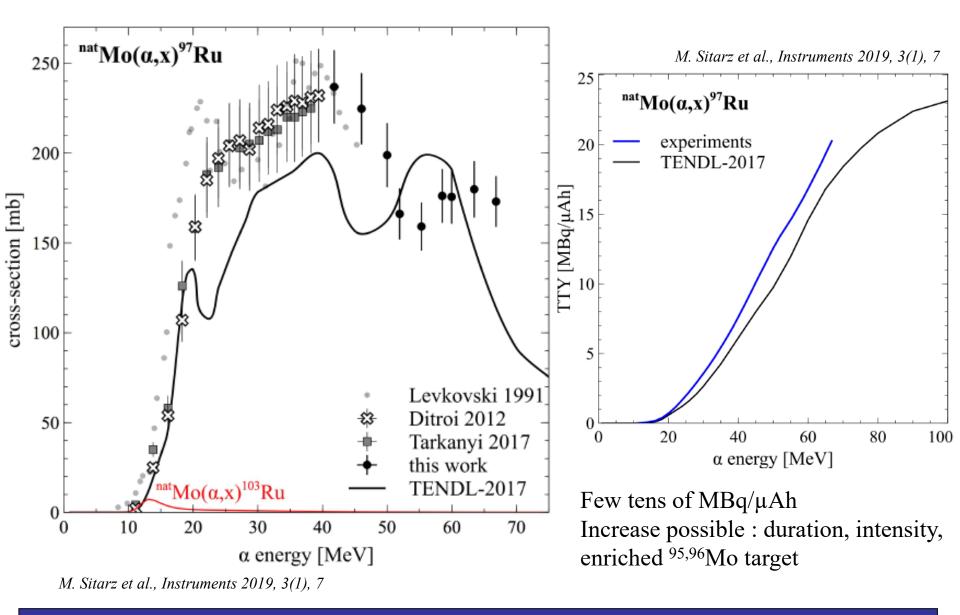

Cape Town, South Africa

⁹⁷Ru for SPECT and theranostic approach

100% EC, no β+ $T_{1/2} = 2.9$ d SPECT Theranostic pair with ¹⁰³Ru $T_{1/2}$ 39.26 d, decaying to ^{103m}Rh $T_{1/2}$ 56.12 min Auger emitter no γ

Avoid radioactive target

INPC 2022 Cape Town, South Africa

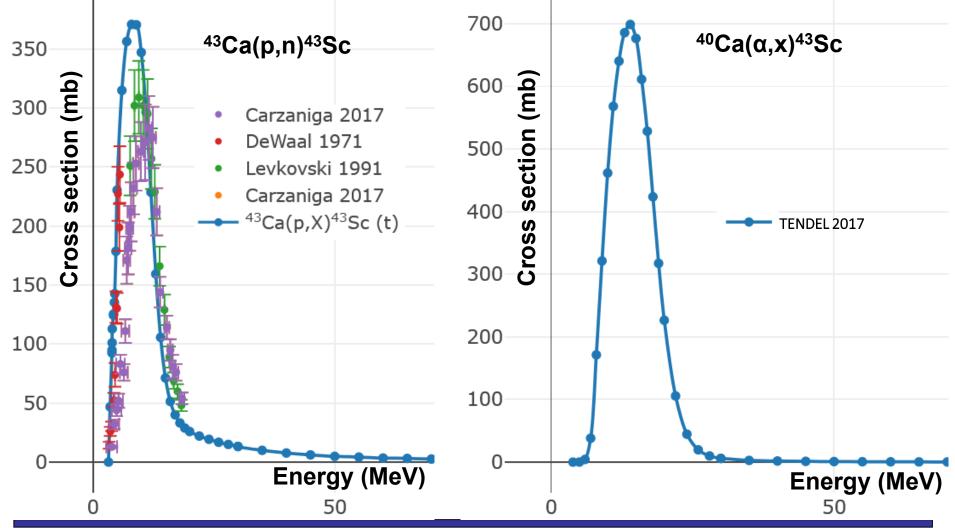


Polyisotopic target of Mo

Decaying time to increase specific activity

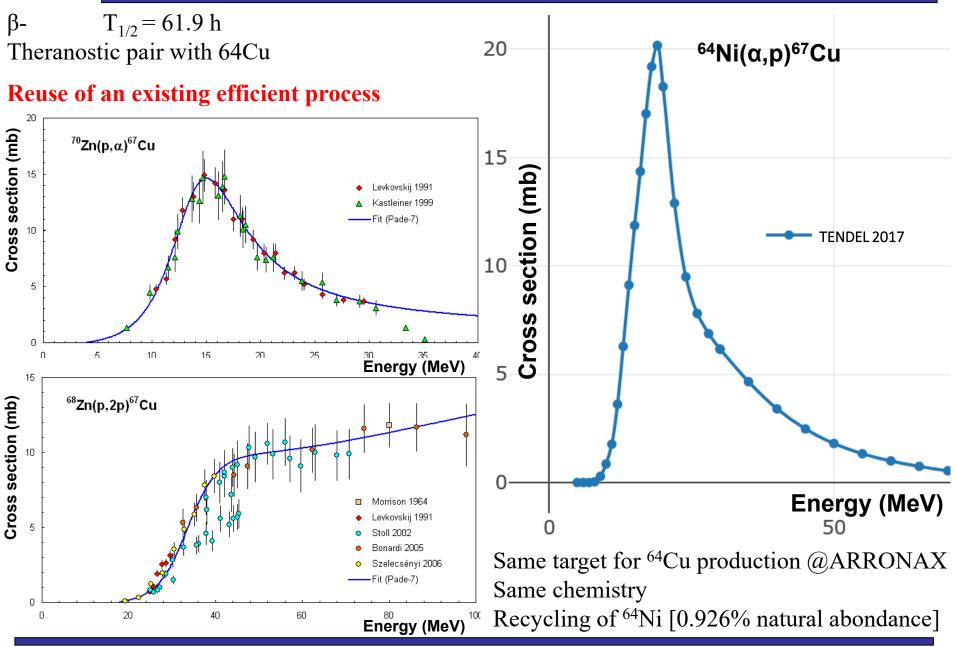
⁹⁵Ru $T_{1/2} = 1.66 h$ ⁹⁴Ru $T_{1/2} = 51.8 m$

VINC 2022 97 Ru for SPECT and theranostic approach



⁴³Sc for PET and theranostic approach

 β + with no co-emitted high energy γ rays Promising candidates for PET imaging $T_{1/2} = 3.89h$


Theranostic pair with 47Sc or 177Lu

Access to a higher cross section and a higher natural abundance: ⁴³Ca 0.135%, ⁴⁰Ca 96.941%

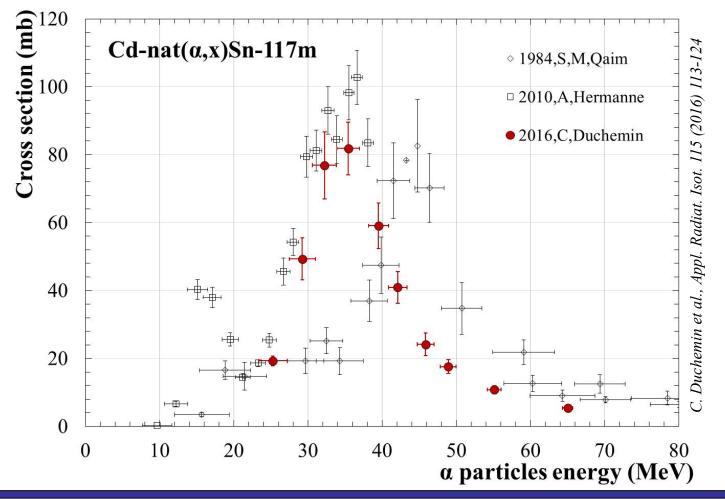
28th International Nuclear Physics Conference

67Cu for theranostic approach

28th International Nuclear Physics Conference

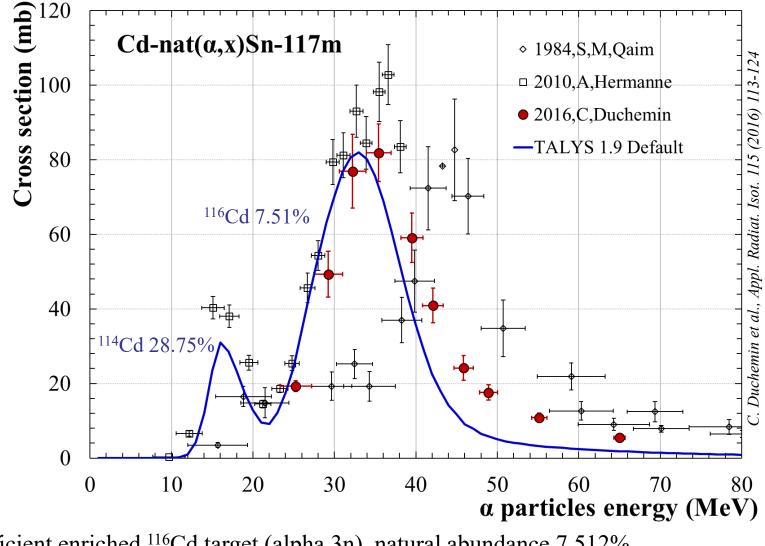
Cape Town.

South Africa

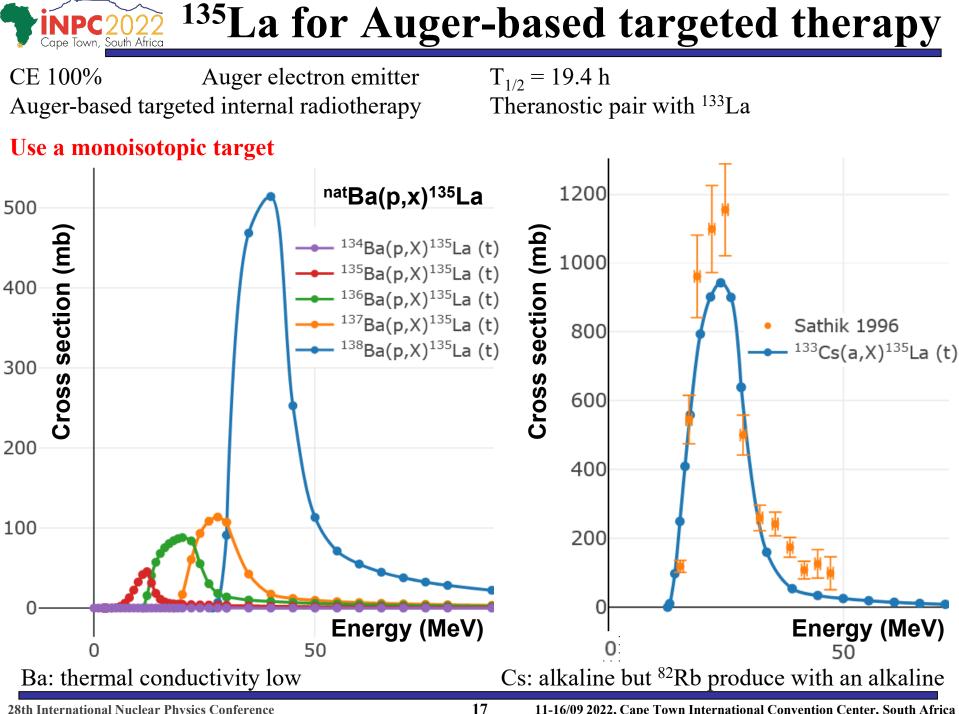

^{117m}Sn for therapy and imaging

Conversion e- emitter $T_{1/2} = 13.6 \text{ d}$ Used for the palliation of painful bone metastases

158 keV γ ray ideal for SPECT


Facilitate target manufacturing

Reaction routes by neutronic activation or using charged particles like protons or alpha particles



^{117m}Sn for therapy and imaging

More efficient enriched ^{116}Cd target (alpha,3n) natural abundance 7.512% Few MBq/ μAh

28th International Nuclear Physics Conference

11-16/09 2022, Cape Town International Convention Center, South Africa

In Conclusion a beams could help

Medicine: production of medical interest isotopes

- \checkmark Avoid radioactive target material
- $\checkmark\,$ Access to a higher cross section
- $\checkmark\,$ Reuse an existing process : targetry, chemistry
- ✓ Facilitate target manufacturing
- ✓ Use a monoisotopic target

Non-standard positron emitters, alpha-targeted internal radiotherapy ...

Personalized medicine:

- Developed the set of isotopes available and
- Produce sufficient quantities for applications in diagnostic and therapy

The Right Drug To The Right Patient For The Right Disease At The Right Time With The Right Dosage

Activation of materials for both fundamental and applied research

- ✓ Nuclear data: cross section measurements, comparison with nuclear model calculations
 - Reaction mechanism, excitation function, isomeric cross section
 - Optimum production, minimization of impurities
 - Realistic dose calculation
- ✓ Nuclear structure data: high-spin level
- ✓ Astrophysics: r process

Theme: Applications – Nuclear medicine

Thank you for your attention

Acknowledgments to the 28th International Nuclear Physics Conference organization committee

"Are alpha beams of interest to produce medical radionuclides ?"

<u>Guertin A.</u>^{1*}, Haddad F.^{1,2}, Alliot C.², Bonraisin A.C.², Brionne L.², Nigron E.², Sounalet T.¹ 1 SUBATECH, CNRS/IN2P3, IMT Atlantique, Université de Nantes, Nantes, France 2 GIP ARRONAX, 1 rue Aronnax, 44817 Saint-Herblain cedex – France

* Arnaud.Guertin@subatech.in2p3.fr

28th International Nuclear Physics Conference

19

11-16/09 2022, Cape Town International Convention Center, South Africa