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Spin Orbit Torque-based Crossbar Array for Error
Resilient Binary Convolutional Neural Network

Kamal Danouchi, Guillaume Prenat, Lorena Anghel, Senior, IEEE

Abstract—Convolutional Neural Network (CNN) is one of
the most important Deep Neural Networks (DNN) classes that
helps solving many tasks related to image recognition and
computer vision. Their classical implementations by using con-
ventional CMOS technologies and digital design techniques are
still considered very energy-consuming. Floating point CNN
relies primarily on MAC (Multiply and ACcumulate) operation.
Recently, cost-effective Bite-wise CNN based on XNOR and
bit-counting operations have been considered as a possible
hardware implementation candidate. However, the Von-Neumann
bottleneck due to intensive data fetching between memory and
the computing core limits their scalability on hardware. XNOR-
BITCOUNT operations can be easily implemented by using In
Memory Computing (IMC) paradigms executed on a memristive
crossbar array. Among emerging memristive devices, the Spin-
Orbit Torque Magnetic Random Access Memory (SOT-MRAM)
offers the possibility to have a higher ON resistance that allows
reducing the reading current, since all the crossbar array is
read in parallel. This could contribute to a further reduction of
energy consumption, paving the way for much bigger crossbar
designs. This study presents a crossbar architecture based on
SOT-MRAM with very low energy consumption; we study the
impact of process variability on the synaptic weights and perform
Monte-Carlo simulations of the overall crossbar array to evaluate
the error rate. Simulation results show that this implementation
has lower energy consumption with respect to other memristive
solutions with 65.89 fJ per read operation. The design is also quite
robust to process variations, with very low reading inaccuracies
up to 10 %.

I. INTRODUCTION

The deluge of data generated by the digital world has
seen the emergence of tools to extrapolate useful information
out of it, such as Deep Neural Network (DNN). Nowadays
these networks complete several human tasks, such as facial
recognition, voice recognition, or language processing [1]
[2] to name just a small number of them. However, the
hardware implementation of these networks still raises many
questions about energy consumption, mostly due to the Von
Neumann bottleneck [3], the continuous movements between
the processing core and the memory being the main cause
of energy over-consumption for Artificial Neural Network
(ANN). To tackle this issue, one of the solutions is to perform
the calculation inside the memory (In Memory Computing -
IMC) avoiding data fetching between the processing unit and
the memory. This paradigm relies on the use of crossbar arrays,
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that performs the computation of NN operations in an analog
fashion and in one cycle. This architecture stores the weights in
a Non-Volatile memory (NVM) based on memristive devices.
Inputs will be applied in parallel under the form of voltages
to the crossbar matrix then weighted by the resistive synaptic
devices and summed along the column thanks to Kirchhoff’s
laws. However, encoding weights on synaptic devices is not
straightforward as we are limited by the number of discernible
conductance states of the synaptic devices.

In the past few years, many studies have proposed quanti-
zation methods to avoid using floating point parameters which
are energy and memory intensive such as Ternary Neural
Network (TNN) or Binary Neural Network (BNN) [4] [5]
[6] [7]. Binary networks could be seen as the lowest level
of precision or quantification, weights and activation have
only binary values (+1[1] and -1[0]). This feature simplifies
the weight mapping, reduces memory access and the overall
energy consumption.

On the other hand, memristive devices used to store synaptic
weights are subjected to non-idealities due to process variation,
temperature, and parasitic effects [8]. This, coupled with the
loss of information due to the binarization can result in a loss
of accuracy in hardware implementation. In the present work,
a binary crossbar architecture is implemented using Spin-Orbit
Torque Magnetic Random Access Memory (SOT-MRAM) de-
vices in which we evaluate the errors that can induce accuracy
loss in the network. Then, we study the variability impact on
the output of the crossbar through intensive simulations. We
show the high energy efficiency of the SOT-MRAM crossbar
array and its robustness against process variations.

II. PRELIMINARY

A. Related Work

Our research focuses on the implementation of BNNs on
hardware for IMC accelerators. In this scope, there is a
significant number of studies on the implementation of these
networks, particularly on Resistive Random Access Memory
(RRAM) devices with the conventional 2T-2R bit-cell. In
[9] [10], the authors emphasize the reliability of such struc-
tures against errors. For a crossbar implementation, the most
prominent study is XNOR-RRAM [11], where the authors
implemented XNOR and POPCOUNT operations in parallel
as for conventional DNN implementation. The study in [12]
presents a 4T2R bitcell robust against device variations affect-
ing the inference operations. In spintronics technology, [13]
unveiled a BNN implementation where the authors replaced978-1-6654-5707-1/22/$31.00 ©2022 IEEE



the traditional summation of currents in a crossbar with a sum-
mation of resistances thus reducing the energy consumption
of Spin-Transfer-Torque Magnetic Random-access Memory
(STT-MRAM). Nonetheless, the main limit of this approach is
the number of devices that could be implemented in the array
due to analog noise. In addition, the use of time-to-digital
converters in their design induces a higher latency. In this pa-
per, we present a 4T-2R SOT-MRAM crossbar implementation
for BNN inference. The SOT-MRAM separates the read and
write operation, therefore the write operation is not limited
by the Magnetic Tunnel Junction (MTJ) resistance level and
its resistance can be tunned up to dozen of MΩ. The SOT
can therefore be implemented in a traditional crossbar scheme.
Moreover, the SOT-MRAM offers also two stable states and it
is less affected by drift and retention issues than RRAM and
Phase Change Memory (PCM) devices [14].

B. Convolutional Neural Network

Convolutional Neural Network (CNN) is a bio-inspired
Artificial Neural Network (ANN), mainly used for image
recognition [15]. It consists of convolution and max pooling
layers used to extract feature maps and a Fully-Connected (FC)
layer used for classification. The objective of the network is
to classify with a higher or lower probability which image is
fed into the network using Multi-Perceptron Layers (MLP).
Since convolution is the most computation-intensive operation
in CNN, several studies have proposed a bitwise CNN and
specific memory access aware strategies. [16], [17].

C. Binary Neural Networks

Due to their extreme compression of the operands used
in the computation, BNNs have been considered for imple-
mentation on embedded devices [18]. Unlike classical neural
networks, BNN encodes the weights as well as the neuron
activation values in binary format, rather than floating point
formats. To allow this, during training the real values of the
variables are compared to a threshold, accordingly to that the
network will generate either a +1[1] or -1[0] as can be seen
below:

sign(x) =

{
+1 x > 0

−1 x < 0
(1)

Here x represents a floating point value calculated during
training, after passing through the sign function, x is binarized.
Unlike the Multiplication and ACcumulation (MAC) opera-
tions performed by conventional networks, binary networks
perform a logical XNOR operation followed by a pop-count
operation. This facilitates its implementation on the hardware
since these operations are not very energy consuming. As in
most DNNs today, a batch normalization (BN) layer is added
to stabilize and accelerate the training phase [19]. This layer
is also simply implemented by a threshold operation:

τ = µβ −
β ∗

√
σ2
β + ε

γ
(2)

Fig. 1: Resistance distribution of RP and RAP of SOT-MRAM

Where γ and β parameters are computed during the training
and used to scale and shift the normalized value. While µB

and σ2
B represent the mean and the variance of the mini-batch

B. The algorithmic-generated thresholds will later on be used
at the output of the crossbar as activation.

D. Spin-orbit torque magnetic random access memory

In recent years, many resistive synaptic devices have been
proposed to implement DNN [14], such as PCM, RRAM
or STT-MRAM. STT-MRAM devices offer advantages in
terms of writing speed (few ns), endurance (≥ 1012 cycles),
and low power consumption (around 10fJ) [14], [20]. Thus
for memory applications, a lot of companies have invested
in STT-MRAM with already products on the shelves [21]
[22]. Notwithstanding its strong performance for memory
implementation, STT-MRAM is not a suitable candidate for
conventional crossbar implementation due to its low resistance
level (i.e. few kΩ). Indeed, to perform Matrix-Vector Multipli-
cation (MVM) in the array, all the bitcells are simultaneously
read in parallel for an analog computation. As a result, this
low resistance level will lead to a significant power draw in
the array. To overcome this concern, SOT-MRAM is proposed
[23]. According to the authors, the low resistance state of this
memory could be tuned up to 100 MΩ. The SOT-MRAM is
a three-terminal device that consists of an MTJ mounted on
a heavy metal substrate, with the MTJ being the main core
of all MRAM devices. This nanostructure is composed of
two ferromagnetic layers separated by a tunnel barrier, with
one of the layers being the Free Layer (FL) and the other
one the Reference Layer (RL). The resistance value depends
on the relative orientations of the magnetizations in the two
layers, parallel (P) or anti-parallel (AP). The P state exhibits
a low resistance state and the AP state a high resistance
state, the resistance can be then measured through the tunnel
magneto-resistance effect (TMR). The writing is performed
thanks to a current passing in the writing line below the
MTJ, inducing the SOT effect. The SOT-MRAM separates the
read and write paths avoiding accidentally switching the MTJ
while reading. This separation of the write and read paths
allows tuning the read and write parameters of the device
independently, allowing a large resistance of the stack. For



this purpose, two access transistors are added for read and
write operations controlled by a Write Word-Line (WWL)
and a Read Word-Line (RWL). Given its high resistance,
SOT-MRAM may be an important candidate for the imple-
mentation of neural networks. Nevertheless, SOT-MRAM like
other emerging memristive solutions is also subject to process
variation that could impact several characteristics of the MTJ
such as the writing time or the TMR. Such discrepancies can
alter the desired result. To catch these defects, global variation
(+/− 3σ) are added in the SOT-MRAM model on the TMR
and the Resistance-Area product (RA), see Fig. 1. In addition
to the variations of resistance, the crossbar is also subject to the
variation that can impact the selection transistors and periphery
like sense amplifiers. We propose in this work to study all
those variations and see how they impact the design and the
performance of the crossbar array.

III. IMPLEMENTATION

A. SOT-MRAM bit-cell design

In BNNs, the basic computation consists in an XNOR-
bitcount operation. Some studies proposed to implement it
with purely digital operation [24] [12] [25] and other studies
proposed to stay on the implementation of crossbar by exploit-
ing Ohm and Kirchhoff’s laws [26]. In these implementations
of BNN, two complementary cells are used to store a synaptic
weight [3]. In the proposed implementation of Fig. 2, the
synpatic weight of ’1’ is stored with a AP and P configuration
state, for ’0’, the configuration is (P-AP). The inputs of the
cell (BL) are still differential to allow XNOR operation. In
contrast to the 2T-2R implementation [26], the SOT-MRAM
is a 3-terminal device where another NMOS transistor is added
to separate the read and write paths. This has the advantage
of avoiding read disturb, minimizing errors. To illustrate the
XNOR operation in the proposed bit-cell, let’s assume that the
input is ’1’ and the wanted weight is ’0’, in this case AP path
will be activated leading to a low current , the output will
be equal to AP (0). In the scenario where ’1’ is the weight
and the input is also ’1’, the P path is chosen leading to a
larger current than AP, the output will be ’1’(P). The current
generated by all the cells in a column will be summed up and
compared to a threshold voltage by a sense amplifier (SA) [27],
avoiding the use of an analog to digital converter (ADC). This
particular feature of BNN will allow reducing the area as well
as the power consumption of the ADC, since the periphery
is the block that consumes most of the energy in a crossbar
architectures [3], [28].

B. SOT-MRAM-based crossbar array

In this study, a convolution layer implementation is pro-
posed on a crossbar architecture. Prior to that, an algorithmic
study with a bitwise CNN was performed on the MNIST
dataset. The network architecture is presented in Table I. This
model contains 2 convolutional layers, 2 max-pooling layers
and 1 FC layer . The output represents here the feature maps.

PAP

SL

RWL

WWL

BL BL

BL BL
Weight = 1

P AP

SL

WWL

BL BL

BL BL
Weight = 0

Input (BL) Weight Output (SL)

0(-1) 0 P (1)

0(-1) 1 AP(0)

1(+1) 0 AP(0)

1(+1) 1 P(1)

XNOR OPERATION
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Fig. 2: Bitcell containing two complementary SOT-MRAM
cells to perform XNOR operation in memory with the truth
table

TABLE I: Binary CNN configuration for MNIST dataset

Layer name Kernels Output
Convolution-1 5×5×32 24×24×32
Max Pooling-2 3×3 8×8×32
Convolution-3 5×5×16 4×4×16
Max Pooling-4 2×2 2×2×16
Fully Connected 64×10 10

In this paper only Convolution-1 is treated. This layer
performs 32 convolutional operations with kernels of 5×5
size. To compute the convolution in an analog fashion, it
has to be mapped on a physical NVM-based array. However,
mapping a convolutional layer is more challenging than FC
layer, single shot mapping is no longer possible. Yet, the
convolution realises a dot product between the kernel weights
and a specific portion of the input image, several times. Hence
a simple method of mapping the convolutional operation is to
unroll all the kernels in 1D and arrange them in each column
of the crossbar array [29], [30]. For the first convolutional
operation, the array contains then 25 inputs (5×5) for 32
outputs. During the inference, only one writing operation of all
weights is performed, since they do not change with time.Thus,
the weights obtained during the training stage are loaded into
the crossbar array.

After the writing step of the weights, several reading steps
are carried out for the inference. Indeed, to obtain all the
feature maps of the first convolutional layer, 24×24 reading
operation per column are required. In order to perform these
operations, it is first necessary to encode the MNIST image
into reading signals. To do so, the image is sliced in multiple
waveform that encode the value of the pixel in the amplitude
of the signal, ”VDD” for the black pixel and the ”GND” for
the white one. For both, a reading time of 20 ns with 1 V
of amplitude is used to sum all the weights in crossbar and
perform the bit-counting operation. Here, the bitwise batch
normalization layer explained in Sec. II-C is also added to the
crossbar array. The computed thresholds during the training

phase (i.e. τ = µβ − β∗
√

σ2
β+ε

γ ) are mapped at the circuit
level, this will provides several activation levels for the array.
To accomplish this mapping, a first estimation of the maximum



(a) SOT crossbar array during reading operation
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Fig. 3: SOT Crossbar array implementation

TABLE II: Value of the CMOS current references

Reference number Value (nA)
0 19
1 38
2 57
3 76
4 95
5 114
6 133
7 152
8 190

current generated by the crossbar given the weights in the array
is realized. After that, a normalization between the maximum
current produced by the array with the maximum threshold
obtained through the training is performed.

These thresholds are simply represented by a CMOS current
reference [31], with which each column output of the crossbar
is compared thanks to a sense amplifier [27]. In Fig. 3,
the crossbar architecture and the CMOS current reference
are shown. For clarity reasons, we represent only reading
path transistors in the crossbar. In this application, the batch
normalization thresholds for the 32 kernels are 9 in total (some
kernels have similar values). It is therefore necessary to design
9 different CMOS current references (see Table II).

Nonetheless, process variations can induce an overlap be-
tween two references that are close to one another. Thus, two
distinct references can generate the same current leading to
some reading inaccuracies. An example is shown in Fig. 4
where Monte Carlo (M-C) simulations show an overlap be-
tween reference 2 and reference 3. To further evaluate the
impact of this overlap, 100 M-C simulations have been per-
formed on each CMOS current reference and the design was
accordingly adapted with accurate sizing of the Width/Length
(W/L) of the transistors. The aim is to reduce the overlap
to the minimum, making it possible to discriminate between
the current values. Fig. 5 shows the accuracy of the different
references generated for the reading of the crossbar. It indicates
the percentage of being in the desired current range according
to the chosen current reference (and not in the neighboring
current distribution). The studied CMOS references have a low
dependency and low variability over process.

Fig. 4: CMOS current reference overlap

C. Crossbar evaluation

To evaluate the accuracy of the proposed crossbar array
architecture over manufacturing variations, several reading
operations (i.e 200) have been performed based on an image
from the MNIST dataset. The objective is to assess the
robustness of the crossbar against variations and the impact of
accuracy on the desired output. To do so, 100 MC simulations
were conducted on the aforementioned reading operations.
First, only the CMOS current references were considered.
Fig. 6 shows that the output is just slightly affected and we
observe only 4% of error over the whole reading operations.
Therefore, the robustness of the current references used at
the output of the crossbar is confirmed. Secondly, to assess
how the distribution of resistance showed in Fig. 1 can impact
the desired output, a similar test to the one before is carried
out. This time, only the crossbar is taken into consideration.
Compared to the previous study, we observe a little increase
in the error. This can be explained by the fact that in some
worst-case corners, all the bitcells will be impacted in such
a way to drastically modify the generated reading current,
inducing even more reading errors. Finally, M-C simulations
on a combination of the crossbar and the current references
were achieved. This time, the error is even more important
with a bigger deviation. This case could be seen as the worst
case of the study since a decorrelation between the reference
current and the current produced by the crossbar array can
occur. Although in the latter case the errors are larger, the



Fig. 5: Accuracy of the generated references

Fig. 6: Test error evaluated for MNIST dataset

overall trend is on average less than 10%.
In Fig. 7, we see the power consumption of the proposed

architecture, with a 28 nm technology. The first thing to point
out is the low power draw at the crossbar level. By the
extremely high resistance of the SOT memory, it is possible
to drastically reduce the power consumption in memory. The
principal sources of power consumption in this architecture
are the decoders and the peripherals. In fact, it is known
that the periphery is the part that consumes the most energy
in a crossbar architecture. However, the implementation of
the activation by means of a current reference and a sense
amplifier reduces the energy consumption compared to an
ADC [3].

IV. DISCUSSION

In this study, a 1600-component crossbar array was designed
using SOT-MRAM for a BNN. To do so, we implemented
the XNOR bitcell and performed the BNN computation in
memory. In addition, the Batch Normalisation layer was
also mapped with current references and sense amplifiers.
Then, several M-C simulations were performed to evaluate
the impact of process variations on the proposed SOT cross-
bar array, whether at the bitcell level or on the periphery.
For inference implementation, [9] presented an RRAM array
where they achieved 25 nJ of energy consumption with 2000

Fig. 7: Power consumption figures for the Full Crossbar array
implementation

RRAM devices. For PCM technology, [32] obtained an energy
consumption of 56 nJ (with respect to the number of devices).
Concerning STT-MRAM technology, [13] with a 64×64 cross-
bar array, obtained a power dissipation of 42 µW. In our
implementation, the total power is 3.3 µW and the energy
consumption is 65.89 fJ. The implementation presented here
allows us to have a consumption significantly lower than what
is done in the literature, with a percentage of error remaining
similar to other studies [10].

All these studies allow us to consider the viability of using
the SOT memory to implement BNN. Indeed, this imple-
mentation shows robustness to process variations with a very
low percentage of error, 10% on average. More importantly,
this memory allows us to circumvent the bottleneck of the
STT memory in the conventional crossbar implementation by
exploiting its very high resistance [13].

V. CONCLUSION

In this paper, we present for the first time the implementa-
tion of a BNN with SOT-MRAM technology. We illustrate that
this implementation is very energy efficient with a low error
rate. For this purpose, we present a binary cell design based on
a 4T-2R structure. An evaluation of the energy consumption
is performed on the crossbar and the periphery. To show the
robustness of the approach, several Monte Carlo simulations
have been performed. Nevertheless, the implementation of
the crossbar is not complete, the goal here was to evaluate
the errors at the circuit level for a future more complete
implementation. This will lead to a complete simulation and
design flow for evaluation of application.
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