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The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimen-
sion d = 2 to 7. The critical exponents γ/ν estimated from the Finite-Size Scaling of the magnetic
susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4,
the numerical data are compatible with the presence of multiplicative logarithmic corrections. For
d ≥ 5, the estimates of the exponents γ/ν are close to the prediction γ/ν = d/2 of the φ4 theory
above the upper critical dimension. Moreover, the universal values of the Binder cumulant are also
compatible with those of the Ising model. This indicates that the upper critical dimension of the
majority-voter model is not dc = 6 as claimed in the literature, but dc = 4 like the equilibrium Ising
model.

I. INTRODUCTION

The Renormalization Group Theory, pioneered by
Wilson and Fisher among others, has provided a deep
understanding of the critical behavior of statistical
models, as the Ising model, below their upper critical
dimension dc [1]. Above dc, the situation is much simpler
and the critical exponents take the values predicted
by mean-field theory. However, the correct Finite-Size
Scaling of thermodynamic averages above the upper
critical dimension has been clarified much recently [2].

The critical behavior of the d-dimensional Ising model
is described in the continuum limit by the Landau-
Ginzburg action [3–5]

S[φ] =

∫

[

|∇φ|2 + rφ2 + uφ4]ddx. (1)

Since the action is dimensionless, one can determine the
scaling dimensions of the field and of the couplings by
power-counting. The scaling dimension of φ is xφ =
(d − 2)/2 and therefore, the dimension of the coupling
u is yu = d − 4xφ = 4 − d. It follows that the quartic
term is relevant for d < 4, marginal at d = 4 and irrele-
vant at d > 4. Below the upper critical dimension dc = 4,
the critical exponents can only be estimated using the full
machinery of Renormalization Group. In contrast, above
the upper critical dimension dc = 4, one may expect the
critical behavior to be governed by the Gaussian fixed
point corresponding to u = 0. It turns out that it is not
the case because the coupling u is a dangerously irrele-
vant variable [6]. From the RG flow equations, it can be
shown that under a rescaling x → x/b the singular part
of the free energy density behaves as

f(r, u) = b−df
(

b2(r + αu)− b4−dαu, b4−du
)

. (2)

It follows that the critical exponents are not those of
the Gaussian fixed point but the mean-field exponents.
The hyperscaling relation holds only at d = dc and is
violated above. Finite-Size Scaling is also affected by the
dangerous irrelevant coupling u. With periodic boundary
conditions, the quartic term of the action Eq. 1 involves

the volume V of the system in Fourier space:

S =
∑

~k

(k2 + r)|φ~k |
2 +

u

V 2

∑

~k1,~k2,~k3

φ~k1

φ~k2

φ~k3

φ−~k1−~k2−~k3

.

(3)
At the critical point r = 0, the Finite-Size Scaling of the
magnetic susceptibility is dominated by the contribution
of the k = 0 mode [8]:

〈φ2〉 ∼
∫

φ2
0e

− u
V
φ4

0dφ0
∫

e−
u
V
φ4

0dφ0

∼ V 1/2 = Ld/2. (4)

It is therefore anomalous with a divergence Ld/2 with
the lattice size L and not Lγ/ν with γ/ν = 2 as expected
at the Gaussian Fixed Point. Similarly, the correlation
length scales with the lattice size as ξ ∼ Ld/dc [9]. A
coherent Finite-Size Scaling theory has been presented
based on the new exponent ϙ= d/dc [10]. Despite some
indications that the same Finite-Size Scaling holds with
free boundary conditions, the problem is not completely
settled [2, 11].

The above discussion concerns only the Ising model
but it is believed to be more general. In particular, the
Finite-Size Scaling of percolation above its upper critical
dimension dc = 6 has been analyzed in the same way [12].
In this paper, we are interested in the majority voter
model which has the peculiarity, as percolation, of not
being described by an Hamiltonian. This model is never-
theless believed to belong to the universality class of the
Ising model. However, it has been claimed that his upper
critical dimension is not dc = 4 but dc = 6 [24]. We per-
formed extensive Monte Carlo simulations and compared
the Finite-Size Scaling of the magnetic susceptibility of
the majority-voter and Ising models. In the first section,
the two models are more precisely defined and details on
the Monte Carlo simulations are given. The numerical
results are analyzed in the second section. Conclusions
follow.
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II. MODELS AND SIMULATION DETAILS

In this study, we consider hypercubic lattices of di-
mension d ranging from d = 2 to 7. Each node i of this
lattice is occupied by a classical Ising spin that can take
two possible values σi = ±1. The Ising model is defined
by the Hamiltonian

H({σ}) = −
∑

(i,j)

σiσj (5)

where the sum extends over all pairs of neighboring sites
of the lattice. At equilibrium with a thermal bath at the
temperature T = 1/kBβ, the probability of a given spin
configuration {σi}i is given by the celebrated Boltzmann
distribution

℘Eq.({σ}) =
1

Z e−βH({σ}). (6)

One can find different Markovian dynamics whose sta-
tionary distribution is the Boltzmann distribution ℘Eq..
It is convenient to impose the detailed balance condition

℘Eq.({σ})W ({σ} → {σ′}) = ℘Eq.({σ′})W ({σ′} → {σ})
(7)

which is satisfied by the Glauber transition rates consist-
ing in single spin flips

W ({σ} → {σ′}) = 1

N

∑

i

ω(σi) δσ′

i
,−σi

∏

j 6=i

δσ′

j
,σj

(8)

with [13]

ω(σi) =
1

2

[

1− σi tanh
(

β
∑

j

σj

)]

(9)

where the sum extends over all neighbors j of site i.
The dynamics that is generated by these transition rates
can be seen as a local equilibration of the spin σi in the
effective magnetic field created by its neighbors. Note
that there are several solutions to the detailed balance
condition Eq. 7. The Metropolis transition rate is
another solution that is commonly used in Monte Carlo
simulations [14]. These two dynamics are slow: the
dynamical exponent is z = 2 away from criticality and
slightly larger than 2 at the critical point. To compute
equilibrium properties by means of Monte Carlo simula-
tions, it is therefore much more efficient to use cluster
algorithms based on non-local spin updates [15, 16].

The majority-voter model is another Markovian dy-
namics for Ising spins on a lattice. As the Glauber dy-
namics, it consists in single-spin flips, i.e. the transition
rates are of the form Eq. (8) but with

ω(σi) =
1

2

[

1− λσiS
(

∑

j

σj

)]

(10)

where S(x) is the sign function defined by S(x) = 1 for
x > 0, −1 for x < 0, and 0 for x = 0. Note that in
Ref. [24], the parameter λ is denoted tanhβT . In contrast
to Glauber dynamics, the majority-voter model does not
satisfy the detailed balance condition Eq. 7. No Hamilto-
nian can be associated to this model and the parameter
λ is not related to any temperature. The majority-voter
dynamics can be used to study the spreading of opin-
ion in a population [17]. Each node i of the lattice is
associated to a voter and the spin σi to his answer to
a binary question. At each time, each voter adapts his
choice according to the majority opinion of his neigh-
bors. Note that the majority-voter model should not be
confused with the voter model. The Ising-Glauber and
majority-voter models are special cases of the more gen-
eral transition rates

ω(σi) =
1

2

[

1− λσi tanh
(

β
∑

j

σj

)]

. (11)

The Ising-Glauber model is recovered with the choice
λ = 1 and the majority-voter model with β → +∞. As
a consequence, the majority-voter model appears as an
Ising-Glauber model at zero temperature with an addi-
tional noise.
Even though the majority-voter model cannot be

associated to any Hamiltonian, it is believed that
the averages computed in the stationary distribution
display the same critical behavior as the equilibrium
Ising model [18]. Measurements of the static critical
exponents of the 2D majority-voter model by Monte
Carlo simulations indeed support this idea [19, 22].
The dynamical exponent z and the initial critical slip
exponent θ were also shown to be compatible with those
of the Ising model [20]. A more recent Monte Carlo
simulation of the 3D majority-voter model also found
critical exponents in the Ising universality class [21, 23].
However, an extensive Monte Carlo simulations in
dimensions d = 2 to 7 reached the conclusion that the
upper critical dimension of the majority-voter model is
not dc = 4, like the Ising model, but dc = 6 [24].

In this work, the critical behavior of the Ising-Glauber
and majority-voter models is studied by Monte Carlo
simulations. Much more accurate estimates of the critical
exponents of the Ising model could have been computed
with cluster algorithms. However, our goal is here to
study both models with a local dynamics and with the
same number of Monte Carlo iterations in order to com-
pare exponents with similar error bars. The code was
parallelized with the Cuda language and run on GPUs
Nvidia Tesla P100 and GTX 1080. Hypercubic lattices
of dimension d = 2 to 7 were considered with periodic
boundary conditions. The largest lattice sizes that could
be reached are 1024 in 2D, 120 in 3D, 36 in 4D, 18 in
5D, 12 in 6D and 8 in 7D. 105 iterations were performed
to thermalize the system and 106 iterations were used to
compute the averages. Several independent simulations
were performed and the error was estimated as σ/

√
N
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Figure 1. Susceptibility χ of the 5D Majority-Voter model
(left) and of the 5D Ising model (right) versus the parameters
λ and β. The different curves correspond to different lattice
sizes.

where σ is the standard deviation among the N indepen-
dent simulations.

III. NUMERICAL RESULTS

On Fig. 1, the magnetic susceptibility

χ = Ld
[

〈m2〉 − 〈m2〉
]

(12)

is plotted versus the parameter λ of the majority-voter
model and β of the Ising model in dimension d = 5. For
each lattice size, the pseudo-critical parameters λc(L)
and βc(L) were estimated as the location of the max-
imum of the susceptibility. To improve the accuracy, a
quadratic fit of the data is first performed over the points
for which χ ≥ 0.7maxχ and the maximum is computed
from the parameters of the fit. On Fig. 2, the magnetic
susceptibility at the pseudo-critical point is plotted ver-
sus the lattice size. The critical exponent γ/ν is esti-
mated from a simple power-law fit over all data. The
estimates are collected in Table I. The critical exponents
γ/ν of the majority-voter and Ising models are compat-
ible within error bars, except at d = 4 where the two
error bars do not overlap but are very close to each other
(the distance between them is 0.03). Note that d = 4
is the upper critical dimension of the Ising model and
potentially of the majority-voter model, so logarithmic
corrections may be present. In dimension d > 4, the crit-
ical exponents γ/ν of both the majority-voter and Ising
model are close to the prediction d/2 of the φ4 theory,
although not compatible within error bars.
At the upper critical dimension dc = 4, the critical

behavior of the magnetic susceptibility is expected to in-
volve multiplicative logarithmic corrections. It can be
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Figure 2. Maximum of the susceptibility of the 5D Majority-
Voter model (cross) and of the 5D Ising model (circle) versus
the lattice size L. The solid lines are power-law fits of the
data. The estimated critical exponents γ/ν are indicated in
the legend.
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Figure 3. Critical exponent γ/ν obtained from the Finite-Size
Scaling of the susceptibility of the Majority-Voter model and
the 5D Ising model versus the dimension d of the lattice. The
dashed line is the prediction of φ4 theory above the upper
critical dimension.

Table I. Estimates of the critical exponent γ/ν for the Ma-
jority Voter model (left) and the Ising model (right) on an
hypercubic lattice of dimension d.

d Majority Voter Ising

2 1.72(19) 1.73(20)

3 2.01(12) 1.97(14)

4 2.34(4) 2.23(4)

5 2.66(9) 2.60(11)

6 3.17(4) 3.09(5)

7 3.55(5) 3.53(7)
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Figure 4. Maximum of the susceptibility of the 4D Majority-
Voter model (cross) and of the 4D Ising model (circle) divided
by L2 versus the logarithm lnL of the lattice size L. The solid
lines are power-law fits of the data. The estimated exponents
γ/ν are indicated in the legend.

inferred that the Finite-Size Scaling of the magnetic sus-
ceptibility at its maximum is of the form

χ ∼ Ld/2(lnL)a (13)

where a is an unknown exponent. To test this assump-
tion, the quantity χ/L2 has been plotted versus lnL with
a logarithmic scale on Fig. 4. A very nice power-law be-
havior can be observed for both the majority-voter model
and the Ising model. The exponent a is estimated to
be 0.94(10) for the majority-voter model and 0.62(9) for
the Ising model. Note that a is predicted to be 1/2 for
the Ising model at the critical temperature βc [25]. This
prediction is slightly outside of the error bar of our esti-
mate. Note also that, for both the majority-voter and the
Ising models, the magnetic susceptibility can also be fit-
ted with logarithmic corrections in dimensions d > 4 but
with an exponent a decreasing with d (0.41(22) at d = 5
and 0.30(6) at d = 6 for the majority-voter model).
On figure 5, the Binder cumulant

U = 1− 〈m4〉
3〈m2〉2 (14)

is plotted versus the parameters λ and β in dimension
d = 5. The curves for different lattice sizes are ex-
pected to cross at the critical parameters λc and βc in
the thermodynamic limit and the value of the Binder
cumulant at the crossing points is expected to be uni-
versal. For all dimensions, very similar values are ob-
served for the majority-voter and Ising models. In di-
mensions d = 5, we have estimated the universal values
to be U∗(∞) ≃ 0.27(7) for the majority-voter model and
U∗(∞) ≃ 0.30(6) for the Ising model. Estimates at di-
mensions d = 2 to 7 are given in Table II. They were ob-
tained by a linear interpolation of the Binder cumulant
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Figure 5. Binder cumulant U of the 5D Majority-Voter model
(left) and of the 5D Ising model (right) versus the parameters
λ and β. The different curves correspond to different lattice
sizes.

Table II. Estimates of the universal Binder cumulant U∗(∞)
for the Majority Voter model (left) and the Ising model (right)
on an hypercubic lattice of dimension d.

d Majority Voter Ising

2 0.62(4) 0.62(4)

3 0.47(6) 0.46(6)

4 0.36(3) 0.33(2)

5 0.27(7) 0.30(6)

6 0.31(5) 0.31

7 0.40 0.33

to estimate more accurately the crossing points. The
value U∗(L) at the crossing is then fitted with the law
U(L) = U∗(∞) + b/L. The absence of error bars for the
largest lattice sizes is due to a too small number of points
in the fit. The accuracy on the Binder cumulant is unfor-
tunately not sufficient to estimate ν from the Finite-Size
Scaling of d

dλU and d
dβU .

CONCLUSIONS

In conclusion, we have provided numerical evidences
that the majority-voter model belongs to he universality
class of the equilibrium Ising model for any dimension
2 ≤ d ≤ 7. The immediate consequence is that the upper
critical dimension of the majority-voter model is dc = 4,
like the Ising model. Above the upper critical dimension,
the Finite-Size Scaling of the magnetic susceptibility is
indeed close to the prediction χ ∼ L2 of φ4 theory. For
both the majority-voter and Ising models, the small de-
viation to this law may be attributed to the too small
lattice sizes that could be reached, and therefore to scal-
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ing corrections. At the upper critical dimension, multi-
plicative logarithmic corrections are present in both the
majority-voter and Ising models but with a different ex-
ponent. Note that this is not a proof that dc = 4 since
the data can also be fitted with logarithmic corrections
for d > 4, although with smaller exponents.
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