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Introduction

In this paper, we are interested in the shape optimization of the second Neumann eigenvalue of the Laplacian, denoted by µ 1 , see Section 2 for the Notation. We underline that the shape optimization of the first Neumann eigenvalue µ 0 is not interesting, since µ 0 (Ω) = 0 for every shape Ω.

A well-known result, first proved by Szegő (for plane simply-connected domains) and then generalized by Weinberger, says that the ball maximizes µ 1 (Ω) with volume constraint. The Dirichlet analogue is the Faber-Krahn inequality, which says that the ball minimizes the first Dirichlet eigenvalue of the Laplacian λ 1 (Ω) under volume constraint.

But less is known for the perimeter constraint. Concerning the first Dirichlet eigenvalue, it is easy to see that the ball is again the minimizer with fixed perimeter. Indeed, by successively using the isoperimetric inequality and then Faber-Krahn inequality, we get (here Ω is a bounded open set in R N and ω N is the volume of the unit ball B 1 )

P (Ω) 2 N -1 λ 1 (Ω) ≥ N ω 1 N N 2 N -1 |Ω| 2 N λ 1 (Ω) ≥ N ω 1 N N 2 N -1 |B 1 | 2 N λ 1 (B 1 ) = P (B 1 ) 2 N -1 λ 1 (B 1 ),
with equality for the ball in each of the above inequalities.

For the Neumann eigenvalue µ 1 (Ω), the maximizer with perimeter constraint does not exist in general (see Proposition 3.3). On the other hand, it is easy to see that a maximizer exists among convex sets (see Proposition 3.1). However, up to our knowledge, even in dimension 2, the convex maximizer is not known. The question was actually explicitly addressed in an Oberwolfach meeting in 2009 by R. Laugesen and I. Polterovich, [START_REF] Laugesen | Maximizing Neumann fundamental tones of triangles[END_REF]Problem 9.2], see also [START_REF] Laugesen | Triangles and other special domains[END_REF]Open Problem 6.66], from which we can conjecture the following.

Conjecture 1.1. For all planar convex domain we have

P 2 (Ω)µ 1 (Ω) ≤ 16π 2 . (1) 
The maximum being achieved by squares, and equilateral triangles.

The eigenvalue µ 1 (Ω) cannot be computed explicitly in general. However, this can be done for simple domains, such as equilateral triangles, rectangles, and disks (see, e.g., [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Section 1.2.5] and [START_REF] Laugesen | Maximizing Neumann fundamental tones of triangles[END_REF]). In particular, the equality in [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF] for squares and equilateral triangles follows by a direct computation. Moreover, in [START_REF] Laugesen | Maximizing Neumann fundamental tones of triangles[END_REF] it was proved that among all triangles, the equilateral triangle is the maximizer. For the unit disk D (actually, for any disk, by scale invariance of the functional under study) we have P 2 (D)µ 1 (D) = 4π 2 (j ′ 1,1 ) 2 ≃ (4 × 3, 39)π 2 which is far from achieving the bound 16π 2 . This gap is large enough to imply that all regular polygons with a number of sides N ≥ 5 will satisfy [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF], by comparison with a ball (see Proposition 2.1). Let us also mention that the conjecture is supported by numerical simulations, performed by Beniamin Bogosel (private communication).

In this paper we partially prove the conjecture. Our main result is the following. Theorem 1.2. For all planar convex domains with two axis of symmetry,

P 2 (Ω)µ 1 (Ω) ≤ 16π 2 .
The maximum is achieved by squares and equilateral triangles and only by them.

One of the key ingredients in the proof of Theorem 1.2 is a new geometrical bound on µ 1 (Ω), valid for any bounded Lipschitz open set Ω ⊂ R 2 (see also Lemma 4.1 for a general statement on any set, not necessarily Lipschitz). Besides the application to our problem, the result is interesting in itself.

Lemma 1.3. For all planar bounded (Lipschitz) open set Ω we have

(2) µ 1 (Ω) ≤ π 2 w(Ω) 2 |Ω| 2
where |Ω| is the area of Ω and w(Ω) is the minimal width of Ω. The inequality becomes an equality for all and only rectangles.

The proof of this lemma is quite short and it is given in Section 4 (together with a generalization in higher dimension, see Lemma 4.1 and Lemma 4.2). It allows us to conclude that Conjecture 1.1 holds true for all planar convex domains with two orthogonal axis of symmetry. Actually, from Lemma 1.3 one can state the following immediate corollary.

Corollary 1.4. Any planar convex domain Ω satisfying P (Ω)w(Ω) ≤ 4|Ω|, (3) also satisfies inequality [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF].

As a matter of fact, any convex domain with two orthogonal axis of symmetry automatically satisfies (3) as it is proved in Proposition 4.4, which therefore answers to the conjecture for the case of convex domains with two orthogonal axis of symmetry, with a quite short proof. Moreover, among convex domains with two orthogonal axis of symmetry, only squares satisfy (2) and (3), and thus [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF], with an equality sign. It is worth noticing that there exist other convex domains satisfying [START_REF] Shiu Yuen | Eigenvalue comparison theorems and its geometric applications[END_REF], and thus Conjecture 1.1, without having necessarily two axis of symmetry: this is the case, e.g., of parallelograms (see Proposition 4.3) and centrally symmetric convex domains (see Remark 4.5). Our study of parallelograms contains and generalizes the result by Raiko [START_REF] Raiko | Comparison of the first positive neumann eigenvalues for rectangles and special parallelograms[END_REF], with a completely different proof.

In order to obtain the main result (Theorem 1.2) in the generic case, we consider a domain Ω with two axis of symmetry with a given angle θ ∈ (0, 2π). We rapidly arrive to the conclusion that it suffices to treat angles of the form θ = π/N with N ≥ 3 (see Proposition 5.1). Notice that when θ = π/4, or more generically θ = π/N with N = 2 k , k ≥ 2, then the domain has two orthogonal axis of symmetry, and the argument above applies.

The case of θ = π/N with N ≥ 5 is treated in Section 5: for such domains, the comparison with the disk, which in general gives a too rough estimate, gives the desired bound with the strict inequality sign.

The last case that we need to consider is that of an angle θ = π/3, i.e., when Ω admits the same axis of symmetry as the equilateral triangle. This case is much more involved and it is treated in Section 6. We have to introduce a parameter a ∈ [0, 1/3], which, roughly speaking, describes how far the domain is from an equilateral triangle.

The complicated situation occurs for small values of the parameter, a ∈ [0, 1/4], corresponding to shapes not far from the equilateral triangle. Here the strategy is to use a convex combination of the eigenfunctions of two suitable equilateral triangles as a test function for µ 1 (Ω). After a series of hard computations and estimates, we come to the conclusion that nothing but a finite number of configurations have to be tested, which is finally done by computer. The most technical parts are postponed to the Appendix.

On the other hand, for the remaining intermediate values of the parameter, namely a ∈ [1/4, 1/3], we can easily conclude by using Szegő-Weinberger's inequality together with a nice reverse isoperimetric inequality (involving the perimeter and the area). This concludes the proof of Theorem 1.2.
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Notation and useful bounds

We start this section by fixing the notation that will be used throughout the paper. Then we give some known bounds of P (Ω) and µ 1 (Ω) coming from the literature that will be used later. As a direct application of one of these bounds (Szegő-Weinberger's inequality) we give a short proof of the validity of Conjecture 1.1 for regular polygons.

Notation. We denote by V ect[ξ 1 , . . . , ξ m ], m ∈ N, the vector space of R N generated by the vectors ξ 1 , . . . , ξ m ∈ R N . The orthogonal complement of a subspace V of R N is denoted by V ⊥ .

Given three points A, B, C in the plane, we denote by AB the length of the segment joining A and B, by (AB) the line passing through A and B (when they do not coincide), and by ABC the angle of vectors between -→ AB and -→

BC.

Given a set Ω, we denote its area by |Ω|, its perimeter (always defined when Ω is convex) by P (Ω), its diameter by D(Ω), and its convex hull by conv(Ω). We denote by H 1 the one dimensional Hausdorff measure, S 1 the unit circle, and D the unit disk. The minimal width of the convex set Ω ⊂ R 2 (or more generally of any bounded open set) is defined by

w(Ω) := min ν∈S 1 H 1 (p ν (Ω)),
where p ν : R 2 → Rν is the orthogonal projection onto the vectorial line Rν oriented by the vector ν.

If Ω is a bounded Lipschitz domain (as for instance a convex domain), the spectrum of the Neumann Laplacian is discrete, and the first Neumann eigenvalue is always zero. We will denote by µ 1 (Ω) the second eigenvalue, defined by [START_REF] Ftouhi | The diagram (λ1, µ1)[END_REF] µ 1 (Ω) = min

u∈H 1 (Ω) : Ω u dx=0 Ω |∇u| 2 dx Ω u 2 dx
. Some useful bounds. The first inequality that we mention is the following: for all convex domains (with non empty interior)

P (Ω) > 2D(Ω). ( 5 
)
The second inequality says that among all domains the ball maximizes µ 1 with fixed volume. More precisely (see [START_REF] Hans | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF] or [5, 7.1.2]), for any Lipschitz domain Ω ⊂ R 2 we have

|Ω|µ 1 (Ω) ≤ πµ 1 (D) = π(j ′ 1,1 ) 2 , (Szegő-Weinberger) (6)
where j ′ 1,1 is the first zero of the derivative of the Bessel function J 1 . In particular, (j ′ 1,1 ) 2 ≃ 3.39 (see [5, page 11]).

The third inequality is a classical lower bound for µ 1 , valid for any convex domain Ω ⊂ R 2 (see [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]),

D(Ω) 2 µ 1 (Ω) ≥ π 2 .
(Payne-Weinberger) [START_REF] Laugesen | Maximizing Neumann fundamental tones of triangles[END_REF] The last inequality that we mention gives a counterpart of the above inequality, with an upper bound. It was explicitly stated by Bañuelos and Burdzy in [1, Corollary 2.1], but actually it follows from a more general result by Cheng [START_REF] Shiu Yuen | Eigenvalue comparison theorems and its geometric applications[END_REF]

: for any convex domain Ω ⊂ R 2 , D(Ω) 2 µ 1 (Ω) ≤ 4j 2 0,1 . (Cheng, Bañuelos-Burdzy) (8) 
Here j 0,1 is the first zero of the Bessel function J 0 , and it holds j 0,1 ≃ 2.405 (see [5, page 11]).

The case of regular polygons. As any regular polygon admits at least two axis of symmetry, we can treat them as a direct consequence of our main result (Theorem 1.2). However, Szegő-Weinberger's inequality allows us to give an independent and shorter proof. Proposition 2.1. For any regular polygon Ω ⊂ R 2 inequality (1) holds true.

Proof. Let Ω be a regular polygon with N sides. We denote by A its area and P its perimeter. Then a simple computation shows that

P = 2N sin π N , A = N sin π N cos π N .
Next, by Szegő-Weinberger's inequality [START_REF] Henrot | Shape variation and optimization[END_REF], we know that

Aµ 1 (Ω) ≤ πµ 1 (D).
It follows that (1) will be true if P 2 µ 1 (D) ≤ 16Aπ or, equivalently, if

µ 1 (D)4N 2 sin 2 π N ≤ 16N sin π N cos π N π.
Since cos π N never vanishes for N ≥ 3, we can transform the relation into

N tan π N ≤ 4π µ 1 (D)
. This means that (1) is satisfied for every polygon with N ≥ 5. For N = 3, 4, as we already know, the desired inequality is an equality. □

Existence and non existence results

In this section we prove the existence of a convex maximizer for the quantity P 2 (Ω)µ 1 (Ω). Then we stress the non existence for the analogue (again among convex sets) minimizing problem and for the maximizing problem without convexity constraint.

Proposition 3.1. The problem

max{P 2 (Ω)µ 1 (Ω) : Ω ⊂ R 2 , convex }, admits a solution.
Proof. Let {Ω n } n∈N be a maximizing sequence (of plane convex domains). By the scale invariance, we can assume that all these domains have diameter equal to 1, so that they are all contained into a fixed ball. By Blaschke selection theorem, only two situations can occur:

(1) either there exists a convex set Ω * with non empty interior such that Ω n (or a subsequence) converges to Ω * for the complementary Hausdorff distance, as n → ∞. In that case, as the quantities P (Ω n ) and µ 1 (Ω n ) are continuous for the Hausdorff convergence in the class of convex domains, the set Ω * will be the maximizer (for the continuity of P (Ω n ) see [2, Lemma 2.3.5] and for the continuity of µ 1 (Ω n ) see [START_REF] Henrot | Shape variation and optimization[END_REF] or [START_REF] Ftouhi | The diagram (λ1, µ1)[END_REF]); (2) or the sequence Ω n converges (for the complementary Hausdorff distance) to a segment of diameter 1, as n → ∞. But in that case, the perimeter of Ω n converges to 2 = 2D(Ω n ), thus

lim n P 2 (Ω n )µ 1 (Ω n ) = 4 lim n D 2 (Ω n )µ 1 (Ω n ) ≤ 16(j 0,1 ) 2
by Cheng inequality (8), thus we would have

supP 2 (Ω)µ 1 (Ω) ≤ 16(j 0,1 ) 2 < 16π 2
that is impossible. The proof is therefore completed. □

Regarding to the minimization of P 2 (Ω)µ 1 (Ω), we notice that a minimizer does not exist as stated in the following proposition. Proposition 3.2. For all planar convex domains we have

P 2 (Ω)µ 1 (Ω)>4π 2 . (9)
The lower bound is optimal and it is reached asymptotically by a sequence of rectangles shrinking to a segment. Proof. Payne-Weinberger's inequality [START_REF] Laugesen | Maximizing Neumann fundamental tones of triangles[END_REF] says that

D 2 (Ω)µ 1 (Ω) ≥ π 2 ,
where D(Ω) is the diameter of Ω. On the other hand we can use (5) which, for the recall, says that for any planar convex domain we always have P (Ω) > 2D(Ω). These two inequalities give [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]. Now by considering a sequence of rectangles Ω ε := [0, 1] × [0, ε], 0 < ε << 1, that shrink to the segment [0, 1] × {0} as ε → 0, we observe that

P 2 (Ω ε )µ 1 (Ω ε ) = 4(1 + ε) 2 π 2 → 4π 2 .
Here we have used the exact value of µ 1 for rectangles of the form [0 

, L] × [0, l] with L ≥ l, which reads µ 1 ([0, L] × [0, l]) = π 2 L 2 (
sup P 2 (Ω)µ 1 (Ω) : Ω ⊂ R 2 = +∞.
Proof. Let a > 0 be a small parameter (that will be taken infinitesimal at the end of the proof) and let Q a = [0, a] × [0, a] be a square of size a. We will construct a sequence of sets Ω n , n ∈ N, such that for every n ∈ N the perimeter satisfies P (Ω n ) = 1, whereas, in the limit as n → ∞, Ω n → Q a with respect to the Hausdorff distance. For that purpose, for a given n we construct a piecewise linear affine function f n : [0, a] → R as follows. We prescribe its value on a uniform partition of [0, a] and then we extend it in an affine way: In particular, the graph of f n over [0, a] has length exactly 1/4, and does not depend on n. Moreover, since ∥f n ∥ ∞ = ab/(2n) → 0, it follows that f n → 0 uniformly in [0, a], as n → ∞. Finally, we notice that f n is uniformly Lipschitz with constant b.

         f n (a k 2n ) = 0 for all k = 0, . . . , n -1, f n (a( k n + 1 2n )) = b a
Then we reproduce the graph of f n over each side of the square Q a , see Figure 1 below: this procedure allows to construct (the boundary of) a sequence of domains Ω n , uniformly Lipschitz, converging to Q a with respect to the Hausdorff distance. By applying [START_REF] Ftouhi | The diagram (λ1, µ1)[END_REF], (see also [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Section 2.3]) we know that

µ 1 (Ω n ) → µ 1 (Q a ) = π 2 a 2 . On the other hand P (Ω n ) = 1 for all n, so that P 2 (Ω n )µ 1 (Ω n ) → π a 2 . Consequently, sup P 2 (Ω)µ 1 (Ω) : Ω ⊂ R 2 ≥ π 2
a 2 , and we conclude by finally letting a → 0 in the above inequality. □ Remark 3.4. Let us observe that there exist domains with infinite perimeter but with a finite Neumann eigenvalue. This is, in particular, the case of some fractal domains as the Koch snowflake. Obviously, this provides another proof of Proposition 3.3.

A general bound on µ 1 and the case of orthogonal axis of symmetry

This section is devoted to a new upper bound of µ 1 , which is valid for generic planar domains (not necessarily convex) and which involves two geometric functionals: the area and the minimal width. In the convex setting, this allows us to show that the conjecture holds true for a broad class of domains: those for which the perimeter satisfies a suitable upper bound that matches the new upper bound of µ 1 . In the second part of the section, we provide some examples of such domains, proving in particular the conjecture (1) for convex sets with two orthogonal axis of symmetry. Lemma 4.1. For every (non-empty) open and bounded set Ω ⊂ R 2 , we have [START_REF] Raiko | Comparison of the first positive neumann eigenvalues for rectangles and special parallelograms[END_REF] inf

u∈H 1 (Ω) : Ω udx=0 Ω |∇u| 2 dx Ω u 2 dx ≤ π 2 w 2 (Ω) |Ω| 2 .
In particular, if µ 1 (Ω) is well defined, then µ 1 (Ω) ≤ π 2 w 2 (Ω)/|Ω| 2 . Equality occurs in this inequality only for rectangles.

Proof. Let Ω ⊂ R 2 be a (non-empty) bounded open set. Throughout the proof, let A := |Ω| and w := w(Ω). Without loss of generality, we may assume that the coordinate system is chosen so that the minimal width of Ω is achieved in the vertical direction. In other words Ω is contained into the horizontal strip S := R × [-w/2, w/2]. In S we consider the rectangle

R := [-L/2, L/2] × [-w/2, w/2], with L := A/w,
having area |R| = A, and we define the function

u(x, y) :=    sin(πx/L) in R +1 in S \ R, x ≥ L/2 -1 in S \ R, x ≤ -L/2.
Since Ω ⊂⊂ S, the function u is well defined in Ω, but it does not have (in general) zero average in it. For t ∈ R, let us denote by Ω t the translation Ω t := Ω + (t, 0), which is still contained into the strip S. The map t → Ωt u is continuous, moreover, by construction of u it is negative for t < 0 large enough in modulus, and it is positive for t > 0 large enough. Therefore, there exists x 0 ∈ R such that Ωx 0 u = 0. Since all the functionals appearing in [START_REF] Raiko | Comparison of the first positive neumann eigenvalues for rectangles and special parallelograms[END_REF] are invariant under translation, it is enough to prove the statement for Ω x 0 . The choice of x 0 allows us to obtain inf

f ∈H 1 (Ωx 0 ) : Ωx 0 f dx=0 Ωx 0 |∇f | 2 dx Ωx 0 f 2 dx ≤ Ωx 0 |∇u| 2 dx Ωx 0 u 2 dx .
Let us bound from above the numerator and from below the denominator of the Rayleigh quotient:

Ωx 0 |∇u| 2 dx = Ωx 0 ∩R |∇u| 2 dx ≤ R |∇u| 2 dx; Ωx 0 u 2 dx = Ωx 0 ∩R u 2 dx + |Ω x 0 \ R| = R u 2 dx - R\Ωx 0 u 2 dx + |Ω x 0 \ R| ≥ R u 2 dx -|R \ Ω x 0 | + |Ω x 0 \ R| = R u 2 dx.
In the lower bound of the denominator we have used |u| ≤ 1 (true by construction) and which concludes the proof of ( 10). The equality case comes immediately from the study of the two chains of inequalities. □

|Ω x 0 \ R| = |R \ Ω x 0 | (true since |Ω x 0 | = A = |R|). A direct computation gives R |∇u| 2 dx = π 2 w 2L , R u 2 dx = wL 2 , so that, recalling the choice L = A/w, inf f ∈H 1 (Ωx 0 ) : Ωx 0 f dx=0 Ω |∇f | 2 dx Ωx 0 f 2 dx ≤ π 2 L 2 = π 2 w 2 A 2 ,
In the present paper we deal with planar shapes, however Lemma 4.1 can be generalized in higher dimension, as we show in Lemma 4.2. To state this result, we need some notation. Let Ω be any bounded set in R N . We successively define, for k = 1, 2, . . . N -1:

• w 1 the minimal width of Ω and ξ 1 the unit vector defining the direction of this minimal width, • w 2 the minimal width of the orthogonal projection of Ω on the space V ect[ξ 1 ] ⊥ and ξ 2 the unit vector defining the direction of this minimal width,

• . . .

• w k the minimal width of the orthogonal projection of Ω on the vector space V ect[ξ 1 , ξ 2 , . . . , ξ k-1 ] ⊥ and ξ k the unit vector defining the direction of this minimal width.

Then we can state:

Lemma 4.2.
For every open, non-empty and bounded set Ω ⊂ R N , we have

(11) inf u∈H 1 (Ω) : Ω u dx=0 Ω |∇u| 2 dx Ω u 2 dx ≤ π 2 N -1 k=1 w 2 k |Ω| 2 .
In particular, if µ 1 (Ω) is well defined, then

µ 1 (Ω) ≤ π 2 N -1 k=1 w 2 k /|Ω| 2 .
The proof of this Lemma follows exactly the same line as in the two-dimensional case by introducing the cuboid

K = - L 2 , L 2 × - w N -1 2 , w N -1 2 × . . . × - w 1 2 , w 1 2
with L chosen such that L N -1 k=1 w k = |Ω| and u the same test function depending only on the first variable x 1 . The proof is left to the reader.

A direct consequence of Lemma 4.1 is the immediate Corollary 1.4 stated in the Introduction, which says that the convex sets for which

P (Ω)w(Ω) ≤ 4|Ω| (12)
satisfy the conjecture [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF]. In what follows we provide some examples. We start with parallelograms: the next proposition generalizes the result contained in [START_REF] Raiko | Comparison of the first positive neumann eigenvalues for rectangles and special parallelograms[END_REF], where a similar statement has been proved only for some parallelograms of particular type. Proof. Let Ω be a parallelogram with area A, minimal width w, and perimeter P . Let L be largest side and ℓ the smaller side i.e. ℓ ≤ L. Let θ be the smallest angle, as in Figure 3. It is easy to see that These inequalities imply (12):

P w ≤ (2ℓ + 2L) sin(θ)ℓ ≤ 4L sin(θ)ℓ = 4A.
The validity of (1) follows by Corollary 1.4. □ Another family of domains satisfying P (Ω)w(Ω) ≤ 4|Ω| is that of convex sets with two orthogonal axis of symmetry. Proposition 4.4. All planar convex domains with two orthogonal axis of symmetry satisfy (12). In particular all planar convex domains with two orthogonal axis of symmetry satisfy inequality (1); moreover, the equality sign is satisfied only for squares.

Proof. In virtue of Corollary 1.4, to get (1) we only need to prove (12). By approximation of Ω with polygons, we may directly assume that Ω is a polygon. We also assume that the two axis of symmetry are {x = 0} and {y = 0}. We consider the part of Ω in the first quadrant {x ≥ 0, y ≥ 0}: by connecting the origin with the vertexes of the polygon, we divide Ω into triangles. Let N be the number of such triangles (in the first quadrant). For i = 1, . . . , N , the i-th triangle has one side on ∂Ω, whose length is denoted by a i . The corresponding height is an orthogonal segment passing through the origin, whose length is denoted by h i . According to this notation, we have

P (Ω) = 4 N i=1 a i , |Ω| = 2 N i=1 a i h i .
The key point of the proof relies on the following elementary observation about the minimal width (see Fig. 4):

(13) ∀i, 2h i ≥ w(Ω).
Thus we infer that 

a i w(Ω) = 1 4 w(Ω)P (Ω),
that is, (12). This concludes the proof of (1). Let us consider the equality cases: take a planar convex domain Ω with two orthogonal axis of symmetry, such that

P 2 (Ω)µ 1 (Ω) = 16π 2 .
Then, in view of ( 10) and (1), it must satisfy

µ 1 (Ω) = π 2 w 2 (Ω) |Ω| , P (Ω)w(Ω) = 4|Ω|.
The former, thanks to Lemma 4.1, implies that Ω is a rectangle, say Ω = [0, L]×[0, ℓ], ℓ ≤ L. For rectangles, the second equality is satisfied if and only if

2(L + ℓ)ℓ = 4Lℓ,
namely if and only if L = ℓ and Ω is a square. This concludes the proof. □ Remark 4.5. The key point in the proof of Proposition 4.4 is the inequality (13), which relates the distance of two supporting lines to the height of the triangles. The inequality holds true more in general for centrally symmetric convex sets, implying the validity of the conjecture (1) for these domains. This fact has been pointed out by K. Funano and A. Colesanti, while discussing on the problem.

The case of axis of symmetry forming a small angle

This section contains two results: first we show that we can restrict ourselves to the case in which the angle between two axis of symmetry is of the form π/N , N ≥ 3; then we analyse the case of small angles of the form π/N with N ≥ 5, proving the validity of (1) in this framework. Note that the case π/4 has been treated in the previous section, while the case π/3 will be the object of the next section.

Proposition 5.1. Let Ω ⊂ R 2 be any planar convex domain which admits two axis of symmetry with respective angle θ ∈ (0, 2π). Then:

(1) either θ = α2π with α ̸ ∈ Q and Ω is a disk;

(2) or θ = α2π with α ∈ Q and Ω admits two (possibly other) axis of symmetry, with respective angle π N with N ≥ 3. Proof. The proof is divided into three steps. In the following, Ω is a planar convex set with two axis of symmetry L 1 and L 2 , forming and angle θ ∈ (0, 2π).

Step 1: invariance under rotation. Since the composition of two symmetries produces the rotation of twice the angle, we infer the following two properties of Ω: i) it is invariant under rotation of angle 2θ, denoted by R 2θ ; ii) if L is an axis of symmetry, then R 2θ (L) is an axis of symmetry, too.

By repeatedly applying (ii) to L 1 and L 2 , we infer that R k 2θ (L 1 ) and R k 2θ (L 2 ), k ∈ N * , are axis of symmetry, forming with L 1 an angle of 2kθ and θ + 2kθ, respectively. Therefore, for every m ∈ N * , there exist an axis of symmetry (either a rotation of L 1 or a rotation of L 2 ) forming an angle of mθ with L 1 . In view of (i) we infer the set Ω is invariant under all the rotations R 2mθ , m ∈ N * .

Step 2: case of θ non rational multiple of 2π. Assume that θ = α2π, for some α ∈ R \ Q. Then the set {kα2π + 2jπ : k ∈ Z and j ∈ Z} is dense in R (because a subgroup of R is either discrete or dense, and this one can not be discrete). In this case we deduce that Ω is invariant under a dense set of rotations, therefore Ω is a disk, which proves [START_REF] Bañuelos | On the "hot spots" conjecture of J. Rauch[END_REF].

Step 3: case of θ rational multiple of 2π. Let now θ = α2π with α ∈ Q, say α = p q with p and q in Z. Thanks to Bezout Lemma, we can find two integers a, b ∈ Z such that ap + bq = 1. Then we can write aθ = aα2π = a p q 2π = 1 q 2π -b2π, namely there exists a multiple of θ which is equal to 2π q mod 2π. By Step 1, this implies that there exist two axis of symmetry with respective angle θ := 2π/q, q ∈ N. Let L ′ and L ′′ denote the two axis. Without loss of generality, we may take L ′ horizontal. If q is even, ( 2) is proved with N = q/2. Let us assume that q is odd, of the form q = 2h + 1, for some h ∈ N * . If h is even, we apply (ii) h/2 times to the axis L ′ : the rotated axis R h/2 2 θ (L ′ ) is again an axis of symmetry, forming with L ′ two supplementary angles:

h 2 (2 θ) = 2h 2h + 1 π and π - h 2 (2 θ) = π 2h + 1 = π q .
The second angle concludes the proof of (2) with N = q. The remaining case is when θ = 2π/q with q = 2h + 1 and h odd. Here we apply (ii) (h -1)/2 times to L ′′ : the rotated axis R

(h-1)/2 2 θ
(L ′′ ) is again an axis of symmetry, forming with L ′ two supplementary angles:

θ + h -1 2 (2 θ) = 2h 2h + 1 π and π -θ + h -1 2 (2 θ) = π q ,
giving (2) with N = q. This concludes the proof. □

Let us now prove the main result when the angle between the two axis of symmetry is small. In view of the previous proposition, this covers almost all the possible cases. Proposition 5.2. Let Ω be a planar convex domain with two axis of symmetry with angle θ = π N with N ≥ 5. Then the inequality (1) holds true strictly. Proof. The strategy of the proof is to compare Ω with a disk by using the Szegő-Weinberger's inequality (6):

µ 1 (Ω) ≤ π(j ′ 1,1 ) 2 |Ω| . ( 14 
)
In virtue of (14), the proposition will be proved if we are able to establish

P 2 (Ω) |Ω| ≤ 16π (j ′ 1,1 ) 2 . Since (j ′
1,1 ) 2 < 3.5 and 16π > 50, it is enough to prove that (15)

P 2 (Ω) |Ω| < 14.7.
For that purpose we solve some kind of reverse isoperimetric inequality by maximizing the ratio P 2 (Ω)/|Ω| among convex sets lying in the sector defined by the two axis of symmetry. More precisely, we will bound the perimeter from above and the area from below. Let us assume without loss of generality that the two axis cross at the origin O, that the first axis of symmetry is the line {x = 0}, and that the point A = (0, 1) belongs to ∂Ω. By assumption, the second axis of symmetry forms the angle θ with {x = 0}. We denote by B the point on ∂Ω that belongs to this second axis, and by α the angle OAB as in Fig. 5.

A O θ B B 2 B 1 ∂Ω α Figure 5. Proof of Proposition 5.2.
Notice that, by convexity, B must lie between the two points B 1 and B 2 as in Fig. 5. which provides the bound

π 2 -θ ≤ α ≤ π 2 .
We denote by S the positive sector delimited by the half-lines (OA) and (OB), and we consider the restricted sets Ω 0 := Ω ∩ S and Γ 0 := ∂Ω ∩ S.

By symmetry we know that

|Ω| = 2N |Ω 0 | and P (Ω) = 2N H 1 (Γ 0 ).
The remaining part of the proof is divided into two steps, in which we provide a lower bound for the area and an upper bound for the perimeter, respectively.

Step 1: lower bound for the area. To estimate |Ω 0 | we will use the fact that, by convexity, it has bigger area than the triangle OAB, which turns out to be equal to Therefore,

|Ω| = N |Ω 0 | ≥ N x B = N sin(α) sin(θ) sin(θ + α) . ( 16 
)
Step 2: upper bound for the perimeter. Notice that by symmetry, the perpendicular to the line (OB) passing through B is the tangent line to ∂Ω at B. Similarly, the line perpendicular to {x = 0} through A is the tangent to ∂Ω at A. These two tangents meet at a point H and, by convexity, ∂Ω stays below the two. This implies that we can estimate the length of Γ 0 as H 1 (Γ 0 ) ≤ AH + HB, see also Fig. 6. Therefore

x H = y B -1 tan(θ) + x B = sin(α) sin(θ) sin(θ + α) - cos(θ) sin(θ) = -cot(α + θ),
and we deduce that

AH = x H = -cot(α + θ).
Next,

BH 2 = (x H -x B ) 2 + (1 -y B ) 2 = 1 sin 2 (α + θ) cos(α + θ) + sin(α) sin(θ) 2 + sin(α + θ) -sin(α) cos(θ) 2 = 1 sin 2 (α + θ) cos 2 (α)
from which we deduce

BH = cos(α) sin(θ + α) .
This means that

H 1 (Γ 0 ) ≤ cos(α) -cos(α + θ) sin(α + θ) = 2 sin( θ 2 ) sin(α + θ 2 ) sin(α + θ) , (17) 
and P (Ω) = 2N H 1 (Γ 0 ). By combining ( 16) and (17) we get

P 2 (Ω) |Ω| ≤ N 16 sin 2 ( θ 2 ) sin 2 (α + θ 2 ) sin(α + θ) sin(α) sin(θ) = 8N tan θ 2 sin 2 (α + θ 2 ) sin(α + θ) sin(α) . Now we maximize in the variable α ∈ [ π 2 -θ, π 2 ] the function g : α → sin 2 (α + θ 2 ) sin(α + θ) sin(α)
.

For this purpose we notice that g can be rewritten in the following form

g(α) = 1 -cos(2α + θ) cos(θ) -cos(2α + θ) ,
from which we easily see that g is non increasing on

[ π 2 -θ, π 2 -θ 2 ] and non decreasing on [ π 2 -θ 2 , π 2 ]. This implies that max α∈[ π 2 -θ, π 2 ] g(α) = g π 2 = g π 2 -θ = cos 2 (θ/2) cos(θ) , (18) 
and we deduce that

P 2 (Ω) |Ω| ≤ 8N tan (θ/2) cos 2 (θ/2) cos(θ) = 4N tan(θ) = 4N tan(π/N ). ( 19 
)
Since 4N tan θ equals the ratio P 2 (Ω)/|Ω| for both triangles OAB 1 and OAB 2 (see Figure 5) we have actually proved that these two triangles solve the reverse isoperimetric problem in the sector S.

Next, we study the function

h : t → 4t tan(π/t).
It is easily seen that h(t) is decreasing in [2, +∞[. Indeed, a direct computation reveals that h ′ (t) has the same sign as

sin π t cos π t - π t . (20) 
Then for t ≥ 2 we have 0 ≤ cos( π t ) ≤ 1 and 0 ≤ sin( π t ) ≤ π t from which we deduce that the expression in (20) is non negative, so that h ′ (t) ≤ 0 for t ≥ 2. In particular, for every N ≥ 5, h(N ) ≤ h(5), thus (19) gives

P 2 (Ω) |Ω| ≤ h(5) = 20 tan(π/5) < 14.54.
This concludes the proof thanks to (15). □

The case of the axis of symmetry of the equilateral triangle

In this section we analyze the maximization over the convex sets with the same axis of symmetry of the equilateral triangle. Proposition 6.1. Let Ω be a planar convex domain with two axis of symmetry with angle π/3. Then the inequality (1) holds true. The equality occurs for all and only equilateral triangles.

Proof. The proof is detailed in the next pages and occupies the whole section. Let us summarize it here: in Lemma 6.3 we provide a representation result, by dividing the class of domains under study into a 1-parameter family C a , with a varying in the interval [0, 1/3], being a = 0 associated to all and only the equilateral triangles. Then, in §6.1 we prove the statement for a ∈ [0, 1/4]. Finally, in §6.2 we treat the case a ∈ [1/4, 1/3]. □

The family C a . We denote by T the equilateral triangle with side 1 and vertexes at (±1/2, 0) and (0, √ 3/2). For a ∈ [0, 1/2] we denote by Ta the equilateral triangle bounded by the lines

y = √ 3 2 (1 -a), y = ± √ 3x - √ 3 1 2 -a .
These triangles share the same axis of symmetry of T , but have the horizontal side on the top instead of the bottom. For the extremal values of a, namely a = 0, 1/2, Ta is either circumscribed to T or inscribed into it. We denote by T the inscribed equilateral triangle T1/2 . For the intermediate values of a, namely 0 < a < 1/2, Ta crosses T . We define the intersection as ( 21) Ω a := Ta ∩ T that is, the hexagon with vertexes

± a 2 ; √ 3 2 (1 -a) , ± 1 2 -a ; 0 , ± 1 2 (1 -a); √ 3 2 a .
By connecting the midpoints of the sides Ω a , we obtain an hexagon, denoted by H a , with vertexes

0; √ 3 2 (1 -a) , ± 1 4 , √ 3 4 , ± 1 2 - 3 4 a ; √ 3 4 a , (0, 0) .
These domains are represented in Fig. 7. We are now in a position to introduce the subfamily C a . Definition 6.2. Let a ∈ [0, 1/2]. We say that Ω ∈ C a if the following conditions hold: i) Ω is convex and has the same axis of symmetry of T ; ii)

T T1/2 Ω a H a
H a ⊂ Ω ⊂ Ω a .
A priori, a ∈ [0, 1/2]. However, as we prove in the next lemma, the interval [0, 1/3] is enough to describe all the domains under study. Lemma 6.3. For every convex set Ω with the same axis of symmetry of the equilateral triangle, there exists a ∈ [0, 1/3] such that, up to a rigid motion and a homothety, Ω belongs to C a .

Proof. Let Ω be as in the assumption. Throughout the proof, with a slight abuse of notation, we will use the same letter for the class of shapes that are obtained by a rigid motion or a homothecy by Ω. Without loss of generality, we may assume that Ω has the same axis of symmetry of T , it lies into the half-plane y ≥ 0, and it is tangent to the horizontal line y = 0, as it occurs for T . By combining the symmetry assumption on Ω with the (sharp) bound y ≥ 0 of its points, we infer that Ω is contained into T and touches the three segments of ∂T at the midpoints. In particular, by convexity, the triangle T1/2 is contained into Ω.

Let now r be the horizontal line tangent to Ω from above. In view of the inclusions T1/2 ⊂ Ω ⊂ T , we infer that r is of the form y = (1a) √ 3/2 for some a ∈ [0, 1/2]. Arguing as above, we infer that Ω is contained into the equilateral triangle Ta and touches the three segments of ∂ Ta at the midpoints. All in all, we infer that Ω is contained into T ∩ Ta = Ω a and that it touches ∂Ω a at the midpoints of the boundary segments, which by definition are the vertexes of H a . By convexity, H a ⊂ Ω. In other words Ω ∈ C a .

In order to conclude the proof, we need to show that a can be taken in [0, 1/3] instead of [0, 1/2]. To this aim we use a very simple trick, which, roughly speaking, consists in changing the role of T and T . The class C a is constructed starting from the hexagon Ω a , which is the intersection between T and Ta . The parameter a is nothing but the length of the portions of ∂ Ta included into T . The same hexagon can be described in terms of the length, say b, of the portions of ∂T included into Ta . In other words, changing the role of T and Ta , we may write Ω a as an Ω b , for b = 1 -2a. If a shape Ω belongs to the class C a associated to T , then the rescaled shape (1/(2-3a))Ω belongs to C (1-2a)/(2-3a) associated to the triangle (1/(2-3a)) Ta . The triangle (1/(2-3a)) Ta is equilateral and has sides of length 1. For a ∈ [1/3, 1/2], the parameter (1 -2a)/(2 -3a) runs from 0 to 1/3. This concludes the proof. □ Description of shapes in C a . In this paragraph we give some definitions and properties to represent the symmetric shapes of C a .

We start with a useful formula to make integrations over symmetric sets. Let ℓ 0 denote the vertical line x = 0, ℓ 1 the line -x + √ 3y = 1/2, and ℓ 2 the line x + √ 3y = 1/2. Let σ 1 and σ 2 denote the symmetries with respect to ℓ 1 and ℓ 2 , respectively: they are given by the transformations (22) σ 1 :

x ′ = 1 2 x + √ 3 2 y -1 4 y ′ = √ 3 2 x -1 2 y + √ 3 4 σ 2 : x ′ = 1 2 x - √ 3 2 y + 1 4 y ′ = - √ 3 2 x -1 2 y + √ 3 4 .
Any set E with the axis of symmetry ℓ 0 , ℓ 1 , ℓ 2 can be written as the disjoint union of three components: Ẽ ∪ σ 1 ( Ẽ) ∪ σ 2 ( Ẽ), for some set Ẽ symmetric with respect to the vertical axis. As a consequence, we get for every function f

(23) E f = Ẽ∪σ 1 ( Ẽ)∪σ 2 ( Ẽ) f = Ẽ (f + f • σ 1 + f • σ 2 ).
This formula applies in particular to the elements of C a .

Let us exploit again the three axis of symmetry to represent the elements of C a . We start from Ω a : it is the union of the hexagon H a and 6 copies (obtained by reflection) of the triangle ABC, with vertexes

(24) A = 0, √ 3 2 (1 -a) , B = a 2 , √ 3 2 (1 -a) , C = 1 4 , √ 3 4 . 
Any other element Ω ∈ C a is the union of H a and 6 copies (reflections) of the convex set ( 25)

ω := Ω ∩ ABC. Of course ω = ∅ if Ω = H a . The perimeter of Ω is nothing but (26) P (Ω) = 6[P (ω) -AC].
Going back to (23), we deduce an alternative formula of integration in the case of f even in x, i.e., f (-x, y) = f (x, y):

(27) Ω f = Ha f + 2 ω (f + f • σ 1 + f • σ 2 ).
6.1. The case a ∈ [0, 1/4]. As announced in the Introduction, this is the more delicate case to handle. The difficulty comes from calculations; on the other hand, the strategy is simple to present. Given Ω ∈ C a , we look for three objects: an approximating convex set from outside Ω 1 ⊃ Ω, an approximating convex set from inside Ω 2 ⊂ Ω, and a function v ∈ C ∞ (R 2 ) with zero average on Ω. By construction, we have

(28) P 2 (Ω)µ 1 (Ω) ≤ P 2 (Ω 1 ) Ω 1 |∇v| 2 Ω 2 v 2 .
The goal is to choose the three objects in a smart way, making this upper bound less than or equal to 16π 2 .

We start with the choice of the test function. We take (29)

v k := (1 -k)u 1 + kû 1 ,
with k ∈ [0, 1], which will be chosen later, with u 1 one of the first eigenfunctions of T associated to µ 1 (T ):

( Note that u 1 (-x, y) = -u 1 (x, y) and û1 (-x, y) = -û 1 (x, y), therefore v k is odd too in the x variable and has zero average in Ω, which is symmetric with respect to the y axis. This ensures that v k is an admissible test function for µ 1 (Ω).

Let us now pass to the construction of Ω 1 and Ω 2 . Let ω be the set associated to Ω according to (25), namely ω = Ω∩ABC. Take now the line parallel to AC tangent to ω. This line intersects the sides AB and BC in two points (possibly coinciding): we call Q 1 the point on the segment AB and Q 2 the point on the side BC. We introduce a parameter to describe these points: Q 2 is of the form

Q 2 (c) = c 2 ; √ 3 2 (1 -c) , for some c ∈ [a, 1/2]. Note that B = Q 2 (a) and C = Q 2 (1/2).
Using the expression of Q 2 we can deduce the coordinates of Q 1 as functions of c. Let us now consider one of the tangent points of

Q 1 (c)Q 2 (c) to ω: it is of the form Q(s) = (1 -s)Q 1 (c) + sQ 2 (c), s ∈ [0, 1].
These definitions are represented in Figure 8. By convexity ω contains the triangle 

P (Ω) ≤ P (Ω 1 ) = 6[AQ 1 (c) + Q 1 (c)Q 2 (c) + Q 2 (c)C].
By applying the integration formula (27

) to f = |∇v k | 2 and then f = |v k | 2 , satisfying both f (-x, y) = f (x, y), we get Ω 1 |∇v k | 2 = Ha |∇v k | 2 + 2 AQ 1 (c)Q 2 (c)C |∇v k | 2 + |∇v k | 2 • σ 1 + |∇v k | 2 • σ 2 , Ω 2 v 2 k = Ha v 2 + 2 AQ(s)C |v k | 2 + |v k | 2 • σ 1 + |v k | 2 • σ 2 .
By combining these results, setting for brevity

V := |∇v k | 2 + |∇v k | 2 • σ 1 + |∇v k | 2 • σ 2 , ( 32 
) U := |v k | 2 + |v k | 2 • σ 1 + |v k | 2 • σ 2 , ( 33 
)
we can rewrite the bound (28) as follows:

P 2 (Ω)µ 1 (Ω) ≤ 6 AQ 1 (c) + Q 1 (c)Q 2 (c) + Q 2 (c)C 2 Ha |∇v k | 2 + 2 AQ 1 (c)Q 2 (c)C V Ha |v k | 2 + 2 AQ(s)C U . ( 34 
)
We explain now our strategy to prove that the right-hand side of (34) is less than or equal to 16π 2 : 1st step. We prove that the integral AQ(s)C U appearing in the denominator is decreasing in s, at least when 0 ≤ k ≤ 1/6. Therefore, to find the upper bound, we can choose s = 1, namely Q(s) = Q 2 (c). More precisely, denoting by P (a, c) a,c) .

:= 6 AQ 1 (c) + Q 1 (c)Q 2 (c) + Q 2 (c)C , N (a, c) := Ha |∇v k | 2 + 2 AQ 1 (c)Q 2 (c)C V , and D(a, c) := Ha v 2 k + 2 AQ 2 (c)C U , we obtain P 2 (Ω)µ 1 (Ω) ≤ P (a, c) 2 N (a, c) D(
Note that the upper bound is less than or equal to 16π 2 if and only if

(35) F (a, c) := P (a, c) 2 N (a, c) -16π 2 D(a, c) ≤ 0.
2nd step. By precise estimates, we prove that F (a, c) ≤ 0 for all a ≤ 1/60 (and for all c) or for all c ≤ 0.16 (and for all a) if we choose k = 0, namely as a test function v 0 = u 1 . 3rd step. For the remaining cases, a ∈ [1/60, 1/4], we provide a more numerical proof. First we compute exactly all the integrals occurring in N (a, c) and D(a, c). Then, by estimating the partial derivatives ∂F ∂a and ∂F ∂c , we are led to compute F (a, c) only in a finite number of points, namely 530 000 points in the sector a ∈ [1/60, 1/4], c ∈ [max(a, 0.16), 1/2]. For that purpose, we use successively as test functions v k for k = 0, k = 0.06 and k = 0.12. We prove that way the desired inequality F (a, c) < 0.

The most technical parts of this program are postponed to the Appendix.

the formula for U 1 follows thanks to the property cos(a) + cos(a + 2π/3) + cos(a + 4π/3) = 0 that holds for any a.

The same argument is used for all the other functions. □

The first application of the previous lemma is the monotonicity of the integrand U , which allows us to get rid of the parameter s. Lemma 6.5. Let U be the function defined in (37

), namely U = (1 -k) 2 U 1 + k 2 U 2 + 2k(1-k)U 3 with U i introduced in (39).
Then, for all k ∈ [0, 1/6] its derivatives satisfy

∂U ∂x ≤ 0 ∂U ∂y ≥ 0.
Consequently, the function s → AQ(s)C U (x, y)dxdy is decreasing and, for an upper bound of the Rayleigh quotient, we can choose s = 1, namely

Q(s) = Q 2 (c).
The proof is postponed to the Appendix.

We conclude the paragraph with some useful formulas, which are deduced by combining the integration formula (23) together with the representation result of Lemma 6.4. Lemma 6.6.

T \Ωa u 2 1 dxdy = 9 √ 3a 2 8 + 3 √ 3 8π 2 (1 -cos 2πa + 2πa sin 2πa) =: F 1 (a), T \Ωa |∇u 1 | 2 dxdy = 2 √ 3π 2 a 2 - √ 3 3 (1 -cos 2πa + 2πa sin 2πa) =: F 2 (a), T \Ωa û2 1 dxdy = 9 √ 3a 2 8 + 3 √ 3 32π 2 (1 -cos 4πa + 4πa sin 4πa) =: F 3 (a), T \Ωa |∇û 1 | 2 dxdy = 8 √ 3π 2 a 2 - √ 3 3 (1 -cos 4πa + 4πa sin 4πa) =: F 4 (a), T \Ωa u 1 û1 dxdy = 3 √ 3 16π 2 (cos 2πa + cos 4πa -2 -4πa sin 2πa) =: F 5 (a), T \Ωa ∇u 1 .∇û 1 dxdy = 2 √ 3 3
(2 cos 2πa -1cos 4πa -2πa sin 2πa) =: F 6 (a).

Proof. Let T a be the triangle located at the north of T , namely the triangle with vertexes ± a 2 ;

√ 3 2 (1 -a) and (0, √ 3 
2 ). According to the symmetry property (23), we have for example T \Ωa u 2 1 dxdy = Ta U 1 (x, y)dxdy, and

T \Ωa |∇u 1 | 2 dxdy = Ta V 1 (x, y)dxdy,
and Lemma 6.6 follows from a straightforward computation of these integrals on the triangle T a using Lemma 6.4. The computation is the same for the other functions. □ Remark 6.7. Without making use of the reflections, we can integrate over the whole T the following quantities:

(42)

T |∇u 1 | 2 dxdy = 2π 2 √ 3 , T u 2 1 dxdy = 3 √ 3 8 , (43) 
T |∇û 1 | 2 dxdy = 8π 2 √ 3 , T û2 1 dxdy = 3 √ 3 8 , (44) 
T

∇u 1 • ∇û 1 dxdy = 0, T u 1 û1 dxdy = 0.
Notice that the former allow us to recover µ

1 (T ) = T |∇u 1 | 2 / T u 2 1 = 16π 2 /9.
2nd step: small values of a. We want to prove that, choosing the test function u 1 , the quantity F (a, t) defined in ( 35) is negative for small values of a, a ̸ = 0 (whereas it vanishes for a = 0). We are going to prove Equality occurs only for a = 0, namely for the equilateral triangle.

The proof of the Lemma is postponed to the Appendix. To this aim, we divide Z into three subregions, according to the value of a, see also Fig. 9: (46)

Z I := Z ∩ {a ∈ [1/60, 0.06]}, Z II := Z ∩ {a ∈ [0.06, 0.12]}, Z III := Z ∩ {a ∈ [0.12, 0.25]}.
In each regime, we choose different values for the parameter k:

     k = 0 in Z I k = 0.06 in Z II k = 0.12 in Z III .
We recall that k appears in the definition (29) of the test function v k , and thus in the definition (35) of F . In the next lemma we bound the modulus of the partial derivatives of F (with respect to a and c) in each of the three regimes. 

δ a = a max -a min n a , δ c = c max -c min n c ,
the family of points {(a i , c j )} i=0,...,na ,j=0,...,nc , a i = a min + iδ a , c j = c min + jδ c , forms a grid in R and defines a uniform partition of R into n a • n c rectangles. Given a pair (a, c) ∈ R, there exist i, j such that |a -

a i | ≤ δ a /2, |c -c j | ≤ δ c /2
. Therefore, we deduce that for a pair (a, c) ∈ R and the associated grid point (a i , c j ) ∈ R, there holds

(47) F (a, c) ≤ F (a i , c j ) + ∥∂ a F ∥ ∞ δ a /2 + ∥∂ c F ∥ ∞ δ c /2.
Denoting by E the remainder

E := ∥∂ a F ∥ ∞ δ a /2 + ∥∂ c F ∥ ∞ δ c /2,
we deduce from (47) that for every (a, c) ∈ R,

(48) F (a, c) ≤ max (a i ,c j )∈R F (a i , c j ) + E.
The same conclusion holds true for the region Z III , but the grid has to be slightly modified: we start from the grid associated to the larger rectangle [a min , a max ] × [c min , c max ]; then we refine the partition of the rectangles which cross the bisector line c = a, by adding the midpoints of the boundary segments and the intersection point of the diagonals; finally, we remove the points (a i , c j ) that fall outside Z III , namely the ones for which c j < max(a i , 0.16). The second operation is needed in order to guarantee that every point of Z III stays at distance at most δ a /2 from one of the a i s and at most δ c /2 from one of the c j s.

We now bound from above the two terms appearing in the right-hand side of (48), by choosing different values of n a , n c , thus of δ a and δ c : in Z I we take (n a , n c ) = (155, 150), in Z II we take (n a , n c ) = (160, 155), and in the rectangle containing Z III we take (n a , n c ) = (730, 735). This corresponds to a non-uniform grid of Z of about 530 000 points (we recall that in Z III we neglect the points in the half plane c < a). Using the upper bounds found in Lemma 6.9, we get

E ≤      0.21032 in Z I 0.38422 in Z II 0.202 in Z III
The numerical computation in the 530 000 grid points gives

F (a i , c j ) ≤      -0.21184 in Z I -0.39006 in Z II -0.20324 in Z III .
Using these estimates in (48), we conclude that

F (a, c) ≤      -0.00152 in Z I -0.00584 in Z II -0.00124 in Z III
namely F is negative everywhere. This concludes the proof.

Remark 6.10. We underline that the numerical computation of F is performed on its explicit expression as a function of k, a, and c, involving only trigonometric functions and square roots. Indeed, the integrals appearing in N and D can be computed as linear combinations of integrals over the whole Lemma 6.6), and integrals over the triangles

T of u 2 1 , û2 1 , |∇u 1 | 2 , |∇û 1 | 2 (for the explicit expressions, see Remark 6.7), integrals over T \ Ω a of u 2 1 , û2 1 , u 1 û1 , |∇u 1 | 2 , |∇û 1 | 2 , ∇u 1 • ∇ û1 (see
T N = Q 1 (c)BQ 2 (c) and T D = ABQ 2 (c) of φ, ψ, η (see Remark C.1 in the Appendix).
6.2. The case a ∈ [1/4, 1/3]. This case is ruled out by the Szegő-Weinberger inequality, already mentioned in [START_REF] Henrot | Shape variation and optimization[END_REF]. This inequality states that the disk maximizes µ 1 among sets of given area, in particular (49)

P 2 (Ω)µ 1 (Ω) = P 2 (Ω) |Ω| µ 1 (Ω)|Ω| ≤ P 2 (Ω) |Ω| π(j ′ 1,1 ) 2 ,
where j ′ 1,1 is the first zero of the derivative of the first Bessel function J 1 . In order to conclude, we need to solve, for every a ∈ [1/4, 1/3], max

Ω∈Ca P 2 (Ω) |Ω| .
This shape optimization problem is of isoperimetric type, since one can fix the perimeter of the admissible shapes. Contrary to the classical isoperimetric problem, here the area functional is minimized. In this sense, we call such a problem a reverse isoperimetric problem. The study of this kind of functional is interesting in itself, therefore we state a more general result. We also point out that the statement is valid for a in a wider range. 

Ψ(H 1 (Γ))Φ(|ω|) (50) max ω 
can be searched in the family of triangles with vertexes A, B * and C, with B * belonging either to AB (for a ≤ 1/3) or to BC (for a ≥ 1/3).

Proof. Let us denote for by T ABC the triangle ABC. We first notice that the maximum exists: since by construction the area and the perimeter of admissible configurations are bounded, then the supremum of Ψ(H 1 (Γ))Φ(|ω|) is finite. The existence of an optimal configuration follows by combining the compactness of the admissible sets with respect to the complementary Hausdorff convergence, the continuity of perimeter and area in the class, and the continuity of Ψ and Φ in R + . Without loss of generality, we may search for maximizers in the dense subclass of convex polygons inside T ABC , having A and C among their vertexes: a maximizer among polygons is also a maximizer among convex sets. The proof is divided into three steps.

Step 1. Arguing by contradiction, it is easy to see that no vertex of an optimal shape is in the interior of T ABC : let Q 1 , Q 2 , Q 3 be three vertexes with Q 2 in the interior of T ABC . We now perform a parallel chord movement: consider a small perturbation of the set obtained by sliding the point Q 2 on the line parallel to Q 1 Q 3 passing through Q 2 : since Q 2 is in the interior, the deformation can be done in both directions, either towards Q 1 or towards Q 3 . In both cases, convexity and area are preserved; but, at least in one of the two directions, the perimeter increases, giving the contradiction.

Step 2. The previous step implies that the maximizers have at most 4 vertexes: A, C, one point Q 1 in AB and one point Q 2 in BC. Let us exclude the case in which Q 1 and Q 2 are (both) in the interior of the segments AB and BC, respectively. They are of the form Q 1 = A + te 1 , for some t ∈]0, a/2[, and Q 2 = C + sν, for some s ∈]0, 1/2a[, where e 1 = (1, 0) and ν = (-1/2, √ 3/2) are the unit vectors in the direction of the segments AB (from A to B) and CB (from C to B), respectively. Let us perturb the configuration keeping the area constant as follows: we replace Q 1 and Q 2 with (51)

Q ε 1 := A + (t + ε)e 1 , Q ε 2 := C + (s + δ(ε)
)ν, for ε ∈ R small and for a suitable δ(ε). Imposing that the corresponding shape ω ε has the same area, we deduce the value of δ(ε):

d dε |ω ε | ⌊ ε=0 = 0 ⇔ d dε a 2 -t -ε 1 2 -a -s -δ(ε) ⌊ ε=0 = 0, so that δ(ε) = -2xε + o(ε), with x := σ τ , being σ := 1 4 - a 2 - s 2 , τ := a 2 -t.
Notice that τ ∈]0, a/2[, σ ∈]0, 1/4a/2[, and x ∈]0, +∞[. As for the perimeter term, namely the length of the curve Γ ε , the following expression holds:

H 1 (Γ ε ) = t + ε + s + δ(ε) + τ + σ -ε - 1 2 δ(ε) 2 + 3 4 (2σ -δ(ε)) 2 .
Let us now compute the derivative of the perimeter with respect to ε, avaluated at

ε = 0: d dε H 1 (Γ ε ) ⌊ ε=0 = 1 + δ ′ (0) + [2(τ + σ)(-1 -δ ′ (0)/2) + 3σ(-δ ′ (0))] 2 (τ + σ) 2 + 3σ 2 = 1 -2x + (2x + 1)(2x -1) √ 1 + 4x 2 + 2x = (2x -1) 2x + 1 √ 1 + 4x 2 + 2x -1 .
Recalling that x ∈]0, +∞[, we notice that the derivative above vanishes for x = 1/2, it is negative in ]0, 1/2[ and positive in ]1/2, +∞[. In particular, as a function of x, the perimeter does not have any maximum in the interior of R + . This allows us to conclude that none of these configurations is optimal: indeed, for fixed values of t and s, the choice of the sign of ε makes the corresponding x increase of decrease, and at least for one of these cases, the perimeter increases.

Step 3. In view of the previous steps, we infer that, among polygons, maximizers have to be searched in a particular class of triangles: the ones with two vertexes in A and C, and the third one either between A and B or between B and C. Using the notation introduced above (Step 2), we describe the former type of point with a parameter t ∈ [0, a/2] and denote it by Q 1 (t), and the latter with s ∈ [0, 1/2a] denoted by Q 2 (s). Here we allow t and s to take the extremal values, corresponding to triangles degenerating to the segment AC or coinciding with the whole triangle T ABC . In particular, all the possible areas of subsets of T ABC are attained by both families of triangles. The maximization problem among polygons becomes scalar

The function in square brackets is always positive, since for every y ∈ [0, 1], a ∈ [0, 1/2], there holds (1a(1 + y)) ≥ 0 and

[2(1 -a(1 + y))] 2 -(1 -2ay) 2 + 3 (1 -2a) 2 = 4a(1 -2a)(1 -y) ≥ 0.
Going back to (52), we infer that p 1 (t) > p 2 (s(t)) for a < 1/3, p 1 (t) ≡ p 2 (s(t)) for a = 1/3, and p 1 (t) < p 2 (s(t)) in the remaining case, a > 1/3. For every fixed a we have found an optimal triangle among the convex admissible shapes with the same area. The proof is concluded. □ Lemma 6.12. For every Ω ∈ C a , a ∈ [1/4, 1/3], there holds

(53) P 2 (Ω) |Ω| ≤ P 2 (H a ) |H a | .
Proof. Let ω be the intersection of Ω with the triangle ABC defined in (24). Its boundary is the union of the segment AC and a curve, that we denote here by Γ. By construction, Ω is the union of H a and 6 copies (reflections) of ω, so that |Ω| = |H a | + 6|ω| and P (Ω) = 6H 1 (Γ). All in all, we may write (54)

P 2 (Ω) |Ω| = 36(H 1 (Γ)) 2 |H a | + 6|ω| .
The right-hand side is of the form (50) and satisfies the assumptions of Proposition 6.11. Therefore, recalling that a ≤ 1/3, we deduce that the optimal Ω is a hexagon, associated to an ω belonging to the 

p(t) 2 (2 -3a) + 6(1 -2a)t .
Let us prove that the function in the right-hand side is convex. To this aim, we introduce the auxiliary functions

D(t) := (2 -3a) + 6(1 -2a)t, T (t) := 1 4 -t, R(t) := T 2 (t) + 3 4 1 2 -a 2 .
According to this notation p(t) = t + R(t) and the function in the right-hand side of (55) is p 2 (t)/D(t). Exploiting the fact that

p ′ (t) = R(t) -T (t) R(t) = p(t) -1/4 R(t) , p ′′ (t) = p ′ (t) R(t) + T (t) R 2 (t) , D ′′ (t) = 0, we get d 2 dt 2 p 2 (t) D(t) = 2 D 3 (p ′ ) 2 D 2 + pp ′′ D 2 -2pp ′ D ′ D + (D ′ ) 2 p 2 ≥ 2 D 2 (p ′ ) 2 D + pp ′′ D -2pp ′ D ′ = 2p ′ D 2 p -1/4 R D + pD (R + T ) R 2 -2pD ′ = 2p ′ D 2 2p D R -D ′ -D 1 4R - pT R 2 . ( 56 
)
Setting ψ(t) := 2p ′ (t)/D 2 (t) and

ϕ 1 (t) := 2 p(t) R(t) D(t) -D ′ (t)R(t) , ϕ 2 (t) := D(t) 4R 2 (t) [R(t) -4p(t)T (t)] ,
the last term in (56) is ψ(ϕ 1ϕ 2 ). It is immediate to check that ψ ≥ 0: this is a consequence of R(t) ≥ |T (t)| > T (t), giving p ′ (t) ≥ 0. In particular, we deduce that

d 2 dt 2 p 2 (t) D(t) ≥ ψ(t) min [0,a/2] ϕ 1 -max [0,a/2] ϕ 2 .
The two functions ϕ 1 and ϕ 2 are both increasing, since

ϕ ′ 1 (t) = 2 R 3 D(R 2 + tT ) + D ′ R 2 (t + T ) ≥ 0, ϕ ′ 2 (t) = p ′ R 3 t(D ′ R 2 + 2T D) + DpR ≥ 0. This implies that min [0,a/2] ϕ 1 = ϕ 1 (0) = 2 2 -3a -3(1 -2a) 1 -3a + 3a 2 . max [0,a/2] ϕ 2 = ϕ 2 (a/2) = a(1 -3a 2 ) (1 -2a) .
Evaluating min ϕ 1max ϕ 2 for a in the range [1/4, 1/3], we infer that the second order derivative of p 2 /D is positive, thus the function is convex. In particular, its maximum is either at 0 or at a/2. A direct computation shows that

p 2 (0) D(0) - p 2 (a/2) D(a/2) = 1 -3a + 3a 2 4(2 -3a) - (1 -a) 2 8(1 -3a 2 ) = a(1 -2a)(1 -3a) 2 8(1 -3a 2 )(2 -3a) > 0.
The maximizer t = 0 corresponds to ω = ∅ in the ratio (54), associated to H a . This concludes the proof. □

Let us now maximize the right-hand side of (53): recalling that

P (H a ) = 3 1 -3a + 3a 2 , |H a | = √ 3 8 (2 -3a),
Therefore, since this derivative is affine in k, ∂g ∂k ≥ 0 for all k ∈ [0, 1/6]. Consequently g(k; x, y) ≤ g( 16 ; x, y) for these values of k. Now, keeping the same notation 36g(1/6; x, y) = -20C 3 -8 cos 2πxC 2 + 30C + 14 cos 2πx.

The factor in front of cos 2πx being positive, we can estimate cos 2πx by its biggest value on the triangle ABC, namely on the segment AC. This means that we can replace 2πx by π(1a -2y √ 3 )/(1 -2a). Now this quantity is decreasing in a (for y ≥ √ 3/4), therefore we can replace a by 1/4 that yields

cos 2πx ≤ cos π 1 -a -2y √ 3 1 -2a ≤ cos π 3 2 - 4y √ 3 = -sin 4πy √ 3 .
Thus, it remains to prove that, for y ∈ [ 

√ 3 4 , √ 3 
:=(1 -k)(1 -3k) [cos 2πx -2C] -4k 2 4C 3 -2C + cos 4πxC -3k(1 -k) cos 2πx 4C 2 -1 .
As previously, we start by looking at the dependence in k. The derivative of g 2 (k; x, y) with respect to k is of the kind B 1 k + B 0 with

B 1 = 4C(1 -2 cos 4πx) + 24C 2 cos 2πx -32C 3 B 0 = 8C -cos 2πx(1 + 12C 2 ).
We see that B 0 ≤ 0 and

B 1 6 + B 0 = 2C 3 [13 -2 cos 4πx -8C 2 ] -cos 2πx[1 + 8C 2 ] ≤ 0.
Therefore, ∂g 2 ∂k ≤ 0 for all k ∈ [0, 1/6] that yields g 2 (k; x, y) ≥ g 2 ( 1 6 ; x, y). Now we have A direct computation provides (60)

I 1 (a, c) = √ 3 8π 2 c-a 2a-1 2πa sin 2πa + 1-a 1-2a (cos 2πa -cos 2πc) . . . + 1-2a a 1 -cos 2πa(c-a) 1-2a + 1-2a 1-a cos 2πc -cos 2πa(1-a-c) 1-2a
. and (61)

I 2 (a, c) = √ 3 8π 2 -πa sin 2πa + 2c-a 2(c-a) (cos 2πa -cos 2πc) . . . + 2(c -a) 1-cos πa a + cos 2πc-cos πa 2c-a
. Now, taking into account the constant terms in U 1 and V 1 together with the areas

|T N | = √ 3 4 a(c -a) 2 1 -2a and |T D | = √ 3 8 a(c -a),
and using F 2 (a) and F 1 (a) given in Lemma 6.6, we get c). Now we want to estimate from above each term in F (a, c) = P 2 (a, c)N (a, c) -16π 2 D(a, c) in order to get a bound like F (a, c) ≤ f 1 (c)a + f 2 (c)a 2 (note that F (0, c) = 0) with f 1 (c) < 0 for all c. This will allow us to claim that F (a, c) ≤ 0 as soon as a ≤ -f 1 (c)/f 2 (c) and it will be enough to bound from below this quantity -f 1 (c)/f 2 (c).

(62) N (a, c) = √ 3 3 2π 2 (1 -3a 2 ) + 1 -cos 2πa . . . +2πa sin 2πa -12π 2 a(c-a) 2 1-2a + 16π 2 3 I 1 (a, c) and (63) D(a, c) = 3 √ 3 8 1 -3a 2 -3a(c -a) . . . -1 π 2 (1 -cos 2πa + 2πa sin 2πa) -6I 2 (a,
Let us start with P (a, c). Using the inequality √ 1u ≤ 1u/2 (for u ≤ 1), we get

P (a, c) ≤ 3 1 -2a 1 -3a -ac + 3a 2 (1 + c -a) ≤ 3 1 -(1 + c)a + (1 + c)a 2 .
By squaring, we get

(64) P 2 (a, c) ≤ 9 1 -2(1 + c)a + (1 + c)(3 + c)a 2 .
In the sequel we assume that a ≤ a 0 (later, we will choose a 0 = 1/60 on the one hand and a 0 = 1/4 on the other hand). We obtain successively

• c -a 2a -1 2πa sin 2πa ≤ 0, • (1 -cos 2πc) 1 -a 1 -2a - 1 -2a 1 -a ≤ (1 -cos 2πc)a 2 + 3 -4a 0 (1 -a 0 )(1 -2a 0 ) a .
where c 0 = (118 -√ 3422)/178 ≃ 0.3342. Now we use different polynomial estimates for 1cos 2πc, according to c ≤ c 0 or c ≥ c 0 . These estimates allow us to bound f 1 (c) + 1 60 f 2 ( 1 60 , c) by an explicit polynomial expression (of degree 5 or 6) for which it is possible to conclude. More precisely

• for small values of c (c ≤ c 0 ), we use the bound

1 -cos u ≤ u 2 2 -0.03u 4 valid for u ∈ [0, π]
that provides the inequality

f 1 (c) + 1 60 f 2 ( 1 60 , c) ≤ π 2 P 5 (c)
where P 5 (c) ≃ 0.31582c 5 -9.40264c 4 -9.47482c 3 +0.15459c 2 +7.131c-1.9493 and we can check that P 5 (c) < 0 when c ∈ [0, c 0 ]. • when u ∈ [2π/3, π] (this will work for u = 2πc and c ∈ [c 0 , 1/2]) we use the following estimate of 1cos u inspired by the Remes algorithm that provides the best uniform approximation of a function:

1 -cos u ≤ α 0 + α 1 u + α 2 u 2 + α 3 u 3 + α 4 u 4 with            α 0 = 0.7280333 α 1 = -1.46638984 α 2 = 1.67079499 α 3 = -0.45379449 α 4 = 0.03551166 It follows that f 1 (c) + 1 60 f 2 ( 1 60 , c) ≤ π 2 c P 6 (c)
with P 6 (c) ≃ -0.37385c 6 +11.89046c 5 -11.7331c 4 -13.30008c 3 +14. For brevity, in the following we will denote by a min , a max , c min , and c max the minimal and maximal values of a and c in the considered range.

We start the analysis from the perimeter term P , which does not depend on k. By set inclusion, we know that P (a, c) ≤ P (Ω a ) = 3(1a) ≤ 3(1a min ).

Similarly, denoting by R the decreasing function R(a) := √ 1 -3a + 3a 2 , we have P (a, c) ≥ P (H a ) = 3R(a) ≥ 3R(a max ).

Using the expression (59) of P (a, c), we infer that its partial derivatives are It is easy to prove that, for a and c in the considered range, the former derivative is negative, decreasing in c and increasing in a, whereas the latter is negative, decreasing in a (and independent of c). Therefore Similarly, by direct computation we have x 2 (y)

∂ P ∂a = - 3 
x D (a,c,y)

U (x, y) dxdy.

In this form, it is easy to compute the partial derivatives, which read

∂I D ∂a (a, c) = J 1 + J 2 , ∂I D ∂c (a, c) = J 3 ,
with

J 1 := y ′ 2 (a)
x 2 (y 2 (a))

x D (a,c,y 2 (a))

U (x, y 2 (a)) dx, For the terms J 2 and J 3 , we argue as for H where we have separated, in square brackets, the positive and negative terms. By taking the proper values of k, a min , a max , c min , c max in the three regions Z I , Z II , Z III , and finally passing to the absolute values, we find the desired bounds of the statement. This concludes the proof. □

J 2 := -

Now µ 1

 1 (D) ≃ 3.39 thus 4π µ 1 (D) > 3.706. On the other hand, the function x → x tan π x

2n

  for all k = 0, . . . , n -1, linear affine otherwise, where the parameter b isb := 1 16a 2 -1.The graph of f n is the union of n isosceles triangles with base of length a/n and legs

Figure 1 .

 1 Figure 1. The construction of the sequence of sets Ω n .

Figure 2 .

 2 Figure 2. The competitor u for the domain Ω.

Proposition 4 . 3 .

 43 All parallelograms satisfy (12). In particular all parallelograms satisfy (1).

Figure 3 .

 3 Figure 3. A parallelogram.

Figure 4 .

 4 Figure 4. Polygons with two orthogonal axis of symmetry.
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 2 B , being x B the x-coordinate of the point B. The equation of the line (AB) is cos(α)x + sin(α)ysin(α) = 0, and B also lies on the line (OB) whose equation is y = x tan(θ) . We deduce thatx B = sin(α) sin(θ) sin(θ + α) and y B = sin(α) cos(θ) sin(θ + α) .

Figure 6 .

 6 Figure 6. Proof of Proposition 5.2.

Figure 7 .

 7 Figure 7. The equilateral triangles T and T1/2 , and the hexagons Ω a and H a for a = 0.15.

Figure 8 .

 8 Figure 8. The parameters c and s

Lemma 6 . 8 .

 68 The function F defined in (35) satisfies F (a, c) ≤ 0 when a ∈ [0, 1/60] (for any c) or when c ∈ [0, 0.16] (for any a).

  3rd step: computer assisted proof. In view of Lemma 6.8, it remains us to prove the inequality F (a, c) < 0 in the zone (45) Z := {(a, c) : 1/60 ≤ a ≤ 1/4, max(a, 0.16) ≤ c ≤ 1/2}.

Figure 9 ..

 9 Figure 9. The zone 1/60 ≤ a ≤ 1/4, max(a, 0.16) ≤ c ≤ 1/2 and the three sub-zones Z I , Z II , Z III . Lemma 6.9. Let F (a, c) be the function introduced in (35) and let Z I , Z II , Z III be the regions defined in (46). Then

Proposition 6 .

 6 11 (A reverse isoperimetric problem). Let a ∈ [0, 1/2]. Let Ψ, Φ : [0, +∞[→ [0,+∞[ be two continuous functions with Ψ increasing. Let ω be a convex subset of the triangle ABC defined in (24) whose boundary is the union of the segment AC with a curve Γ. Then the maximum

36g 2

 2 (1/6; x, y) = 30 cos 2πx[1 -2C 2 ] -2C[11 + 2 cos 4πx] -16C 3 .Thus, we are led to compute the integral of φ on both triangles T N and T D . We set I 1 (a, c) := T N φ(x, y)dxdy, I 2 (a, c) := T D φ(x, y)dxdy.

64193c 2 - 3 . 4 25 f 2 is estimated by f 1 ( 9 Proof.

 3419 70387c + 0.14753 and we can check that P 6 (c) < 0 when c ∈ [c 0 , 1/2]. Therefore, we have proved that F (a, c) ≤ 0 for all a ≤ 1/60 and for all c ∈ [0, 1/2]. Now, let us consider a 0 = 0.16 = 4/25 and use the inequality 1cos 2πc ≤ 2π 2 c 2 . The quantity f 1 + Then it follows immediately that f 1 + 4 25 f 2 ≤ 0 as soon as c ∈ [0, 0.16] yielding the last part of Lemma 6.8. □ Appendix C. Proof of Lemma 6.In this proof we will give an estimate of the partial derivatives of the function F introduced in (35), namely F (a, c) = P (a, c) 2 N (a, c) -16π 2 D(a, c), in the three regimes Z I , Z II , and Z III introduced in (46), corresponding to -region Z I : k = 0, a ∈ [1/60, 0.06], c ∈ [0.16, 0.5]; -region Z II : k = 0.06, a ∈ [0.06, 0.12], c ∈ [0.16, 0.5]; -region Z III : k = 0.12, a ∈ [0.12, 0.25], c ∈ [max(a, 0.16), 0.5].

  2R(a) -1 R(a)(1 -2a) 2 [R(a)(1 -2a) + ca] , a -R(a)] .

2 Q 1 2 ( 1 -

 2121 consider the numerator N . First we notice that in view of (27), we may writeHa |∇v k | 2 dxdy = Ωa |∇v k | 2 dxdy -2 ABC V dxdy.This allows us to split N as follows:N (a, c) = Ωa |∇v k | 2 dxdy N (a) -(c)BQ 2 (c) V (x, y) dxdy I N (a,c) .Since ∂x N /∂a ≤ 0 for y ∈ [y 1 (c), y 2 (a)] and V ≥ 0, we infer that H 2 ≥ 0. In order to obtain an upper bound of H 2 , we perform the change of variable (77) y = y(t) re-parametrize the interval of integration [y 1 (c), y 2 (a)] as the interval [0, ca]. Notice that, as a function of t, |∂x N /∂a| simply reads t/(1 -2a) 2a) 2 , which allows us to obtain 0 ≤ H 2 ≤ 4 √ 3π 2 (1 + k) 2 (c maxa min ) 2 (1 -2a min ) 2 .

H 3 ≤ 8 √ 3π 2 ( 1 + 4 √ 3π 2 ( 1 +

 821421 k) 2 a(ca) 1 -2a ≤ k) 2 a max .We now pass to the of I D . As already done for I N , we write the integral asI D (a, c) = y 2 (a)y 1 (c)

y 2 (a) y 1 For J 3 2 {( 1 - 4 a 4 a

 132144 (c) U (x D (a, c, y), y) ∂x D ∂a (a, c, y) dy, J 3 := -y 2 (a) y 1 (c) U (x D (a, c, y), y) ∂x D ∂c (a, c, y) dy. we have used the fact that x 2 (y 1 (c)) = x D (a, c, y 1 (c)). By combining the sign of the integrandsU ≥ 0, y ′ (a) < 0, ∂x D ∂a ≤ 0, ∂x D ∂c ≤ 0, true for y ∈ [y 1 (c), y 2 (a)],we immediately obtain J 1 ≤ 0, J 2 ≥ 0, J 3 ≥ 0. Let us refine these estimates, starting from J 1 : by combining y ′ (a) = -√ 3/2, the fact that the segment of integration is AB with length a/2, and the estimate U (B) ≤ U (x, y) ≤ U (A) provided in Lemma 6.5, we deduce that of A and B (see (24)) into the expression of U (see (74) and (40)), we obtainU (A) = 3 k) 2 [3 + 2 cos(2πa) + 4 cos(πa)] + k 2 [3 + 2 cos(4πa) + 4 cos(2πa)] + 2k(1k)[-1 -2 cos(3πa) -2 cos(2πa) -4 cos(πa)]}, k) 2 [5 + 4 cos(2πa)] + k 2 [5 + 4 cos(4πa)] + 2k(1k)[-6 cos(2πa)cos(4πa) -2]}.A direct computation shows that a → aU (A) and a → aU (B) are increasing, thus-√ 3 max U (A) ≤ J 1 ≤ -√ 3 min U (B).

2 and H 3 .

 3 By performing the change of variables y = y(t) described in (77), the interval of integration becomes [0, ca], the partial derivatives in the integrand read∂x D ∂a (a, c, y(t)) = -c 2(ca) 2 t, ∂x D ∂c (a, c, y(t)) = -a 2(ca) 2 (cat),According to the definitions given in the proof, F readsF (a, c) = P 2 ( N -2I N ) -16π 2 ( D -2I D )and its partial derivatives are∂F ∂a (a, c) =[-4I N P ∂ a P -2 P 2 H 1 -16π 2 D′ + 32π 2 J 2 ] + [2 N P ∂ a P + P 2 N ′ -2 P 2 H 2 + 32π 2 J 1 ], ∂F ∂c (a, c) =[-4I N P ∂ c P + 32π 2 J 3 ] + [2N P ∂ c P -2 P 2 H 3 ],

  16 cos 3 u -20 cos 2 u + 12 cos u -10 the right-hand side can be written as -2 + (cos u -1)(16 cos 2 u -4 cos u + 8), showing that it is always negative. This finishes the proof of ∂U ∂x ≤ 0.

				2 ]		
	15 cos Setting Y = 2πy/ √ 3 ∈ [π/2, π] and Y = π/2 + u with u ∈ [0, π/2], we are led to 2πy √ 3 -sin 4πy √ 3 10 -4 cos 4πy √ 3 -5 cos 6πy √ 3 ≤ 0. consider
	-15 sin(u) + sin(2u)[10 + 4 cos(2u)] -5 sin(3u) = sin u Let us now consider the derivative ∂U ∂y . Setting C = cos 2πy √ 3 , it can be written as
	∂U ∂y	=	12π √ 3	g 2 (k; x, y) sin	2πy √ 3	,
	with					
	g 2 (k; x, y)					

1st step: getting rid of the parameter s. We start with some preliminary results on the functions U, V and on their integrals over T and Ω a .

In view of definition (29), the functions V and U introduced in (32)-(33) are of the form

x, y)), V 3 (x, y) := ∇u 1 .∇û 1 (x, y) + ∇u 1 .∇û 1 (σ 1 (x, y)) + ∇u 1 .∇û 1 (σ 2 (x, y)), and

U 1 (x, y) := u 2 1 (x, y) + u 2 1 (σ 1 (x, y)) + u 2 1 (σ 2 (x, y)), U 2 (x, y) := û2 1 (x, y) + û2 1 (σ 1 (x, y)) û2 1 (σ 2 (x, y)), U 3 (x, y) := u 1 û1 (x, y) + u 1 û1 (σ 1 (x, y)) + u 1 û1 (σ 2 (x, y)). Lemma 6.4. Let V i and U i , i = 1, 2, 3 be the functions defined in (38)-(39), with σ 1 and σ 2 the symmetries introduced in (22). Let us introduce the following functions:

(40) φ(x, y) = cos 4πy √ 3 -2 cos 2πy √ 3 cos 2πx, ψ(x, y) = cos 4πx -2 cos 6πy √ 3 cos 2πx, η(x, y) = cos 8πy √ 3 + 2 cos 4πy √ 3 cos 4πx. Then Proof. The proof is straightforward. For example, for u 1 using the expressions of the symmetries σ 1 , σ 2 given in (22), we get (41)

Now since u 2 1 can be written

and a maximizer exists. In this step we compare the pairs of triangles AQ 1 (t)C and AQ 2 (s)C having the same area. Writing Q 1 (t) in coordinates

and recalling the definition (24) of A and C, we infer that the perimeter term

Similarly, writing Q 2 (s) in coordinates

we deduce that the perimeter term of AQ 2 (s)C reads

Imposing that the areas coincide, we infer that, given t, s has to be chosen as s(t) = t(1 -2a)/a. We underline that, given a, this map is a bijection from the interval [0, a/2], in which t varies, and in interval [0, 1/2a], in which s varies. Thus we are led to study the sign of p 1 (t)p 2 (t(1 -2a)/a): this function depends on two variables, a varying in ]0, 1/2[ (for the extremal cases there is nothing to prove) and t varying in [0, a/2]. In order to get rid of the dependence on a of the domain of definition of t, let us introduce the variable y := 2t/a ∈ [0, 1]. According to this definition, t = ay/2 and s(t) = y(1 -2a)/2. A direct computation shows that the terms of p 1p 2 can be rearranged as follows:

with

The function φ is clearly non negative. Let us prove that the function φ is non negative, too. If a ≥ 1/3 this is clearly true. If a ≤ 1/3, then it is easy to see that φ is decreasing in y, so that

Therefore, we are allowed to compare the squares of these functions: φ 2 (y) ≥ φ2 (y) if and only if

and exploiting the decreasing monotonicity of the function 

where in the last inequality we have used the fact that (j ′ 1,1 ) 2 < 3.4. The last term is below 16π 2 , and this gives the proof of Proposition 6.1 in the range a ∈ [1/4, 1/3].

Appendix A. Proof of Lemma 6.5

Proof. Following Lemma 6.4, the function U is given by

where φ, ψ, η are the functions defined in (40). It follows that

Since x ∈ [0, 1 4 ], we have to prove that g(k; x, y) ≤ 0 on the triangle ABC or more generally, on the triangle T limited by the lines x = 0, y =

2 ] and therefore, cos 2πy √ 3 ≤ 0 on this triangle. We look first at the dependence in k. The derivative of g(k; x, y) with respect to k is of the kind

Letting C = cos 2πy √ 3 , A 0 can also be written as

and then A 0 ≥ 0 since C ≤ 0. Moreover, choosing k = 1/6, we get

All the terms of the right-hand side are non negative, except possibly the first one if C 2 > 1/2. Let us consider that case and estimate then 36g 2 by

this proves that ∂U ∂y ≥ 0 on the domain. Now let us prove that the integral I(s) := AQ(s)C U (x, y)dxdy is decreasing in s. We can compute the derivative of I(s) using the tool of shape derivative, see [ 

where H is the height of the triangle AQ(s)C issued from Q(s). Let us observe that, for all u ∈ [0, 1], the two points uQ(s) + (1u)C and uQ(s) + (1u)A belong to a parallel to AC. Now, since the derivatives ∂U ∂x and ∂U ∂y are respectively negative and positive, we see that U decreases along such a parallel, namely

Proof. We start by computing all the quantities appearing in F (a, c), recalling that here k = 0 and the test function v k is the eigenfunction u 1 . According to Lemma 6.5, we have replaced Q(s) by Q 2 (c) in the denominator D(a, c). Writing the coordinates of the points

we make the dependence on a and c of P (a, c)

Now, the integrals defining N (a, c) and D(a, c) involve the symmetric part of |∇u 1 | 2 and u 2 1 respectively that are given by V 1 and U 1 (defined in (38), (39)). The formulas in Lemma 6.4 involve the same function φ(x, y) defined in (40). We will compute the desired integral by writing the domains of integration as Ω a \ (Q 1 (c)BQ 2 (c)) and Ω a \ (ABQ 2 (c)) respectively. Therefore, by setting

. Here we have used the convexity of the map a

Gathering all these bounds, we finally get

where

Multiplying by the inequality (64), we finally obtain

Now we need to estimate from below the denominator D(a, c). For that purpose, we need the following result.

Lemma B.1. Let G(a, c) defined by

We want to prove that G 1 (a, c) ≤ 0. We set c = a + x and we use the inequality (coming from a simple Taylor expansion) (66) cos(2πa + 2πx) ≥ cos 2πa -2πx sin 2πa -2π 2 x 2 cos 2πa.

In the sequel, we introduce C = cos 2πa and S = sin 2πa. Expanding G 1 (a, c) and using (66), we get

Reducing at the same denominator finally provides (the terms in x 4 and x 3 cancel)

where B 0 , B 1 , B 2 are given by

and B 1 = π 2 a 3 cos 2πa + 3πa 2 sin 2πa -2a(1 + cos πa -2 cos 2πa). It is immediate to check that B 0 can be written as B 0 = (sin 2πa)(πatan πa), thus it is negative for 0 < a < 1/2. For B 1 and B 2 we just use the classical inequalities

In the same way

and B 1 ≤ 0 for a ∈ [0, 1/4]. This proves the lemma. □ Using Lemma B.1 and standard estimates such as sin 2πa ≥ a(sin 2πa 0 )/a 0 , we obtain

It follows:

Therefore we finally get F (a, c)

.

It is immediate to check that f 1 (c) < 0 for all c ∈ [0, 1/2] (by estimating 1cos u by u 2 /2u 4 /24 + u 6 /720). Let us now fix a 0 = 1/60. If we can prove that

for any c ∈ [0, 1/2] we will prove the first part of Lemma 6.8. When a 0 = 1/60, the maximum M appearing in f 2 is given by

when c ≤ c 0

We start with the analysis of N : it is clearly positive and, by the inclusion

Recalling that v k = (1k)u 1 + kû 1 and using formulas in Lemma 6.6 and in Remark 6.7, we obtain

By combining this formula with the inequalities (70) we obtain

The function N does not depend on c, thus we only have to compute the derivative with respect to a, denoted for brevity by N ′ :

In the case Z I , namely when k = 0, it is immediate to check that N ′ is negative decreasing, since

The same holds true for k ̸ = 0, but the proof is more delicate. We first notice that since

thus N ′ (0) = 0. Computing the second derivatives of F 4 and F 6

we get

Splitting the coefficient of sin 2 (2πa) as the sum of 7k(2 -5k) and k(2 -5k) and noticing that, for k = 0.06, 0.12, there hold

we deduce that N ′′ (a) ≤ 0. All in all, we conclude that N ′ is decreasing and, since it is zero at 0, it is negative. Thus we get the estimates N ′ (a max ) ≤ N ′ (a) ≤ N ′ (a min ).

The same strategy applies to the denominator: we write

.

Recalling that v k = (1-k)u 1 +kû 1 and using the formulas in Lemma 6.6 and Remark 6.7, we obtain

. We claim that D′ (a) is decreasing, so that D′ (a max ) ≤ D′ (a) ≤ D′ (a min ).

To prove the claim, we first show that D′ (0) = 0 and then we prove that D′′ ≤ 0. The first property comes from

[6πa + 4 sin(2πa) + 4πa cos(2πa)],

[6πa + 2 sin(4πa) + 4πa cos(4πa)],

[-3 sin(2πa) -2 sin(4πa) -4πa cos(2πa)].

Differentiating D′ and using

[3 + 6 cos(2πa) -4πa sin(2πa)],

[3 + 6 cos(4πa) -8πa sin(4πa)],

[-5 cos(2πa) -4 cos(4πa) + 4πa sin(2πa)],

we obtain To get the second inequality we have simply rearranged in a convenient way the terms. The last inequality is immediate for k = 0 (actually in that case D ′′ = -F ′′ 1 ≤ 0 for a ∈ [1/60, 0.06]), whereas for k = 0.06 and k = 0.12 it follows from the positivity of each term in the expression between braces, for a taken in the proper interval:

This concludes the claim about D′ . We conclude the estimates by treating the integral terms I N and I D . Let us recall their definition:

where, for brevity, T N denotes the triangle Q 1 (c)BQ 2 (c) and T D the triangle ABQ 2 (c). For the benefit of the reader, we also recall here the expressions of the integrands:

The dependence on a and c of I N and I D is encoded in the domains of integration:

with

We start by bounding I N : using the positivity of the integrand, we get 0

On the other hand, the area of T N is bounded above by the area of the triangle ABC, which is maximal for a = a max . All in all, we obtain

In order to compute the partial derivatives of I N , we write the integral as follows:

x 2 (y)

x N (a,c,y)

V (x, y) dxdy.

Differentiating in a and c, we obtain

x 2 (y 2 (a))

x N (a,c,y 2 (a))

V (x, y 2 (a)) dx,

For the term H 3 we have used x 2 (a, c, y 1 (c)) = x N (a, c, y 1 (c)). We notice that H 1 is the product of a negative coefficient, y ′ 2 (a), and an integral of a positive function, V , over a segment of length x 2 (y 2 (a))x N (a, c, y 2 (a)) = a(ca)/(1 -2a). Bounding ∥V ∥ ∞ as above and optimizing in c and a, we get -4 √ 3π 2 (1 + k) 2 a max ≤ H 1 ≤ 0.

Remark C.1. Let us write the exact formulas of the integrals of φ, ψ, η defined in (40) in the triangles T N and T D defined in (75) and (76), respectively. These expressions are used in the numerical computation of F .