

A multi-scale epidemic model of enteric infection with heterogeneous shedding resulting from host-microbiota-pathogen interactions

Simon Labarthe, Béatrice Laroche, Bastien Polizzi, Florian Patout, Magali

Ribot

► To cite this version:

Simon Labarthe, Béatrice Laroche, Bastien Polizzi, Florian Patout, Magali Ribot. A multi-scale epidemic model of enteric infection with heterogeneous shedding resulting from host-microbiota-pathogen interactions. ECMTB 2022 - 12th European Conference on Mathematical and Theoretical Biology, Sep 2022, Heidelberg, Germany. hal-03834709

HAL Id: hal-03834709 https://hal.science/hal-03834709

Submitted on 30 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A MULTI-SCALE EPIDEMIC MODEL OF ENTERIC INFECTION WITH HETEROGENEOUS SHEDDING **RESULTING FROM HOST-MICROBIOTA-PATHOGEN INTERACTIONS**

Simon Labarthe¹, Béatrice Laroche², Bastien Polizzi³, Florian Patout⁴, Magali Ribot⁵

¹Univ. Bordeaux, INRAE, BIOGECO, F-33610 Cestas, France, ²Univ. Paris-Saclay, INRAE, MaIAGE, F-78350 Jouy-en-Josas, France, ³Univ. Bourgogne Franche-Comté, CNRS UMR 6623 LMB, Besançon, France, ⁴INRAE, BioSP, 84914, Avignon, France, ⁴INRAE, France, ⁴INRAE, France, ⁴INRAE, France, ⁴INRAE, France, ⁴INRAE, BioSP, 84914, France, ⁴INRAE, ⁴INRAE, ⁴INRAE, ⁴INRAE, ⁴INRAE, ⁴INRAE, ⁴ ⁵Univ. Orléans, Institut Denis Poisson, CNRS UMR 701, France

Motivation: Enteric pathogens colonize the digestive tract of farm livestock, such as chickens or pigs and potentially infect food products, which results in a threat for human health and important economic losses. It has been shown that the ability to excrete the pathogen in the environment and contaminate other animals is variable. This heterogeneity in pathogen carriage and shedding results from interactions between the host's immune response, the pathogen and the commensal intestinal microbiota and plays and important role in epidemic propagation and control. The objective here is to propose a theoretical model of pathogen excretion and transmission linking within and between host dynamic. Reference: Labarthe, S., Laroche, B., Nguyen, T. N. T., Polizzi, B., Patout, F., Ribot, M., & Stegmaier, T. (2020). A multi-scale epidemic model of salmonella infection with heterogeneous shedding. ESAIM: Proceedings and Surveys, 67, 261-284.

Simplified within host Dynamic

Inspired by a complex mechanisms proposed in *Byndloss et al. Science 2017*

Population level Dynamic

Pathogen load distribution without transmission

Parameter choice -> A>0, 5 steady states, 2 stable positive values for p forward Kolmogorov equation of SDE \rightarrow structured population model s(t,p) population density of individuals with pathogen load p at time t

Adding between host transmission through an environmental reservoir

$$\partial_{t}s(t,p) = -\partial_{p}\left(\left(F(p) + \beta_{in}(p)r(t) - \beta_{ex}(p)\right)s(t,p)\right) + \frac{\sigma^{2}}{2}\partial_{p}^{2}s(t,p) \qquad \beta_{ex}(p) = \beta_{ex}p \qquad \beta_{in}(p) = \beta_{in}(K-p)$$

$$\frac{dr(t)}{dt} = -\left(\gamma + \int_{0}^{K} s(t,p)\beta_{in}(p)dp\right)r(t) + \int_{0}^{K} s(t,p)\beta_{ex}(p)dp$$

$$\frac{\sigma^{2}}{2}\partial_{p}s(t,K) + \beta_{ex}(K)s(t,K) = \frac{\sigma^{2}}{2}\partial_{p}s(t,0) - \beta_{in}(0)r(t)s(t,0) = 0$$

$$s(0, \cdot) = s_{ini}(\cdot) \in H^{1}(0,K), \quad \int_{0}^{K} s_{ini}(p)dp = N, \quad r(0) = r_{ini} \in \mathbb{R}^{+}$$

2 to 5 steady states (including 0 and K) according to parameter values, p = 0 unstable $\Leftrightarrow A > 0$

Noisy dynamic

with

 $dP = F(P)dt + \sigma dB$

$$F(p) = \begin{cases} p(\mathbf{K} - p) \left(A - \alpha p + C \frac{p^n}{p^n + p_{\star}^n} \right), & \text{if } p \in [0, \mathbf{K}], \\ 0, & \text{otherwise.} \end{cases}$$

(other possible choices for the noise: $\sigma P dB$ or $\sigma P(K - P) dB$

The two controls induce a decrease in high-shedder frequency and an increase in shedders, however the drug low

cleaning or drug

Discussion and perspective

- First simplistic theoretic model to link within host microbiota dynamic and between host epidemic transmission in the context of heterogeneous shedding
- In the near future, fit the pathogen load pdf with experimental data on poultry and Large isolator pig, eg 1 chick per iso (x10) 30 chicks per iso

Menanteau et al. Environmental microbiology (2018)

treatment seems much more effcient and leads to a substantial reduction of the pathogen load in the population

- - When the control stops, the pathogen load distribution goes back to its stable, bimodal shape.

*******ne** HEALTH MoMIR

S. Labarthe and B. Laroche were supported by the One-Health EJP JRP-10 European grant MOMIR-PPC.

S. Labarthe also got support of the AgreenSkills+ fellowship programme under grant agreement Number FP7-609398

- The model should be made more realistic:
 - Include host heterogeneity
 - Include age (education of immune system)
 - Offer a more complex description of the microbiota

This could open the way to alternative treatments of animal disease triggered towards the development of probiotics.

