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INTERPOLATION INEQUALITIES ON THE SPHERE: RIGIDITY, BRANCHES OF
SOLUTIONS, AND SYMMETRY BREAKING

ESTHER BOU DAGHER AND JEAN DOLBEAULT

ABSTRACT. This paper is devoted to three Gagliardo-Nirenberg-Sobolev interpolation in-

equalities on the sphere. We are interested in branches of optimal functions when a scale

parameter varies and investigate whether optimal functions are constant, or not. In the

latter case, a symmetry breaking phenomenon occurs and our goal is to decide whether

the threshold between symmetry and symmetry breaking is determined by a spectral cri-

terion or not, that is, whether it appears as a perturbation of the constants or not. The first

inequality is classical while the two other inequalities are variants which reproduce pat-

terns similar to those observed in Caffarelli-Kohn-Nirenberg inequalities, for weighted

inequalities on the Euclidean space. In the simpler setting of the sphere, it is possible to

implement a parabolic version of the entropy methods associated to nonlinear diffusion

equations, which is so far an open question on weighted Euclidean spaces.

1. INTRODUCTION

In this paper we consider some interpolation inequalities on the sphere which can be
written in generic form as

F
(
‖∇u‖2

L2(Sd )
,‖u‖2

L2(Sd )

)
≥ ‖u‖2

Lp (Sd )
∀u ∈ H1(Sd ,dσ) (1)

where p > 2 has to be specified. Here the function F : (R+)2 →R is a two-homogeneous
function, i.e.,

F (h a,hb) = h2 F (a,b) ∀ (h,a,b) ∈ (R+)3 ,

and we assume that F (0,1) = 1. We will not give general assumptions of regularity on F as
we shall rather focus on three particular cases that illustrate the variety of possible cases.
With standard notations, dσ = ∣∣Sd

∣∣−1 d vg denotes the uniform probability measure on
the unit sphereSd ⊂Rd+1 induced by Lebesgue’s measure onRd+1. The space Lq (Sd ,dσ)
with q ∈ [1,+∞) is the standard Lebesgue space with norm ‖·‖Lq (Sd ) defined by

‖u‖Lq (Sd ) :=
(∫
Sd

|u|q dσ

)1/q

.

The fact that dσ is a probability measure means that ‖u‖Lq (Sd ) = 1 if u = 1 a.e. on Sd and

we also have ‖u‖Lq1 (Sd ) ≤ ‖u‖Lq2 (Sd ) for any u ∈ Lq2 (Sd ,dσ) as soon as 1 ≤ q1 ≤ q2. The
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space H1(Sd ,dσ) is obtained by completion of smooth functions on Sd with respect to

the norm u 7→ (‖∇u‖2
L2(Sd )

+‖u‖2
L2(Sd )

)1/2.

If (1) is an optimal inequality, and if there is some u? ∈ H1(Sd ,dσ) such that equal-
ity holds in (1), the question that we address is the symmetry versus symmetry breaking
issue: is u? necessarily a constant function (symmetry) or not (symmetry breaking). In
this last case, there is a manifold of non-constant optimal functions generated by all pos-
sible rotations. We also consider limit cases for which compactness is lost and there is
no optimal function (or a sequence of functions approximating the equality case is not
compact even after normalization): there is symmetry breaking if the optimality case is
not achieved by constant functions.

As a side question, let us mention the question of the rigidity in related elliptic equa-
tions: up to a normalization by a multiplicative constant, is there at most one nonnega-
tive solution to the Euler-Lagrange equation

−∂aF (a,b)∆u +∂bF (a,b)u = ‖u‖2−p

Lp (Sd )
up−1 with a= ‖∇u‖2

L2(Sd )
and b= ‖u‖2

L2(Sd )

or not. Here ∆ denotes the Laplace-Beltrami operator on Sd with the convention that
−∆ is a nonnegative operator. In case of uniqueness and compactness (normalized min-
imizing sequences for (1) are relatively compact and the limits after extraction of a sub-
sequence solves the equation), then symmetry holds and u = 1 a.e. is the unique solution,
while in the symmetry breaking case, there is no rigidity (notice that if u is optimal for (1),
then |u| is also optimal).

In order to study the symmetry breaking phenomenon, we shall introduce a bifurca-
tion parameterλ> 0 and families of functions (Fλ)λ>0 depending continuously onλwith
Fλ(0,1) =λ. Our goal is to characterize the optimal constant µ(λ) in the inequality

Fλ
(
‖∇u‖2

L2(Sd )
,‖u‖2

L2(Sd )

)
≥µ(λ)‖u‖2

Lp (Sd )
∀u ∈ H1(Sd ,dσ) (2)

so that symmetry means µ(λ) = λ while symmetry breaking is characterized by µ(λ) < λ.
On Sd , there is an intrinsic length scale, which compares with λ. The three families of
Gagliardo-Nirenberg-Sobolev inequalities on Sd studied in this paper are

‖∇u‖2
L2(Sd )

+ λ

p −2
‖u‖2

L2(Sd )
≥ µ0(p,λ)

p −2
‖u‖2

Lp (Sd )
, (3)

‖∇u‖2
L2(Sd )

+ λ

p −2
‖u‖2

L2(Sd )
≥ µ1(p,θ,λ)

p −2
‖u‖2θ

Lp (Sd )
‖u‖2(1−θ)

L2(Sd )
, (4)(

‖∇u‖2
L2(Sd )

+ λ

p −2
‖u‖2

L2(Sd )

)θ
‖u‖2(1−θ)

L2(Sd )
≥

(
µ2(p,θ,λ)

p −2

)θ
‖u‖2

Lp (Sd )
, (5)

for any u ∈ H1(Sd ,dσ), whereλ> 0 is a parameter whileµ0(p,λ) andµk (θ,λ) with k = 1, 2
are the optimal constants. Although the case p ∈ [1,2) makes sense, we shall for simplicity
restrict our purpose to p ∈ (2,∞) if d = 1, 2 and p ∈ (2,2∗] if d ≥ 3, with 2∗ = 2d/(d −2).
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By convention, we take 2∗ =+∞ if d = 1, 2. The exponent

θ? := d
p −2

2 p
(6)

is the exponent in the Euclidean Gagliardo-Nirenberg-Sobolev inequalities

‖∇u‖θ?
L2(Rd )

‖u‖1−θ?
L2(Rd )

≥CGNS ‖u‖2
Lp (Rd )

∀u ∈ H1(Rd ,d x) (7)

and induces the limitation θ ≥ θ? in (5). As we shall see later, the regime for λ small
corresponds to symmetry while the asymptotic regime asλ→+∞ is related with optimal
functions for (7) on the tangent Euclidean space Rd , which induce symmetry breaking.

Let us give a brief account of the literature. M.-F. Bidault-Véron and L. Véron proved
Inequality (3) in [5, Corollary 6.1] as a consequence of a rigidity result. Another proof by
W. Beckner in [4] relies on spectral methods, the Funk-Hecke formula and a duality re-
sult introduced by E. Lieb in [27]. An earlier version corresponding to the range p ∈ (2,2#)
with 2# = (2d 2 +1)/(d −1)2 if d ≥ 2 and 2# =+∞ if d = 1 was established by D. Bakry and
M. Emery in [1, 2], using the carré du champ method and the heat flow. We refer to [3]
for a general overview of the carré du champ method in the context of Markov processes
or linear diffusion equations, and to [9, 17] for the extension to nonlinear diffusion equa-
tions. Also see Appendix A for further references in the case of the sphere.

Inequalities (4) and (5) are less standard than (3) and we are not aware of specific ref-
erences. The case θ = 1 in (4) and (5) corresponds to the classical interpolation inequal-
ity (3). Inequality (5) appears (with optimal constant) for a special value of θ in [12, In-
equality (2.4)] as a consequence of improvements of (3) based on the carré du champ
method. For a presentation of entropy methods and improved interpolation inequalities,
see [12] and references therein.

An important motivation for (5) arises from pure states in Lieb-Thirring estimates and
interpolation inequalities for systems studied in [8]. We refer to [22] for an overview
of functional inequalities and branches of solutions in various frameworks, including
the quite similar problem of symmetry breaking in some of the (CKN) Caffarelli-Kohn-
Nirenberg inequalities. The sharp threshold for the symmetry range of the parameters
in such inequalities is established in [25, 19] in the critical case and in [7, 23] in the sub-
critical case. A complete parabolic proof based on entropy methods is so far missing
and results rely on rigidity methods: see [18, 24] for partial results based on flows. In
the case of the sphere, Inequalities (3), (4) and (5) have similar properties but by many
aspects symmetry versus symmetry breaking issues are simpler. For instance, the regu-
larity of the solution of the nonlinear flow on Sd raises no difficulty: see for instance [28]
for some comments in this direction. Branches of optimizers associated with Inequali-
ties (4) and (5) for θ < 1 have qualitative features which are reminiscent of those corre-
sponding to similar (CKN) inequalities (with also some θ < 1) observed in [11, 10, 13].
Beyond numerical observations and a few estimates, these branches for (CKN) are not
well understood. Our goal is to state the corresponding properties on the sphere.
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This paper is organized as follows. In Section 2, we expose results and strategies of
proof for Inequality (3). Sections 3 and 4 are devoted to similar properties for Inequal-
ities (4) and (5) with a special emphasis on symmetry and symmetry breaking. In the
Appendix A, for completeness, we provide some computations based on the carré du
champ method applied with a nonlinear flow in the case of the sphere and further bibli-
ographical references for this technique.

2. CLASSICAL GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES ON Sd

In this preliminary section, we review some known results for Inequality (3) and give
some hints for the proofs which will guide us in the study of the two other inequalities.

Theorem 1. Let d ≥ 1, p ∈ (2,2∗) or p = 2∗ if d ≥ 3. Inequality (3) holds with µ0(p,λ) = λ

if λ≤ d (symmetry case) and µ0(p,λ) <λ if λ> d (symmetry breaking case).

A standard observation is that λ 7→ µ0(p,λ) is a concave increasing function as a con-
sequence of

µ0(p,λ) = inf
u∈H1(Sd ,dσ)\{0}

(p −2)‖∇u‖2
L2(Sd )

+λ‖u‖2
L2(Sd )

‖u‖2
Lp (Sd )

and that the symmetry breaking point d = inf
{
λ> 0 : µ0(p,λ) <λ}

is such that

d = inf
u∈H1(Sd ,dσ)\R

(p −2)‖∇u‖2
L2(Sd )

‖u‖2
Lp (Sd )

−‖u‖2
L2(Sd )

,

where H1(Sd ,dσ) \R denotes the set of non-constant functions in H1(Sd ,dσ).

Let us sketch the proof of Theorem 1.

• Symmetry breaking. Let us consider the functional

Fλ[u] := ‖∇u‖2
L2(Sd )

− λ

p −2

(
‖u‖2

Lp (Sd )
−‖u‖2

L2(Sd )

)
. (8)

A Taylor expansion of Fλ[1+εϕ] at order two in ε for a function ϕ such that
∫
Sd ϕdσ= 0

shows that

lim
ε→0

1

ε2
Fλ[1+εϕ] = ‖∇ϕ‖2

L2(Sd )
−λ‖ϕ‖2

L2(Sd )
.

Taking forϕ an eigenfunction of the Laplace-Beltrami operator onSd associated with its
lowest positive eigenvalue, i.e., such that −∆ϕ= dϕ, we find that

‖∇ϕ‖2
L2(Sd )

−λ‖ϕ‖2
L2(Sd )

= (d −λ)‖ϕ‖2
L2(Sd )

< 0

for any λ> d , which shows that µ0(p,λ) <λ.

• Symmetry. Let us consider the fast diffusion equation

∂ρ

∂t
=∆ρm , ρ(t = 0, ·) = |u|p (9)
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for some parameter m ∈ [
m−(d , p),m+(d , p)

]
where

m±(d , p) := 1

(d +2) p

(
d p +2±

√
d (p −1)

(
2d − (d −2) p

))
. (10)

A computation based on a nonlinear extension of the carré du champ method shows that

d

d t
Fλ[v(t , ·)] ≤−2β2 (d −λ)

∫
Sd

∣∣∇v1/β
∣∣2 dσ

where β := 2/
(
2−p (1−m)

)
. References are given in Appendix A and the key computation

is detailed in Appendix A.1. Hence

d

d t
Fλ[v(t , ·)] ≤ 0 and lim

t→+∞Fλ[v(t , ·)] = 0

if λ ≤ d . This proves that Fλ[u] ≥ 0 for an arbitrary u ∈ H1(Sd ,dσ). See Lemma 14 and
final comments at the end of Section A.2 for further justifications. �
• Rigidity. As in [5, 6, 17], a remarkable consequence of the proof is the following result.

Corollary 2. Let d ≥ 1, p ∈ (2,2∗) or p = 2∗ if d ≥ 3. If 0 <λ≤ d, the equation

− ∆u + λ

p −2
u = up−1 (11)

admits a unique nonnegative solution, which is constant.

The proof is consequence of the carré du champ method based on an idea that goes
back to [26].
• Asymptotics. Another piece of information is the asymptotic behavior of the branch
λ 7→µ0(p,λ). The following result is taken from [16, Proposition 10].

Proposition 3. Let d ≥ 1 and p ∈ (2,2∗). The optimal constant in (3) is such that

lim
λ→+∞

µ0(p,λ)

λθ?
=

∣∣Sd
∣∣− p−2

p

θ
θ?
? (1−θ?)1−θ?

CGNS .

If d ≥ 3 and p = 2∗, then µ0(p,λ) = min{λ, d} is not achieved in H1(Sd ,dσ) for any λ> d.

As λ→+∞, the corresponding optimal functions concentrate on points of the sphere.
A blow-up analysis shows that the projection on the tangent Euclidean space at a blow-
up point can be estimated by (7), and optimal functions for (7) are good test functions,
which allows to identify the limit. Notice that concentration is incompatible with sym-
metry, so that we recover symmetry breaking in the limit as λ→+∞. In the case d ≥ 3
and p = 2∗, loss of compactness occurs and a minimizing sequence behave like concen-
trating Aubin-Talenti bubbles.
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• Reparametrization. The following observation is elementary. Let us consider the
optimal constants for Inequalities (4) and (5) seen as variational problems, namely

µ1(p,θ,λ) = inf
u∈H1(Sd ,dσ)\{0}

(p −2)‖∇u‖2
L2(Sd )

+λ‖u‖2
L2(Sd )

‖u‖2θ
Lp (Sd )

‖u‖2(1−θ)
L2(Sd )

, (12)

µ2(p,θ,λ) = inf
u∈H1(Sd ,dσ)\{0}

(
(p −2)‖∇u‖2

L2(Sd )
+λ‖u‖2

L2(Sd )

)
‖u‖

2
θ−2

L2(Sd )
‖u‖−

2
θ

Lp (Sd )
. (13)

As already noted in Section 1, we know for free that

µ1(p,1,λ) =µ2(p,1,λ) =µ0(p,λ)

for any λ> 0. The parameter θ is subject to admissibility conditions that will be specified
in Sections 3 and 4. Even for θ 6= 1, Inequalities (4) and (5) are related with Inequality (3)
as follows.

Proposition 4. Let d ≥ 1, p ∈ (2,2∗) and Λ> 0, given. If for some admissible θ and either
k = 1 or k = 2, U is a non-trivial minimizer for µk (θ,Λ), then for an appropriate choice
of κ > 0, the function u = κU solves (11) for some λ > 0. The two parameters κ and λ are
explicitly given in terms of µk (θ,Λ), ‖U‖L2(Sd ) and ‖U‖Lp (Sd ).

Proof. Let us consider the case k = 1. The function U solves the Euler-Lagrange equation

−∆U + 1

p −2

(
Λ− (1−θ)µ1(p,θ,Λ) X 2θ

)
U = µ1(p,θ,Λ) X 2θ−2

(p −2)‖U‖p−2

Lp (Sd )

U p−1

with X = ‖U‖Lp (Sd )/‖U‖L2(Sd ). The proof is complete with the choice

λ= Λ

p −2
− (1−θ)µ1(p,θ,Λ) X 2θ and κ2−p = µ1(p,θ,Λ) X 2θ−2

(p −2)‖U‖p−2

Lp (Sd )

.

A similar reparametrization holds for k = 2. �

3. A FIRST FAMILY OF REFINED INTERPOLATION INEQUALITIES ON Sd

Let us define

Q(1)
p,θ,λ[u] :=

(p −2)‖∇u‖2
L2(Sd )

+λ‖u‖2
L2(Sd )

‖u‖2θ
Lp (Sd )

‖u‖2(1−θ)
L2(Sd )

.

• Admissible parameters. We establish the validity range of the parameters in (4).

Lemma 5. Inequality (4) holds for any d ≥ 1, θ ∈ [0,1], p ∈ (2,2∗) or p = 2∗ if d ≥ 3, with

µ0(p,λ) ≤µ1(p,θ,λ) ≤λ ∀λ> 0.

Moreover, equality holds and µ1(p,θ,λ) =λ if λ≤ d.
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Proof. By Hölder’s inequality, ‖u‖L2(Sd ) ≤ ‖u‖Lp (Sd ) because dσ is a probability measure.
Using (12), we learn that

µ0(p,λ) = inf
u∈H1(Sd ,dσ)\{0}

Q(1)
p,1,λ[u] ≤ inf

u∈H1(Sd ,dσ)\{0}
Q(1)

p,θ,λ[u] =µ1(p,θ,λ) ≤λ ,

where the upper bound is obtained by testing Q(1)
p,θ,λ with u = 1 a.e. If λ ≤ d , there is

equality because µ0(p,λ) =λ (symmetry case) according to Theorem 1. �

We read from Lemma 5 that (4) is stronger than (3) and this is why we call Inequal-
ity (4) a refined Gagliardo-Nirenberg-Sobolev inequality. Inequality (4) can also be seen
as an improved inequality compared to (3) or a stability result for (3): see [12] for further
considerations on these issues and an example corresponding to a special choice of θ
in (4).

As in Section 2, let us consider

F (1)
λ

[u] := ‖∇u‖2
L2(Sd )

+ λ

p −2
‖u‖2

L2(Sd )
− λ

p −2

(
‖u‖2θ

Lp (Sd )
‖u‖2(1−θ)

L2(Sd )

)
.

• Symmetry breaking. As in the case of (3), we obtain an estimate of the symmetry
breaking range by Taylor expanding around a constant with a perturbation by a spherical
harmonic function.

Lemma 6. Let d ≥ 1, θ ∈ [0,1], p ∈ (2,2∗) or p = 2∗ if d ≥ 3. There is symmetry breaking
in (4), that is, µ1(p,θ,λ) <λ, if λ> d/θ.

Proof. Let us consider ϕ ∈ H1(Sd ,dσ) such that
∫
Sd ϕdσ= 0, uε = 1+εϕ, and compute

‖∇uε‖2
2 = ε2 ‖∇ϕ‖2

L2(Sd )
+o(ε2) ,

‖uε‖2
2 = 1+ε2 ‖ϕ‖2

L2(Sd )
+o(ε2) ,

‖uε‖2
p = 1+ε2 (p −1)‖ϕ‖2

L2(Sd )
+o(ε2) .

As a consequence, we obtain that

lim
ε→0

1

ε2
F (1)
λ

[uε] = ‖∇ϕ‖2
L2(Sd )

−λθ‖ϕ‖2
L2(Sd )

= (d −λθ)‖ϕ‖2
L2(Sd )

< 0

if we take a non-trivial function ϕ such that −∆ϕ= dϕ and λ> d/θ. �

• Symmetry. Up to a change in the range of λ, the result and its proof are similar to the
case studied in Section 2.

Lemma 7. Let d ≥ 1, θ ∈ [0,1], p ∈ (2,2∗) or p = 2∗ if d ≥ 3. There is symmetry in (4), that
is, µ1(p,θ,λ) =λ, if λ≤ d/θ.

Proof. If d = 1, one can consider a periodic interval identified with S1 and refer to [2] for
applying the carré du champ method in this elementary setting. Assume that d ≥ 2 and
let us consider again the fast diffusion equation (9) with m ∈ [

m−(d , p),m+(d , p)
]

where
m±(d , p) is defined by (10). The same computation as in the proof of Theorem 1 shows
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that

d

d t
F (1)
λ

[v(t , ·)] ≤−2β2
(
d +λ(

(1−θ)x−1
))∫

Sd

∣∣∇v1/β
∣∣2 dσ with x :=

‖v‖2θ
Lp (Sd )

‖v‖2θ
L2(Sd )

.

By a Hölder inequality, we learn that x≥ 1 and are then back to the same arguments as in
the case θ = 1, but now under the condition λ≤ d/θ. �

•Asymptotics. Heuristically, large values ofλ correspond to highly concentrated optimal
functions, which behave like the functions obtained by a stereographic projection on the
tangent Euclidean space at the point of concentration. Let us explain how we define and
use the stereographic projection. On Rd 3 x, let r = |x| and ω = x/|x| denote spherical
coordinates. On the unit sphere Sd ⊂Rd+1, we consider cylindrical coordinates (ρω, z) ∈
Rd × (−1,1) with ρ2 + z2 = 1. The stereographic projection S :Sd \ {N} →Rd , where N ∈Sd

is the North Pole defined by z =+1, is such that S(ρω, z) = r ω= x where

z = r 2 −1

r 2 +1
and ρ = 2r

1+ r 2
.

If v is a function on Rd , let us consider its counterpart u := S−1 v on Sd obtained using
the inverse stereographic projection as(

u ◦S−1) (x) =m(r )d−2 v(x) ∀x ∈Rd with m(r ) =
√

(1+ r 2)/2.

For any q ≥ 1, with δ(q) := 2d −q (d −2), we obtain∫
Sd

|u|q dσ= ∣∣Sd
∣∣−1

∫
Rd

|v |q
m(r )δ(q)

d x ,∫
Sd

|∇u|2 dσ+ 1

4
d (d −2)

∫
Sd

|u|2 dσ= ∣∣Sd
∣∣−1

∫
Rd

|∇v |2 d x .

Notice that δ(2) = 4. We refer to [12, Theorem 2.1] for a statement concerning the in-
equality obtained from (3) and a special case of (4) by the stereographic projection.

As another observation, we shall use the optimal constant Kp,d in the Gagliardo-Ni-
renberg-Sobolev inequality on Rd

‖∇u‖2
L2(Rd )

+‖u‖2
L2(Rd )

≥Kp,d ‖u‖2
Lp (Rd )

∀u ∈ H1(Rd ,d x) . (14)

An optimization under scaling (apply the inequality to uh(x) = hd/p (h x) and optimize
its left-hand side with respect to h > 0) shows that this inequality is equivalent to (7) and,
with θ? as in (6),

θ
θ?
? (1−θ?)1−θ?Kp,d =CGNS .

After these preliminaries, we can state the following result, which extends the results
for (3) of [16, Proposition 9 and 10] to Inequality (4).

Lemma 8. Let d ≥ 1, θ ∈ [0,1], p ∈ (2,2∗) or p = 2∗ if d ≥ 3. There is an explicit constant
µ∞

1 (p,θ) > 0 such that

µ1(p,θ,λ) =µ∞
1 (p,θ)λγ

(
1+o(1)

)
as λ→+∞
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where γ= 1−d (p −2)θ/2p = 1− θθ?.

An explicit expression of µ∞
1 can be deduced from the proof.

Proof. We do a blow-up analysis based on a change of variables depending on λ→+∞.
Let uλ := S−1 vλ where

vλ(x) := v

(
2

√
(λ−λ?)

p−2 x

)
∀x ∈Rd .

We take λ? := 1
4 d (d − 2)(p − 2) and v as an optimal function for (14). With r = |x|, we

compute

Q(1)
p,θ,λ[uλ] =

(p −2)
(
‖∇uλ‖2

L2(Sd )
+ 1

4 d (d −2)‖uλ‖2
L2(Sd )

)
+ (λ−λ?)‖uλ‖2

L2(Sd )

‖uλ‖2θ
Lp (Sd )

‖uλ‖2(1−θ)
L2(Sd )

=
(p −2)‖∇vλ‖2

L2(Rd )
+ (λ−λ?)‖m(r )−2 vλ‖2

L2(Rd )

|Sd |θ (1−2/p) ‖m(r )−δ(p)/p vλ‖2θ
Lp (Rd )

‖m(r )−2 vλ‖2(1−θ)
L2(Rd )

=
(λ−λ?)

(
4(λ−λ?)

p−2

)−d p−2
2 p θ (

4‖∇v‖2
L2(Rd )

+ ‖m(εr )−2 v‖2
L2(Rd )

)
|Sd |θ (1−2/p) ‖m(εr )−δ(p)/p v‖2θ

Lp (Rd )
‖m(εr )−2 v‖2(1−θ)

L2(Rd )

.

with ε=
√

p−2
4(λ−λ?) . By taking the limit as λ→+∞ and using Lebesgue’s theorem of dom-

inated convergence with m(εr ) → 1/
p

2 a.e., and by using the fact that the quotient is
proportional to the Gagliardo-Nirenberg-Sobolev inequality up to a numerical constant,
we conclude that

Q(1)
p,θ,λ[uλ] = (λ−λ?)1−θθ?µ∞

1 (p,θ)
(
1+o(1)

)
as λ→ +∞, for a constant µ∞

1 (p,θ) that can be computed explicitly, up to tedious but
elementary considerations. This proves that

lim
λ→+∞

λ−γµ1(p,θ,λ) ≤µ∞
1 (p,θ).

We have now to prove the reverse inequality. As in [16, Proposition 10], we argue by
contradiction. Let (λn)n∈N and (un)n∈N be such that un ∈ H1(Sd ,dσ) with ‖un‖Lp (Sd ) = 1
for any n ∈N, limn→+∞λn =+∞,

Q(1)
p,θ,λn

[un] =µ1(p,θ,λn) and lim
n→+∞λ

−γ
n µ1(p,θ,λn) ≤µ∞

1 (p,θ)−η (15)

for some η > 0. We learn from the expression of Q(1)
p,θ,λ that λn ‖un‖2θ

L2(Sd )
≤ µ∞

1 (p,θ)λγn
as n →+∞ so that limn→+∞ ‖un‖L2(Sd ) = 0. Concentration occurs: there exists an even-

tually finite sequence (yi )i∈N of points in Sd , sequences of positive numbers (ζi )i∈N and
(ri ,n)i ,n∈N and functions ui ,n ∈ H1(Sd ,dσ) with

ui ,n = un on Sd ∩B(yi ,ri ,n) and supp ui ,n ⊂Sd ∩B(yi ,2ri ,n)
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such that, as n →+∞,∑
i
‖∇ui ,n‖2

L2(Sd )
∼ ‖∇un‖2

L2(Sd )
and

∑
i
‖ui ,n‖2

L2(Sd )
∼ ‖un‖2

L2(Sd )
,

with, for all i ,

lim
n→+∞ri ,n = 0, Σi∈N ζi = 1 and lim

n→+∞

∫
Sd∩B(yi ,ri ,n )

|ui ,n |p dσ= ζi .

With a blow up argument applied to (ui ,n)n∈N, we prove for all i that

lim
n→+∞λ

−γ
n

(
(p −2)‖∇ui ,n‖2

L2(Sd )
+λn ‖ui ,n‖2

L2(Sd )

)
‖ui ,n‖−2(1−θ)

L2(Sd )
≥µ∞

1 (p,θ)ζ2θ/p
i .

We may notice that

(p −2)‖∇ui ,n‖2
L2(Sd )

+λn ‖ui ,n‖2
L2(Sd )

‖ui ,n‖2(1−θ)
L2(Sd )

≥
(p −2)‖∇ui ,n‖2

L2(Sd )
+λn ‖ui ,n‖2

L2(Sd )

‖un‖2(1−θ)
L2(Sd )

.

Let us choose an integer N such that

ΣN
i=1ζ

2θ/p
i ≥ (

ΣN
i=1ζi

)2θ/p > 1− η

2

(
µ∞

1 (p,θ)
)−1 .

For n large enough, by writing

λ
−γ
n

N∑
i=1

(p −2)‖∇ui ,n‖2
L2(Sd )

+λn ‖ui ,n‖2
L2(Sd )

‖ui ,n‖2(1−θ)
L2(Sd )

≥µ∞
1 (p,θ)

N∑
i=1

ζ
2θ/p
i

(
1+o(1)

)≥µ∞
1 (p,θ)− η

2
,

we obtain a contradiction with (15). This concludes the proof. �

We collect our results on inequality (4) with optimal constant µ1(p,θ,λ) as follows.

Theorem 9. Let d ≥ 1, θ ∈ [0,1], p ∈ (2,2∗) or p = 2∗ if d ≥ 3. Inequality (3) holds with
µ0(p,λ) = λ if λ ≤ d/θ (symmetry case) and µ0(p,λ) < λ if λ > d/θ (symmetry breaking
case). The functionλ 7→µ1(p,θ,λ) is monotone increasing, concave and such that for some
explicit µ∞

1 (p,θ) > 0, we have µ1(p,θ,λ) ∼µ∞
1 (p,θ)λγ as λ→+∞ with γ= 1−2θθ?.

4. A SECOND FAMILY OF REFINED INTERPOLATION INEQUALITIES ON Sd

In this section, we consider (5). Let us define

Q(2)
p,θ,λ[u] :=

(
‖∇u‖2

L2(Sd )
+ λ

p−2 ‖u‖2
L2(Sd )

)θ ‖u‖2(1−θ)
L2(Sd )

‖u‖2
Lp (Sd )

.

• Admissible parameters. We establish the validity range of the parameters in (5). We
recall that θ? = d (p −2)/(2 p) according to the definition (6). Let us define

q := 2 p θ

2−p (1−θ)
(16)

so that q = 2? if θ = θ? and q = p if θ = 1.
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Lemma 10. Inequality (5) holds for any d, θ and p such that

d ≥ 1, θ ∈ [θ?,1]∩ (1−2/p,1] , p ∈ (2,2∗) or p = 2∗ if d ≥ 3 (17)

with an optimal constant µ2(p,θ,λ) such that

µ0
(
q,λ q−2

p−2

)≤µ2(p,θ,λ) ≤λ ∀λ> 0

where q is given in terms of p and θ by (16). Moreover, µ2(p,θ,λ) =λ ifλ≤ d
(
1− (1−θ) p

2

)
.

Proof. By Hölder’s inequality, ‖u‖L2(Sd ) ≤ ‖u‖Lp (Sd ) because dσ is a probability measure.
Using (12), we learn that

µ0
(
q, λ̃

)= inf
u∈H1(Sd ,dσ)\{0}

Q(1)
q,1,λ̃

[u] ≤ inf
u∈H1(Sd ,dσ)\{0}

(
Q(2)

p,θ,λ[u]
)1/θ ≤λ

with

λ̃ :=λ q −2

p −2
.

The upper bound is obtained by testing Q(2)
p,θ,λ with u = 1 a.e. If λ̃ ≤ d , there is equality

becauseµ0
(
q, λ̃

)= λ̃ (symmetry case) according to Theorem 1, which gives us a symmetry
case. Notice that 1− (1−θ) p

2 is positive if θ > 1−2/p. �

As above, let us consider

F (2)
λ

[u] :=
(
‖∇u‖2

L2(Sd )
+ λ

p −2
‖u‖2

L2(Sd )

)θ
‖u‖2(1−θ)

L2(Sd )
−

(
λ

p −2

)θ
‖u‖2

Lp (Sd )
.

• Symmetry breaking. Again symmetry breaking is obtained by perturbation.

Lemma 11. Assume that d, θ and p satisfy (17). There is symmetry breaking in (5), that
is, µ2(p,θ,λ) <λ, if λ> θd.

Proof. With the same computations as in the proof of Lemma 11 and a non-trivial spher-
ical harmonic function ϕ, we obtain that

lim
ε→0

1

ε2
F (2)
λ

[uε] =
(

λ

p −2

)θ (
θ‖∇ϕ‖2

L2(Sd )
−λ‖ϕ‖2

L2(Sd )

)
= (d θ−λ)‖ϕ‖2

L2(Sd )
< 0,

which concludes the proof. �

• Symmetry. We apply the same methods as in Sections 2 and 3.

Lemma 12. Assume that d, θ and p satisfy (17). If θ ≤ 1/2, there is symmetry in (5), i.e.,
µ2(p,θ,λ) =λ, if λ≤ θd.

It is important to notice that the compatibility of the condition θ ≤ 1/2 with (17) in-
duces restrictions not only on θ but also on p if d ≥ 2: p < 2 if d = 2 and p ≤ 2d/(d −1) if
d ≥ 3.

Proof. Let us consider an optimal function u ∈ H1(Sd ,dσ) for (5) such that ‖u‖Lp (Sd ) = 1
and let a := ‖∇u‖2

L2(Sd )
and b := ‖u‖2

L2(Sd )
. We assume that u is not a constant so that b< 1
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by Hölder’s inequality. By optimality, we have that

(p −2)a+λb=µ2(p,θ,λ)b
1
θ−1 <λb 1

θ−1 .

Let us consider the same flow as in Lemma 12. At t = 0, we know that d
d t F

(2)
λ

[v(t , ·)] = 0
because u is a critical point, and the computation shows that this amounts to

θ (λ−d)

(p −2)a+λb + 1−θ
b

= 0.

By Lemma 10 symmetry eventually holds only if λ≤ θd < d . Let us assume that our non
symmetric minimizer corresponds to the range λ≤ θd . Hence λ−d < 0 and

λ−θd > θ (λ−d)+ (1−θ)λb
1
θ−2 > 0

if θ < 1/2 because b
1
θ−2 < 1. This is obviously a contradiction. We conclude that there is

no non-symmetric optimizer if θ < 1/2 and λ≤ θd .
So far, this proof is formal as we assume that a minimizer exists. By standard compact-

ness results, this is always true, except for some limiting values of θ or p. However, one
can always approximate an inequality like (5) by another inequality in the same family,
with slightly different exponents and pass to the limit. This concludes the proof. �

Let us conclude by a few remarks. The issue of symmetry versus symmetry breaking
is far from fully answered in case of inequality (5), which is not unexpected in view
of similar difficulties in corresponding Caffarelli-Kohn-Nirenberg inequalities. This is
clearly an open and interesting direction of research. A good point is that the carré
du champ method at least provides some partial answers, which are not available in
similar inequalities on the Euclidean space with weights. There are many other ques-
tions which are pending and will be the subject of future work: asymptotics as λ→+∞
for (5), reparametrization and numerical computation of the branches, expansion of the
branches near the bifurcation point, energy estimates in relation with symmetry break-
ing in the asymptotic regime corresponding to p −2 > 0, small, etc.

APPENDIX A. NONLINEAR CARRÉ DU CHAMP METHOD ON THE SPHERE

For completeness, we give a summary of the carré du champ method in integral form
applied to the sphere with entropy methods and a nonlinear diffusion equation of fast
diffusion or porous medium type. More details can be found in a series of earlier papers
on manifolds (see [9, 17], [20, Section 5.2] or [23]) with similar computations done in the
perspective of uniqueness for positive solutions of elliptic equations (rigidity) that can be
found in [26, 5]. In the specific case of the sphere, it is possible to reduce the problem to a
computation based on the ultraspherical operator (see [14, 15, 21, 12, 24]). The method
in the d = 1 case is slightly different (see for instance [20, Section 5.3]) and results do not
require the use of nonlinear diffusion equations as it is known for a long time from [1, 2],
so this will not be discussed here. There are exceptional values of the exponent (p = 6 if
d = 3, or p = 3 if d = 4) which require a specific treatment that will not be detailed here,
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but the result can easily be recovered by considering the limit as p → 6 if d = 3 and p → 3
if d = 4 in the inequalities: see for instance [21]. Here we adopt the presentation of [17]
and go along the lines of the proof of [23, Lemma 4.3]. We adopt simplified notations
and write Id instead of using the standard metric, or simply write the Laplace-Beltrami
operator as−∆. We split the method in two steps, with a first algebraic part closely related
with the computations of [5] and entropy methods applied to a parabolic equation in
order to establish the inequalities. Because of the regularizing effects of the parabolic
equation, there is no regularity issue in considering positive solutions and solutions will
be considered as smooth without further notice. An approximation scheme has of course
to be done for initial data in H 1(Sd ,dσ): see for instance [24] for details in the case of the
ultraspherical operator.

A.1. A purely algebraic computation. Let Hu denote the Hessian of a C 2 function u
on Sd and define the trace free Hessian by

Lu :=Hu − 1

d −1
(∆u) Id.

We also consider the following trace free tensor

Mu := ∇u ⊗∇u

u
− 1

d −1

|∇u|2
u

Id,

where

∇u ⊗∇u := (
∂i u∂ j u

)
i j and ‖∇u ⊗∇u‖2 = |∇u|4 =∑

i j

(
∂i u

)2 (
∂ j u

)2 .

Using L : Id =M : Id = 0 and

‖Lu‖2 = ‖Hu‖2 − 1

d
(∆u)2 ,

‖Mu‖2 =
∥∥∥∥∇u ⊗∇u

u

∥∥∥∥2

− 1

d

|∇u|4
u2

= d −1

d

|∇u|4
u2

,

we deduce from∫
Sd
∆u

|∇u|2
u

dσ=
∫
Sd

|∇u|4
u2

dσ−2
∫
Sd

Hu :
∇u ⊗∇u

u
dσ

= d −1

d −2

∫
Sd

‖Mu‖2 dσ−2
∫
Sd

Lu :
∇u ⊗∇u

u
dσ− 2

d

∫
Sd
∆u

|∇u|2
u

dσ

that ∫
Sd
∆u

|∇u|2
u

dσ= d

d +2

(
d

d −1

∫
Sd

‖Mu‖2 dσ−2
∫
Sd

Lu :
∇u ⊗∇u

u
dσ

)
.

This provides us with a first identity,∫
Sd
∆u

|∇u|2
u

dσ= d

d +2

(
d

d −1

∫
Sd

‖Mu‖2 dσ−2
∫
Sd

Lu :Mu dσ

)
. (18)

The Bochner-Lichnerowicz-Weitzenböck formula on Sd takes the simple form

1
2 ∆ (|∇u|2) = ‖Hu‖2 +∇(∆u) ·∇u + (d −1) |∇u|2
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where the last term, i.e., Ric(∇u,∇u) = (d −1) |∇u|2, accounts for the Ricci curvature ten-
sor contracted with ∇u ⊗∇u. An integration of this formula on Sd shows a second iden-
tity, ∫

Sd
(∆u)2 dσ= d

d −1

∫
Sd

‖Lu‖2 dσ+d
∫
Sd

|∇u|2 dσ . (19)

Hence for some parameters β and κ to be fixed later, the functional

k[u] :=
∫
Sd

(
∆u +κ |∇u|2

u

)(
∆u + (β−1)

|∇u|2
u

)
dσ

=
∫
Sd

(∆u)2 dσ+ (κ+β−1)
∫
Sd
∆u

|∇u|2
u

dσ+κ (β−1)
∫
Sd

|∇u|4
u2

dσ

(20)

can be rewritten using (18) and (19) as

k[u] =
∫
Sd

q[u]dσ+d
∫
Sd

|∇u|2 dσ

where

q[u] := d

d −1

(
a‖Lu‖2 −2bLu :Mu +c‖Mu‖2

)
and

a= 1, b= (κ+β−1)
d −1

d +2
, c= (κ+β−1)

d

d +2
+κ (β−1) . (21)

Let us consider the choice of the parameters

κ=β (p −2)+1 and m = 1+ 2

p

(
1

β
−1

)
(22)

and recall that by definition (10), we have

m±(d , p) := 1

(d +2) p

(
d p +2±

√
d (p −1)

(
2d − (d −2) p

))
.

Lemma 13. Let d ≥ 2, p ≥ 1 if d = 2, and p ∈ [1,2∗] if d ≥ 3. If m−(d , p) ≤ m ≤ m+(d , p),
then q is a positive quadratic form if κ and β are given in terms m and p by (22). As a
consequence, we have

k[u] ≥ d
∫
Sd

|∇u|2 dσ ∀u ∈C 2(Sd ) .

Proof. It follows from the reduced discriminant condition b2 −ac< 0 by tedious but ele-
mentary computations. In the cases p = 6 if d = 3 and p = 3 if d = 4, computations have
to be done directly with m, without using the parameter β (see below). �

In dimension d = 1, we have a similar result with m =β= 1 using the Poincaré inequal-
ity on the circle S1.

A.2. Entropy methods and nonlinear flows. Let us introduce the parabolic evolution
setting corresponding to the nonlinear diffusion equation

∂w

∂t
= w 2−2β

(
∆w +κ |∇w |2

w

)
. (23)
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The function
ρ(t , x) = (

w(m t , x)
)βp ∀ (t , x) ∈R+×Sd

with κ and β as in (22) solves the standard fast-diffusion equation (9). From this obser-
vation, it is clear that

d

d t

∫
Sd

wβp dσ= d

d t

∫
Sd
ρdσ= 0.

Lemma 14. Let d ≥ 2, p ≥ 1 if d = 2, m > 0 and p ∈ [1,2∗] if d ≥ 3. With κ and β as in (22),
any smooth positive solution of (23) is such that

d

d t

∫
Sd

w 2βdσ= 2β2 (p −2)
∫
Sd

|∇w |2 dσ

and, with k defined by (20),

d

d t

∫
Sd

∣∣∇wβ
∣∣2 dσ=−2β2k[w] .

As a consequence, if m−(d , p) ≤ m ≤ m+(d , p), then we have

d

d t

∫
Sd

∣∣∇wβ
∣∣2 dσ≤−2β2 d

∫
Sd

|∇w |2 dσ

Proof. These results are easily proved using a few integrations by parts and Lemma 13.
�

A standard consequence is, for instance, the fact that

d

d t
Fλ

[
wβ

]≤−2β2 (d −λ)
∫
Sd

|∇w |2 dσ

if w solves (23) and Fλ is defined by (8). Hence if λ ≤ d and (23) is supplemented with
the initial datum w(0, ·) = u1/β, then

Fλ[u] ≥Fλ

[
wβ(t , ·)]= lim

s→+∞Fλ

[
wβ(s, ·)]= 0 ∀ t ≥ 0.

The limit as t →+∞ can be identified by analyzing k[w] = 0 and proving that this means
that w is then a constant if p < 2∗. In the case p = 2∗, identifying w as a constant can be
done only by considering w as a limit as t →+∞ of a solution of (23).
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