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This paper is devoted to three Gagliardo-Nirenberg-Sobolev interpolation inequalities on the sphere. We are interested in branches of optimal functions when a scale parameter varies and investigate whether optimal functions are constant, or not. In the latter case, a symmetry breaking phenomenon occurs and our goal is to decide whether the threshold between symmetry and symmetry breaking is determined by a spectral criterion or not, that is, whether it appears as a perturbation of the constants or not. The first inequality is classical while the two other inequalities are variants which reproduce patterns similar to those observed in Caffarelli-Kohn-Nirenberg inequalities, for weighted inequalities on the Euclidean space. In the simpler setting of the sphere, it is possible to implement a parabolic version of the entropy methods associated to nonlinear diffusion equations, which is so far an open question on weighted Euclidean spaces.

INTRODUCTION

In this paper we consider some interpolation inequalities on the sphere which can be written in generic form as

F ∇u 2 L 2 (S d ) , u 2 L 2 (S d ) ≥ u 2 L p (S d ) ∀ u ∈ H 1 (S d , d σ) ( 1 
)
where p > 2 has to be specified. Here the function F : (R + ) 2 → R is a two-homogeneous function, i.e.,

F (h a,h b) = h 2 F (a, b) ∀ (h, a,b) ∈ (R + ) 3 ,
and we assume that F (0, 1) = 1. We will not give general assumptions of regularity on F as we shall rather focus on three particular cases that illustrate the variety of possible cases. With standard notations, d σ = S d -1 d v g denotes the uniform probability measure on the unit sphere S d ⊂ R d +1 induced by Lebesgue's measure on R d +1 . The space L q (S d , d σ) with q ∈ [1, +∞) is the standard Lebesgue space with norm • L q (S d ) defined by

u L q (S d ) := S d |u| q d σ 1/q .
The fact that d σ is a probability measure means that u L q (S d ) = 1 if u = 1 a.e. on S d and we also have u L q 1 (S d ) ≤ u L q 2 (S d ) for any u ∈ L q 2 (S d , d σ) as soon as 1 ≤ q 1 ≤ q 2 . The space H 1 (S d , d σ) is obtained by completion of smooth functions on S d with respect to the norm u → ∇u 2 L 2 (S d )

+ u 2 L 2 (S d ) 1/2 .
If [START_REF] Dolbeault | Diffusions hypercontractives[END_REF] is an optimal inequality, and if there is some u ∈ H 1 (S d , d σ) such that equality holds in [START_REF] Dolbeault | Diffusions hypercontractives[END_REF], the question that we address is the symmetry versus symmetry breaking issue: is u necessarily a constant function (symmetry) or not (symmetry breaking). In this last case, there is a manifold of non-constant optimal functions generated by all possible rotations. We also consider limit cases for which compactness is lost and there is no optimal function (or a sequence of functions approximating the equality case is not compact even after normalization): there is symmetry breaking if the optimality case is not achieved by constant functions.

As a side question, let us mention the question of the rigidity in related elliptic equations: up to a normalization by a multiplicative constant, is there at most one nonnegative solution to the Euler-Lagrange equation

-∂ a F (a, b)∆u + ∂ b F (a, b)u = u 2-p L p (S d ) u p-1 with a = ∇u 2 L 2 (S d ) and b = u 2 L 2 (S d )
or not. Here ∆ denotes the Laplace-Beltrami operator on S d with the convention that -∆ is a nonnegative operator. In case of uniqueness and compactness (normalized minimizing sequences for (1) are relatively compact and the limits after extraction of a subsequence solves the equation), then symmetry holds and u = 1 a.e. is the unique solution, while in the symmetry breaking case, there is no rigidity (notice that if u is optimal for (1), then |u| is also optimal). In order to study the symmetry breaking phenomenon, we shall introduce a bifurcation parameter λ > 0 and families of functions (F λ ) λ>0 depending continuously on λ with F λ (0, 1) = λ. Our goal is to characterize the optimal constant µ(λ) in the inequality

F λ ∇u 2 L 2 (S d ) , u 2 L 2 (S d ) ≥ µ(λ) u 2 L p (S d ) ∀ u ∈ H 1 (S d , d σ) (2)
so that symmetry means µ(λ) = λ while symmetry breaking is characterized by µ(λ) < λ. On S d , there is an intrinsic length scale, which compares with λ. The three families of Gagliardo-Nirenberg-Sobolev inequalities on S d studied in this paper are

∇u 2 L 2 (S d ) + λ p -2 u 2 L 2 (S d ) ≥ µ 0 (p, λ) p -2 u 2 L p (S d ) , (3) 
∇u 2 L 2 (S d ) + λ p -2 u 2 L 2 (S d ) ≥ µ 1 (p, θ, λ) p -2 u 2 θ L p (S d ) u 2 (1-θ) L 2 (S d ) , ( 4 
)
∇u 2 L 2 (S d ) + λ p -2 u 2 L 2 (S d ) θ u 2 (1-θ) L 2 (S d ) ≥ µ 2 (p, θ, λ) p -2 θ u 2 L p (S d ) , (5) 
for any u ∈ H 1 (S d , d σ), where λ > 0 is a parameter while µ 0 (p, λ) and µ k (θ, λ) with k = 1, 2 are the optimal constants. Although the case p ∈ [1, 2) makes sense, we shall for simplicity restrict our purpose to p

∈ (2, ∞) if d = 1, 2 and p ∈ (2, 2 * ] if d ≥ 3, with 2 * = 2 d /(d -2).
By convention, we take 2 * = +∞ if d = 1, 2. The exponent

θ := d p -2 2 p (6)
is the exponent in the Euclidean Gagliardo-Nirenberg-Sobolev inequalities

∇u θ L 2 (R d ) u 1-θ L 2 (R d ) ≥ C GNS u 2 L p (R d ) ∀ u ∈ H 1 (R d , d x) (7)
and induces the limitation θ ≥ θ in [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. As we shall see later, the regime for λ small corresponds to symmetry while the asymptotic regime as λ → +∞ is related with optimal functions for (7) on the tangent Euclidean space R d , which induce symmetry breaking.

Let us give a brief account of the literature. M.-F. Bidault-Véron and L. Véron proved Inequality (3) in [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]Corollary 6.1] as a consequence of a rigidity result. Another proof by W. Beckner in [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF] relies on spectral methods, the Funk-Hecke formula and a duality result introduced by E. Lieb in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]. An earlier version corresponding to the range p ∈ (2, 2 # ) with 2 # = (2 d 2 + 1)/(d -1) 2 if d ≥ 2 and 2 # = +∞ if d = 1 was established by D. Bakry and M. Emery in [START_REF] Dolbeault | Diffusions hypercontractives[END_REF][START_REF] Émery | Inégalités de Sobolev pour un semi-groupe symétrique[END_REF], using the carré du champ method and the heat flow. We refer to [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] for a general overview of the carré du champ method in the context of Markov processes or linear diffusion equations, and to [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF][START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF] for the extension to nonlinear diffusion equations. Also see Appendix A for further references in the case of the sphere.

Inequalities ( 4) and ( 5) are less standard than (3) and we are not aware of specific references. The case θ = 1 in (4) and ( 5) corresponds to the classical interpolation inequality (3). Inequality (5) appears (with optimal constant) for a special value of θ in [12, Inequality (2.4)] as a consequence of improvements of (3) based on the carré du champ method. For a presentation of entropy methods and improved interpolation inequalities, see [START_REF]Improved interpolation inequalities and stability[END_REF] and references therein.

An important motivation for (5) arises from pure states in Lieb-Thirring estimates and interpolation inequalities for systems studied in [START_REF] Bonheure | Some systems arising from Lieb-Thirring kinetic energy inequalities[END_REF]. We refer to [START_REF]Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs[END_REF] for an overview of functional inequalities and branches of solutions in various frameworks, including the quite similar problem of symmetry breaking in some of the (CKN) Caffarelli-Kohn-Nirenberg inequalities. The sharp threshold for the symmetry range of the parameters in such inequalities is established in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF][START_REF]Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces[END_REF] in the critical case and in [START_REF] Bonforte | Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF] in the subcritical case. A complete parabolic proof based on entropy methods is so far missing and results rely on rigidity methods: see [START_REF] Dolbeault | Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization[END_REF][START_REF] Dolbeault | Parabolic methods for ultraspherical interpolation inequalities, Discrete and Continuous Dynamical Systems[END_REF] for partial results based on flows. In the case of the sphere, Inequalities (3), ( 4) and ( 5) have similar properties but by many aspects symmetry versus symmetry breaking issues are simpler. For instance, the regularity of the solution of the nonlinear flow on S d raises no difficulty: see for instance [START_REF] Villani | Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] for some comments in this direction. Branches of optimizers associated with Inequalities (4) and (5) for θ < 1 have qualitative features which are reminiscent of those corresponding to similar (CKN) inequalities (with also some θ < 1) observed in [START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF][START_REF] Esteban | A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Dolbeault | Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]. Beyond numerical observations and a few estimates, these branches for (CKN) are not well understood. Our goal is to state the corresponding properties on the sphere. This paper is organized as follows. In Section 2, we expose results and strategies of proof for Inequality (3). Sections 3 and 4 are devoted to similar properties for Inequalities (4) and ( 5) with a special emphasis on symmetry and symmetry breaking. In the Appendix A, for completeness, we provide some computations based on the carré du champ method applied with a nonlinear flow in the case of the sphere and further bibliographical references for this technique.

CLASSICAL GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES ON S d

In this preliminary section, we review some known results for Inequality (3) and give some hints for the proofs which will guide us in the study of the two other inequalities.

Theorem 1. Let d ≥ 1, p ∈ (2, 2 * ) or p = 2 * if d ≥ 3. Inequality (3) holds with µ 0 (p, λ) = λ if λ ≤ d (symmetry case) and µ 0 (p, λ) < λ if λ > d (

symmetry breaking case).

A standard observation is that λ → µ 0 (p, λ) is a concave increasing function as a consequence of

µ 0 (p, λ) = inf u∈H 1 (S d ,d σ)\{0} (p -2) ∇u 2 L 2 (S d ) + λ u 2 L 2 (S d ) u 2 L p (S d )
and that the symmetry breaking point

d = inf λ > 0 : µ 0 (p, λ) < λ is such that d = inf u∈H 1 (S d ,d σ)\R (p -2) ∇u 2 L 2 (S d ) u 2 L p (S d ) -u 2 L 2 (S d )
,

where H 1 (S d , d σ) \ R denotes the set of non-constant functions in H 1 (S d , d σ).

Let us sketch the proof of Theorem 1.

• Symmetry breaking. Let us consider the functional

F λ [u] := ∇u 2 L 2 (S d ) - λ p -2 u 2 L p (S d ) -u 2 L 2 (S d ) . (8) 
A Taylor expansion of

F λ [1 + ε ϕ] at order two in ε for a function ϕ such that S d ϕ d σ = 0 shows that lim ε→0 1 ε 2 F λ [1 + ε ϕ] = ∇ϕ 2 L 2 (S d ) -λ ϕ 2 L 2 (S d ) .
Taking for ϕ an eigenfunction of the Laplace-Beltrami operator on S d associated with its lowest positive eigenvalue, i.e., such that -∆ϕ = d ϕ, we find that

∇ϕ 2 L 2 (S d ) -λ ϕ 2 L 2 (S d ) = (d -λ) ϕ 2 L 2 (S d ) < 0 for any λ > d , which shows that µ 0 (p, λ) < λ.
• Symmetry. Let us consider the fast diffusion equation

∂ρ ∂t = ∆ρ m , ρ(t = 0, •) = |u| p (9) for some parameter m ∈ m -(d , p), m + (d , p) where m ± (d , p) := 1 (d + 2) p d p + 2 ± d (p -1) 2 d -(d -2) p . (10) 
A computation based on a nonlinear extension of the carré du champ method shows that

d d t F λ [v(t , •)] ≤ -2 β 2 (d -λ) S d ∇v 1/β 2 d σ
where β := 2/ 2-p (1-m) . References are given in Appendix A and the key computation is detailed in Appendix A.1. Hence

d d t F λ [v(t , •)] ≤ 0 and lim t →+∞ F λ [v(t , •)] = 0 if λ ≤ d . This proves that F λ [u] ≥ 0 for an arbitrary u ∈ H 1 (S d , d σ).
See Lemma 14 and final comments at the end of Section A.2 for further justifications.

• Rigidity. As in [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF][START_REF] Erratum | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF][START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF], a remarkable consequence of the proof is the following result.

Corollary 2. Let d ≥ 1, p ∈ (2, 2 * ) or p = 2 * if d ≥ 3. If 0 < λ ≤ d , the equation -∆u + λ p -2 u = u p-1 ( 11 
)
admits a unique nonnegative solution, which is constant.

The proof is consequence of the carré du champ method based on an idea that goes back to [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF].

• Asymptotics. Another piece of information is the asymptotic behavior of the branch λ → µ 0 (p, λ). The following result is taken from [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]Proposition 10].

Proposition 3. Let d ≥ 1 and p ∈ (2, 2 * ). The optimal constant in (3) is such that lim λ→+∞ µ 0 (p, λ) λ θ = S d -p-2 p θ θ (1 -θ ) 1-θ C GNS . If d ≥ 3 and p = 2 * , then µ 0 (p, λ) = min{λ, d } is not achieved in H 1 (S d , d σ) for any λ > d .
As λ → +∞, the corresponding optimal functions concentrate on points of the sphere. A blow-up analysis shows that the projection on the tangent Euclidean space at a blowup point can be estimated by [START_REF] Bonforte | Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF], and optimal functions for (7) are good test functions, which allows to identify the limit. Notice that concentration is incompatible with symmetry, so that we recover symmetry breaking in the limit as λ → +∞. In the case d ≥ 3 and p = 2 * , loss of compactness occurs and a minimizing sequence behave like concentrating Aubin-Talenti bubbles.

• Reparametrization. The following observation is elementary. Let us consider the optimal constants for Inequalities (4) and ( 5) seen as variational problems, namely

µ 1 (p, θ, λ) = inf u∈H 1 (S d ,d σ)\{0} (p -2) ∇u 2 L 2 (S d ) + λ u 2 L 2 (S d ) u 2 θ L p (S d ) u 2 (1-θ) L 2 (S d ) , ( 12 
)
µ 2 (p, θ, λ) = inf u∈H 1 (S d ,d σ)\{0} (p -2) ∇u 2 L 2 (S d ) + λ u 2 L 2 (S d ) u 2 θ -2 L 2 (S d ) u -2 θ L p (S d ) . ( 13 
)
As already noted in Section 1, we know for free that

µ 1 (p, 1, λ) = µ 2 (p, 1, λ) = µ 0 (p, λ)
for any λ > 0. The parameter θ is subject to admissibility conditions that will be specified in Sections 3 and 4. Even for θ = 1, Inequalities ( 4) and ( 5) are related with Inequality (3) as follows. Proof. Let us consider the case k = 1. The function U solves the Euler-Lagrange equation

-∆U + 1 p -2 Λ -(1 -θ) µ 1 (p, θ, Λ) X 2 θ U = µ 1 (p, θ, Λ) X 2 θ-2 (p -2) U p-2 L p (S d ) U p-1 with X = U L p (S d ) / U L 2 (S d ) .
The proof is complete with the choice

λ = Λ p -2 -(1 -θ) µ 1 (p, θ, Λ) X 2 θ and κ 2-p = µ 1 (p, θ, Λ) X 2 θ-2 (p -2) U p-2 L p (S d )
.

A similar reparametrization holds for k = 2.

A FIRST FAMILY OF REFINED INTERPOLATION INEQUALITIES ON S d

Let us define

Q (1) p,θ,λ [u] := (p -2) ∇u 2 L 2 (S d ) + λ u 2 L 2 (S d ) u 2 θ L p (S d ) u 2 (1-θ) L 2 (S d )
.

• Admissible parameters. We establish the validity range of the parameters in (4).

Lemma 5. Inequality (4) holds for any

d ≥ 1, θ ∈ [0, 1], p ∈ (2, 2 * ) or p = 2 * if d ≥ 3, with µ 0 (p, λ) ≤ µ 1 (p, θ, λ) ≤ λ ∀ λ > 0 .
Moreover, equality holds and

µ 1 (p, θ, λ) = λ if λ ≤ d .
Proof. By Hölder's inequality, u L 2 (S d ) ≤ u L p (S d ) because d σ is a probability measure. Using [START_REF]Improved interpolation inequalities and stability[END_REF], we learn that

µ 0 (p, λ) = inf u∈H 1 (S d ,d σ)\{0} Q (1) p,1,λ [u] ≤ inf u∈H 1 (S d ,d σ)\{0} Q (1) p,θ,λ [u] = µ 1 (p, θ, λ) ≤ λ ,
where the upper bound is obtained by testing Q (1) p,θ,λ with u = 1 a.e. If λ ≤ d , there is equality because µ 0 (p, λ) = λ (symmetry case) according to Theorem 1.

We read from Lemma 5 that ( 4) is stronger than (3) and this is why we call Inequality (4) a refined Gagliardo-Nirenberg-Sobolev inequality. Inequality (4) can also be seen as an improved inequality compared to (3) or a stability result for (3): see [START_REF]Improved interpolation inequalities and stability[END_REF] for further considerations on these issues and an example corresponding to a special choice of θ in [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF].

As in Section 2, let us consider

F (1) λ [u] := ∇u 2 L 2 (S d ) + λ p -2 u 2 L 2 (S d ) - λ p -2 u 2 θ L p (S d ) u 2 (1-θ) L 2 (S d )
.

• Symmetry breaking. As in the case of (3), we obtain an estimate of the symmetry breaking range by Taylor expanding around a constant with a perturbation by a spherical harmonic function.

Lemma 6. Let d ≥ 1, θ ∈ [0, 1], p ∈ (2, 2 * ) or p = 2 * if d ≥ 3. There is symmetry breaking in (4), that is, µ 1 (p, θ, λ) < λ, if λ > d /θ. Proof. Let us consider ϕ ∈ H 1 (S d , d σ) such that S d ϕ d σ = 0, u ε = 1 + ε ϕ, and compute ∇u ε 2 2 = ε 2 ∇ϕ 2 L 2 (S d ) + o(ε 2 ) , u ε 2 2 = 1 + ε 2 ϕ 2 L 2 (S d ) + o(ε 2 ) , u ε 2 p = 1 + ε 2 (p -1) ϕ 2 L 2 (S d ) + o(ε 2 ) . As a consequence, we obtain that lim ε→0 1 ε 2 F (1) λ [u ε ] = ∇ϕ 2 L 2 (S d ) -λ θ ϕ 2 L 2 (S d ) = (d -λ θ) ϕ 2 L 2 (S d ) < 0
if we take a non-trivial function ϕ such that -∆ϕ = d ϕ and λ > d /θ.

• Symmetry. Up to a change in the range of λ, the result and its proof are similar to the case studied in Section 2.

Lemma 7. Let d ≥ 1, θ ∈ [0, 1], p ∈ (2, 2 * ) or p = 2 * if d ≥ 3. There is symmetry in (4), that is, µ 1 (p, θ, λ) = λ, if λ ≤ d /θ.
Proof. If d = 1, one can consider a periodic interval identified with S 1 and refer to [START_REF] Émery | Inégalités de Sobolev pour un semi-groupe symétrique[END_REF] for applying the carré du champ method in this elementary setting. Assume that d ≥ 2 and let us consider again the fast diffusion equation ( 9) with m ∈ m -(d , p), m + (d , p) where m ± (d , p) is defined by [START_REF] Esteban | A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF]. The same computation as in the proof of Theorem 1 shows that

d d t F (1) λ [v(t , •)] ≤ -2 β 2 d + λ (1 -θ) x -1 S d ∇v 1/β 2 d σ with x := v 2 θ L p (S d ) v 2 θ L 2 (S d )
.

By a Hölder inequality, we learn that x ≥ 1 and are then back to the same arguments as in the case θ = 1, but now under the condition λ ≤ d /θ.

• Asymptotics. Heuristically, large values of λ correspond to highly concentrated optimal functions, which behave like the functions obtained by a stereographic projection on the tangent Euclidean space at the point of concentration. Let us explain how we define and use the stereographic projection. On R d x, let r = |x| and ω = x/|x| denote spherical coordinates. On the unit sphere

S d ⊂ R d +1 , we consider cylindrical coordinates (ρ ω, z) ∈ R d × (-1, 1) with ρ 2 + z 2 = 1. The stereographic projection S : S d \ {N} → R d , where N ∈ S d is the North Pole defined by z = +1, is such that S(ρ ω, z) = r ω = x where z = r 2 -1 r 2 + 1 and ρ = 2 r 1 + r 2 .
If v is a function on R d , let us consider its counterpart u := S -1 v on S d obtained using the inverse stereographic projection as

u • S -1 (x) = m(r ) d -2 v(x) ∀ x ∈ R d with m(r ) = (1 + r 2 )/2 .
For any q ≥ 1, with δ(q) := 2 dq (d -2), we obtain

S d |u| q d σ = S d -1 R d |v| q m(r ) δ(q) d x , S d |∇u| 2 d σ + 1 4 d (d -2) S d |u| 2 d σ = S d -1 R d |∇v| 2 d x .
Notice that δ(2) = 4. We refer to [12, Theorem 2.1] for a statement concerning the inequality obtained from (3) and a special case of (4) by the stereographic projection.

As another observation, we shall use the optimal constant K p,d in the Gagliardo-Nirenberg-Sobolev inequality on R d

∇u 2 L 2 (R d ) + u 2 L 2 (R d ) ≥ K p,d u 2 L p (R d ) ∀ u ∈ H 1 (R d , d x) . ( 14 
)
An optimization under scaling (apply the inequality to u h (x) = h d /p (h x) and optimize its left-hand side with respect to h > 0) shows that this inequality is equivalent to (7) and, with θ as in [START_REF] Erratum | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF],

θ θ (1 -θ ) 1-θ K p,d = C GNS .
After these preliminaries, we can state the following result, which extends the results for (3) of [16, Proposition 9 and 10] to Inequality (4).

Lemma 8. Let d ≥ 1, θ ∈ [0, 1], p ∈ (2, 2 * ) or p = 2 * if d ≥ 3. There is an explicit constant µ ∞ 1 (p, θ) > 0 such that µ 1 (p, θ, λ) = µ ∞ 1 (p, θ) λ γ 1 + o(1) as λ → +∞ where γ = 1 -d (p -2) θ/2p = 1 -θ θ .
An explicit expression of µ ∞ 1 can be deduced from the proof.

Proof. We do a blow-up analysis based on a change of variables depending on λ → +∞.

Let u λ := S -1 v λ where

v λ (x) := v 2 (λ-λ ) p-2 x ∀ x ∈ R d .
We take λ := 1 4 d (d -2) (p -2) and v as an optimal function for [START_REF] Dolbeault | Sharp interpolation inequalities on the sphere: New methods and consequences[END_REF]. With r = |x|, we compute

Q (1) p,θ,λ [u λ ] = (p -2) ∇u λ 2 L 2 (S d ) + 1 4 d (d -2) u λ 2 L 2 (S d ) + (λ -λ ) u λ 2 L 2 (S d ) u λ 2 θ L p (S d ) u λ 2 (1-θ) L 2 (S d ) = (p -2) ∇v λ 2 L 2 (R d ) + (λ -λ ) m(r ) -2 v λ 2 L 2 (R d ) |S d | θ (1-2/p) m(r ) -δ(p)/p v λ 2 θ L p (R d ) m(r ) -2 v λ 2 (1-θ) L 2 (R d ) = (λ -λ ) 4 (λ-λ ) p-2 -d p-2 2 p θ 4 ∇v 2 L 2 (R d ) + m(εr ) -2 v 2 L 2 (R d ) |S d | θ (1-2/p) m(εr ) -δ(p)/p v 2 θ L p (R d ) m(εr ) -2 v 2 (1-θ) L 2 (R d )
.

with ε = p-2 4 (λ-λ ) . By taking the limit as λ → +∞ and using Lebesgue's theorem of dominated convergence with m(εr ) → 1/ 2 a.e., and by using the fact that the quotient is proportional to the Gagliardo-Nirenberg-Sobolev inequality up to a numerical constant, we conclude that

Q (1) p,θ,λ [u λ ] = (λ -λ ) 1-θθ µ ∞ 1 (p, θ) 1 + o(1) as λ → +∞, for a constant µ ∞
1 (p, θ) that can be computed explicitly, up to tedious but elementary considerations. This proves that

lim λ→+∞ λ -γ µ 1 (p, θ, λ) ≤ µ ∞ 1 (p, θ).
We have now to prove the reverse inequality. As in [16, Proposition 10], we argue by contradiction. Let (λ n ) n∈N and (u n ) n∈N be such that

u n ∈ H 1 (S d , d σ) with u n L p (S d ) = 1 for any n ∈ N, lim n→+∞ λ n = +∞, Q (1) p,θ,λ n [u n ] = µ 1 (p, θ, λ n ) and lim n→+∞ λ -γ n µ 1 (p, θ, λ n ) ≤ µ ∞ 1 (p, θ) -η ( 15 
)
for some η > 0. We learn from the expression of

Q (1) p,θ,λ that λ n u n 2θ L 2 (S d ) ≤ µ ∞ 1 (p, θ) λ γ n
as n → +∞ so that lim n→+∞ u n L 2 (S d ) = 0. Concentration occurs: there exists an eventually finite sequence (y i ) i ∈N of points in S d , sequences of positive numbers (ζ i ) i ∈N and (r i ,n ) i ,n∈N and functions u i ,n ∈ H 1 (S d , d σ) with

u i ,n = u n on S d ∩ B (y i , r i ,n ) and supp u i ,n ⊂ S d ∩ B (y i , 2 r i ,n ) such that, as n → +∞, i ∇u i ,n 2 L 2 (S d ) ∼ ∇u n 2 L 2 (S d ) and i u i ,n 2 L 2 (S d ) ∼ u n 2 L 2 (S d ) ,
with, for all i ,

lim n→+∞ r i ,n = 0 , Σ i ∈N ζ i = 1 and lim n→+∞ S d ∩B (y i ,r i ,n ) |u i ,n | p d σ = ζ i .
With a blow up argument applied to (u i ,n ) n∈N , we prove for all i that

lim n→+∞ λ -γ n (p -2) ∇u i ,n 2 L 2 (S d ) + λ n u i ,n 2 L 2 (S d ) u i ,n -2 (1-θ) L 2 (S d ) ≥ µ ∞ 1 (p, θ) ζ 2 θ/p i .
We may notice that

(p -2) ∇u i ,n 2 L 2 (S d ) + λ n u i ,n 2 L 2 (S d ) u i ,n 2 (1-θ) L 2 (S d ) ≥ (p -2) ∇u i ,n 2 L 2 (S d ) + λ n u i ,n 2 L 2 (S d ) u n 2 (1-θ) L 2 (S d )
.

Let us choose an integer N such that

Σ N i =1 ζ 2 θ/p i ≥ Σ N i =1 ζ i 2 θ/p > 1 - η 2 µ ∞ 1 (p, θ) -1 .
For n large enough, by writing

λ -γ n N i =1 (p -2) ∇u i ,n 2 L 2 (S d ) + λ n u i ,n 2 L 2 (S d ) u i ,n 2 (1-θ) L 2 (S d ) ≥ µ ∞ 1 (p, θ) N i =1 ζ 2 θ/p i 1 + o(1) ≥ µ ∞ 1 (p, θ) - η 2 ,
we obtain a contradiction with [START_REF]Improved interpolation inequalities on the sphere[END_REF]. This concludes the proof.

We collect our results on inequality (4) with optimal constant µ 1 (p, θ, λ) as follows. 

(p, θ) > 0, we have µ 1 (p, θ, λ) ∼ µ ∞ 1 (p, θ) λ γ as λ → +∞ with γ = 1 -2 θ θ .

A SECOND FAMILY OF REFINED INTERPOLATION INEQUALITIES ON S d

In this section, we consider [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. Let us define

Q (2) p,θ,λ [u] := ∇u 2 L 2 (S d ) + λ p-2 u 2 L 2 (S d ) θ u 2 (1-θ) L 2 (S d ) u 2 L p (S d )
.

• Admissible parameters. We establish the validity range of the parameters in [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. We recall that θ = d (p -2)/(2 p) according to the definition [START_REF] Erratum | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. Let us define

q := 2 p θ 2 -p (1 -θ) ( 16 
)
so that q = 2 if θ = θ and q = p if θ = 1.

Lemma 10. Inequality (5) holds for any d , θ and p such that

d ≥ 1 , θ ∈ [θ , 1] ∩ (1 -2/p, 1] , p ∈ (2, 2 * ) or p = 2 * if d ≥ 3 (17)
with an optimal constant µ 2 (p, θ, λ) such that

µ 0 q, λ q-2 p-2 ≤ µ 2 (p, θ, λ) ≤ λ ∀ λ > 0
where q is given in terms of p and θ by [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]. Moreover,

µ 2 (p, θ, λ) = λ if λ ≤ d 1 -(1 -θ) p 2 .
Proof. By Hölder's inequality, u L 2 (S d ) ≤ u L p (S d ) because d σ is a probability measure. Using [START_REF]Improved interpolation inequalities and stability[END_REF], we learn that

µ 0 q, λ = inf u∈H 1 (S d ,d σ)\{0} Q (1)
q,1,

λ[u] ≤ inf u∈H 1 (S d ,d σ)\{0} Q (2) p,θ,λ [u] 1/θ ≤ λ with λ := λ q -2 p -2 .
The upper bound is obtained by testing Q (2) p,θ,λ with u = 1 a.e. If λ ≤ d , there is equality because µ 0 q, λ = λ (symmetry case) according to Theorem 1, which gives us a symmetry case. Notice that 1

-(1 -θ) p 2 is positive if θ > 1 -2/p.
As above, let us consider

F (2) λ [u] := ∇u 2 L 2 (S d ) + λ p -2 u 2 L 2 (S d ) θ u 2 (1-θ) L 2 (S d ) - λ p -2 θ u 2 L p (S d ) .
• Symmetry breaking. Again symmetry breaking is obtained by perturbation.

Lemma 11. Assume that d , θ and p satisfy [START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF]. There is symmetry breaking in [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF], that is,

µ 2 (p, θ, λ) < λ, if λ > θ d .
Proof. With the same computations as in the proof of Lemma 11 and a non-trivial spherical harmonic function ϕ, we obtain that

lim ε→0 1 ε 2 F (2) λ [u ε ] = λ p -2 θ θ ∇ϕ 2 L 2 (S d ) -λ ϕ 2 L 2 (S d ) = (d θ -λ) ϕ 2 L 2 (S d ) < 0 ,
which concludes the proof.

• Symmetry. We apply the same methods as in Sections 2 and 3.

Lemma 12. Assume that d , θ and p satisfy [START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF].

If θ ≤ 1/2, there is symmetry in (5), i.e., µ 2 (p, θ, λ) = λ, if λ ≤ θ d .
It is important to notice that the compatibility of the condition θ ≤ 1/2 with (17) induces restrictions not only on θ but also on

p if d ≥ 2: p < 2 if d = 2 and p ≤ 2 d /(d -1) if d ≥ 3.
Proof. Let us consider an optimal function u ∈ H 1 (S d , d σ) for ( 5 . We assume that u is not a constant so that b < 1 by Hölder's inequality. By optimality, we have that

(p -2) a + λ b = µ 2 (p, θ, λ) b 1 θ -1 < λ b 1 θ -1 .
Let us consider the same flow as in Lemma 12. At t = 0, we know that d d t F (2) λ [v(t , •)] = 0 because u is a critical point, and the computation shows that this amounts to

θ (λ -d ) (p -2) a + λ b + 1 -θ b = 0 .
By Lemma 10 symmetry eventually holds only if λ ≤ θ d < d . Let us assume that our non symmetric minimizer corresponds to the range λ ≤ θ d . Hence λd < 0 and

λ -θ d > θ (λ -d ) + (1 -θ) λ b 1 θ -2 > 0 if θ < 1/2 because b 1 θ -2 < 1.
This is obviously a contradiction. We conclude that there is no non-symmetric optimizer if θ < 1/2 and λ ≤ θ d .

So far, this proof is formal as we assume that a minimizer exists. By standard compactness results, this is always true, except for some limiting values of θ or p. However, one can always approximate an inequality like (5) by another inequality in the same family, with slightly different exponents and pass to the limit. This concludes the proof.

Let us conclude by a few remarks. The issue of symmetry versus symmetry breaking is far from fully answered in case of inequality [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF], which is not unexpected in view of similar difficulties in corresponding Caffarelli-Kohn-Nirenberg inequalities. This is clearly an open and interesting direction of research. A good point is that the carré du champ method at least provides some partial answers, which are not available in similar inequalities on the Euclidean space with weights. There are many other questions which are pending and will be the subject of future work: asymptotics as λ → +∞ for (5), reparametrization and numerical computation of the branches, expansion of the branches near the bifurcation point, energy estimates in relation with symmetry breaking in the asymptotic regime corresponding to p -2 > 0, small, etc.

APPENDIX A. NONLINEAR CARRÉ DU CHAMP METHOD ON THE SPHERE

For completeness, we give a summary of the carré du champ method in integral form applied to the sphere with entropy methods and a nonlinear diffusion equation of fast diffusion or porous medium type. More details can be found in a series of earlier papers on manifolds (see [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF][START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF], [START_REF]Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces[END_REF]Section 5.2] or [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF]) with similar computations done in the perspective of uniqueness for positive solutions of elliptic equations (rigidity) that can be found in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF][START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. In the specific case of the sphere, it is possible to reduce the problem to a computation based on the ultraspherical operator (see [START_REF] Dolbeault | Sharp interpolation inequalities on the sphere: New methods and consequences[END_REF][START_REF]Improved interpolation inequalities on the sphere[END_REF][START_REF]Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF][START_REF]Improved interpolation inequalities and stability[END_REF][START_REF] Dolbeault | Parabolic methods for ultraspherical interpolation inequalities, Discrete and Continuous Dynamical Systems[END_REF]). The method in the d = 1 case is slightly different (see for instance [START_REF]Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces[END_REF]Section 5.3]) and results do not require the use of nonlinear diffusion equations as it is known for a long time from [START_REF] Dolbeault | Diffusions hypercontractives[END_REF][START_REF] Émery | Inégalités de Sobolev pour un semi-groupe symétrique[END_REF], so this will not be discussed here. There are exceptional values of the exponent (p = 6 if d = 3, or p = 3 if d = 4) which require a specific treatment that will not be detailed here, but the result can easily be recovered by considering the limit as p → 6 if d = 3 and p → 3 if d = 4 in the inequalities: see for instance [START_REF]Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]. Here we adopt the presentation of [START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF] and go along the lines of the proof of [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF]Lemma 4.3]. We adopt simplified notations and write Id instead of using the standard metric, or simply write the Laplace-Beltrami operator as -∆. We split the method in two steps, with a first algebraic part closely related with the computations of [START_REF] Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] and entropy methods applied to a parabolic equation in order to establish the inequalities. Because of the regularizing effects of the parabolic equation, there is no regularity issue in considering positive solutions and solutions will be considered as smooth without further notice. An approximation scheme has of course to be done for initial data in H 1 (S d , d σ): see for instance [START_REF] Dolbeault | Parabolic methods for ultraspherical interpolation inequalities, Discrete and Continuous Dynamical Systems[END_REF] for details in the case of the ultraspherical operator. We also consider the following trace free tensor

Mu := ∇u ⊗ ∇u u - 1 d -1 |∇u| 2 u Id ,
where

∇u ⊗ ∇u := ∂ i u ∂ j u i j and ∇u ⊗ ∇u 2 = |∇u| 4 = i j ∂ i u 2 ∂ j u 2 .
Using L : Id = M : Id = 0 and

Lu 2 = Hu 2 - 1 d (∆u) 2 , Mu 2 = ∇u ⊗ ∇u u 2 - 1 d |∇u| 4 u 2 = d -1 d |∇u| 4 u 2 ,
we deduce from

S d ∆u |∇u| 2 u d σ = S d |∇u| 4 u 2 d σ -2 S d Hu : ∇u ⊗ ∇u u d σ = d -1 d -2 S d Mu 2 d σ -2 S d Lu : ∇u ⊗ ∇u u d σ - 2 d S d ∆u |∇u| 2 u d σ that S d ∆u |∇u| 2 u d σ = d d + 2 d d -1 S d Mu 2 d σ -2 S d Lu : ∇u ⊗ ∇u u d σ .
This provides us with a first identity,

S d ∆u |∇u| 2 u d σ = d d + 2 d d -1 S d Mu 2 d σ -2 S d Lu : Mu d σ . ( 18 
)
The Bochner-Lichnerowicz-Weitzenböck formula on S d takes the simple form where the last term, i.e., Ric(∇u, ∇u) = (d -1) |∇u| 2 , accounts for the Ricci curvature tensor contracted with ∇u ⊗ ∇u. An integration of this formula on S d shows a second identity,

S d (∆u) 2 d σ = d d -1 S d Lu 2 d σ + d S d |∇u| 2 d σ . ( 19 
)
Hence for some parameters β and κ to be fixed later, the functional 

The function ρ(t , x) = w(m t , x) β p ∀ (t , x) ∈ R + × S d with κ and β as in [START_REF]Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs[END_REF] solves the standard fast-diffusion equation [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF] Proof. These results are easily proved using a few integrations by parts and Lemma 13.

A standard consequence is, for instance, the fact that The limit as t → +∞ can be identified by analyzing k[w] = 0 and proving that this means that w is then a constant if p < 2 * . In the case p = 2 * , identifying w as a constant can be done only by considering w as a limit as t → +∞ of a solution of [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF].

Proposition 4 .

 4 Let d ≥ 1, p ∈ (2, 2 * ) and Λ > 0, given. If for some admissible θ and either k = 1 or k = 2, U is a non-trivial minimizer for µ k (θ, Λ), then for an appropriate choice of κ > 0, the function u = κU solves[START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF] for some λ > 0. The two parameters κ and λ are explicitly given in terms of µ k (θ, Λ), U L 2 (S d ) and U L p (S d ) .

  ) such that u L p (S d ) = 1 and let a := ∇u 2 L 2 (S d ) and b := u 2 L 2 (S d )

A. 1 .

 1 A purely algebraic computation. Let Hu denote the Hessian of a C 2 function u on S d and define the trace free Hessian by Lu := Hu -1 d -1 (∆u) Id .

1 2 ∆

 2 (|∇u| 2 ) = Hu 2 + ∇(∆u) • ∇u + (d -1) |∇u| 2

1 a 2 ,Lemma 13 .A. 2 .

 12132 2 d σ + (κ + β -1) Lu 2 -2 bLu : Mu + c Mu 2 and a = 1 , b = (κ + β -1)d -1 d + c = (κ + β -1) d d + 2 + κ (β -1) .(21)Let us consider the choice of the parameters κ = β (p -2) + 1 and m = 1 + 2 by definition[START_REF] Esteban | A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF], we havem ± (d , p) := 1 (d + 2) p d p + 2 ± d (p -1) 2 d -(d -2) p . Let d ≥ 2, p ≥ 1 if d = 2, and p ∈ [1, 2 * ] if d ≥ 3. If m -(d , p) ≤ m ≤ m + (d , p),then q is a positive quadratic form if κ and β are given in terms m and p by[START_REF]Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs[END_REF]. As a consequence, we havek[u] ≥ d S d |∇u| 2 d σ ∀ u ∈ C 2 (S d ) .Proof. It follows from the reduced discriminant condition b 2 -ac < 0 by tedious but elementary computations. In the cases p = 6 if d = 3 and p = 3 if d = 4, computations have to be done directly with m, without using the parameter β (see below).In dimension d = 1, we have a similar result with m = β = 1 using the Poincaré inequality on the circle S 1 . Entropy methods and nonlinear flows. Let us introduce the parabolic evolution setting corresponding to the nonlinear diffusion equation ∂w ∂t = w 2-2β ∆w + κ |∇w| 2 w .

  λ w β ≤ -2 β 2 (d -λ) S d |∇w| 2 d σ if w solves[START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF] and F λ is defined by[START_REF] Bonheure | Some systems arising from Lieb-Thirring kinetic energy inequalities[END_REF]. Hence if λ ≤ d and (23) is supplemented with the initial datum w(0, •) = u 1/β , thenF λ [u] ≥ F λ w β (t , •) = lim s→+∞ F λ w β (s, •) = 0 ∀ t ≥ 0 .

  Let d ≥ 2, p ≥ 1 if d = 2, m > 0 and p ∈ [1, 2 * ] if d ≥ 3.With κ and β as in[START_REF]Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs[END_REF], any smooth positive solution of[START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF] is such thatd d t S d w 2 β d σ = 2 β 2 (p -2) ∇w β 2 d σ = -2 β 2 k[w].

					. From this obser-
	vation, it is clear that			
	d d t S d	w β p d σ =	d d t S d	ρ d σ = 0 .
	Lemma 14. S d	|∇w| 2 d σ
	and, with k defined by (20),			
	d			
	d t S d		

As a consequence, if m

-(d , p) ≤ m ≤ m + (d , p), then we have d d t S d ∇w β 2 d σ ≤ -2 β 2 d S d |∇w| 2 d σ
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