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Abstract: The SMOS (Soil Moisture and Ocean Salinity) mission provides surface soil moisture (SM) 11 

maps at a mean resolution of ~50 km. However, agricultural applications (irrigation, crop monitoring) and 12 

some hydrological applications (floods and modeling of small basins) require higher resolution SM 13 

information. In order to overcome this spatial mismatch, a disaggregation algorithm called Disaggregation 14 

based on Physical And Theoretical scale Change (DISPATCH) combines higher-resolution data from 15 

optical/thermal sensors with the SM retrieved from microwave sensors like SMOS, producing higher-16 

resolution SM as the output. A DISPATCH-based processor has been implemented for the whole globe 17 

(emerged lands) in the Centre Aval de Traitement des Données SMOS (CATDS), the French data 18 

processing center for SMOS Level 3 products. This new CATDS Level-4 Disaggregation processor 19 

(C4DIS) generates SM maps at 1 km resolution. This paper provides an overview of the C4DIS 20 

architecture, algorithms and output products. Differences with the original DISPATCH prototype are 21 

explained and major processing parameters are presented. The C4DIS SM product is compared against L3 22 

and in situ SM data during a one year period over the Murrumbidgee catchment and the Yanco area 23 

(Australia), and during a four and a half year period over the Little Washita and the Walnut Gulch 24 

watersheds (USA). The four validation areas represent highly contrasting climate regions with different 25 

landscape properties. According to this analysis, the C4DIS SM product improves the spatio-temporal 26 
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correlation with in situ measurements in the semi-arid regions with substantial SM spatial variability 27 

mainly driven by precipitation and irrigation. In sub-humid regions like the Little Washita watershed, the 28 

performance of the algorithm is poor except for summer, as result of the weak moisture-evaporation 29 

coupling. Disaggregated products do not succeed to have and additional benefit in the Walnut Gulch 30 

watershed, which is also semi-arid but with well-drained soils that are likely to cancel the spatial contrast 31 

needed by DISPATCH. Although further validation studies are still needed to better assess the 32 

performance of DISPATCH in a range of surface and atmospheric conditions, the new C4DIS product is 33 

expected to provide satisfying results over regions having medium to high SM spatial variability. 34 
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1. Introduction 35 

Soil moisture (SM) is an essential component of the water cycle that impacts infiltration, runoff and 36 

evaporation processes. In addition, it modulates the energy exchange as well as the carbon exchange at the 37 

land surface (Daly & Porporato, 2005). SM has influence over a range of spatial scales: the climatic 38 

(Douville, 2004; Laio et al., 2002), the meteorological (Dirmeyer, 2000; Drusch, 2007), the hydrological 39 

(Chen et al., 2011; Draper et al., 2012), the parcel and the local scale (Guérif & Duke, 2000). 40 

Current satellite missions provide surface SM observations at large scales on a global basis. Passive 41 

microwave L-band observations are widely used for surface SM retrievals, but in practice they constrain 42 

the resolution of the retrievals to 30-60 km (Kerr & Njoku, 1990; Njoku & Entekhabi, 1996; Schmugge, 43 

1998) with current technology. The Soil Moisture Ocean Salinity (SMOS) mission, launched in November 44 

2009, incorporates an interferometric radiometer at L-band (1.4 GHz) and provides SM with a resolution 45 

of 30-55 km and a sensing depth of 3-5 cm (Kerr et al., 2001, 2010). SMOS Level 2 (L2) and Level 3 (L3) 46 

SM products have been validated extensively on a regular basis since the beginning of the mission (Al 47 

Bitar et al., 2012; Delwart et al., 2008) and they have been assessed as suitable for hydro-climate 48 

applications (Lievens et al., 2015; Wanders et al., 2014). However, most hydro-agricultural applications 49 

need SM measurements of sub-kilometer spatial resolution with a still representative temporal coverage  50 

(Walker & Houser, 2004). We should strive to provide a high resolution (HR) SM product that would 51 

enhance the knowledge of the hydrological processes at local scale. 52 

Different satellite-based approaches have been proposed to retrieve SM. One of the most popular is the 53 

use of active sensors like the synthetic aperture radars (SAR) (ERS, ALOS, Sentinel 1) or scatterometers 54 

(ASCAT). These instruments provide observations with a variety of spatial and time resolutions but they 55 

are influenced to a great extent by the scattering produced by vegetation structure and surface roughness, 56 

among other factors. Unlike active sensors, passive instruments are much less sensitive to scattering but 57 

provide surface SM estimations at coarse resolutions (>40 km). C- and X-band radiometers like AMSR-E 58 

and WindSat have shown good results (Mladenova et al., 2011), but because of the frequency used, their 59 

sensing depth is shallow (~1cm) and vegetation becomes rapidly opaque. In contrast, L-band radiometer 60 
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acquisitions from SMOS provide SM estimations for a much wider range of vegetation conditions, with a 61 

sensing depth of around 5 cm and a revisit time of ~3 days. However, the spatial resolution provided is 62 

also coarse (35-55 km) as mentioned previously. The main strategies to workaround this issue while 63 

maintaining the benefits of L-band consist of merging the L-band acquisitions with HR ancillary data, 64 

namely radar and optical observations. 65 

Over the past decade, various methods have been proposed to combine active and passive sensors to 66 

produce HR SM (Das et al., 2011; Narayan et al., 2006; Zhan et al., 2006). The NASA Soil Moisture 67 

Active Passive (SMAP) mission, launched in 2015, intended to combine L-band brightness temperatures 68 

(TB) and HR L-band radar backscatter data (Entekhabi et al., 2010a). Despite the radar failure in July 69 

2015, related previous studies showed that SM could have been delivered at 9 km and even 3 km 70 

resolution (Das et al., 2014). 71 

Optical sensors (visible/near-infrared/thermal-infrared) can achieve finer spatial resolutions. However, the 72 

quality of their observations is critically compromised by the presence of clouds. Examples of optical 73 

sensors include the Landsat instruments and the Advanced Spaceborne Thermal Emission and Reflection 74 

radiometer (ASTER), with  data at ~100 m resolution, and the MODerate resolution Imaging 75 

Spectroradiometer (MODIS), with data at ~1 km resolution. Such data include soil temperature and 76 

vegetation cover information, which are variables linked to soil water content (Fang et al., 2013).  The 77 

relationship between land surface temperature (LST) and normalized difference vegetation index (NDVI) 78 

was  first formalized in the 90s with the triangle (Carlson et al., 1994; Carlson, 2007) and the trapezoid 79 

(Moran et al., 1994) approaches.  80 

Most of the methods for deriving HR SM from the synergy between optical and microwave observations 81 

are based on the triangle/trapezoid approaches. Chauhan et al. (2003) stated that the relationship between 82 

LST, NDVI and SM can be formulated as a regression formula specific to the region and climatic 83 

conditions. Later, Piles et al. (2011) included SMOS TBs in the equation, which reduced the bias but 84 

slightly degraded the spatio-temporal correlation between the obtained HR SM and the in situ 85 

measurements. These empirical methods need local calibration of the regression coefficients at low 86 

resolution (LR) before applying them to the HR ancillary data. On the contrary, semi-physical methods 87 
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replace the polynomial function by physically-based models that use evaporation as a proxy variable for 88 

SM variability. Merlin et al. (2008) linked the SM to the soil evaporative efficiency (SEE), defined as the 89 

ratio of actual to potential soil evaporation.  Kim & Hogue (2012) established a linear relationship 90 

between the soil evaporative fraction of Jiang & Islam (2003) and SM. Both approaches improved the 91 

satellite SM spatial variability and showed better correspondence with ground measurements in the area of 92 

study (SMEX04). 93 

The semi-physical methods have three important advantages with respect to the purely empirical methods: 94 

(i) the mean SM is preserved across the merging process (which justifies calling it ‘disaggregation’ or 95 

‘downscaling’), (ii) a physical link is established for HR between SM and the 96 

evaporation/evapotranspiration rate and (iii) no local calibration or fit is needed. These are key factors in 97 

developing a robust and global operational algorithm for HR SM. 98 

Recent studies by Merlin et al. (2012, 2013) have improved the evaporation rate calculation and the 99 

evaporation-SM link of Merlin et al. (2008). The DISaggregation based on Physical And Theoretical scale 100 

Change (DISPATCH) algorithm estimates SEE at high-resolution from soil temperature and vegetation 101 

data for modeling the spatial variations inside the microwave SM observation. In Merlin et al. (2012), 102 

DISPATCH included corrections for the microwave sensor weighting function and grid oversampling and 103 

provided an estimate of the uncertainty in the output disaggregated data. Later, Merlin et al. (2013) 104 

demonstrated that the linear approximation of the SEE-SM link model is suitable for kilometer scales and 105 

included soil temperature corrections for elevation effects. Both studies were conducted under semi-arid 106 

conditions, in a 500x100 km study area within the Murrumbidgee river catchment, in southeastern 107 

Australia, and in a 60x60 km study area east of Lleida in Catalunya, Spain. They showed that DISPATCH 108 

improves the spatio-temporal correlation with in situ measurements, but that the accuracy of disaggregated 109 

products is highly dependant on the SM-evaporation coupling. The downscaled resolution of 1 km  110 

(Merlin et al., 2009, 2013) and the combination of satellite data from different time stamps in DISPATCH 111 

(Malbéteau et al., 2016b; Merlin et al., 2012) have been considered as a good trade-off between spatial 112 

representativeness and overall accuracy, given the current status of the algorithm. 113 
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Recently, a new Level-4 (L4) processor (C4DIS) based on DISPATCH has been implemented in the 114 

Centre Aval de Traitement des Données SMOS (CATDS), the French ground segment for SMOS Level-3 115 

and Level-4 data. The aim is to disaggregate the SMOS CATDS Level-3 (L3) 1-day SM maps to produce 116 

maps of SM at 1 km resolution for any part of the globe on an operational basis. The ancillary temperature 117 

and vegetation data are retrieved from the MODIS mission.  118 

This paper seeks (i) to provide an overview of the C4DIS architecture, processing algorithms, output 119 

products, strengths and weaknesses and (ii) to derive the first conclusions on the performance of the 120 

C4DIS product depending on the climatic and landscape conditions. To do so, we evaluate the C4DIS 121 

product against in situ data from the Murrumbidgee catchment and two additional contrasting networks. 122 

Former versions of DISPATCH have so far been evaluated mostly in semi-arid conditions (Merlin et al., 123 

2012, 2013, Malbéteau et al., 2015). The Murrumbidgee network belongs to these previous studies, and it 124 

is included here to serve as a reference for the current version of DISPATCH and the C4DIS processor 125 

and for the other validation areas. The two other in situ networks considered in this study are located in 126 

the Little Washita watershed in Oklahoma, USA, which exhibits sub-humid conditions, and the Walnut 127 

Gulch watershed in Arizona, USA, which exhibits semi-arid to arid conditions. Their relief, soil properties 128 

and land use differ from the Murrumbidgee’s. The L4 disaggregated SM product is evaluated using in situ 129 

0–5 cm and in situ 0–8 cm measurements taken at the same time as SMOS overpasses (around 6 am, 6 130 

pm) during the period 01/06/2010 to 31/05/2011 for the Australian network and 01/06/2010 to 31/12/2014 131 

for the USA networks. These networks have been providing ground SM data in a continuous basis and 132 

have contributed to the validation of different satellite missions, SMOS among them (Cosh et al., 2004; 133 

Jackson et al., 2010, 2012; Leroux et al., 2013; Peischl et al., 2012). 134 

It is important to note that the DISPATCH algorithm will continue to evolve. Validation activities on the 135 

Level-4 processor C4DIS will provide valuable information for the improvement of the algorithm and 136 

processing chain. This current study is conducted on the products of the first version of the C4DIS 137 

processor. 138 
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2. Input data collection 139 

2.1 In situ measurements 140 

Three validation networks were selected for this work, the Murrumbidgee Soil Moisture Monitoring 141 

Network (MB) in Australia (Smith et al., 2012) and two different USDA (United Stated Department of 142 

Agriculture) networks: Little Washita (LW) in Oklahoma (Cosh et al., 2006) and Walnut Gulch (WG) in 143 

Arizona (Cosh et al., 2008). They exhibit contrasted types of climate, soil properties, land use and spatial 144 

extension. 145 

The MB network covers a large extension (82,000 km
2
) in southern New South Wales.  Its climate ranges 146 

from semi-arid in the west (average annual precipitation of 300 mm), to humid in the east (annual 147 

precipitation of 1900 mm at the Snowy Mountains). The MB has been studied in previous DISPATCH 148 

campaigns (Malbéteau et al., 2016b; Merlin et al., 2012). It is included here for different reasons: it 149 

permits to confront results with previous versions of the algorithm, it contains within the Yanco area, 150 

which gathers the nominal landscape and climatic conditions for DISPATCH (flat, semi-arid with low 151 

vegetation), and it shows a variety of climate, soil and land use cases that can reveal the usefulness of 152 

disaggregation. 153 

The MB consists in 38 validation stations: 18 of them provide SM integrated over the first 8 cm of soil 154 

(Campbell Scientific water content reflectometers) and the rest provide SM integrated over the first 5 cm 155 

of soil (Stevens Hydra Probe). The stations are situated in four areas: 7 stations in the limits of the 156 

catchment near to regional centers; 5 stations in Adelong Creek (145 km
2
), a grazing area with steep 157 

slopes; 13 stations in Kyeamba creek (600 km
2
), a catchment with gentle slopes and grazing and dairy 158 

land use; and finally, 13 stations in the Yanco region (3000 km
2
).  159 

Yanco soils are mainly silty-loam. The climate is semi-arid with an average annual rainfall of about 400 160 

mm, with most of the precipitation occurring in winter and spring. The land use is divided into irrigation 161 

and dry land cropping and pastures. This area has been extensively monitored since 2001 (Smith et al., 162 
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2012) and has been used in a variety of satellite validation campaigns (Mladenova et al., 2011; Panciera et 163 

al., 2014; Peischl et al., 2012) 164 

The USDA networks have been operating since 2002 and they have been used in the validation of 165 

Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) products (Jackson et al., 166 

2010), Aquarius (Bindlish, 2015), ASCAT (Leroux et al., 2013) and SMOS products (Jackson et al., 167 

2012). The probes are installed at a depth of 5 cm, with an effective measurement depth between 3 and 7 168 

cm ( Stevens Hydra Probe).  169 

LW is located in southwest Oklahoma and covers an area of about 610 km
2
. The climate is sub-humid 170 

with an average annual rainfall of 750 mm. Summers are hot and relatively dry while winters are short and 171 

temperate. Autumn and spring are when most of the precipitation occurs (Allen & Naney, 1991). The land 172 

use is mainly rangeland and crops that include winter wheat and some corn and grasses. Soils include a 173 

wide range of textures, with large regions of sands, loams and clays. The topography is moderately rolling 174 

with few hills. 175 

WG occupies an area of 148 km
2
 in southeastern Arizona. The climate is semi-arid, with an average 176 

annual rainfall of 324 mm, lower than in the Yanco region. Most of the rains occur in the form of small 177 

scale high-intensity thunderstorms during the summer months as part of the North American Monsoon 178 

System (Cosh et al., 2008). Soils are mainly sands and gravel with good drainage. Desert shrubs and short 179 

grasses dominate the landscape. The topography is considered as rolling with significant rock cover. 180 

Although the climate class of WG is defined semi-arid as the Yanco area, the contrasting landscape 181 

properties and precipitation conditions make WG an interesting validation area (Table 1). 182 

It is important to outline that the area extent covered by the networks is different so it may have an impact 183 

on the validation process: the MB comprises multiple SMOS pixels through sparse stations and more 184 

dense localized sites, the Yanco region covers approximately one SMOS pixel, and the LW and WG cover 185 

around 1/4 and 1/16 of the surface of one SMOS pixel. This does not affect the C4DIS processor, which 186 

handles input larger surfaces, but it may affect the validation process since the smaller networks may not 187 

be representative of the ~40 km surface. 188 
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Table 1- Main characteristics of validation areas 

 Murrumbidgee Yanco LW WG 

Extension 82,000 km
2
 3000 km

2
 610 km

2
 148 km

2
 

Climate 
Semi-arid (west) to 

humid (east) 
Semi-arid Sub-humid Semi-arid to arid 

Annual 

precipitation 
300 – 1900 mm 400 mm 750 mm 324 mm 

Main precipitation 

periods 

Relatively constant 

at the basin scale 
Winter, spring Autumn, spring 

Summer 

(intense, localized) 

Soils 
Clayey (west) to 

sandy (east) 
Silty-loam 

Sands, loams and 

clays 
Sands and gravel 

Topography 
Diverse, mountains 

in the east 
Flat Moderate rolling Rolling 

2.2 SMOS soil moisture data 189 

The SMOS satellite was launched in November 2009. SMOS has global coverage with a revisit period of 190 

3 days at the equator, with ascending (A) overpass at 6:00 am and descending (D) overpass 6:00 pm local 191 

solar time. The SMOS instrument is a passive 2D interferometer operating at L band (1.4 GHz) (Kerr et 192 

al., 2001, 2010). The spatial resolution ranges from 35 to 55 km, depending on the incident angle. The 193 

goal is to retrieve SM (first 5 cm) with a target  accuracy of 0.04 m
3
/m

3 
(Kerr et al., 2012). 194 

The C4DIS processor disaggregates the SM provided by the SMOS Level-3 1-day global SM product 195 

(MIR CLF31A/D). In this paper, the version 2.72 (in 220 reprocessing mode RE02) product is used. 196 

Level-3 (L3) products are presented in NetCDF format on the EASE (Equal Area Scalable Earth) grid, 197 

with a grid spacing of ~25x25 km.  198 

The L3 SM products are directly computed from the SMOS Level-1 products at the CATDS. The core of 199 

the algorithm for retrieving SM from brightness temperatures is derived from the L2 retrieval algorithm 200 

(Kerr et al., 2012; Wigneron et al., 2007). In both processing chains, SM is derived from the combination 201 

of multiangular observations. While the L2 chain considers only the multiangular observations of the same 202 

day and orbit (ascending/descending), the L3 chain uses several overpasses (3 at most) over a 7-day 203 

window. This results in more coverage and robustness for the L3 products (Al-Yaari et al., 2014). Details 204 
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on the L3 processing algorithm can be found in the Algorithm Theoretical Baseline Document (Kerr et al., 205 

2013) and in the L3 data product description (Kerr et al., 2014). 206 

2.3 MODIS temperature and vegetation data 207 

The C4DIS processor uses three ancillary products at 1 km resolution. Two of them are derived from 208 

MODIS acquisitions: LST and NDVI. These are necessary elements for the SEE calculation inside 209 

DISPATCH.  210 

The LST datasets are extracted from version-5 MODIS/Terra LST and emissivity daily L3 global 1-km 211 

grid products (MOD11A1) and version-5 MODIS/Aqua LST and emissivity daily L3 global 1-km grid 212 

products (MYD11A1).  The NDVI dataset is extracted from the version-5 MODIS/Terra vegetation 213 

indices 16-day Level-3 global 1-km grid product (MOD13A2). 214 

The MODIS products are retrieved from the NASA Land Processes Distributed Active Archive Center 215 

(LP DAAC). They are presented in sinusoidal projection at 1 km resolution (Solano et al., 2010; Wan, 216 

1999, 2006). The disaggregation approach requires the NDVI dataset acquired within the last 15 days and 217 

the LST datasets of the day before, the same day and the day after. The MODIS products are available 218 

between 1 and 9 days after the acquisition day. 219 

2.4 Digital Elevation Model 220 

The C4DIS processor requires elevation information, which is extracted from the GTOPO30 Digital 221 

Elevation Model (DEM) product available in the WGS84 sphere at 30-arc second resolution. The 222 

GTOPO30 product is distributed by the U.S. Geological Survey’s EROS Data Center (USGS, 223 

https://lta.cr.usgs.gov/GTOPO30). 224 

https://lta.cr.usgs.gov/GTOPO30
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3. The CATDS Level-4 Disaggregation (C4DIS) processor 225 

The CATDS Level-4 (L4) Disaggregation (C4DIS) processor is the first operational version of the 226 

DISPATCH algorithm. The C4DIS processor selects the best algorithm and parameter configuration 227 

according to past DISPATCH studies and the latest research (Merlin et al., 2006, 2009, 2010a, 2010c, 228 

2012, 2013). It also makes possible to obtain disaggregated SM on a global and daily basis (under the 229 

assumption of no cloud-covered scenes and availability of input data). The C4DIS products have been 230 

marked as ‘scientific’ products because the algorithm is still evolving: their access will be granted on 231 

demand for specific areas of the world. In this and the following sections, we describe both the 232 

DISPATCH prototype and the C4DIS processor. 233 

3.1 DISPATCH algorithm 234 

DISPATCH relies on a SEE term to model the spatial variability over the low-resolution (LR) SMOS 235 

pixel. The first step is to account for the SEE term at HR, described as a linear function of soil 236 

temperature: 237 

SEEHR = (Ts,max – Ts,HR) / (Ts,max – Ts,min)   (1) 

Soil (Ts,HR) and vegetation (Tv,HR) temperatures are derived from LST and NDVI datasets as in Merlin et 238 

al., (2012), where the surface temperature is partitioned into its soil and vegetation components according 239 

to the trapezoid method of Moran et al. (1994). Soil temperature is calculated as follows: 240 

Ts,HR = (TMODIS − fv,HRTv,HR) / (1−fv,HR)   (2) 241 

with TMODIS being the MODIS LST and fv the MODIS-derived fractional vegetation cover.  Here, the 242 

fractional vegetation cover is calculated as:  243 

fv,HR = (NDVIMODIS –NDVIs) / (NDVIv –NDVIs)   (3) 244 

with NDVIMODIS being the MODIS NDVI, NDVIs the NDVI for bare soil (set to 0.15), and NDVIv the 245 

NDVI for full-cover vegetation (set to 0.90). 246 
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The vegetation temperature Tv,HR is calculated according to the “hourglass” approach (Moran et al., 1994, 247 

Merlin et al., 2012): 248 

Tv,HR = (Tv,min + Tv,max) / 2   (4) 249 

At this point, vegetation (Tv,min, Tv,max) and soil (Ts,min, Ts,max)  temperature end-members are estimated 250 

depending on the amount of vegetation. Given the minimum and maximum LST values of the scene 251 

TMODIS,min and TMODIS,max, and the fv values associated to the same pixels, fv,Tmin and fv,Tmax, the following 252 

approximations hold (Merlin et al., 2013): 253 

I) When the vegetation portion is low at TMODIS,min (fv,Tmin < 0.5), then Ts,min = Tv,min = TMODIS,min 254 

II) When the vegetation portion is considerable at TMODIS,min (fv,Tmin >= 0.5), then Tv,min = 255 

TMODIS,min and Ts,min is derived from Eq. 2, with Tv = Tv,min 256 

III) When the vegetation portion is low at TMODIS,max (fv,Tmax < 0.5), then Ts,max = TMODIS,max and 257 

Tv,max is derived from Eq. 2, with Ts = Ts,max 258 

IV) When the vegetation portion is considerable at TMODIS,max (fv,Tmin >= 0.5), then Tv,max = 259 

TMODIS,max and Ts,max is derived from Eq. 2, with Tv = Tv,max 260 

Note that LST has been preliminary corrected for elevation effects (decrease of air temperature with 261 

altitude) by using the DEM information at HR (Merlin et al., 2013): 262 

TMODIS = TMODIS-ori + γ(HHR – HLR)   (5) 263 

with TMODIS being the topography-corrected LST used in the previous equations,  TMODIS-ori the original 264 

MODIS LST, γ (°C m
−1

) the mean lapse rate (set to 0.006 °C m
−1

), HHR the altitude of the MODIS pixel 265 

and HLR the mean altitude within the LR pixel. 266 

In a second step, the semi-empirical linear model of Budyko (1956) and Manabe (1969) is used to link the 267 

surface SM (0-5 cm) and the SEE terms. According to Merlin et al. (2013), the linear model is a good 268 

approximation for kilometer scales so the SEE for each HR pixel can be written as: 269 
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SEEHR = SMHR / SMp    (6) 270 

where SMp is a parameter estimated at LR at each execution from daily SM and SEE observations as 271 

follows: 272 

SMp = SMLR / SEELR   (7) 273 

with SMLR the radiometer-sensed SM and SEELR the average of the SEEHR values inside the LR pixel. 274 

 The disaggregation is finished by applying a first order Taylor series to the SM-SEE model at each HR 275 

pixel (downscaling relationship). The corresponding disaggregated SM is: 276 

SMHR = SMLR + SM’(SEELR) × (SEEHR −SEELR)  (8) 277 

with  SM’(SEELR) the partial derivative of SM relative to SEE at LR (SMp). 278 

3.2 DISPATCH operational implementation 279 

Following the methodology introduced in Merlin et al. (2012), C4DIS executes DISPATCH on a set of 280 

possible combinations of input datasets, producing multiple HR outputs that are averaged together into a 281 

single final disaggregated SM field (SM_HR). The rationale behind this is to account for the uncertainty 282 

of the approach and to reduce independent random errors (Malbéteau et al., 2016b; Merlin et al., 2012). 283 

The input ensemble is formed by 4 downsampled instances of the original L3 SM dataset and up to 6 LST 284 

datasets corresponding to 3 consecutive days of MODIS acquisitions (Aqua and Terra overpasses). This 285 

means that each SM_HR output comes from the composition of up to 24 DISPATCH outputs (up to 24 286 

input SM-LST possible pairs). 287 

SMOS original datasets are downsampled in order to work at the radiometer resolution. SMOS L3 288 

products are provided on a 25 km grid, which can be up to half of the original SMOS resolution (35-50 289 

km). The four SM datasets are derived from the original SM map by sampling the data at 50 km and are 290 

assumed to be independent. This is not totally true, since grid cells depend on the surrounding cells from a 291 

radiometric perspective, but helps to potentially reduce (and provide an estimate of) random errors in the 292 

SM_HR data. Regarding the selection of 6 MODIS LST datasets from 3 consecutive days, it is assumed 293 

that SM fields are spatially stable for periods of at least 1 day around the SMOS overpass time. This 3-day 294 
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derived product with daily estimated SMp is referred as the ‘sm1k3d’ product in Malbéteau et al. (2015) 295 

and is the one built by the C4DIS processor. The 3-day product has much better temporal coverage than its 296 

1-day counterpart (‘sm1k1d’), but the uncertainty associated to the methodology is expected to be higher 297 

since the temporal stability assumption can be often violated by precipitation and irrigation events. 298 

There is no dedicated dataset in the C4DIS product that specifies explicitly whether the 3-days stability 299 

condition is respected or not. In the future, this will be achievable with the use of ancillary precipitation 300 

information, for example. Meanwhile, in addition to the SM_HR dataset, two more datasets are produced 301 

as indicators of the aggregation of the DISPATCH ensemble: the STD dataset, which is the standard 302 

deviation of the up to 24 disaggregated SM fields, and the COUNT dataset, which is the size of the 303 

ensemble. The aggregation is conducted if at least 3 SM fields are generated, so the COUNT values range 304 

from 3 to 24. In this paper, we study the STD and the COUNT datasets as potential sources of information 305 

for a future quality control flag (section 5.5).  306 

Finally, the current version of DISPATCH filters out any LST pixel values that have associated QC flags 307 

different from 0 and 17, which correspond to maximum LST quality (error <1K) and maximum emissivity 308 

error of 0.01 and 0.02 respectively (Solano et al., 2010; Wan, 2006). Areas with more than 1/3 of their 309 

surface covered by clouds are also discarded. Differences between the operational and the prototype 310 

versions of DISPATCH are summarized in Table 2. 311 

Table 2 - Main differences between the DISPATCH operational implementation in the C4DIS processor 

and the previous prototype versions 

 C4DIS processor (Merlin et al., 2013) (Merlin et al., 2012) 

SEE model Linear 

 (Budyko, 1956; Manabe, 1969) 

Linear 

 (Budyko, 1956; Manabe, 1969) 

Non-linear 

 (Noilhan & Planton, 1989) 

Calculation of Tv “Hourglass” approach  

(Moran et al., 1994) 

“Hourglass” approach  

(Moran et al., 1994) 

“Hourglass” approach  

(Moran et al., 1994) 

Calculation of 

temperature end-

members (Ts,min, 

Ts,max, Tv,min, Tv,max) 

Estimated by a simpler 

approach based on the 

combination of LST and fv 

Estimated by a simpler 

approach based on the 

combination of LST and fv 

Estimated by plotting MODIS 

LST against MODIS albedo and 

NDVI within the LR pixel 

(Merlin et al., 2010b) 

Input SM data SMOS L3 SM SMOS L2 SM SMOS L2 SM 
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Input LST data “sm1k3d” mode 

 (3x2 input LST datasets) 

“sm1k1d” mode 

 (1x2 input LST datasets) 

“sm1k3d” mode 

 (3x2 input LST datasets) 

Input DEM data GTOPO30 GTOPO30 Not implemented 

LST filtering Yes, QC flags 0 and 17 Yes, QC flags 0 and 17 No 

Cloud-free threshold 0.67 0.90 0.90 

Sea-free threshold 0.90 0.90 Not implemented 

3.3 Pre-processor 312 

The C4DIS pre-processor prepares the input ensemble that is required by DISPATCH. The pre-processor 313 

uses the MODIS sinusoidal tiling system as the execution reference, meaning that the processor is 314 

executed for the SMOS and ancillary data contained within each MODIS tile bounds. More information 315 

about the grid can be found in http://modis-land.gsfc.nasa.gov/MODLAND_grid.html. The SMOS and 316 

ancillary data inside the tile bounds are selected and re-projected to an equal-spaced lat-lon WGS84 grid. 317 

Considering that ancillary products are presented in different datums and grids, the choice of the WGS84 318 

projection minimizes the total number of resampling operations. 319 

The pre-processor is divided into modules for file format transformation, dataset extraction, re-projection 320 

and re-gridding. As explained in the previous section, DISPATCH requires 4 subsampled instances of 321 

SMOS data and up to 6 LST datasets. As a consequence, the re-projection and re-gridding are sensible 322 

operations that deserve being explained in detail. 323 

The pre-processor outputs are re-projected to the same WGS84 projection, but resampled to different 324 

resolutions: SMOS subsampled rasters are provided on 0.4° grids while ancillary raster data are provided 325 

on a 0.01° grid. The SMOS 0.4° grids are derived from an original global grid at 0.2° by sliding a 0.4° 326 

window over it, so that the pixel centers are coincident. Based on this, the SM values become 327 

representative of the double of the original grid resolution 0.2°, which approximately matches the average 328 

SMOS resolution. The disaggregation is only performed in the intersection area between the 4 SMOS 329 

grids and the ancillary data grid (Figure 1). 330 

http://modis-land.gsfc.nasa.gov/MODLAND_grid.html
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 331 

Figure 1 – Simplistic representation of the relation between the SMOS subsampled grids (at 0.4°) and the 

re-projected ancillary data at 0.01°. The extent of the re-projected ancillary image (LST, NDVI, etc.) 

matches the intersection of the four SMOS grids. The disaggregation is only applied in this overlapping 

zone. 

3.4 Post-processor 332 

The C4DIS post-processor transforms the DISPATCH outputs into the CATDS format. It includes two 333 

significant transformations that impact the disaggregated data. First, in the case that DISPATCH generates 334 

negative SM values (which is mathematically possible), the post-processor clips them to 0 to respect 335 

physical meaning. Second, since the outputs of DISPATCH are presented in local time and day, the post-336 

processor assigns to them the corresponding UTC time and day to keep consistency with other SMOS 337 

products. 338 

3.5 Assumptions and applicability domains of the algorithm 339 

The application requirements of the C4DIS processor are directly inherited from DISPATCH. The 340 

following considerations must be taken into account: 341 

- Cloud free conditions: soil temperature can only been retrieved from optical sensors if clouds are not 342 

present. C4DIS products show data gaps associated with clouds. 343 

- Low vegetation cover:  The LST-NDVI trapezoid describes a zone of values where no useful 344 

disaggregated data can be produced since LST is mainly controlled by vegetation transpiration, with 345 

no sensitivity to surface SM (Merlin et al., 2013). Sites with partial fractional vegetation cover at the 1 346 

km resolution are desired.  347 
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- Moisture-driven evapotranspiration: the disaggregation relies on the dependence established between 348 

LST, evapotranspiration and SM. Some climates exhibit low dependency between those variables. 349 

Typically, climates characterized as energy-limited, like humid climates, exhibit a weaker moisture-350 

evaporation coupling. 351 

- Medium to high spatial variability: the MODIS-derived SEE is computed with a polygon method that 352 

relies on LST and reflectance end-members (Moran et al., 1994). In the current version, DISPATCH 353 

is contextual and thus heterogeneous scenes with meaningful dry-wet contrast are needed in order to 354 

ensure good end-members accuracy (Merlin et al., 2010a). Note that LST end-members could be 355 

estimated using available meteorological data (Moran et al. 1994) independently from the surface 356 

(wet/dry) conditions observed at the 1 km resolution within the LR pixel (Stefan et al., 2015).  357 

- Accuracy of the SMp parameter: the SMp parameter is calculated at LR scale by using a linear 358 

relationship that has been studied as suitable for kilometer scales (Merlin et al., 2013). It is based on 359 

the assumption that the sub-pixel variability of SMp at HR is negligible. Soil characteristics (texture, 360 

porosity, etc.) may impact the relationship between SEE and SM and thus SMp. Hence, the current 361 

versions of C4DIS and DISPATCH should perform better in areas with homogeneous soil 362 

characteristics where the intra-pixel spatial SM variability is mainly due to forcing agents, namely 363 

precipitation and irrigation. 364 

- Mismatch of overpass times: the C4DIS processor uses MODIS LST datasets at 6 different 365 

timestamps. This is based on the assumption that the SM pattern is maintained over a period of 3 days, 366 

with no rain events occurring in between.  367 

- Mismatch of sensing depths: SMOS L-band SM estimations are representative of the soil first 5 cm 368 

content, while MODIS temperature acquisitions are representative of the soil skin layer. DISPATCH 369 

assumes that the soil skin temperature is correlated with the soil evaporation process occurring in the 370 

0-5 cm of soil (Merlin et al., 2010a). 371 
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3.6 Global product description 372 

- Coverage, grid and resolution. C4DIS products are presented in a regular lat-lon grid at 0.01° 373 

resolution. The projection is divided in a tiled grid that follows the MODIS sinusoidal tiling system, 374 

meaning that the C4DIS tiles are centered at MODIS tiles and follow the same name convention in 375 

(h,v) coordinates. Due to reprojection, the tiles present different size. C4DIS products can be 376 

generated for all emerged lands (tiles with more than 50 % of land), but since they are tagged as 377 

‘scientific’ products, the tiles of interest have to be delivered on demand. For this study, the following 378 

tiles have been produced: (29,12) and (30,12) for the validation over the MB, (09,05) for LW and 379 

(08,05) for WG. Figure 2 shows annual averages of C4DIS products for the selected tiles. The 380 

extension and border of the tiles are easily distinguishable.  381 

- Availability and timeliness. The delivering of C4DIS products is determined by the availability and 382 

timeliness of the input datasets. The limiting dataset is the MODIS MOD13A2 product (NDVI), 383 

which is valid for a period of 15 days starting at its date of acquisition (DoA) but can be delivered 384 

some days later. In consequence, C4DIS products for dates DoA to DoA+15 are produced at date 385 

DoA+25. In other words, each 16 days the C4DIS products for acquisition dates between 25 to 10 386 

days before are delivered. 387 

- Datasets and quality control. We cannot provide a full-proof quality flag given the current status of 388 

the processor and the algorithm. Nevertheless, the output COUNT and STD datasets can help to assess 389 

the quality of the SM_HR dataset. Combining these datasets with additional ancillary data like 390 

precipitation or MODIS/SMOS quality flags, may help to build a quality control dataset in the future. 391 

As introduced in Section 3.2, the COUNT field determines the number of SM-LST combinations used by 392 

DISPATCH to produce one output. Low COUNT values indicate missing input data as result of diverse 393 

reasons: SMOS RFI contamination, MODIS cloudy scenes, failures in the SMOS/MODIS acquisitions 394 

delivering, etc. SM_HR fields generated when low COUNT values are present do not profit from the 395 

reduction in independent random errors as result of averaging. The STD field contains the per-pixel 396 

standard deviation of the up to 24 disaggregated datasets with respect to the averaged output SM_HR. 397 
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Low values of STD are desirable since they reveal temporal persistency of both temperature and moisture 398 

variables. High values may indicate external forcing agents (precipitation and irrigation) within the 3-days 399 

window. 400 

 401 

Figure 2 - Year averages of SMOS L3 and L4 disaggregated products (ascending orbit) for part 

of the USA and for the year 2014. The L4 figure includes only the tiles (08,05) and (09,05), 

joined together. The black circles correspond, from left to right, to the location of Walnut Gulch 

and Little Washita validation networks. 
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 402 

Figure 3 - Year averages of SMOS L3 and L4 disaggregated products (ascending orbit) for part of 

Australia and for the year 2010. The L4 figure includes part of the tiles (29, 12) and (30,12), joined 

together. The dotted line depicts the boundary of the Murrumbidgee catchment. 
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4. Analysis Methodology 403 

Our analysis involves two main approaches: qualitative assessment of disaggregated SM maps and 404 

statistical evaluation. The statistical evaluation consists on comparing the L3 SMOS product (LR) and the 405 

L4 product (HR) against the in situ SM by using standard statistical metrics (e.g. correlation, bias, etc.). 406 

This can be accomplished in the spatial or in the time domain. We base the statistical evaluation on the 407 

assumption that the 1 km pixel is more representative of the in situ measurement than the whole LR pixel.  408 

In order to assess the relative spatial performance of both L3 and L4 products at HR, we directly compare 409 

the station measurements to the satellite retrievals, without aggregating them at LR. In the subsequent 410 

sections, MB refers to the whole Murrumbidgee network, including Yanco area. Yanco only refers to the 411 

12 stations contained in this region. 412 

4.1 Data preparation 413 

We filter L3 and L4 SM time series for radio frequency interference (RFI) by removing pixels having 414 

more than 10 % RFI probability. The RFI information is extracted from the same CLF31A/D product and 415 

accounts for the percentage of brightness temperatures acquisitions affected by RFI presence (Kerr et al., 416 

2013; Oliva et al., 2012).  In addition, regarding the in situ data, we only keep the SM values at the SMOS 417 

overpass times. Finally, we filter the three SM time series (in situ, L3 and L4) for common dates with 418 

valid SM values (>0.0 m
3
/m

3
). 419 

4.2 Analysis of the temporal and spatial variability of the in situ SM 420 

As expected for any data disaggregation approach, the application of DISPATCH is relevant when the SM 421 

spatial variability at the downscaled resolution is larger than the output uncertainty. Since the current 422 

version of DISPATCH relies on the spatial contrast of LST and SM of the scene, a preliminary study on 423 

the spatial SM variability of the validation areas is desired. In homogeneous SM landscapes, the output 424 

uncertainty is likely to be greater than the spatial gain provided at HR by disaggregation. 425 
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Similarly, it is desirable that the evaluation include in situ time series spanning the full range of SM 426 

conditions and seasonal changes. In other words, the temporal standard deviation (σ) should be large 427 

enough so that all the states of the SM variable are represented and no selection bias is present. 428 

Additionally, stations exhibiting very different temporal σ may suggest landscape spatial heterogeneity: 429 

soil characteristics like texture, vegetation and topography affect the dry-down process, generating 430 

different extreme values in time.  431 

Based upon the considerations discussed above, the evaluation of the performance of the C4DIS products 432 

should include a preliminary assessment of the spatial and temporal SM variability of the validation 433 

networks. The performance of DISPATCH outputs over MB and Yanco has been identified as rather 434 

satisfactory in recent studies (Malbéteau et al., 2016b; Merlin et al., 2012), which makes them good 435 

references  for spatial and temporal σ.  436 

4.3 Classical metrics 437 

Given the spatial mismatch between in situ and satellite estimations and the spatial scarcity of ground 438 

stations, most classical satellite validation campaigns only evaluate the temporal dimension, by means of 439 

metrics like correlation (R), root mean square error (RMSE) and bias (B) (Albergel et al., 2012; Albergel, 440 

et al., 2013; Entekhabi, et al., 2010b; Bitar et al., 2012). In this study, we use similar temporal analysis but 441 

we also include an evaluation in the spatial domain since disaggregation techniques aim at producing 442 

better spatial representation.  The spatial statistical analysis consists of computing the metrics between the 443 

satellite and in situ values for each day, then, deriving the average of each metric for the whole period. We 444 

deliberately establish a minimum of 5 points per day to compute the metrics. 445 

Herein, instead of the RMSE, we use as error metric the standard deviation of the error (Eq. 9) (Mood et 446 

al., 1974; Salkind, 2010), which is a non-biased estimation of the error and so it is not compromised by the 447 

bias in the mean and amplitude of the time series that affects the RMSE. The relationship between both 448 

metrics is written in Eq. 10 and 11. Since we already use multiple terms to refer to different standard 449 

deviation measures and datasets in this paper (σ, STD), we will refer to this metric as unbiased-RMSE or 450 

ubRMSE (Entekhabi et al., 2010b). Given that the 1 km pixels are in general heterogeneous and that the 451 
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ground data also present measurement uncertainties, the term ‘error’ has been replaced by ‘difference’ in 452 

these metrics, i.e. RMSD and ubRMSD. 453 

ubRMSD = √ E{ [(SMsatellite – E{SMsatellite}) – (SMinsitu – E{ SMinsitu })]
2
} (9)

 

RMSD = √ E{(SMsatellite - SMinsitu)
2
} (10)

 

ubRMSD = √ (RMSD
2
 - B

2
) (11) 

where E{·} is the expectation operator, SMsatellite and SMinsitu the satellite and the in situ SM time series. 454 

We include one additional metric to assess the efficiency gained in spatial representativeness: the slope (S) 455 

of the regression line between in situ and satellite estimates: 456 

S = R · σsatellite / σinsitu  (12) 457 

with σsatellite and σinsitu being the standard deviations of satellite and in situ SM, respectively. The S metric 458 

can help to understand how much better the SM redistribution is represented after the disaggregation 459 

process. Whereas aggregation systematically decreases the σsatellite, disaggregation specifically aims to 460 

improve the spatial representation of satellite SM by increasing the σsatellite at the level of  σinsitu, while 461 

keeping a significant R. Mathematically speaking, R is the slope of the standardized regression line, and S 462 

is scaled by the σ values of both data ensembles (Rodgers & Nicewander, 1988). Since the σinsitu is fixed, S 463 

is more sensitive than R to changes in σsatellite. In summary, an increase in random uncertainties (larger 464 

ubRMSD, smaller R) in disaggregated SM might be acceptable if S is closer to 1. Note that the random 465 

uncertainties in satellite SM can be significantly reduced via the techniques of data assimilation in land 466 

surface models, but the systematic errors associated with the mismatch between data resolution and model 467 

application scale are more difficult to take into account at HR (Merlin et al., 2006).  468 

Finally, the metrics here (S, R, ubRMSD, B) assume that a linear relationship exists between the two 469 

datasets compared. This means that they cannot replace the visual assessment of the data. In the general 470 

case, both SMOS L3 and disaggregated SM may exhibit non-linear behavior with respect to in situ SM. 471 
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4.4 Relative performance metrics 472 

Comparing the improvement/degradation in statistics for different cases of study (networks, filtering, time 473 

period, etc.) may be difficult: we propose as solution to calculate their relative gains as introduced in 474 

Merlin et al. (2015). Briefly, the gain is a measure of the improvement in the statistics obtained for the L4-475 

in situ pair with respect to the L3-in situ pair. The gain can range from -1 to 1, where positive values 476 

indicate disaggregated data having better correspondence with in situ than LR data. In this study, we keep 477 

the nomenclature of Merlin et al. (2015) and we add a new gain term for the ubRMSD (see Table 3). The 478 

gains are calculated as in Eq. 13 for in S and R metrics, and as in Eq. 14 for B and ubRMSD. 479 

GX = − (|1−XL4|−|1−XL3|) / (|1−XL4|+|1−XL3|)    (13) 

GX = − (|XL4|−|XL3|) / (|XL4|+|XL3|)    (14) 

where X designates the metric (S, R, B, ubRMSD), XL4 the value of the metric when disaggregated SM is 480 

compared against in situ, and XL3 the value of the metric when L3 SM is compared against in situ. 481 

Table 3 - List of performance metrics used in this study, from (Merlin et al., 2015) 

 482 

Gain(S) …….........  GEFFI 

Gain(R) …….......... GACCU 

Gain(B) …….........  GROBU 

Gain(ubRMSD) ....  GubRMSD 
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5. Results and discussion 483 

This study seeks to provide a first assessment on the applicability of the DISPATCH-based processor 484 

under different climatic and landscape conditions. It also attempts to provide statistical guidelines on the a 485 

priori suitability of a geographical area for the production of meaningful C4DIS fields. The analyses span 486 

the 01/06/2010 to 31/12/2014 period for the MB network and Yanco area and the 01/06/2010 to 487 

31/12/2014 period for the LW and WG networks. The SMOS data collected during the commissioning 488 

phase (until 31/05/2010) is discarded. 489 

5.1 Preliminary analysis 490 

In order to predict the performance of the processor, we conduct a statistical analysis on the in situ SM 491 

data. We derive conclusions about their temporal and spatial variabilities by looking at their distribution of 492 

SM values and their distribution of ‘spatial σ’ and ‘temporal σ’. The ‘spatial σ’ (upper row in Figure 4) is 493 

the standard deviation of the SM distribution on each day. The ‘temporal σ’ (middle row) is the standard 494 

deviation of the SM series of each station. 495 

As stated in section 4.2, we consider the in situ SM distribution characteristics of MB and Yanco networks 496 

as reference in the present study. The spatial σ plot shows narrower distributions for LW and WG, and the 497 

mean value is much lower for the latter (0.03 m
3
/m

3
).  This means that the spatial variability at LW and 498 

WG seen at the satellite overpass times is lower than in the reference cases, so we expect poorer 499 

performances in the spatial domain.  500 

In the temporal domain (middle row of Figure 4), the mean variability of LW and WG networks is lower 501 

than that of the Australian cases. The SM distribution of WG (4
th
 column) shows a very strong peak near 502 

zero that accounts for almost the half of the samples. Under these conditions, we expect WG to be the 503 

network with worst temporal performance of C4DIS products, while LW should behave similarly to MB 504 

and Yanco. It is important to mention that LW and WG only represent a portion of a SMOS pixel and the 505 

in situ samples only concern some HR pixels in space, so the distributions depicted here serve only as 506 

approximation. 507 
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Figure 4- Distribution of spatial and temporal standard deviations and SM values for the in situ samples 

of Yanco, MB, LW and WG (1
st
 to 4

th
 columns respectively) at the SMOS overpass times. Number of bins 

of the histograms is 40. The median of the distributions is depicted in dashed line and the mean in solid 

line. The WG soil moisture maximum percentage is not shown (right-down graph) for readability and it 

reaches 47 % of the samples. 

5.2 Qualitative examples 508 

The qualitative inspection of disaggregated SM maps for MB, Yanco, LW and WG, shows that the L4 509 

product is able to reveal spatial entities like small and sparse water bodies. 510 

Figures 5 and 6 contain sample outputs of the C4DIS processor on cloud-free days for the four areas. In 511 

the MB picture (Figure 5), the Murrumbidgee river is revealed thanks to disaggregation, while the south-512 

eastern region is empty due to clouds and the SMOS non-retrieved pixels over the mountains. In Figure 6, 513 

disaggregation does not help reveal the Little Washita river course but it does with the surrounding lakes. 514 
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The processor fails to display any spatial pattern inside the WG watershed. These maps are in agreement 515 

with the evaluation in the previous section. 516 

 517 

Figure 5 - Maps of L3 SM (CLF31D) and L4 disaggregated SM for MB watershed on 22/11/2010 for the 

SMOS descending overpass. 

Yanco maps are a good example of the usefulness and relevance of the C4DIS products when the 518 

algorithm assumptions are met. Figure 7 shows the Yanco area with the limits of the Coleambally 519 

Irrigation Area (CIA) units superimposed. At a first glance, the L4 SM map reveals the farms that are 520 

actually irrigated, while original SM map do not. 521 
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 522 

Figure 6 – Maps of L3 SM (CLF31A) and L4 disaggregated SM for LW (left column) and WG (right 

column) watersheds on 02/05/2011 and 01/05/2011 respectively. Solid black contours correspond to 

watershed boundaries. In the left column, the bold dotted line in the middle of the watershed correspond 

to the Little Washita river and the bold dotted contours to surrounding lakes. 

 

Figure 7- Maps of L3 SM (CLF31D) and L4 disaggregated SM for Yanco area on 22/11/2010. Black lines 

represent the contours of Coleambally irrigated farms. 
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Finally, we show in Figure 8 a series of C4DIS disaggregated outputs between the 4
th
 and the 18

th
 day of 523 

2011. We can identify in detail the areas affected by the floods that touched the states of New South 524 

Wales and Victoria on those days. Likewise, we see how the dry-down process is faster in some small 525 

areas than in others (west of Yanco). 526 

 527 

Figure 8 - Maps of L4 disaggregated SM for MB on the first days of January 2011, showing the 

progression of floods that affected New South Wales and Victoria states. The title of each image contains 

the date and the SMOS overpass (‘A’ for ascending, ‘D’ for descending). 

5.3 Spatial evaluation 528 

In this section, the L4 and L3 SM products are compared at HR on a daily basis against the in situ 529 

measurements.  530 

Table 4 shows daily statistics averaged over the periods of analysis. When comparing the statistics 531 

obtained for L3 and L4 products in MB and Yanco networks, it is noted an important enhancement of the 532 

S and the R values, ranging between 0.24-0.32 and 0.09-0.17, respectively.  Results are consistent with the 533 

conditions of the area, especially those of Yanco (semi-arid climate with SM spatial heterogeneity 534 
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dominated by irrigation). Spatial B is maintained while ubRMSD increases (around 0.02 m
3
/m

3
) which 535 

can be explained by the added uncertainty when combining data from different sources. 536 

LW and WG statistics are much poorer than MB ones: R and S never exceed 0.11. The reasons for that 537 

can be found in both the algorithm and the conditions of the validation area. First, the L3 statistics (R and 538 

S) are much worse in the American than in the Australian networks, which may entail uncertainty present 539 

in the LR product that is propagated to the L4 product. Second, according to the preliminary statistical 540 

analysis (section 5.1), the spatial σ distribution of WG is narrower and span over lower values than those 541 

of the Australian networks. The spatial variability cannot explain however the poor statistics of LW, since 542 

here the mean spatial σ  is similar to the Australian ones (0.07 m
3
/m

3
 for Yanco, 0.06 m

3
/m

3
 for MB and 543 

LW). Another important aspect to take into consideration is the mismatch between the validation extent 544 

and the SMOS resolution.  LW and WG cover only part of the surface of one SMOS pixel (~1/4 and ~1/12 545 

of its equivalent surface, respectively), so the distribution of spatial σ may not be representative of the 546 

surface perceived by DISPATCH. All this suggests that a qualitative analysis of the area is strongly 547 

recommended. 548 

The LW watershed has rolling relief and a variety of soil textures and vegetation types, which are not 549 

considered in the soil temperature equations of DISPATCH. Moreover, its extension is around 4 times 550 

smaller than the Yanco area: we can think that a higher heterogeneity within the 1 km pixel would hamper 551 

R and S statistics as well. Most importantly, LW climate is defined as sub-humid, so we can expect the 552 

link moisture-evaporation to be weak.  Concerning WG, the soils are of fast infiltration (sands and 553 

gravels), which reduces the apparent SM spatial contrast at the satellite overpass times, a necessary 554 

condition for an accurate computation of the DISPATCH SMp parameter. 555 

The comparison of the results here with previous versions of the algorithm can shed light on the 556 

pertinence of the choices made in the algorithm since Merlin et al., 2012. Regarding the most recent study, 557 

similar spatial statistics for MB and Yanco can be found in Malbéteau et al., 2015, which proves that the 558 

performance of the processor is coherent with that of the prototype algorithm. The remaining differences 559 

are originated by two factors. First, in our aim to assess the qualities of the entire C4DIS processor, we use 560 
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as LR SM reference the original SMOS CLF31A/D product, while Malbéteau et al., 2015 employed a 561 

reprojected form of the same product used by DISPATCH, which was a reasonable choice from the 562 

algorithm point of view. Second, the C4DIS post-processor clips to zero the negative values produced by 563 

DISPATCH, a module that was not still implemented at the time of Malbéteau et al., 2015. 564 

Another two former validation campaigns of DISPATCH showed better correspondence with in situ 565 

measurements, but they were accomplished for specific areas with known high-evaporative demand and 566 

for no more than a dozen of dates. For the Murrumbidgee catchment and AACES-I campaign (Merlin et 567 

al., 2012), and the Catalunya campaign (Merlin et al., 2013), summer 2010 and 2011 respectively, the 568 

correlation values were close to the double of those obtained for MB in this study. However, the AACES-569 

based study also reported negative values for those dates with very dry homogeneous SM scenes. This 570 

confirms our hypothesis for WG, were the large number of ‘flat’ SM scenes is probably behind the 571 

unsatisfactory statistics. In the same article of 2012, the AACES-II results (winter), allowed to presum that 572 

the weak evaporation-SM coupling was behind negative R values. Our statistics for LW seem to confirm 573 

this point, but since the mean R is higher, it suggests that the algorithm might be useful for some periods 574 

of the year. 575 

Table 4 - Spatial statistics of Yanco and MB for the period 01/06/2010 to 31/05/2011 and of LW and WG 

for the period 01/06/2010 to 31/12/2014. ‘L3’ refers to the comparison between L3 SM and in situ SM and 

‘L4’ refers to the comparison of L4 disaggregated SM and in situ SM. ‘A’ stands for ascending orbit and 

‘D’ for descending orbit. All the values are expressed in m
3
/m

3
, except for R and Number of days, which 

are unitless. 

  Yanco MB LW WG 

  

L3 L4 L3 L4 L3 L4 L3 L4 

S A 0.064 0.309 0.086 0.403 0.003 0.047 0.004 0.110 

 

D 0.080 0.378 0.195 0.430 0.031 0.046 0.017 0.111 

R A 0.201 0.316 0.156 0.288 0.030 0.064 0.015 0.102 

 

D 0.194 0.363 0.251 0.335 0.115 0.057 0.042 0.111 

B A 0.018 0.021 0.031 0.035 0.023 0.016 0.031 0.026 

 

D 0.006 0.011 0.016 0.020 0.023 0.012 0.029 0.026 

ubRMSD A 0.072 0.094 0.082 0.103 0.063 0.076 0.030 0.037 

 

D 0.077 0.091 0.080 0.100 0.062 0.076 0.033 0.040 

Nb A 74 100 573 552 

days D 66 95 557 545 
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5.4 Temporal evaluation 576 

For the temporal analysis, we consider the same period and datasets as in section 5.3. We compute 577 

statistics on the concatenation of all the SM series within a network. Table 5 displays temporal statistics 578 

for the four validation networks. Regarding Yanco and MB, the S metric is better for the HR SM product 579 

(between 0.12 and 0.18 higher), which is consistent with the spatial evaluation results. R is slightly 580 

degraded in Yanco while maintained in MB. This, and the increase in ubRMSD, can be explained by the 581 

temporal uncertainty induced by the processor when considering as inputs observations acquired in 582 

different days and times. These results are consistent with previous validation studies of DISPATCH: 583 

Merlin et al., 2013 showed that the temporal S could increase between 0.15 to 0.25 after disaggregation, 584 

while R being maintained or increased and ubRMSE increased. 585 

In the case of LW , the disaggregated SM (L4) has a slightly better S when compared to in situ SM than 586 

does L3 SM for both orbits (improvement of +0.06 for A orbit and of +0.03 for D orbit). The same 587 

evaluation holds for WG (improvement of +0.05 and of +0.08 for A and D orbits respectively). Like in the 588 

Yanco case, disaggregation slightly degrades R and ubRMSD for both SMOS orbits, showing again the 589 

increase of random uncertainties attributed to the models and data used by DISPATCH. 590 

Table 5 - Temporal statistics of Yanco and for the period 01/06/2010 to 31/05/2011, and of LW and WG 

for the period 01/ 06/2010 to 31/12/2014. ‘L3’ refers to the comparison between L3 SM and in situ SM 

and ‘L4’ refers to the comparison of L4 disaggregated SM and in situ SM. In the second column, 'A’ 

stands for ascending orbit and ‘D’ for descending orbit. All the values are expressed in m
3
/m

3
, except for 

R and Number of points, which are unitless, and RFI percentage, which is in %. 

  Yanco MB LW WG 

  

L3 L4 L3 L4 L3 L4 L3 L4 

S A 0.368 0.489 0.363 0.538 0.406 0.463 0.490 0.544 

 

D 0.333 0.465 0.383 0.542 0.415 0.441 0.381 0.458 

R A 0.432 0.370 0.321 0.377 0.468 0.434 0.468 0.436 

 

D 0.369 0.356 0.361 0.368 0.460 0.410 0.352 0.366 

B A 0.019 0.023 0.033 0.027 0.023 0.017 0.031 0.026 

 

D 0.004 0.014 0.020 0.019 0.025 0.014 0.030 0.026 

ubRMSD A 0.090 0.120 0.105 0.118 0.078 0.088 0.044 0.051 

 

D 0.095 0.118 0.095 0.118 0.077 0.088 0.052 0.056 

RFI perc. A 0.000 - 0.248 - 1.893 - 1.958 - 

 

D 0.000 - 0.000 - 1.893 - 1.562 - 
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Nb points A 754 754 1429 9027 

 

D 723 723 1409 9337 

According to our preliminary analysis on in situ temporal σ and SM samples, WG should at least behave 591 

differently with respect to the other networks (much narrower distribution of SM values, skewed to the dry 592 

section of the range and lower σ variability). However, no significant differences are found in the 593 

temporal statistics. 594 

Differences can be appreciated more easily through qualitative inspection of scatter plots (Figure 9). In 595 

Yanco and MB plots, the increase in ubRMSD is observed in the more dispersed cloud of points, although 596 

the distribution appears slightly closer and more symmetric around the 1:1 line. In the case of LW, we can 597 

see that for drier SM conditions (< 0.15 m
3
/m

3
), disaggregated values are closer to in situ values and 598 

become equally distributed around the 1:1 line. Since LW climate is sub-humid, evapotranspiration 599 

processes are mainly energy-driven; however, we can expect them to be moisture-driven during periods 600 

with lower water availability and higher temperatures like summer. This is confirmed in Figure 10, which 601 

shows the scatter plot for LW summers.  Regarding WG, the scatter plots show no major differences 602 

between L3 and L4 data. This is consistent with the very low spatial and temporal in situ σ: DISPATCH is 603 

operating at the limit of its nominal range at 1 km resolution and the amount of information obtained is not 604 

more important than the uncertainty introduced. It outlines also the importance of qualitative assessments: 605 

although LW and WG show similar global spatial and temporal statistics, C4DIS disaggregated fields, 606 

which are not of interest in WG, are valuable in the case of LW summers. 607 
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 608 

Figure 9 - Scatterplots of original L3 SM (1
st
 row) and L4 disaggregated SM (2

nd
 row) versus in situ 

measurements for both A and D orbits. The samples here correspond to the periods 06/2010 to 05/2011 

for MB and Yanco, and 06/2010 to 12/2014 for LW and WG. Dashed line represents the 1:1 slope and the 

solid line corresponds to the linear regression line (S statistic). 

 

Figure 10 - Scatterplot of L3 SM (1
st
 row) and L4 disaggregated SM (2

nd
 row) against in situ SM samples 

for LW network for summer periods (June, July and August months of years 2010 to 2014). Dashed line 

represents the 1:1 slope and the solid line corresponds to the linear regression line (S statistic). 

5.5 Analysis of the STD and COUNT datasets 609 

As introduced in section 3.6, the STD and COUNT datasets can help derive conclusions on the quality of 610 

the SM_HR values. In this section, we evaluate spatial and temporal statistics on SM samples with 611 

different corresponding STD and COUNT values. We first select the samples with values falling inside a 612 
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given STD or COUNT range of values; then, we compute statistics on the in situ, L3 and L4 values for 613 

those samples. This analysis is conducted on MB and Yanco networks as USDA networks still show low 614 

statistics after filtering for STD and COUNT values. Herein, we use the gain metrics introduced in section 615 

4.4, which will simplify the task of comparison between bins of STD and COUNT. 616 

Table 6 shows spatial statistics for MB and Yanco divided in 3 ranges of STD (<0.03 m
3
/m

3
, 0.03-0.07 617 

m
3
/m

3
, >0.07 m

3
/m

3
).  Note that the total number of days analyzed drops drastically when STD or 618 

COUNT filtering is applied to spatial metrics. This is as expected since for a given time stamp, the 619 

samples have STD and COUNT values that belong to different bins and we need at least 5 samples in the 620 

same bin  to compute statistics.. C4DIS SM dataset exhibits the lowest correlation (S and R) and the 621 

highest error (ubRMSD) with in situ when most of the pixels have high STD (>0.07 m
3
/m

3
).  This seems 622 

plausible since large ubRMSD values can be produced by forcing events (rain, irrigation) in the 3-days 623 

window of DISPATCH, so the final SM_HR values would contain high uncertainty. We cannot generalize 624 

any behavior in performances for the medium and lower STD ranges (<0.07 m
3
/m

3
) since MB and Yanco 625 

show different trends. If we consider only Yanco, which is a much more homogeneous area in terms of 626 

climate and landscape properties, we can conclude that, regardless of the bias, the rest of spatial metrics 627 

are better as STD gets lower. Whether this is applicable to other homogeneous areas or not need to be the 628 

subject of additional studies. 629 

Spatial statistics are also filtered for COUNT values (Table 7). In this respect, statistics are better for large 630 

values of COUNT (17-24 datasets). However, the number of days used in this computation is low (below 631 

15) so the results may not be accurate. 632 

Table 6- Spatial statistics as a function of the values of the STD dataset for MB and Yanco areas from 

01/06/2010 to 31/05/2011. Best statistics are outlined and in italics. Last line of Yanco table has been 

crossed out because it refers to only one day of statistics. 

 

Yanco MB 

STD GEFFI GACCU GROBU GubRMSD Ndays GEFFI GACCU GROBU GubRMSD Ndays 

< 0.03 0.27 0.24 -0.22 0.05 11 0.15 0.11 -0.12 -0.04 45 

0.03 - 0.07 0.13 0.06 -0.11 -0.10 39 0.17 0.05 -0.03 -0.07 108 

> 0.7 -0.47 -0.12 -0.42 -0.57 1 -0.02 -0.09 0.05 -0.28 16 



 36 of 48 

 

Table 7 - Spatial statistics as a function of the COUNT dataset for MB and Yanco areas from 01/06/2010 

to 31/05/2011. Best statistics are outlined and in italics. 

 

Yanco MB 

COUNT GEFFI GACCU GROBU GubRMSD Ndays GEFFI GACCU GROBU GubRMSD Ndays 

1-8 0.16 0.08 -0.16 -0.16 69 0.16 0.07 -0.05 -0.11 143 

9-16 0.12 0.16 -0.15 -0.07 22 0.14 -0.01 -0.12 -0.15 51 

17-24 0.44 0.29 -0.08 0.06 11 0.35 0.15 -0.24 -0.04 13 

Regarding the temporal domain, Yanco shows a deterioration of the metrics as STD increases (Table 8), 633 

which is consistent with the preliminary in situ spatial analysis and would be mainly due to the uncertainty 634 

added when precipitation or irrigation take place in the 3-days window of DISPATCH. Such trend is not 635 

revealed in the MB data (same table), and conclusions are difficult to be derived given the high 636 

heterogeneity within the network. 637 

Concerning the COUNT dataset, Table 9 clearly shows that temporal statistics improve as COUNT 638 

increases. This seems to confirm that the methodology of averaging of the disaggregated ensemble helps 639 

to reduce random uncertainties in the temporal domain. 640 

Table 8 - Temporal statistics as a function of the STD dataset for MB and Yanco areas from 01/06/2010 to 

31/05/2011. Best statistics are outlined and in italics. 

 

Yanco MB 

STD GEFFI GACCU GROBU GubRMSD Nsamples GEFFI GACCU GROBU GubRMSD Nsamples 

< 0.025 0.18 0.04 -0.30 -0.06 472 0.16 0.03 -0.81 -0.06 904 

0.025 - 0.040 0.04 -0.06 -0.14 -0.11 813 0.11 0.01 0.03 -0.10 1459 

0.040 – 0.055 0.03 -0.04 -0.41 -0.18 192 0.13 0.06 -0.12 -0.03 475 

Table 9 - Temporal statistics as a function of the COUNT dataset for MB and Yanco areas from 

01/06/2010 to 31/05/2011. Best statistics are outlined and in italics. 

 

Yanco MB 

COUNT GEFFI GACCU GROBU GubRMSD Nsamples GEFFI GACCU GROBU GubRMSD Nsamples 

1-8 0.08 -0.06 -0.21 -0.15 965 0.14 0.02 0.08 -0.08 1910 

9-16 0.17 -0.02 -0.18 -0.12 386 0.19 0.02 0.04 -0.09 737 

17-24 0.22 0.19 0.35 0.01 126 0.21 0.15 0.44 -0.03 191 

 641 

 

 



 37 of 48 

 

6. Conclusions 642 

The C4DIS processor is the new SMOS L4 processor of the French ground segment CATDS, which 643 

provides global maps of disaggregated SM at 1 km resolution. The C4DIS processor is the operational 644 

version of the DISPATCH prototype (Merlin et al., 2012, 2013). DISPATCH disaggregates LR SM 645 

observations using HR soil temperature data. It models the physical link between soil temperature, 646 

evaporation and moisture with a semi-empirical SEE model and a first-order Taylor series expansion 647 

around the SM observation. The soil temperature is derived from the combination of LST, NDVI and 648 

elevation information. The C4DIS processor uses the SM dataset of the SMOS 1-day L3 CLF31A/D 649 

product from CATDS, the LST dataset of the MODIS MOD11A1 and MYD11A1 products from LP 650 

DAAC services, the NDVI dataset from the MOD13A2 product from LP DAAC services, and the 651 

elevation dataset from the GTOPO30 product from the USGS Eros Data Center. 652 

In this study, the C4DIS products were evaluated for four different geographical areas: the Murrumbidgee 653 

validation network and the Yanco area for the period 06/2010 to 05/2011, and the Little Washita and 654 

Walnut Gulch networks for the period 01/2010 to 12/2014. The objective was to provide a first assessment 655 

of the processor under different climatic and land conditions.  The performance was assessed by 656 

comparing the disaggregated (L4) and non-disaggregated (L3) SM datasets against the in situ 657 

measurements in both the spatial and temporal domains.. The in situ SM data was statistically analyzed 658 

beforehand in order to predict the suitability of the C4DIS processor for each area. We also evaluated the 659 

output COUNT and STD datasets as potential sources of information for quality assessment. 660 

The evaluation of the disaggregated SM dataset in Murrumbidgee and Yanco brought results in coherence 661 

with previous versions of DISPATCH (Malbéteau et al., 2016b; Merlin et al., 2012), and presented 662 

improvements on the spatial correlation in the range 0.09-0.17. Similar enhancements were present in the 663 

temporal domain. Additionally, C4DIS SM maps succeeded to reveal spatial heterogeneities (rivers, 664 

irrigation areas, floods).  665 
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Little Washita and Walnut Gulch showed very low spatial metric values for both non-disaggregated and 666 

disaggregated SM fields, though disaggregation slightly improved the statistics. For the Little Washita, the 667 

scatter plots revealed that the performances were better in the dry section of the SM range (<0.15 m
3
/m

3
) 668 

and during summers, meaning that the improvement in spatial representation was possible under moisture-669 

driven evaporation periods. Visual assessment of C4DIS SM maps showed that the disaggregated product 670 

was capable of revealing the presence of water bodies in the surrounding areas namely lakes.  671 

For the Walnut Gulch network, the poor spatial correspondence with in situ was easily explained by the 672 

preliminary statistical analysis that we conducted on in situ SM data: this revealed very low spatial 673 

variability (mean spatial σ was equal to 0.03 m
3
/m

3
), which is one of the essential conditions for a good 674 

performance of the algorithm. The evaluation of this network brought to view that the algorithm needs to 675 

be improved to adapt to all types of soil. Although Walnut Gulch watershed also has a moisture-controlled 676 

evaporative profile (semi-arid to arid climate) like the Australian areas, the soil is mainly sandy with high 677 

infiltration rates, which obstructs the detection of surface SM variations by the algorithm. 678 

When evaluating the temporal behavior of the (non-disaggregated and C4DIS) satellite SM series, we 679 

found an improvement of the slope of the regression line between C4DIS and the in situ data. The 680 

correlation was slightly hampered, especially in LW and WG, and the standard deviation of the 681 

differences also increased. This was likely to be caused by the increase in uncertainty associated with the 682 

use of multi-satellite data. 683 

With the aim of making the C4DIS products useful in a global perspective, we evaluated how the other 684 

two output datasets, COUNT and STD, could help in the future definition of a quality flag. We showed 685 

that for a homogeneous area like Yanco, spatial and temporal metrics were better as STD decreased. 686 

Consistently, large COUNT values helped to decrease the random uncertainties and they improved 687 

temporal statistics.  In this area, heterogeneity is mainly driven by precipitation and irrigation, and STD 688 

was directly linked to such events. On the contrary, STD and COUNT could not give sufficient 689 

information for quality control in more heterogeneous areas (like the entire Murrumbidgee), so we 690 

concluded that output C4DIS datasets must be combined with ancillary information like precipitation or 691 

other  heterogeneity-related data sources to implement a good quality flag field. 692 
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In conclusion, the C4DIS processor performs well in regions with SM spatial variability mainly produced 693 

by external forcing agents (precipitation or irrigation). Additionally, the degree of variability must be 694 

enough so the application of a disaggregation technique is advisable. These two characteristics are mainly 695 

conditioned by the climate (semi-arid), soil properties (with moderate drainage), and land properties (low 696 

topography, quasi-homogeneous land cover). The proper performance of the processor can be predicted by 697 

looking at the in situ SM variability and assessing qualitatively the enounced characteristics. The C4DIS 698 

SM products can be evaluated by applying ordinary spatial and temporal statistics, visual inspection of 699 

maps as well as using the STD and COUNT datasets on homogeneous areas. In the future, including 700 

meteorological forcing (solar radiation, air temperature, wind speed and air humidity at 2 m; Stefan et al., 701 

2015), precipitation (Djamai et al., 2015), soil texture (Merlin et al., 2016) and solar exposure (Malbéteau 702 

et al., 2016a) as ancillary data will help improve DISPATCH and elaborate a quality control dataset that 703 

will enlarge the applicability areas of the processor. 704 



 40 of 48 

 

Acknowledgements 705 

Initial setup and maintenance of the Murrumbidgee monitoring network used in this study was funded by 706 

the Australian Research Council (DP0343778, DP0557543) and by the CRC for Catchment Hydrology.  707 

The MODIS products were retrieved from the online server http://e4ftl01.cr.usgs.gov/, courtesy of the 708 

NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 709 

Observation and Science (EROS) Center, Sioux Falls, South Dakota. 710 

The SMOS products were obtained from the Centre Aval de Traitement des Données SMOS (CATDS), 711 

operated for the "Centre National d'Etudes Spatiales" (CNES, France) by IFREMER (Brest, France). 712 

This study was supported by the CNES “Terre, Océan, Surfaces Continentales, Atmosphère” program and 713 

by the French “Agence Nationale de la Recherche” MIXMOD-E project (ANR-13-JS06-0003-01). 714 



 41 of 48 

 

Bibliography 715 

Al Bitar, A., Leroux, D. J., Kerr, Y. H., Merlin, O., Richaume, P., Sahoo, A., & Wood, E. F. (2012). 716 

Evaluation of SMOS Soil Moisture Products Over Continental U.S. Using the SCAN / SNOTEL 717 

Network. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1572–1586. 718 

Albergel, C., Brocca, L., Wagner, W., de Rosnay, P., & Calvet, J. C. (2013). Selection of Performance 719 

Metrics for Global Soil Moisture Products: The Case of ASCAT Soil Moisture Product. In Remote 720 

Sensing of Energy Fluxes and Soil Moisture Content (pp. 431–448). 721 

Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y. H., & 722 

Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global 723 

ground-based in situ observations. Remote Sensing of Environment, 118, 215–226. 724 

doi:10.1016/j.rse.2011.11.017 725 

Allen, P. B., & Naney, J. W. (1991). Hydrology of the Little Washita River Watershed, Oklahoma: Data 726 

and Analyses. United States Department of Agriculture, Agricultural Research Service, ARS-90. 727 

Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y. H., de Rosnay, P., de Jeu, R., Govind, A., Al Bitar, 728 

A., Albergel, C., Richaume, P., & Mialon, A. (2014). Global-scale evaluation of two satellite-based 729 

passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data 730 

Assimilation System estimates. Remote Sensing of Environment, 149, 181–195. 731 

doi:10.1016/j.rse.2014.04.006 732 

Bindlish, R. (2015). Global Soil Moisture From the Aquarius/SAC-D Satellite: Description and Initial 733 

Assessment. IEEE Geoscience and Remote Sensing Letters, 12(5), 923–927. 734 

doi:10.1109/LGRS.2014.2364151 735 

Budyko, M. I. (1956). Heat balance of the Earth’s surface. Leningrad. 736 

Carlson, T. N. (2007). An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration 737 

and Soil Moisture from Satellite Imagery. Sensors, 7(8), 1612–1629. doi:10.3390/s7081612 738 

Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared 739 

temperature and NDVI measurements to infer surface soil water content and fractional vegetation 740 

cover. Remote Sensing Reviews. doi:10.1080/02757259409532220 741 

Chauhan, N. S., Miller, S., & Ardanuy, P. (2003). Spaceborne soil moisture estimation at high resolution: 742 

a microwave-optical/IR synergistic approach. International Journal of Remote Sensing, 24(22), 743 

4599–4622. doi:10.1080/0143116031000156837 744 

Chen, F., Crow, W. T., Starks, P. J., & Moriasi, D. N. (2011). Improving hydrologic predictions of a 745 

catchment model via assimilation of surface soil moisture. Advances in Water Resources, 34(4), 746 

526–536. doi:10.1016/j.advwatres.2011.01.011 747 

Cosh, M. H., Jackson, T. J., Bindlish, R., & Prueger, J. H. (2004). Watershed scale temporal and spatial 748 

stability of soil moisture and its role in validating satellite estimates. Remote Sensing of 749 

Environment, 92, 427–435. doi:10.1016/j.rse.2004.02.016 750 



 42 of 48 

 

Cosh, M. H., Jackson, T. J., Moran, S., & Bindlish, R. (2008). Temporal persistence and stability of 751 

surface soil moisture in a semi-arid watershed. Remote Sensing of Environment, 112(2), 304–313. 752 

doi:10.1016/j.rse.2007.07.001 753 

Cosh, M. H., Jackson, T. J., Starks, P. J., & Heathman, G. (2006). Temporal stability of surface soil 754 

moisture in the Little Washita River watershed and its applications in satellite soil moisture product 755 

validation. Journal of Hydrology, 323(1-4), 168–177. doi:10.1016/j.jhydrol.2005.08.020 756 

Daly, E., & Porporato, A. (2005). A Review of Soil Moisture Dynamics: From Rainfall Infiltration to 757 

Ecosystem Response. Environmental Engineering Science. doi:10.1089/ees.2005.22.9 758 

Das, N. N., Entekhabi, D., & Njoku, E. G. (2011). An algorithm for merging SMAP radiometer and radar 759 

data for high-resolution soil-moisture retrieval. IEEE Transactions on Geoscience and Remote 760 

Sensing, 49(5), 1504–1512. doi:10.1109/TGRS.2010.2089526 761 

Das, N. N., Entekhabi, D., Njoku, E. G., Shi, J. J. C., Johnson, J. T., & Colliander, A. (2014). Tests of the 762 

SMAP combined radar and radiometer algorithm using airborne field campaign observations and 763 

simulated data. IEEE Transactions on Geoscience and Remote Sensing, 52(4), 2018–2028. 764 

doi:10.1109/TGRS.2013.2257605 765 

Delwart, S., Bouzinac, C., Wursteisen, P., Berger, M., Drinkwater, M., Martín-Neira, M., & Kerr, Y. H. 766 

(2008). SMOS validation and the COSMOS campaigns. IEEE Transactions on Geoscience and 767 

Remote Sensing, 46(3), 695–703. doi:10.1109/TGRS.2007.914811 768 

Dirmeyer, P. A. (2000). Using a global soil wetness dataset to improve seasonal climate simulation. J. 769 

Climate, (13), 2900–2922. 770 

Djamai, N., Magagi, R., Goïta, K., Merlin, O., Kerr, Y. H., & Roy, A. (2015). Downscaling satellite-based 771 

soil moisture for cloudy days using the DISPATCH algorithm and CLASS land surface scheme. 772 

Submitted Remote Sensing of Environment. 773 

Douville, H. (2004). Relevance of soil moisture for seasonal atmospheric predictions: Is it an initial value 774 

problem? Climate Dynamics, 22(4), 429–446. doi:10.1007/s00382-003-0386-5 775 

Draper, C., Reichle, R. H., De Lannoy, G. J. M., & Liu, Q. (2012). Assimilation of passive and active 776 

microwave soil moisture retrievals. Geophysical Research Letters, 39(4). 777 

doi:10.1029/2011GL050655 778 

Drusch, M. (2007). Initializing numerical weather prediction models with satellite-derived surface soil 779 

moisture: Data assimilation experiments with ECMWF’s integrated forecast system and the TMI soil 780 

moisture data set. Journal of Geophysical Research: Atmospheres, 112(3). 781 

doi:10.1029/2006JD007478 782 

Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., … Van Zyl, J. 783 

(2010a). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–784 

716. doi:10.1109/JPROC.2010.2043918 785 

Entekhabi, D., Reichle, R. H., Koster, R. D., & Crow, W. T. (2010b). Performance Metrics for Soil 786 

Moisture Retrievals and Application Requirements. Journal of Hydrometeorology, 11, 832–840. 787 

doi:10.1175/2010JHM1223.1 788 



 43 of 48 

 

Fang, B., Lakshmi, V., Bindlish, R., Jackson, T. J., Cosh, M. H., & Basara, J. (2013). Passive Microwave 789 

Soil Moisture Downscaling Using Vegetation Index and Skin Surface Temperature. Vadose Zone 790 

Journal, 12(3), 0. doi:10.2136/vzj2013.05.0089 791 

Guérif, M., & Duke, C. . (2000). Adjustment procedures of a crop model to the site specific characteristics 792 

of soil and crop using remote sensing data assimilation. Agriculture, Ecosystems & Environment. 793 

doi:10.1016/S0167-8809(00)00168-7 794 

Jackson, T. J., Bindlish, R., Cosh, M. H., Zhao, T., Starks, P. J., Bosch, D. D., Seyfried, M., Moran, M. S., 795 

Goodrich, D. C., Kerr, Y. H., & Leroux, D. J. (2012). Validation of soil moisture and Ocean Salinity 796 

(SMOS) soil moisture over watershed networks in the U.S. IEEE Transactions on Geoscience and 797 

Remote Sensing, 50(5), 1530–1543. doi:10.1109/TGRS.2011.2168533 798 

Jackson, T. J., Cosh, M. H., Bindlish, R., Starks, P. J., Bosch, D. D., Seyfried, M., Goodrich, D. C., 799 

Moran, M. S., & Du, J. (2010). Validation of advanced microwave scanning radiometer soil moisture 800 

products. IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4256–4272. 801 

doi:10.1109/TGRS.2010.2051035 802 

Jiang, L., & Islam, S. (2003). An intercomparison of regional latent heat flux estimation using remote 803 

sensing data. International Journal of Remote Sensing. doi:10.1080/01431160210154821 804 

Kerr, Y. H., Berthon, L., Mialon, A., Cabot, F., Al Bitar, A., Richaume, P., Leroux, D. J., Bircher, S., 805 

Lawrence, H., Quesney, A., & Jacquette, E. (2014). CATDS LEVEL 3 - Data product description - 806 

Soil Moisture and Brightness Temperature. 807 

Kerr, Y. H., Jacquette, E., Al Bitar, A., Cabot, F., Mialon, A., & Richaume, P. (2013). CATDS SMOS L3 808 

soil moisture retrieval processor, Algorithm Theoretical Baseline Document (ATBD). 809 

Kerr, Y. H., & Njoku, E. G. (1990). Semiempirical model for interpreting microwave emission from 810 

semiarid land surfaces as seen from space. IEEE Transactions on Geoscience and Remote Sensing, 811 

28(3), 384–393. doi:10.1109/36.54364 812 

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., 813 

Cabot, F., Gruhier, C., Juglea, S. E., Leroux, D. J., Mialon, A., & Delwart, S. (2012). The SMOS 814 

Soil Moisture Retrieval Algorithm. Geoscience and Remote Sensing, 50(5), 1384–1403. 815 

Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., 816 

Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M., Hahne, A., Martin-Neira, M., & Mecklenburg, 817 

S. (2010). The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. 818 

Proceedings of the IEEE, 98(5), 666–687. doi:10.1109/JPROC.2010.2043032 819 

Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J. M., Font, J., & Berger, M. (2001). Soil 820 

moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE 821 

Transactions on Geoscience and Remote Sensing, 39(8), 1729–1735. doi:10.1109/36.942551 822 

Kim, J., & Hogue, T. S. (2012). Improving spatial soil moisture representation through integration of 823 

AMSR-E and MODIS products. IEEE Transactions on Geoscience and Remote Sensing, 50(2), 446–824 

460. doi:10.1109/TGRS.2011.2161318 825 

Laio, F., Porporato, A., Ridolfi, L., & Rodríguez-Fernández, N. J. (2002). On the seasonal dynamics of 826 

mean soil moisture. Journal of Geophysical Research: Atmospheres. doi:10.1029/2001JD001252 827 



 44 of 48 

 

Leroux, D. J., Kerr, Y. H., Al Bitar, A., Bindlish, R., Jackson, T. J., Berthelot, B., & Portet, G. (2013). 828 

Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four 829 

Watersheds in U.S. IEEE Transactions on Geoscience and Remote Sensing, 52(3), 1–10. 830 

Lievens, H., Tomer, S. K., Al Bitar, A., De Lannoy, G. J. M., Drusch, M., Dumedah, G., Hendricks 831 

Franssen, H.-J., Kerr, Y. H., Martens, B., Pan, M., Roundy, J. K., Vereecken, H., Walker, J. P., 832 

Wood, E. F., Verhoest, N. E. C., & Pauwels, V. R. N. (2015). SMOS soil moisture assimilation for 833 

improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sensing of 834 

Environment, 168, 146–162. doi:10.1016/j.rse.2015.06.025 835 

Malbéteau, Y., Merlin, O., Gascoin, S., Gastellu, J. P., Olivera, L., Mattar, C., & Khabba, S. (2016a). 836 

Correcting land surface temperature data for elevation and illumination effects in mountainous areas: 837 

a case study using ASTER data over the Imlil valley, Morocco. Submitted to Remote Sensing of 838 

Environment. 839 

Malbéteau, Y., Merlin, O., Molero, B., Rüdiger, C., & Bacon, S. (2016b). DisPATCh as a tool to evaluate 840 

coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to 841 

{SMOS} and AMSR-E data in Southeastern Australia. International Journal of Applied Earth 842 

Observation and Geoinformation, 45, Part B, 221–234. 843 

doi:http://dx.doi.org/10.1016/j.jag.2015.10.002 844 

Manabe, S. (1969). Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of 845 

the Earth’s surface. Monthly Weather Review, 97(11), 739–774. 846 

Merlin, O., Al Bitar, A., Walker, J. P., & Kerr, Y. H. (2009). A sequential model for disaggregating near-847 

surface soil moisture observations using multi-resolution thermal sensors. Remote Sensing of 848 

Environment, 113(10), 2275–2284. doi:10.1016/j.rse.2009.06.012 849 

Merlin, O., Al Bitar, A., Walker, J. P., & Kerr, Y. H. (2010a). An improved algorithm for disaggregating 850 

microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote 851 

Sensing of Environment, 114(10), 2305–2316. doi:10.1016/j.rse.2010.05.007 852 

Merlin, O., Chehbouni, A., Boulet, G., & Kerr, Y. H. (2006). Assimilation of Disaggregated Microwave 853 

Soil Moisture into a Hydrologic Model Using Coarse-Scale Meteorological Data. Journal of 854 

Hydrometeorology. doi:10.1175/JHM552.1 855 

Merlin, O., Duchemin, B., Hagolle, O., Jacob, F., Coudert, B., Chehbouni, G., Dedieu, G., Garatuza, J., & 856 

Kerr, Y. H. (2010b). Disaggregation of MODIS surface temperature over an agricultural area using a 857 

time series of Formosat-2 images. Remote Sensing of Environment, 114(11), 2500–2512. 858 

doi:10.1016/j.rse.2010.05.025 859 

Merlin, O., Escorihuela, M.-J., Mayoral, M. A., Hagolle, O., Al Bitar, A., & Kerr, Y. H. (2013). Self-860 

calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km 861 

and 100 m resolution in Catalunya, Spain. Remote Sensing of Environment, 130(2013), 25–38. 862 

Merlin, O., Malbéteau, Y., Notfi, Y., Bacon, S., Er-raki, S., Khabba, S., & Jarlan, L. (2015). Performance 863 

metrics for soil moisture downscaling methods: Application to DISPATCH data in central Morocco. 864 

Remote Sensing, 7(4), 3783–3807. doi:10.3390/rs70403783 865 

Merlin, O., Rüdiger, C., Al Bitar, A., Richaume, P., Walker, J. P., & Kerr, Y. H. (2012). Disaggregation of 866 

SMOS Soil Moisture in Southeastern Australia. IEEE Transactions on Geoscience and Remote 867 

Sensing, 50(5), 1556–1571. doi:10.1109/TGRS.2011.2175000 868 



 45 of 48 

 

Merlin, O., Rüdiger, C., Richaume, P., Al Bitar, A., Mialon, A., Walker, J. P., & Kerr, Y. H. (2010c). 869 

Disaggregation as a top-down approach for evaluating 40 km resolution SMOS data using point-870 

scale measurements: application to AACES-1. Remote Sensing for Agriculture, Ecosystems, and 871 

Hydrology Xii, 7824, -\r666. doi:Artn 78240i\rDoi 10.1117/12.865751 872 

Merlin, O., Stefan, V. G., Amazirh, A., Chanzy, A., Ceschia, E., Tallec, T., Beringer, J., Gentine, P., Er-873 

Raki, S., Bircher, S., & Khabba, S. (2016). Modeling soil evaporation efficiency in a range of soil 874 

and atmospheric conditions: A downward approach based on multi-site data. Submitted to Water 875 

Resources Research. 876 

Merlin, O., Walker, J. P., Chehbouni, A., & Kerr, Y. H. (2008). Towards deterministic downscaling of 877 

SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sensing of 878 

Environment, 112(10), 3935–3946. doi:10.1016/j.rse.2008.06.012 879 

Mladenova, I., Lakshmi, V., Jackson, T. J., Walker, J. P., Merlin, O., & de Jeu, R. A. M. (2011). 880 

Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne 881 

Field Experiment 2006. Remote Sensing of Environment, 115(8), 2096–2103. 882 

doi:10.1016/j.rse.2011.04.011 883 

Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the Theory of Statistics. McGrawHill 884 

series in probability and statistics (Vol. 3). Retrieved from 885 

http://www.librarything.com/work/1154157/book/32217714 886 

Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the 887 

relation between surface-air temperature and spectral vegetation index. Remote Sensing of 888 

Environment. doi:10.1016/0034-4257(94)90020-5 889 

Narayan, U., Lakshmi, V., & Jackson, T. J. (2006). High-resolution change estimation of soil moisture 890 

using L-band radiometer and radar observations made during the SMEX02 experiments. IEEE 891 

Transactions on Geoscience and Remote Sensing, 44(6), 1545–1554. 892 

doi:10.1109/TGRS.2006.871199 893 

Njoku, E. G., & Entekhabi, D. (1996). Passive microwave remote sensing of soil moisture. Journal of 894 

Hydrology. doi:10.1016/0022-1694(95)02970-2 895 

Noilhan, J., & Planton, S. (1989). A simple parameterization of land surface processes for meteorological 896 

models. Monthly Weather Review, 117(3), 536–549. 897 

Oliva, R., Daganzo-Eusebio, E., Kerr, Y. H., Mecklenburg, S., Nieto, S., Richaume, P., & Gruhier, C. 898 

(2012). SMOS radio frequency interference scenario: Status and actions taken to improve the RFI 899 

environment in the 1400-1427-MHZ passive band. IEEE Transactions on Geoscience and Remote 900 

Sensing, 50(5 PART 1), 1427–1439. doi:10.1109/TGRS.2012.2182775 901 

Panciera, R., Walker, J. P., Jackson, T. J., Gray, D. a., Tanase, M. a., Ryu, D., Monerris, A., Yardley, H., 902 

Rüdiger, C., Wu, X., Gao, Y., & Hacker, J. M. (2014). The soil moisture active passive experiments 903 

(SMAPEx): Toward soil moisture retrieval from the SMAP mission. IEEE Transactions on 904 

Geoscience and Remote Sensing, 52(1), 490–507. doi:10.1109/TGRS.2013.2241774 905 

Peischl, S., Walker, J. P., Rüdiger, C., Ye, N., Kerr, Y. H., Kim, E., Bandara, R., & Allahmoradi, M. 906 

(2012). The AACES field experiments: SMOS calibration and validation across the Murrumbidgee 907 

River catchment. Hydrology and Earth System Sciences, 16(6), 1697–1708. doi:10.5194/hess-16-908 

1697-2012 909 



 46 of 48 

 

Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rüdiger, C., Kerr, Y. H., & Walker, J. 910 

P. (2011). Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE 911 

Transactions on Geoscience and Remote Sensing, 49(9), 3156–3166. 912 

doi:10.1109/TGRS.2011.2120615 913 

Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The 914 

American Statistician, 42(1), 59–66. 915 

Salkind, N. J. (2010). Standard error of the estimate. In SAGE (Ed.), Encyclopedia of research design. 916 

Volume 3 (pp. 1426–1430). London. 917 

Schmugge, T. J. (1998). Applications of passive microwave observations of surface soil moisture. Journal 918 

of Hydrology, 212-213(1-4), 188–197. doi:10.1016/S0022-1694(98)00209-1 919 

Smith, A. B., Walker, J. P., Western, A. W., Young, R. I., Ellett, K. M., Pipunic, R. C., Grayson, R. B., 920 

Siriwardena, L., Chiew, F. H. S., & Richter, H. (2012). The Murrumbidgee soil moisture monitoring 921 

network data set. Water Resour. Res., 48(7), W07701. doi:10.1029/2012WR011976 922 

Solano, R., Didan, K., Jacobson, A., & Huete, A. (2010). MODIS Vegetation Index User’s Guide (MOD13 923 

Series) (Vol. v2.0). 924 

Stefan, V. G., Merlin, O., Er-Raki, S., Escorihuela, M.-J., & Khabba, S. (2015). Consistency between in 925 

situ, model-derived and image-based soil temperature endmembers: towards a robust data-based 926 

model for multi-resolution monitoring of crop evapotranspiration. Remote Sensing, 7(8), 10444–927 

10479. 928 

Walker, J. P., & Houser, P. R. (2004). Requirements of a global near-surface soil moisture satellite 929 

mission: Accuracy, repeat time, and spatial resolution. Advances in Water Resources, 27(8), 785–930 

801. doi:10.1016/j.advwatres.2004.05.006 931 

Wan, Z. (1999). MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD). 932 

Wan, Z. (2006). MODIS Land Surface Temperature Products Users’ Guide - Collection 5. Sioux Falls, 933 

South Dakota,. Retrieved from 934 

http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf 935 

Wanders, N., Bierkens, M., de Jong, S. M., de Roo, A., & Karssenberg, D. (2014). The benefits of using 936 

remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water 937 

Resources Research, 50(8), 6874–6891. doi:10.1002/2013WR014639 938 

Wigneron, J.-P., Kerr, Y. H., Waldteufel, P., Saleh, K., Escorihuela, M.-J., Richaume, P., Ferrazzoli, P., de 939 

Rosnay, P., Gurney, R., Calvet, J.-C., Grant, J. P., Guglielmetti, M., Hornbuckle, B., Mätzler, C., 940 

Pellarin, T., & Schwank, M. (2007). L-band Microwave Emission of the Biosphere (L-MEB) Model: 941 

Description and calibration against experimental data sets over crop fields. Remote Sensing of 942 

Environment, 107, 639–655. doi:10.1016/j.rse.2006.10.014 943 

Zhan, X., Houser, P. R., Walker, J. P., & Crow, W. T. (2006). A method for retrieving high-resolution 944 

surface soil moisture from hydros L-band radiometer and radar observations. IEEE Transactions on 945 

Geoscience and Remote Sensing, 44(6), 1534–1544. doi:10.1109/TGRS.2005.863319 946 

947 



 47 of 48 

 

List of figures 948 
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Figure 6 – Maps of L3 SM (CLF31A) and L4 disaggregated SM for LW (left column) and WG (right 967 
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Figure 7- Maps of L3 SM (CLF31D) and L4 disaggregated SM for Yanco area on 22/11/2010. Black lines 971 
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Figure 8 - Maps of L4 disaggregated SM for MB on the first days of January 2011, showing the 973 

progression of floods that affected New South Wales and Victoria states. The title of each image contains 974 
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Figure 9 - Scatterplots of original L3 SM (1
st
 row) and L4 disaggregated SM (2

nd
 row) versus in situ 976 
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MB and Yanco, and 06/2010 to 12/2014 for LW and WG. Dashed line represents the 1:1 slope and the 978 

continuous line corresponds to the linear regression line (S statistic). 34 979 

Figure 10 - Scatterplot of L3 SM (1
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 row) and L4 disaggregated SM (2

nd
 row) against in situ SM samples 980 
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