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On the relations between letter, 
word, and sentence‑level 
processing during reading
Brice Brossette1*, Jonathan Grainger2,3, Bernard Lété1 & Stéphane Dufau2,3,4

Much prior research on reading has focused on a specific level of processing, with this often being 
letters, words, or sentences. Here, for the first time in adult readers, we provide a combined 
investigation of these three key component processes of reading comprehension. We did so by testing 
the same group of participants in three tasks thought to reflect processing at each of these levels: 
alphabetic decision, lexical decision, and grammatical decision. Participants also performed a non‑
reading classification task, with an aim to partial‑out common binary decision processes from the 
correlations across the three main tasks. We examined the pairwise partial correlations for response 
times (RTs) in the three reading tasks. The results revealed strong significant correlations across 
adjacent levels of processing (i.e., letter‑word; word‑sentence) and a non‑significant correlation 
between non‑adjacent levels (letter‑sentence). The results provide an important new benchmark 
for evaluating computational models that describe how letters, words, and sentences contribute to 
reading comprehension.

For readers of a language written with an alphabetic script, fluent reading behavior essentially involves extract-
ing information about letter identities and their positions to identify words and word order, and from there to 
construct a sentence-level representation for comprehension. Although this deliberate over-simplification ignores 
the well-established roles played by  phonology1,2 and  morphology3 in skilled reading, and also the higher-level 
processes involved in text  comprehension4, we believe that it accurately highlights three key component processes 
involved in transforming visual features into meaning during reading. In the present study we investigate, for the 
first time, the processing interactions between these three levels. Prior research has either focused on a single 
level of processing, or the interactivity between two levels (letter-word or word-sentence: these interactions are 
respectively illustrated by path (a) and path (b) in Fig. 1). We note nevertheless that, contrary to adult studies, 
developmental studies of reading typically use several tasks such as reading aloud, rapid automatized naming 
(RAN), reading comprehension (e.g., Landerl et al.5, Lefèvre et al.6, Muter et al.7). Focusing on letter, word, and 
sentence processing allowed us to employ three very comparable tasks when measuring the processing at each 
of these levels. These are the alphabetic decision  task8, the lexical decision  task9, and the grammatical decision 
 task10. All three tasks are speeded binary decision tasks with a clearly defined target category and well-defined 
criteria for constructing non-target stimuli (see examples in Fig. 1).

In order to investigate interactions between these three key component processes, in the present study par-
ticipants performed alphabetic, lexical, and grammatical decision tasks, and we examined correlations between 
performance in each of the three tasks with the aim to evaluate the interdependence of processing across each 
of the three putative levels being examined (letter, word, sentence). We then used the obtained correlations to 
examine possible differences in the interdependencies between processing at the letter, word, and sentence lev-
els. Thus, it is possible that word recognition is highly constrained by letter-level processing, whereas a similar 
contingency might not be so strong for word and sentence-level processing. It is also theoretically interesting to 
ask whether letter-level processing can directly constrain sentence-level processing. For example, in the OB1-
reader model of sentence  reading11, word length in number of letters has a direct impact on how different word 
identities are assigned to a specific position in a line of text.

The overarching theoretical framework guiding this research is inspired by the interactive-activation 
 model12–15. Here we apply this framework in its simplest form, referring uniquely to the different levels of pro-
cessing that are postulated therein, and leaving aside some central assumptions about the nature of processing 
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(e.g., parallel, cascaded, interactive). With respect to the present study, the key aspect of this framework is that 
processing proceeds hierarchically, from one level to the next. This simple hierarchical model of reading is 
illustrated in Fig. 1. We immediately acknowledge the deliberately over-simplistic nature of this architecture, 
which ignores the well-established role played by phonology and morphology in reading (e.g.,  Grainger16). This 
over-simplification was necessary in order to generate clear predictions with respect to potential relations in 
performance across the different reading tasks.

This hierarchical architecture makes clear predictions about how processing at a given level should influ-
ence processing at the other levels. If letter-level processing is a key component of word recognition, and if the 
alphabetic decision task accurately reflects letter-level processing and the lexical decision task accurately reflects 
word-level processing, then the correlation between performance in these two tasks should be very high. The 
same reasoning holds for word-level and sentence-level processing, assuming that the grammatical decision task 
accurately reflects processing at the sentence level. Examining the cross-task correlations between alphabetic 
decision and lexical decision on the one hand, and lexical decision and grammatical decision on the other, will 
allow us to estimate the relative contributions of the different component processes to the overall task of reading.

Prior research has provided evidence for interesting parallels between letter-word processing on the one hand, 
and word-sentence processing on the other. The “word superiority effect”17–19 refers to the higher accuracy in 
single letter identification when the target letter is presented in a word (e.g., the letter B in TABLE) compared with 
a pseudoword (e.g., the letter B in PABLE). More recently, a “sentence superiority effect”20,21 has been reported 
whereby identification of a single word target is better when that word is presented in the context of a correct 
sentence (e.g., target BOY in the sentence: “the boy runs fast”) compared with identification of the same word 
at the same position in an ungrammatical sequence (e.g., “runs boy fast the”). A further point of comparison, of 
particular interest for the present work, concerns transposed-letter effects observed in the lexical decision task 
(it is harder to classify a nonword formed by transposing two letters in a real word (e.g., “gadren” derived from 
“garden”) compared with nonwords formed by substituting two letters (e.g., “gatsen”)22–24, and transposed-word 
effects in the grammatical decision task (it is harder to reject ungrammatical sequences formed by transposing 
two words in a correct sentence (e.g., “The white was cat big”) compared with sequences that cannot be trans-
formed into a correct sentence by transposing any two words (e.g., “The white was cat slowly”)10,25. The important 
point, with respect to the present study, is the fact that similar phenomena can be observed across the letter-word 
and the word-sentence interfaces.

In the present study we used three tasks that have been previously applied to study letter, word, and sentence-
level processing. Crucially, all three tasks require a speeded binary decision as to whether or not the target 
stimulus belongs to a well-defined category (letters, words, sentences) relative to a background of stimuli that are 
designed make the discrimination difficult. The present study was motivated by the hypothesis that these three 
tasks could provide comparable insights into letter, word, and sentence-level processing. The alphabetic decision 
task involves speeded letter vs. non-letter discrimination. In the present study we opted to use the pseudo-letters 
provided by Vidal et al.26 as representing the best comparison relative to the pseudowords that are typically used 
in the lexical decision task. Direct proof that this task does reflect letter-level processing was provided by New 
and  Grainger27, where robust effects of letter frequency were reported. The lexical decision task is quite simply 
the most widely used task to study single word recognition. The speeded version of the grammatical decision 
task is a more recent invention. Traditionally, grammaticality judgements, or well-formedness judgments, have 

Figure 1.  A hierarchical model of reading with letter, word, and sentence level representations. The figure 
illustrates the central hypothesis to be tested in the present study—that letters connect with words (a) and words 
with sentences (b), but letters do not directly connect with sentences (c).
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been used by linguists in paper-and-pencil investigations of the nature of syntactic knowledge. Mirault et al.10 
used a speeded binary decision version of grammaticality judgments (termed the “grammatical decision task” 
by Mirault and  Grainger28) where they manipulated the nature of the ungrammatical sequences. Here we used 
the grammatical decision task as the sentence-level equivalent of lexical decisions to words and alphabetic deci-
sions to letters. Thus, the ungrammatical sequences were chosen to be sentence-like in the same way that the 
pseudo-words were word-like, and the pseudo-letters were letter-like.

In the present study we set-out to examine cross-task correlations with performance in the three tasks 
described above with the same group of participants. This is the first time that such cross-task correlations have 
been examined across different levels of processing. Because the amount of shared processing is expected to be 
greater between two adjacent levels (letter-word; word-sentence) than between two non-adjacent levels (letter-
sentence), we predicted that adjacent levels of processing (letter-word; word-sentence) should reveal stronger 
correlations than the correlation for non-adjacent levels of processing (letter-sentence). Participants were also 
tested in a speeded animal / non-animal decision task with drawings of familiar animals and inanimate objects. 
The aim here was to use performance on this non-reading task to partial out the contribution of common binary-
decision making mechanisms in driving correlations across the three reading tasks. This specific task, compared 
with a simple stimulus detection task for example, has the advantage of involving greater depth of processing 
while using non-linguistic stimuli. That is, the animal decision task involves making speeded binary decisions 
based on semantic information (i.e., “animalness”) extracted from visual information, and we considered this 
to be the best average approximation to the amount of processing involved in the three reading tasks. Although 
alphabetic decision likely does not involve semantic information, we believe that the animal decision task is a 
good comparison point for this task to the extent that both tasks involve speeded binary decisions to simple 
visual stimuli. We nevertheless note that we might not have come up with the most appropriate baseline (non-
reading) task. It will therefore be important for future research to examine how the use of a different task here 
(or different tasks) might impact on the obtained results.

Results
The dataset consisted of 29,520 observations: 4920 for Alphabetical Decision Task (hereafter, ADT), 9840 for 
Lexical Decision Task (LDT), 9840 for Grammatical Decision Task (GDT), and 4920 for Non-Reading Task 
(NRT). Firstly, we provide descriptive statistics on RTs and error rates to give an overview of performance in 
each task. Condition means for RTs and error rates are shown in Table 1. The main analysis of the lexical decision 
task included all words that were tested, including morphologically complex words. Additional analyses limited 
to only morphologically simple words showed exactly the same pattern.

Response times (RTs). Prior to analysis of RTs incorrect responses (ADT = 2.26%, LDT = 3.56%, 
GDT = 11.35%, and NRT = 2.03%) and correct responses with RTs less than 300 ms (ADT = 0.06%, LDT = 0.11%, 
GDT = 0.03%, and NRT = 0.02%) were first excluded. Then trials with outliers, defined as RTs more than 2.5 
SD above or below the participant’s mean according to the type of response were excluded (ADT = 2.95%, 
LDT = 3.04%, GDT = 2.39%, and NRT = 3.17%). Means for correct “yes” and “no” responses per task are shown 
in Table 1, and the RT distributions for correct “yes” responses are shown in Fig. 2.

RTs were found to increase as the task difficulty increased and correct yes-responses were faster than correct 
no-responses in all tasks. Moreover, the ratio of mean RTs across tasks revealed that it takes approximately the 
same amount of time to produce a correct yes-response in NRT and ADT (0.93), whereas this ratio increased as 
the task difficulty increased (ADT vs. LDT = 1.14, LDT vs. GDT = 2.05).

Error rates. Means of error rates for “yes” and “no” responses per task are provided in Table 1. The analysis of 
error rates revealed relatively few errors in NRT, ADT, and LDT (error rates below 5% for both correct yes- and 
no- responses), whereas larger error rates were observed in GDT (6.30% for correct yes-response, and 16.4% for 
correct no-response).

Cross‑task correlations on RTs. Figure  2A presents the Pearson correlations between standardized 
mean RTs per participant on correct yes-responses (N = 41) obtained in the different tasks computed with 
the Hmisc package in  R29. As predicted, tasks assessing hierarchically adjacent processing showed a stronger 

Table 1.  Mean RTs (in milliseconds) for correct “yes” and “no” responses (standard errors in parentheses), and 
percentage of errors for yes and no-responses for each task. NRT non-reading task, ADT alphabetic decision 
task, LDT lexical decision task, GDT grammatical decision task.

Task

NRT ADT LDT GDT

Response times

Mean RTs for yes-responses 536 ms (2.73) 499 ms (2.43) 613 ms (2.39) 1098 ms (5.92)

Mean RTs for no-responses 555 ms (2.92) 515 ms (2.39) 693 ms (2.92) 1345 ms (7.70)

Error rates

Percentage of errors for yes-responses 2.48% 2.93% 4.04% 6.30%

Percentage of errors for no-responses 1.59% 1.59% 3.07% 16.4%
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correlation (r(ADT, LDT) = 0.83; r(LDT, GDT) = 0.76) than tasks assessing hierarchically distant processing 
(r(ADT, GDT) = 0.56). All these correlations were significant (p < 0.001). Moreover, NRT correlated more strongly 
with ADT (r = 0.78) and LDT (r = 0.72) than with GDT (r = 0.57). This descriptive pattern was confirmed by the 
analysis of the statistical difference between correlations using the cocor R  package30. The difference between cor-
relations involving adjacent levels was not statistically significant (r(ADT, LDT) = 0.83 vs. r(LDT,GDT) = 0.76, 
p = 0.35), whereas the differences between correlations involving non-adjacent levels were significant (r(ADT, 
GDT) = 0.56 vs. r(ADT, LDT) = 0.83, p < 0.001; r(ADT,GDT) = 0.56 vs. r(LDT,GDT) = 0.76, p < 0.01).

These results could be explained by the fact that the binary-decision process shared by all tasks has a higher 
impact on tasks where the cognitive demand is lowest as in ADT and LDT in which letter and word processing 
is highly automatized as compared to GDT. In order to control for the impact of this binary decision process on 
correlations, we computed the partial correlations between ADT, LDT, GDT while controlling for the impact 
of NRT. Results (see Fig. 2B) revealed that all correlations were still significant (r(ADT, LDT) = 0.61, p < 0.001; 
r(LDT, GDT) = 0.61, p < 0.001). However, when the binary decision component was controlled for, the correlation 
between non-adjacent levels of processing was no longer significant (r(ADT, GDT) = 0.24, p = 0.14).

Comparison of RT distributions. In order to provide an informal demonstration that performance in 
the four tasks is comparable in spite of differences in average RT, in Fig. 3 we present the RT distributions for 
these tasks. Although the form of the distributions changed across the four tasks, we suspect that this is linked 
to a change in task difficulty (change in overall mean RT) that then impacts on the spread of the distributions. 
The most straightforward explanation for this change in RT distribution is that increasing task difficulty causes a 
drop in the rate of information accumulation. A slower rate of information accumulation would lead to greater 
mean RT as well as flatter RT distributions as seen in the empirical distributions in Fig. 3. In Fig. 4 we provide an 
informal proof-of-concept that this might well be the case. To do so, we generated theoretical RT distributions 
using a simple random walk model with a fixed decision criterion, a fixed starting point, and a fixed variance for 
the random walk, thus only changing the slope of the random walk (i.e., the rate of information accumulation) 
in four simulations. The change in rate of information accumulation was hypothesized to reflect differences in 
the difficulty of each task, with the slope diminishing as the task becomes harder. The theoretical RT distribu-
tions shown in Fig. 4 revealed that, with all else being equal, a decrease in slope of the random walk (from 0.25 
to 0.1) mimicked the pattern seen in the empirical distributions with an increase in mean RT being associated 
with a flatter distribution.

Discussion
In the present study participants performed three tasks with visual stimuli that were hypothesized to primarily 
reflect processing at the letter, word, and sentence levels. The tasks were the alphabetic decision task (ADT), 
the lexical decision task (LDT), and the grammatical decision task (GDT). A fourth non-reading task (NRT), 
animal/non-animal classification, was included as a baseline comparison task for speeded binary decision mak-
ing involving semantic processing but with non-linguistic visual stimuli (i.e., pictures of animals and inanimate 
objects). Prior research, summarized in the Introduction, suggested that these three reading tasks provide a good 
reflection of processing at the letter, word, and sentence levels, respectively. Moreover, the three tasks are highly 
comparable in that they all involve making a speeded binary decision that discriminates between a given target 
category (i.e., a “yes” response to letters, words, or sentences, depending on the task) against a background of 
pseudo-stimuli from the same category (pseudo-letters, pseudo-words, and ungrammatical word sequences). 

Figure 2.  (A) Pairwise Pearson correlations of standardized mean RTs for correct responses by participant in 
each task. (B) Partial Pearson correlation of standardized mean RTs for correct responses by participant between 
ADT, LDT, and GDT while controlling for NRT (the partial correlation between GDT and ADT, marked by a 
cross, was not significant: p = 0.14).
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We therefore reasoned that comparing performance in these tasks within the same group of participants would 
inform about the relations between letter, word, and sentence-level processing during reading.

An initial qualitative appraisal of processing in the three reading tasks (see Table 1) revealed, unsurprisingly, 
an increase in task difficulty (longer RTs and more errors for both “yes” and “no” responses) as the complexity of 
the task increased—from ADT, to LDT, to GDT. Performance in the non-reading task (NRT) aligned more with 

Figure 3.  Distribution of RTs for correct “yes” responses in each task. NRT non-reading task, ADT alphabetic 
decision task, LDT lexical decision task, GDT grammatical decision task.

Figure 4.  Distributions obtained with four different slopes applied to the same random walk model (starting 
point = 0; SD = 0.05; response criterion = 10).
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the ADT, and the correlation analysis revealed the same pattern (see Fig. 2). This pattern points to the addition of 
lexical (LDT) and sentence-level (GDT) processing on top of a speeded binary decision to simple visual stimuli 
as required in both the ADT and NRT.

We also compared the RT distributions in the four tasks and found that as mean RT increased there was a 
corresponding increase in the spread of the RT distribution (Fig. 3). We then tested the hypothesis that one key 
underlying mechanism at play is the rate of accumulation of information in favor of a “yes” response, which 
would vary as a function of task difficulty, with slower accumulation rates as the task gets harder. Simulations 
performed on a simple random walk model provided support for this interpretation by showing that as the slope 
of the random walk decreased (with all other parameters held constant) then the mean and the spread of the 
RT distribution increased, thus providing a qualitative match to the pattern seen in the empirical distributions 
(see Fig. 4).

However, the key findings of the present study concern the cross-task correlations that were found. These 
analyses revealed significant correlations across all tasks, albeit with weaker correlations between ADT and 
GDT, and between NRT and GDT. Crucially, when performance in the NRT was partialled out, the correlation 
between ADT and GDT was no longer significant. This absence of a correlation between non-adjacent levels of 
processing (i.e., letters and sentences) is clear evidence in favor of the central role for word recognition in the 
reading process. Moreover, without partially out performance in the NRT, statistical tests of the difference in size 
of correlations revealed that correlations across adjacent levels did not differ significantly, whereas the contrasts 
between the adjacent level correlations and the non-adjacent level correlation were significant.

The present results provide support for the simple hierarchical model of reading shown in Fig. 1, according 
to which word recognition plays a central role in the reading process, providing the key interface between initial 
letter-level processing and the final stages of sentence-level processing. Several models of text reading assign a 
central role to word recognition in the overall process of sentence reading (e.g., E-Z  Reader31), and several also 
emphasize the critical role for orthographic processing (e.g.,  Glenmore13; OB1-reader11). The OB1-reader  model11 
implements the principle according to which much reading behavior can be captured by orthographic processing, 
implemented as the processing of letters, letter-combinations, and orthographic words (see also  Grainger16). The 
present results clearly align favorably with this general approach to reading. Moreover, our results suggest that the 
alphabetic, lexical, and grammatical decision tasks provide a valuable window on processing at the letter, word, 
and sentence levels, and permit important comparisons to be made between processing (and the mechanisms 
driving such processing) at these different levels.

Finally, we note that one popular alternative to the hierarchical approach described in the present work, is 
the so-called “triangle model” of reading first proposed by Seidenberg and  McClelland32. In this model, a non-
hierarchical triangular architecture connects orthography with phonology on the one hand, and orthography 
with semantics on the other. One could conceivably extend this to the case of letters, words, and sentences as 
examined in the present work, in which case the model would predict equivalent correlations between process-
ing times of letters and words, words and sentences, and between processing times of letters and sentences. 
However, it is important to stress that the key novelty introduced in the triangle model was in terms of learning 
mechanisms rather than mental chronometry. One could also argue that the present findings point to a com-
mon mechanism underlying processing in all three reading tasks, and one possibility here is the notion of the 
“quality” of representations proposed by Perfetti and  Hart33 for lexical processing. It is possible that the same 
notion of “quality” could apply to both letter-level and sentence-level representations. However, this “common 
mechanism” approach (and the same would apply to an “individual difference” explanation—i.e., better readers 
are better at performing all three reading tasks) would have to explain the differences in correlations we observed 
between adjacent and non-adjacent levels of processing.

Conclusions
We investigated the hierarchical nature of processing across three levels (letter, word, sentence) thought to 
form the backbone of reading in an alphabetic script. Participants performed three tasks, each of which was 
hypothesized to reflect processing at one of the three levels. When partialling out performance in a non-reading 
speeded binary decision task (animal vs. non-animal classification of pictures) we found significant correlations 
in performance in adjacent levels of processing (letter-word; word-sentence) but not between non-adjacent levels 
(letter-sentence). Moreover, the size of the correlations differed significantly when comparing the correlations 
between adjacent and non-adjacent levels, but not when comparing adjacent levels. Overall, our results point 
to the central role of word identification processes in mediating between lower-level sublexical processing and 
higher-level sentence-level processing during reading comprehension.

Methods
Participants. An online study consisting of three reading tasks (Alphabetical Decision, Lexical Decision, 
Grammatical Decision) and one non-reading task was programmed and hosted on a Labvanced  server34.

Forty-eight participants (28 female, 20 male) were recruited via Prolific, an online platform dedicated to 
the recruitment of participants. Prior to the beginning of the experiment, participants were informed that data 
would be collected anonymously, and they provided informed consent before the experiment was initiated. The 
study was approved by the ethics committee of Comité de Protection des Personnes SUD-EST IV (No. 17/051). 
The experiment was performed in accordance with relevant guidelines and regulations and in accordance with 
the Declaration of Helsinki.

The order of tasks was counterbalanced across participants. Seven participants were excluded because they 
failed to perform at a minimum of 75% correct responses in all tasks. In addition, participants completed a 
questionnaire at the beginning of the study asking for age, gender, mother tongue, and handedness. Self-report 
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for age gave a median value of 25 years (range [18; 31]). All participants reported to be native speakers of English 
and right-handed. The participant’s English proficiency was assessed with a computerized version of the Lex-
tale vocabulary  test35 delivered before the four experimental tasks (minimum of Correct Response (CR): 62%, 
maximum of CR: 100%, mean of CR: 88%, standard error: 9%).

General procedure. We applied the same general procedure for all four tasks. Stimuli were displayed in 
black on a gray background at the center of the screen. Each trial began with a 500 ms fixation cross followed 
by the stimulus, which remained visible for 3000 ms or until the participant responded. Participants were asked 
to press the “L” key for a “yes” response and the “S” key otherwise. Then, the screen remained blank for 800 ms 
before the next trial. All trials were presented in a randomized order. A short practice session was proposed to 
the participant before the beginning of each task. The duration of each task was about 6 min for ADT, 12 min for 
LDT, 12 min for GDT, and 6 min for NRT, which amounted to a total of about 45 min for the entire experiment, 
including short breaks between each task.

Design and stimuli. Alphabetic decision task (ADT). Twenty consonant letters and 20 pseudo-letters of 
the Brussels Artificial Characters  Sets26 were selected. We used the pseudo-letters from the second set (BACS-2) 
in which each pseudo-letter was paired with a corresponding letter according to size, number of strokes, pres-
ence/absence of symmetry, number of junctions and number of terminations. Letters were presented in Lucida 
Sans Unicode font and pseudo-letters in BACS-2 sans serif font. Each letter and pseudo-letter was presented 
three times for each of the three different sizes (size 1: 100 × 100 px, size 2: 120 × 120 px, size 3: 140 × 140 px) 
giving a total of 120 trials.

Lexical decision task (LDT). One hundred and twenty English words were selected among those used in the 
grammatically correct sequences of the grammatical decision task (see next experiment section). These words 
were tagged as adjectives, nouns, or verbs. Due to these selection criteria, some high-frequency words used in 
the GDT (such as determiners, articles, prepositions) were not used in the LDT. According to the Subtlex-UK 
 database36, words had a mean log-frequency of 2.17 (SD = 0.14) and a mean length of 6.05 letters (SD = 1.26 
letters). Pseudowords were selected among those used in the English Lexicon  Project37 and were matched with 
words on the number of letters. Stimuli were presented in 14pt Lucida Sans Unicode font.

Grammatical decision task (GDT). Stimuli consisted of 240 English 4-word sequences, forming a grammati-
cally correct structure such as “alcohol is a toxin.” The sequences were taken from the Google 4-gram English 
 database38, where the term “gram” refers to a word.

Stimulus selection was operated as follows. First, we chose the 4-gram for which all words figured in the 
Subtlex-UK  database39. Then, we excluded the 4-gram which contained adjectives, nouns, or verbs with less 
than 3 letters or more than 8 letters and whose frequency lay ± 1.75 SD beyond the average word frequency. 
Moreover, we ensured that the mean word lemma log10 frequency by 4-gram fell within the [1; 1] standard 
interval. Finally, we kept the 4-gram with Standard Frequency Index (SFI)40 values ranging between 1.83 and 
3.83, and we removed 4-gram ending with determiners, articles, prepositions, postpositions, and particles. Two 
hundred and forty 4-word sequences were retained for the study. One hundred and twenty 4-gram were used 
as a correct grammatical sequence. The 120 remaining 4-gram were used to form ungrammatical sequences by 
substituting one or several words with another valid English word of the same length. This led to 120 grammati-
cal and 120 ungrammatical sequences which were randomly presented to participants. Stimuli were presented 
in 14 pt Lucida Sans Unicode font.

Non‑reading task (NRT). Forty black and white drawings were selected from the MultiPic  database41. MultiPic 
is a normative database of 750 pictures of concrete concepts dedicated for the investigation of language, visual, 
memory and/or attention processes. Among these 40 drawings, 20 represented a living thing (e.g., a penguin), 
and 20 represented a nonliving thing (e.g., an umbrella). Living and nonliving drawings were matched on all 
variables available in MultiPic: measures of name agreement, the percentage of valid responses, the number of 
different responses, the percentage of unknown responses, the percentage of idiosyncratic responses, and visual 
complexity. Drawings were presented three times within three different sizes (sizes were matched on the size of 
letter and pseudo-letters used in the alphabetic decision task), giving 120 trials.

Data availability
All data, materials, and code are available at the Open Science Framework (https:// osf. io/ a9k3g).
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