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We discuss the influence of compressibility effects including time delays on the dy-1

namics of acoustically excited bubbly screens. In the linear regime we show that2

the proposed model for the infinite bubbly screen recovers the results predicted by3

the effective medium theory up to the second order without introducing any fit-4

ting parameter when the wavelength is large compared to the inter-bubble distance.5

However, the effect of boundaries on finite bubbly screens is shown to lead to the6

appearance of multiple local resonances and characteristic periodic structures that7

limit the applicability of the effective medium theory. In addition a local resonance8

phenomenon in the liquid spacings between bubbles is observed for both infinite and9

finite bubbly screens with crystal structures, these effects vanishing as the crystal10

structure is perturbed. In the non-linear regime, we treat the current model with11

time-delay effects as a delay differential equation that is directly solved numerically.12

We show the appearance of an optimal distance for subharmonic emission for crystal13

structures and discuss the accuracy of effective medium theory in the strong non-14

linear regime.15
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I. INTRODUCTION16

The dynamics of cavities in liquids has attracted a lot of interest over the past few decades17

(Fuster, 2019; Lohse, 2018). The oscillation of an isolated bubble is well described by the18

Rayleigh-Plesset (RP) like equation that accounts for compressibility effects (Gilmore, 1952;19

Keller and Miksis, 1980; Lauterborn and Kurz, 2010; Prosperetti et al., 1986). However,20

bubbles often appear in ensembles, and bubble-bubble interactions need to be accounted as21

the bubble interface acceleration influences the pressure distribution in the bubble surround-22

ings. One traditional way to account for the influence of interactions is to use the effective23

medium method. Foldy (1945), Caflisch et al. (1985), and Commander and Prosperetti24

(1989) consider the influence that the dynamic bubble response have on the effective prop-25

erties of a wave propagating in a bubbly liquid. The multiple interactions among bubbles are26

described by the interaction between each bubble and the averaged pressure field. However27

these models are limited to diluted systems and frequencies for which the wavelength is28

larger than the characteristic bubble radius and the inter-bubble distance.29

30

In an attempt to generalize the range of applicability of these theories to shorter wave-31

lengths and capture more accurately the interaction mechanisms among bubbles, some32

authors propose to solve a coupled system of RP like equations (Fan et al., 2020b; Fuster33

and Colonius, 2011; Ilinskii et al., 2007; Mettin et al., 1997). These approaches can be even-34

tually coupled with an Eulerian–Lagrangian approach (Fuster and Colonius, 2011; Maeda35

and Colonius, 2019) to capture both short and long wave range interactions and can be36
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considered as two-way coupled model, where bubbles can directly feel the acoustic field37

emitted by each other. An intrinsic difficulty in these models is how to account for the38

influence of the liquid compressibility on the multiple interactions among bubbles. Indeed39

one of the most frequently-used assumption is to resort to the incompressible limit, where40

we neglects any time-delay effect due to liquid compressibility and the interactions among41

bubbles take place instantaneously . Although this assumption is certainly valid when the42

wavelength of the excitation pressure wave is much larger than the characteristic size of the43

bubble cluster, the accuracy of applicability of these models in systems with many bubbles44

has not been discussed in detail.45

46

Some numerical studies applied to medical related research such as high-intensity fo-47

cused ultrasound (Okita et al., 2013), ultrasound contrast agent (Faez et al., 2012), and48

drug delivery (Coussios and Roy, 2008) point out the importance of compressibility effects,49

in particular time-delay effects in real applications (Sujarittam and Choi, 2020). More50

fundamental studies including experimental works studying the acoustic propagation in the51

vicinity of a bubble chain (Manasseh et al., 2004) have shown that the time-delay effects52

considerably change the resonance frequencies and the damping factors of the effective53

medium (Doinikov et al., 2005; Ooi et al., 2008), so does bubble near boundaries (Dahl and54

Kapodistrias, 2003; van’t Wout and Feuillade, 2021; Ye and Feuillade, 1997). In the context55

of the development of acoustic metamaterials, two-dimensional bubble layers also known56

as bubbly screens have also became a widely investigated system since 2009 in a series of57

papers published by Leroy and coworkers (Leroy et al., 2015, 2009; Lombard et al., 2015).58
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Using the self-consistent approach based on the effective medium theory, the transmission59

and reflection coefficient measured experimentally in the linear regime can be well captured60

by accounting for the influence of time-delay effects on the interaction term among bubbles.61

In the non-linear regime, the asymptotic analysis based on effective medium theory (Miksis62

and Ting, 1989; Pham et al., 2021) have shed light into the role of compressibility on the63

mechanisms of multiple interactions among bubbles. However, these models still face some64

challenges. For example, it is known that, even in the dilute limit, crystal configuration65

has special acoustic properties (Devaud et al., 2010), but the capability of effective medium66

theory to distinguish between the properties of specific configurations (e.g. crystals) and67

the ensemble average of randomly distributed systems has not been clarified . Also, it is68

not clear how well averaged models capture the influence of boundary effects as well as69

polydispersity effects.70

71

In this work we discuss the applicability and the accuracy of models based on a coupled72

system of RP like equations to capture the response of bubbly screens (Figure 1). Section73

II presents a particularization of the system of Rayleigh-Plesset like equations proposed in74

Fuster and Colonius (2011) to solve for the dynamic response of the bubbles. In SectionIII75

, we show that, without the need of introducing any fitting parameter, this model is able76

to recover the second order solution predicted by the effective medium theory in the linear77

oscillating regime for a monodisperse bubbly screen in crystal configuration when the acous-78

tic excitation wavelength is much larger than both the bubble radius and the inter-bubble79

distance. Then, we discuss the influence of boundary effects and randomness on the accu-80
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racy of the predictions in comparison with the effective medium theory in the linear regime.81

Finally, in Section IV, we present numerical results obtained in the non-linear regime using82

a delay differential equation solver. These examples reveal the importance of compressibility83

effects to correctly predict the non-linear bubble dynamic response.84

II. BUBBLY SCREEN MODEL85

The dynamics of an oscillating spherical bubble is described using the Keller-Miksis like86

equation (Keller and Miksis, 1980) which is a differential equation for the bubble radius of87

the ith bubble in a weakly compressible liquid characterized by its speed of sound c and88

density ρ89

ρ

(
RiR̈i

(
1− Ṙi

c

)
+

3Ṙi
2

2

(
1− Ṙi

3c

))
−

(
1 +

Ṙi

c
+
Ri

c

d

dt

)
(pi,B − p∞) = ρIi. (1)

In the equation above, p∞(t) = p0 +f(t) is the pressure excitation; pi,B is the liquid pressure90

at the interface of the ith bubble, which we describe using a simple polytropic law pi,B =91 (
p0 + 2σ

Ri,0

)(
Ri,0

Ri

)3κ

− 2σ
Ri
− 4µṘi

Ri
, where κ is the polytropic index; p0 is the static pressure;92

Ri,0 is the ith bubble radius at equilibrium; σ is the surface tension; µ is the liquid viscosity.93

The interaction term ρIi represents the pressure fluctuation induced by the presence of the94

surrounding bubbles, which has to be evaluated at the deferred time tdij = t− dij/c, where95

dij = |~xi − ~xj| represents the distance from the ith bubble located at ~xi to the jth bubble96

located at ~xj. Following Fuster and Colonius (2011), it can be readily shown that97

Ii = Ii,0 + Ii,1, (2)
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where both terms have to be evaluated at the deferred time tdij98

Ii,0 = −
N∑
j 6=i

Rj(tdij)

dij

(
Rj(tdij)R̈j(tdij) + 2Ṙj(tdij)

2
)
,

Ii,1 = −1

c

[
N∑
j 6=i

Rj(tdij)

dij
Ṙj(tdij)

[
Rj(tdij)R̈j(tdij) +

Ṙj(tdij)
2

2
−
(
pj,B(tdij)− p∞(tdij)

)
ρ

]

−
N∑
j 6=i

Rj(tdij)
2

dij

d

dt

(
pj,B(tdij)− p∞(tdij)

)
ρ

+ Ṙi(tdij)Ii,0

]
. (3)

In the equations above, we only keep first order compressibility correction terms in the99

intensity of the collapse of bubbles, which scale as a function of the Mach number Ma = Ṙ
c
,100

and time-delay effects. Neglecting time-delay effects (e.g. tdij = t) leads to a coupled system101

of ordinary differential equations that need to be solved. In the limit of c→∞, we recover102

the classical form of the interaction term Ii ≈ Ii,0 evaluated at t (Bremond et al., 2006; Ida103

et al., 2007; Yasui et al., 2008). Otherwise, as explained in Section IV, it is required to solve104

a differential equation with time delays.105

106

For monodisperse bubbles, where Ri,0 = Rj,0 = R0, the development of liquid compress-107

ibility corrections is typically discussed in terms of the nondimensional wavenumber kR0,108

where k = ω/c. For air/water systems at constant reference pressure, kR0 = ω
ω0

1
c

√
3κp0

ρ
109

depends on the frequency ratio between the excitation frequency, ω, and the resonance110

frequency of single isolated oscillating bubble, ω0 =
√

3κp0

R2
0ρ

. For air bubbles in water at111

atmospheric conditions, 1
c

√
3κp0

ρ
≈ 10−2 (this parameter will be held constant in the follow-112

ing solution for particular configurations of the bubbly screen), and, therefore, kR0 is small113

except for very high frequencies. However, in addition to kR0, it is useful to introduce an al-114

ternative dimensionless wavenumber using the inter-bubble distance D ( kD = D
R0

ω
ω0

1
c

√
3κp0

ρ
)115
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which is not always small in diluted systems. kD, kR0 and D
R0

construct the ratio of the116

three relevant spatial scales (the wavelength, the inter-bubble distance, and the bubble117

equilibrium radius) considered in this work to characterize the bubble screen.118

119

FIG. 1. A typical crystal distributed bubbly screen located at x = 0 plane.

The particular arrangement of bubbles considered in this work is that of a finite/infinite120

bubbly screen (Figure 1) in which bubbles are located in the x = 0 plane, perpendicular121

to the incident wave, in layers around a central bubble. Any bubble under consideration122

will always be labelled with subscript i. In the lth layer, bubbles are equally spaced with123

a given inter-bubble distance D along a square of size 2lD centered at the bubble under124

consideration. The position and the dispersity of the bubbles will be eventually perturbed125

when discussing randomization effects in the linear regime.126
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III. COMPRESSIBILITY EFFECTS IN THE LINEAR OSCILLATION REGIME127

A. General case128

We start considering the dynamics of a finite bubbly screen with monodisperse bubbles129

excited by a weak perturbation, where Ri,0 = Rj,0 = R0. For a system with N bubbles,130

Eq. 1 reduces to131

RiR̈i−
(

1 +
Ri

c

d

dt

)
pi,B − p∞

ρ
= −

N∑
j 6=i

R2
j (tdij)

dij
R̈j(tdij)+

N∑
j 6=i

Rj(tdij)

dij

Rj(tdij)

c

d

dt

(
pj,B(tdij)− p∞(tdij)

)
ρ

.

(4)

Note that in the linear regime, the influence of the compressibility correction term in the132

interaction is not null, and it is not sufficient to retain the classical interaction term Ii,0 only.133

For a general case where the pressure at the location of the ith bubble is presented as134

p∞(xi, t) = p0(1 + p′ie
ıωt), the solution of the equation for the ith bubble can be expressed135

in the form of Ri(t) = R0(1 + r′ie
ıωt). Taking Rj(tdij) = R0(1 + r′je

ıω(t−dij/c)), the values of r′i136

are obtained from the solution of a linear system, which in indicial notation can be written137

as138 (
A

(0)
ij + ıkR0A

(1)
ij

)
r′j = − p0

ρR2
0ω

2
0

p′i. (5)

The coefficients of the matrices A(0) and A(1) are given in Appendix A neglecting viscous,139

thermal, mass transfer and surface tension terms as well as terms of order (kR0)2 during140

linear analysis. The first choice is justified by the fact that the influence of interactions on141

the bubble dynamics can be discussed as a correction of the resonance frequency and the142

radiative damping introduced by compressibility effects (Leroy et al., 2009; Pham et al.,143

2021). For a particular application, it would be straightforward to extrapolate the results144
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to situations where the influence of the effects neglected are relevant using corrected lin-145

ear expressions to express the bubble pressure (Bergamasco , 2017; Fuster and Montel,146

2015). Neglecting (kR0)2 terms is justified by the fact that kR0 ≈ 10−2 ω
ω0

is usually small,147

and ignoring higher order terms is a valid assumption except for extremely high frequen-148

cies. In this simplified case, matrices A(0) and A(1) only depend on the local variable149

Ki = R0

D

∑N
j 6=i

e−ıkDd̃ij

d̃ij
, which represents the strength of the interaction term and depend on150

the nondimensional distance d̃ij = |~xi − ~xj|/D.151

152

For a planar wave, the linear set of equations in Eq. 5 can be numerically solved for an153

arbitrary constant value of p′i = p′j = p′ for all bubbles to find all r′i. Once these values are154

obtained, we can re-express any equation in the system as155

(
−ω2 −K∗i ω2 + ω2

0

)
r′i = − p0

ρR2
0

p′, (6)

where, for any arbitrary ith bubble under consideration, we have156

K∗i = Ki(1−Q∗i )− ıkR0

[
(1 + Ki)

2 − KiQ
∗
i

(
1 + Ki +

ω2
0

ω2

)]
, (7a)

Q∗i =

∑N
j 6=i(r

′
i − r′j) e

−ıkDd̃ij

d̃ij

r′i
∑N

j 6=i
e−ıkDd̃ij

d̃ij

. (7b)

Equation 6 is similar to the harmonic form of single bubble situation157

(−ω2 + ıζiω
2 + ω2

i,res)r
′
i = − p0

ρR2
0

p′, (8)

where the local bubble resonance frequency and the local damping factors can be readily158

obtained as159

ω2
i,res = ω2

0

(
1−<(K∗i )

(
ω

ω0

)2
)

; ζi = −=(K∗i ). (9)
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Function K∗i gathers both interaction and compressibility effects in the bubble resonance160

and the damping of the bubble and depends on the quantity Q∗i which provides a measure161

of the correlation between the radial bubble motion of the ith bubble and that of the sur-162

rounding bubbles. Q∗i becomes zero in the limiting case of synchronous motion. It is also163

easy to verify that in the limit of an isolated bubble, Ki → 0, we recover the well known164

result, ω2
i,res = ω2

0 and ζi = ζ = kR0, representing the harmonic oscillation of a single bubble165

in a slightly compressible liquid. For systems where K∗i is not uniform for all the bubbles,166

multiple local resonances appear.167

168

To characterize the global response of the screen, it is useful to express the averaged gas169

volume evolution as a function of the amplitude of the driving pressure170

(
−ω2 + ıζω2 + ω2

res

) 1

N

N∑
i=1

r′i = − p0

ρR2
0

p′. (10)

Using Eq. 6, the global resonance and damping factor can be readily found as a function of171

the complex averaged function K∗ as172

ω2
res = ω2

0

(
1−<(K∗)

ω2

ω2
0

)
; ζ = −=(K∗); K∗ =

〈K∗i r′i〉
〈r′i〉

. (11)

where the symbol 〈·〉 denotes the average over all the bubbles in the screen.173

B. Synchronous solution for an infinite bubbly screen with crystal configuration174

We start considering the synchronous solution for an infinite bubbly screen with equal175

amplitude for the radial motion of all bubbles. In this limit, r′i = r′j = r′, Ki = Kj = K,176
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FIG. 2. Real and imaginary part of the function f(kD). For reference we include the predictions

of the effective medium theory. The solid line is corresponding to the f(kD) and the dashed line

is corresponding to EMT. The blue line is the real part, and the red line is the imaginary part.

Nl = 12000 is used to keep f(kD) converge.

Q∗i = 0, and the solution of the system is thus given by the simplified expression177

K∗i = K∗ = K− ıkR0(1 + K)2, (12)

where K = R0

D
f(kD) is a function that is proportional to the bubble inter-spacing parameter178

R0/D and function179

f(kD) =
∞∑
j 6=i

e−ıkDd̃ij

d̃ij
(13)

depends on the dimensionless wavenumber kD and the particular geometry considered only.180

Notice that, so far, the subscript i is still hold here to represent the bubble inside the infinite181

bubbly screen under consideration, but that f(kD) doesn’t change with respect to the choice182

of the bubble i. Taking advantage of rotation invariance of the system, the value of this183

function can be obtained from a double sum over the layers surrounding an arbitrary bubble184
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as185

f(kD) =
∞∑
l=1

4

l
e−ıkDl

(
1 +

l∑
q=1

2√
1 + (q/l)2

eıkDl(1−
√

1+(q/l)2)

)
. (14)

Eq. 14 can be evaluated numerically except in very particular cases. For instance, if kD =186

2πn with n being an integer, the first term will be a diverging harmonic series implying zero187

resonance frequency and infinite attenuation.We identify this phenomenon with a resonance188

phenomenon in the spacing within the bubbles. The convergence properties of this series in189

a general case are discussed in Appendix B. It is interesting to note that the results obtained190

are in agreement with the expression proposed by Leroy et al. (2009) who, taking advantage191

of an homogeneization approach and introducing a cuttoff length b = D/
√
π, obtain K using192

the bubble density nd = 1/D2 (number of bubbles per unit area in the screen) as193

KEMT =
R0

D
fEMT(kD) ≈

∫ ∞
b

R0

r
e−ıkr2πrnddr =

R0

D
fEMT(kD), (15)

fEMT(kD) = − 2π

kD
(sin (kb) + ı cos (kb)) . (16)

As shown by Pham et al. (2021), this expression is similar to the extension of the asymptotic194

analyses proposed by Caflisch et al. (1985) and later extended by Miksis and Ting (1989)195

to the second order, where the correction due to the collective effects of the bubbly screen196

is (Pham et al., 2021)197

fEMT(kD) = −3.9− ı 2π

kD
. (17)

Using the small angle approximation, it is straightforward to see that Eqs. 17 and 16 are198

equivalent and, as shown in Figure 2, reproduce well the values of the series for kD . 3199

without the need of introducing any fitting parameter. In what follows we denote the pre-200

dictions of this model as effective medium theory (EMT). Note that although the function201
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FIG. 3. Non-dimensional amplitude of the bubble oscillation in an infinite bubbly screen |r′| as

a function of ω/ω0 for three different concentrations. The series are evaluated using Nl = 12000

layers. The curves predicted by EMT and the current model fit well with each other when D
R0

= 50

and gradually trend to the isolated bubble situation when D
R0

= 200. For D
R0

= 400, EMT recovers

the solution of the single bubble case missing the resonance phenomenon captured by the current

model.

f(kD) is correctly predicted, EMT still neglect the correction of order (kR0 · K) in the202

bubble dynamic motion.203

204

Figure 3 represents the nondimensional amplitude of the bubble oscillation |r′| as a func-205

tion of the frequency for three different concentrations for p0

ρR2
0ω

2
0

= 0.25 and |p′| = 10−3p0.206

For high concentrations (D/R0 = 50) the resonance peak is damped, this effect being well207

captured by the EMT. As the bubble concentration is decreased, EMT recovers the solution208

of the single bubble case missing the resonance phenomenon captured by the current model.209

Remarkably, the intensity of the peak at resonance becomes much more important than the210

one predicted by the EMT with the increasing of kD. To gain further insight, Figure 4 shows211
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FIG. 4. (Left) Concentration effects on ωres/ω0 and (right) on ζ/ζ0. Solid lines are used for the

approximated exact solution (Nl = 12000). Dashed lines represent the solution provided by the

effective medium theory. The frequencies used are ω/ω0 = 0.5, 1, 2 for blue, red and green line

respectively.

the influence of D/R0 at constant forcing frequency on the global resonance and the global212

damping factor. By changing the inter-bubble distance, the proposed model recovers well213

the predictions of the effective medium approximation for kD . 3, while for large values of214

kD both models give different predictions. This discrepancy is attributed to the difference215

between crystal structure and the random bubble distribution as discussed later on for a216

finite bubbly screen. In the effective medium approximation, bubbles are continuously and217

homogeneously distributed in the space, and the oscillating term e−ikDd̃ij is thus smoothed218

out. The current model is able to capture the resonance effects originated for particular219

configurations. In the particular example shown here, it is expected to find a first resonance220

for kD = 2π, corresponding to the appearance of the resonance induced by the inter-bubble221
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values of ω/ω0 in a 51 × 51 bubbly screen for (top) D/R0 = 50 (kD = 0.67) and (bottom)

D/R0 = 400 (kD = 5.4).

distance.222

223

C. Finite size bubbly screens224

In many applications, the size of the bubbly screens is limited to few tens or hundreds225

of bubbles, and the infinite screen limit may not be applicable. Figure 5 shows examples226

of the distribution of the nondimensional bubble oscillation amplitude |r′i| for a 51 × 51227

bubbly screen excited at the single bubble resonance frequency for two different values of the228

dimensionless wavenumber: kD = 0.67 < 1 and kD = 5.4. Characteristic spatial patterns229

are easily identified at resonance conditions but also become visible for other specific values230

of the forcing frequency. This phenomenon is related to the appearance of multiple resonance231
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deviation of | 〈r′i〉 |) and (b) | 〈Q∗i 〉 | of a 51× 51 bubbly screen as a function of frequency.

frequencies in the system. Figure 6a shows that, as in the infinite case, the intensity of the232233

mean value of r′i becomes maximum at resonance, fitting the infinite bubbly screen well. The234

distribution of local resonance frequencies is represented using the intensity of the standard235

deviation of r′i (errorbars in Figure 6a) and the averaged value of Q∗i (Figure 6b) which tends236

to a plateau at larger frequencies and quickly decays for low frequencies.237

The role of the concentration on | 〈Q∗i 〉 | is shown in Figure 7. At resonance (Figure 7b),238

we observe a sharp transition between kD ≤ 2, where the fluctuations of | 〈Q∗i 〉 | become of239

order unity, and kD > 2, where | 〈Q∗i 〉 | takes significantly smaller values. Remarkably, in240

the regime of kD ≤ 2, we do not see any clear asymptotic convergence to | 〈Q∗i 〉 | → 0 as241

we increase the number of bubbles in the screen. Below resonance (Figure 7a), the value of242

| 〈Q∗i 〉 | is small and slow convergence to zero is observed for the screens considered. One of243

the reasons for the slow convergence may be the excitation of non-uniform modes induced244

by boundary effects. The consequences of perturbation on the plane containing the bubbles245
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in the infinite case (we have imposed an unperturbed planar wave in the y-z plane) is left246

for future works.247

248

The effect of finite size effects on the global resonance frequency and the global damping249

factor can be seen in Figure 8 for ω/ω0 = 1. The infinite bubbly screen limit captures250

accurately the averaged bubble response of the screen, only showing some small disagreement251

for very concentrated systems, where we have seen the non-uniformity on the bubble response252

is important.253

D. Randomization254

We further discuss the influence of the randomness on the position and on the polydisper-255

sity of the bubbles separately. To that end, we firstly perturb the position of each bubble256

by a random number −ΘP < θy/z < ΘP with respect to the crystal configuration so that ith257

bubble is located at ~xi = (0, y
(c)
i + θy,iD, z

(c)
i + θz,iD), where the superscript (c) stands for258

variables corresponding to the crystal configuration. Figure 9(a,b) shows the global factors259

defined in Eq. 11 averaged over 100 realizations for ω/ω0 = 1 using a finite screen with260

51× 51 bubbles with different ΘP . As expected, the resonance effects observed at kD = 2π261

quickly vanish as the randomization parameter increases. Remarkably, the results obtained262

differ from the effective medium theory for large values of the randomization parameter263

and intermediate values of kD, the effect of randomization being especially visible on the264

effective damping coefficient.265
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FIG. 9. Influence of (top) spatial randomness and (bottom) polydispersity for (left) the global

resonance and (right) the global damping coefficient for a 51×51 finite bubbly screen using ω/ω0 =

1. An example of the spatial distribution of the bubble positions is given in the inset of (a). For

reference we include curves calculated for an infinite system (black solid line, Nl = 12000) and

effective medium theory (dashed line).

In this case, both matrix A(0) and A(1) can be further decomposed as a globally uniform266

value given by the crystal structure and a correction directly attributed to randomization267

(see Appendix A). While the expectation of A′(0) is zero, the non-linear term in the A′(1)
268

matrix with respect to the position perturbation amplitude makes the averaged response269
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of the system to be different from the crystal situation for small perturbations. For large270

perturbations, the expectation of both A′(0) and A′(1) are a-priori different from zero and271

depend on the value of ΘP . In such a situation, the difference between the fluctuation272

around the crystal configuration and the completely random distribution also makes the273

averaged response of the system to be different from EMT. In Figures 9(a,b) we see that the274

randomization intensity parameter ΘP mainly increases the effective damping for kD > 1.275

The influence of polydispersity is depicted in Figure 9(c,d). The equilibrium bubble276

radius of each bubble is perturbed with a random number −ΘR < θR < ΘR with respect277

to R0, such that Ri,0 = (1 + θR,i)R0. The same averaging process is repeated to obtain the278

global factors. As it occurs in the problem of linear wave propagation in bubbly liquids, the279

influence of polydispersity is mainly visible in the damping coefficients, playing a minor role280

on the shift of the resonance frequency. Notice that, different from the spatial randomness281

which is unavoidable restricted by the current technology, the polydisperse randomness plays282

a minor role in the experimental environments (Leroy et al., 2009), and a detailed theoretical283

analysis is left for future publications.284

IV. COMPRESSIBILITY EFFECTS IN THE NON-LINEAR REGIME285

A. Numerical methods for differential equations with time delays286

In the non-linear regime, it is no longer possible to find analytical solutions and one needs287

to solve the set of ODEs numerically. The differential equations considered can be written288
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as289

ẏ(t) = f(t, y(t), y(t− τ1), ..., y(t− τn), ẏ(t− τ1), ..., ẏ(t− τn)), (18)

where y is called state variable representing bubble radius or bubble wall velocity in our290

case. Traditionally, Eq. 18 is usually solved as ordinary differential equations, and the291

time-delay effect thus has to be ignored (τ1, ..., τn = 0). In this work, when non-linear292

effects become important, Eq. 18 is directly solved, treated as neutral delay differential293

equation (NDDE), which will reduce to general delay differential equation (DDE) if ẏ(t) =294

f(t, y(t), y(t − τ1), ..., y(t − τn)) and extend to state dependent NDDE if any of (τ1, ..., τn)295

is a function of state variable (Bellen and Zennaro, 2013). Integration of DDEs cannot be296

based on the mere adaption of some standard ODE code to the presence of delayed terms,297

which may dramatically modify the accuracy and stability of the underlying ODE method.298

To deal with NDDE, we first rewrite the Eq. 18 as:299

ẏ(t) = f(y(t), y(t− τ1), ..., y(t− τn),
y(t− τ1)− y(t− τ1 − δt)

δt
, ...,

y(t− τn)− y(t− τn − δt)
δt

),(19)

which is the dissipative approximation of the NDDE and named as retarded DDE. For small300

enough δt, the retarded DDE solver will be stable as long as the neutral DDE is stable.301

Based on Eq. 19, implicit Runge–Kutta formulas taking advantage of continuous extensions302

is used, and the retarded DDE is solved accordingly with residual control. The works of303

Shampine (2005, 2008) are recommended for detailed mathematical principles.304

305

For simulations in temporal domain, delays needed to be considered should always be306

finite. Notice that, for any simulations with finite duration, e.g.,[0, T ], we only need to con-307

22



sider the interactions from the bubbles with a distance from the bubble under consideration308

less than dij <= cT .309

B. Numerical results310

1. Weakly non-linear regime311

One important aspect on the dynamic response of bubbly liquids is the appearance of312

subharmonics, which ultimately indicates the first transition route to the chaotic response313

obtained for large enough amplitude of excitation (Lauterborn and Cramer, 1981; Lauter-314

born and Koch, 1987). The harmonic components of the acoustic wave scattered by bubbles315

or ultrasound contrast agents are also important in medical applications (Halldorsdottir316

et al., 2011; Nio et al., 2019). The harmonics emitted by bubbles has been described by317

many authors (see Lauterborn and Kurz (2010) for a review), including studies for contrast318

agents in a free field (Andersen and Jensen, 2009; Katiyar and Sarkar, 2011). More recently319

Fan et al. (2020a) has revealed the impact of compressibility and bubble-wall interaction320

effects on the subharmonic emission of a bubble in a rigid tube. However, the influence of321

collective effects on the subharmonic emission has not been investigated in detail yet.322

323

In this section, we compare the results obtained from the model presented for infinite324

bubbly screens imposing synchronous motion (Ri = Rj = R) with the results obtained from325

the EMT in non-linear regimes (Pham et al., 2021) where326

IEMT = −2πcṘ
R2

D2
+ 3.9

R

D
(2Ṙ2 + R̈R). (20)
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FIG. 10. Influence of concentration on the radius v.s. time curves. pa = 2p0 = 2bar, fext = 2f0 =

1.409MHz, and R0 = 5µm.
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FIG. 11. Influence of concentration on the radius v.s. time curves. pa = 3.5p0 = 3.5bar,

fext = 2f0 = 1.409MHz, and R0 = 5µm.

To that end, we excite the bubbly screen with an incident pulse of the form327

p∞ (t) = p0 − pa
1

2

[
1− cos

(
ωext
Nc

t

)]
sin(ωextt), (21)

where Nc = 20, and ωext = 2ω0 in order to favor the appearance of a stable subharmonic328

response. For simplicity, in this subsection we will only consider the response of an infinite329

bubble screen.330

331
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FIG. 12. The frequency spectrum of the present model and EMT using pa/p0 = 3.5. The energy

is calculated by E = 20log10( |F(prad)|
|F(prad)max|), where |F(prad)max| is highest energy observed among all

simulations.

In Figures 10-11, we can see the influence of concentration on the dynamic response of332

an infinite bubbly screen for two different excitation amplitudes. Consistent with the results333

in the linear regime, the effective medium model converges to the present model when the334

value of D/R0, and therefore, kextD is small. The differences between two models become335

significant with the increase of pa/p0 and kextD. Even in the case, where the differences336

between the two models are important (Figure 11c), both models fit relatively well for small337

times, and gradually become different only after some time. One explanation could be that338

in-phase and out-phase interactions coming from different layers at different time cancel339

each other and increase oscillatingly. Besides, the fact that the differences between models340

become visible after some time seem to indicate the differences of the EMT and the current341

model on the bifurcation diagrams (Lauterborn and Kurz, 2010).342

343
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FIG. 13. Energy of the subharmonic emission as a function of concentration for a constant excita-

tion frequency in a crystal structure.

Figure 12 shows the energy in the frequency spectrum of the infinite bubbly screen as a344

function of the bubble concentration from the radiated pressure (Pham et al., 2021):345

prad = 2πρc
R2Ṙ

D2
. (22)

The energy is calculated as E = 20log10( |F(prad)|
|F(prad)max|), where F(·) is the Fourier transform,346

and |F(prad)max| is highest energy observed among all simulations. Because the frequency347

of the subharmonics slightly shifts from ωext

2
with the increasing of the amplitude of the348

driving pressure wave, the corresponding energy is chosen according to the peak amplitude349

rather than energy at ωext

2
. As expected the energy on the fundamental component increases350

as D/R0 decreases due to the increase of bubble concentration (Figure 12). The overall351

spectrum is well reproduced by the EMT except for kD = 2π, where we clearly see how the352

spectrum predicted by the EMT contains a significantly higher level of energy mainly con-353

centrated at the subharmonics. In Figure 13, we show that optimal subharmonic emission354
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conditions appears for kextD = [0.65, 0.75]π as a consequence of the crystal configuration.355

This effect is not captured by the EMT.356

357

2. Strongly non-linear regime358
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FIG. 14. Radius versus time curves predicted by different models for D/R0 = 134 for an

infinite bubbly screen oscillating synchronously and a 11 × 11 bubbly screen. pa = 2p0 = 2bar,

fext = 0.1f0 = 70.461kHz, and R0 = 5µm. EMT and the infinite bubbly screen fit each other well

up to the first rebound. In the later case, we show the averaged and the standard deviation of

the bubble radius using the full model (red line) and the incompressible model wtih Ii = Ii,0 and

tdij = t (yellow line).

When the excitation frequency is decreased (ωext/ω0 = 0.1), the response of the bubbles

become highly non-linear with a clear distinction between the expansion phase and the

collapse and rebound region. In order to reduce the simulation time and transient effects, in

this section we excite a bubbly screen with a perfect crystal configuration with an incident
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FIG. 15. Comparison of the trajectory of the averaged bubble radius versus Ma = Ṙ/c for the

current model and the EMT.

planar wave represented by

p∞ (t) = p0 − pa sin(ωextt).

The predictions of the temporal evolution of the bubble radius predicted by different models359

are given in Figure 14 for both infinite bubbly screens and finite bubbly screens. The am-360

plitude of the initial expansion in all cases is decreased compared to the isolating oscillating361

bubble. The results from the EMT fit well the results of the infinite bubbly screen in the362

first expansion. The difference of the radial dynamics between different models appear in363

the rebound stage (Figure 15), when the Mach number(Ṙ/c) becomes important, so does364

the first order compressibility correction terms.365

366

For completeness, in Figure 14 we also include the full simulation of a 11 × 11 bubbly367

screens. Because in this case bubble motion is no longer assumed to be synchronous, we368
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represent the averaged bubble radius among all bubbles in the screen as well as the standard369

deviation in one realization. The influence of the interactions on the finite screen is reduced370

in the expansion and is less strong comparing to the infinite case. Compressible effects play a371

visible role despite the long wavelength of the incident wave, and the classical incompressible372

bubble interaction model tends to over-predict the collapse time.373

V. CONCLUSION374

In this work, the compressibility effect on the bubble-bubble interaction is discussed. The375

model proposed in Fuster and Colonius (2011) is particularized to explicitely write a system376

of equations that account for first order correction compressibility effects. These effects are377

shown to be important compared with the classical incompressible interaction mechanism378

in Rayleigh–Plesset models.379

380

In the linear regime, time-delay effects are always critical to capture the overall system381

response of large bubble screens. We show that the current model recovers the effective382

medium theory results up to second order for infinite crystal structures at large wavelengths383

(kD . 3). In addition, the model is able to capture resonant conditions in diluted systems384

due to crystal configurations that are not captured by averaged models. Randomization385

on the bubble position and boundary effects on bubbly screens of finite size are shown to386

be responsible to the appearance of characteristic periodic structures in the screen. These387

effects can modify the global damping measured under some conditions.388

389
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In the non-linear oscillating regime, we numerically solve the proposed model as a neutral390

delay differential set of equations (NDDE). The fully incompressible model seems to be only391

suitable to predict the expansion phase and loses its accuracy during the strong collapse392

where compressibility effects play a major role and need to be included. Boundary size393

effects are shown to limit the applicability of the effective medium theory valid only for394

infinite systems.395
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APPENDIX A:399

When p′i � 1, the system of Eq. 4 can be written in matrix form A~r′ = − p0

ρR2
0ω

2
0

~p′ with

A = (A(0) + ıkR0A
(1)), where

A
(0)
ij =


1−

(
ω
ω0

)2

if i = j,

−
(
ω
ω0

)2

Sij i 6= j

, A
(1)
ij =


(
ω
ω0

)2

(1 + Ki)− Ki if i = j,((
ω
ω0

)2

(1 + Ki) + 1

)
Sij i 6= j

,

with Sij = R0

D
e−ıkDd̃ij

d̃ij
and Ki =

∑N
j 6=i Sij.400

In general cases using finite bubbly screen, bubbles may be not spatially arranged per-

fectly, and it is possible to rewrite this system by separating variables Sij and Ki into a

crystal contribution and a spatially fluctuating part attributed to the perturbation of bub-
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bles position

Sij = S
(c)
ij + S ′ij,

Ki = K
(c)
i + K′i =

N∑
j 6=i

S
(c)
ij +

N∑
j 6=i

S ′ij,

where the superscript (c) stands for variables corresponding to the crystal configuration, and401

the distances between bubbles is written as d̃ij = d̃
(c)
ij + d̃′ij. In this case, matrix A can be402

further decomposed as A ≈ A(C) + A′ where A(C) represents the value of A obtained with403

the values of a crystal structure and A′ is the fluctuating part404

A
′(0)
ij =


0 if i = j,

−
(
ω
ω0

)2

S ′ij otherwise,

A
′(1)
ij =


((

ω
ω0

)2

− 1

)
K′i if i = j,((

ω
ω0

)2

+ 1

)
S ′ij +

(
ω
ω0

)2

(K′iS
′
ij + K

(c)
i S

′
ij + K′iS

(c)
ij ) otherwise.

When the position perturbation is small, taking advantage of Taylor expansion, we have:

S ′ij ≈ −ıkDd̃′ij
R0

D

e−ıkDd̃
(c)
ij

d̃
(c)
ij

.

In such a situation, the expectation of A
′(0)
ij is zero as long as the expectation of d̃′ij is zero.405

However the expectation of the K′iS
′
ij term appearing in A

′(1)
ij , which acts like a variance406

term, is different from zero even for the small perturbations. Obviously when the amplitude407

of perturbation d̃′ij is large, the expectation of both A
′(0)
ij and A

′(1)
ij are a-priori different from408

zero.409
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APPENDIX B:410

The convergence of the infinite series411

f(kD) =
∞∑
l=1

4

l
e−ıkDl

(
1 +

l∑
q=1

2√
1 + (q/l)2

eıkDl(1−
√

1+(q/l)2)

)

is discussed as follows. For sufficiently large value of l, because quantity p =
√

1 + (q/l)2 is412

bounded between 1 and
√

2, we can approximate the series as413

l∑
q=1

2√
1 + (q/l)2

eıkDl(1−
√

1+(q/l)2) ≈
∫ √2

1

2

p
eıkDl(1−p)dp = 2eıkDl

(
E1/2(ıkDl)− 21/4E1/2(

√
2ıkDl)

)
,

where E(x) is the exponential integral function. Taking the limit for l→∞, we readily find

that

lim
l→∞

(
E1/2(ıkDl)− 21/4E1/2(

√
2ıkDl)

)
= 0
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implying that this term always converges. The convergence of the series is then discussed

in terms of the convergence of

∞∑
l=1

4

l
e−ıkDl =

∞∑
l

4
zl

l
= 4 ln

(
1

1− z

)

where z = e−ıkD. For kD = 2πn the series diverges and it converges otherwise. The influ-414

ence of the number of layers considered on the series is reported in Figure 16 for different415

values of kD. In general, a very large value of the number of layers is required to accurately416

represent the infinity limit.417
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