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Optimized Distortion and Proportional Fairness in Voting

A voting rule decides on a probability distribution over a set of m alternatives, based on rankings of those alternatives provided by agents. We assume that agents have cardinal utility functions over the alternatives, but voting rules have access to only the rankings induced by these utilities. We evaluate how well voting rules do on measures of social welfare and of proportional fairness, computed based on the hidden utility functions.

In particular, we study the distortion of voting rules, which is a worst-case measure. It is an approximation ratio comparing the utilitarian social welfare of the optimum outcome to the social welfare produced by the outcome selected by the voting rule, in the worst case over possible input profiles and utility functions that are consistent with the input. The previous literature has studied distortion with unit-sum utility functions (which are normalized to sum to 1), and left a small asymptotic gap in the best possible distortion. Using tools from the theory of fair multi-winner elections, we propose the first voting rule which achieves the optimal distortion Θ( √ m) for unit-sum utilities. Our voting rule also achieves optimum Θ( √ m) distortion for a larger class of utilities, including unit-range and approval (0/1) utilities.

We then take a similar worst-case approach to a quantitative measure of the fairness of a voting rule, called proportional fairness. Informally, it measures whether the influence of cohesive groups of agents on the voting outcome is proportional to the group size. We show that there is a voting rule which, without knowledge of the utilities, can achieve an O(log m)-approximation to proportional fairness, which is the best possible approximation. As a consequence of its proportional fairness, we show that this voting rule achieves O(log m) distortion with respect to the Nash welfare, and selects a distribution that is approximately stable by being an O(log m)-approximation to the core, making it interesting for applications in participatory budgeting.

Introduction

We consider the problem of designing voting rules that aggregate agents' ranked preferences and arrive at a collective decision with high social welfare and which is fair to all agents. Throughout, we focus on probabilistic voting rules, which take as input a preference profile of complete rankings of a set A of m alternatives and output a probability distribution over A.

In order to evaluate the social welfare and fairness of voting rules, we build upon the framework of implicit utilitarian voting [START_REF] Procaccia | The distortion of cardinal preferences in voting[END_REF], which assumes that each agent i has a cardinal utility function u i : A → R ⩾0 over alternatives, but reports only the induced ranking over alternatives to the voting rule. While in principle a voting rule could elicit the precise utility values, it is more common in the literature to ask for rankings. This makes for a simple elicitation protocol, which can ease the cognitive burden on agents (because they need not precisely determine their own utility values), and preserves the privacy of any agents who may not wish to reveal their exact utilities to a voting rule.

The implicit utilitarian framework allows us to quantify the efficiency of a given voting rule: Given an input profile of rankings, we can measure efficiency as the worst-case ratio between the social welfare of the optimal outcome and the social welfare of the outcome selected by the voting rule, where the worst Distortion, unit-sum Distortion, unit-range Proportional fairness
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Table 1: Overview of our results. Previously known results: O( √ m log m) upper bound on the distortion of the harmonic rule for unit-sum utilities [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF], Ω( √ m) [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF] and Ω( √ m log m) [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF] lower bounds on the distortion of non-truthful and truthful rules for unit-sum utilities, respectively, and Θ(m 2/3 ) distortion of the best possible truthful rule for unit-range utilities [START_REF] Filos-Ratsikas | Social Welfare in Algorithmic Mechanism Design Without Money[END_REF]Miltersen, 2014, Lee, 2013].

case is taken over all utility functions consistent with the ordinal rankings reported to the voting rule. This quantity is known as distortion and has been widely studied. The existing literature commonly analyzes distortion for the class of unit-sum utilities, in which each agent's total utility is normalized to 1 [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF][START_REF] Caragiannis | Subset selection via implicit utilitarian voting[END_REF][START_REF] Mandal | Efficient and thrifty voting by any means necessary[END_REF][START_REF] Kempe | Communication, distortion, and randomness in metric voting[END_REF][START_REF] Filos-Ratsikas | The distortion of distributed voting[END_REF]. For deterministic voting rules, which place the entire probability mass of 1 on a single alternative, it is known that the best possible distortion is Θ(m 2 ) [Caragiannis andProcaccia, 2011, Caragiannis et al., 2017]. For probabilistic voting rules, which we are interested in, [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF] prove a lower bound of Ω( √ m). We propose the first voting rule achieving the asymptotically optimal distortion of O( √ m), matching their lower bound and resolving an important open question in this line of work. Our proof shows that the same rule is also optimal for unit-range utilities (which are normalized to range between 0 and 1) with the same O( √ m) distortion. This improves upon the previous best-known distortion of O(m 2/3 ) [ [START_REF] Lee | Maximization of relative social welfare on truthful cardinal voting schemes[END_REF][START_REF] Filos-Ratsikas | Social Welfare in Algorithmic Mechanism Design Without Money[END_REF]. This O( √ m) distortion of our rule is also optimal for the special case of approval utilities, in which each agent has utility 1 for a subset of alternatives and utility 0 for the rest. This class corresponds naturally to approval voting but, to the best of our knowledge, has not been studied in the context of distortion.1 Our rule can be computed in polynomial time.

Interestingly, while our new voting rule achieves low distortion (i.e., high social welfare), it internally aims for a fair outcome. Specifically, it uses tools from multi-winner voting for selecting a committee (a fixed-size subset of alternatives) that is representative. Informally, as many agents as possible should have one of their highly-ranked alternatives in the committee. There is an intuitive case for considering representative committees for achieving low distortion: Suppose a voting rule places little weight on the highly-ranked alternatives of a large group of agents. Then the voting rule may incur high distortion when those agents feel strongly about their preferences and all other agents are indifferent. This suggests that, at least in some settings, if you want to be efficient, it pays to also be fair.

While we use fair committees as a means to achieve high social welfare, we are also interested in fairness as an end. We wish to achieve a notion of fairness defined for our single-winner setting. Specifically, we adapt a quantitative measure from network theory called proportional fairness to the voting context. This measure is phrased in terms of agents' utility functions, and so we combine it with the worst-case philosophy of distortion to obtain a way to measure the fairness of voting rules. Intuitively, for an outcome to do well with respect to proportional fairness, it cannot be the case that any large group of agents gets too little utility, where "too little" is a function of how large the group is and how easy it is to give high utility to the group.

If we knew the underlying agent utilities, we could compute a distribution that is 1-proportionally fair. We show that given only a preference profile of rankings, there always exists a distribution that is O(log m)-proportionally fair regardless of the underlying utility functions (consistent with the input rankings). Our existence proof uses the minimax theorem for zero-sum games. We show that our result is optimal because there are preference profiles for which every distribution has an approximation to proportional fairness that is no better than Ω(log m) under some consistent utility functions. We then show that, given a preference profile, we can compute in polynomial time a distribution with an (almost) optimal approximation to proportional fairness.

Proportional fairness is an interesting measure because voting rules that do well on it automatically do well on other fairness measures as well. For example, it is widely recognized that maximizing the Nash welfare instead of the utilitarian welfare gives fairer outcomes (the Nash welfare of an outcome is the product of agent utilities instead of the sum). We can define a version of distortion for the Nash welfare, and our rule for proportional fairness will guarantee O(log m) distortion for this objective. 2 Another fairness property is taken from the literature on participatory budgeting (PB) [START_REF] Fain | The core of the participatory budgeting problem[END_REF]. We can interpret a probabilistic voting rule as dividing a fixed budget between different projects, and agents vote by ranking those projects. Agents wish to see more money spent on the projects they rank higher. An important goal in PB is to provide proportional representation in that any x% of the population cannot find an allocation of x% of the budget which provides them a Pareto improvement (i.e., does not hurt any of them and strictly improves some). This aim can be formalized using the concept of the core. Our rule for proportional fairness selects an outcome that provides an O(log m)-approximation to the core.

Table 1 provides an up-to-date account of the results on distortion for unit-sum and unit-range utilities as well as proportional fairness.

Related Work

There are many papers that study the distortion of voting rules, beginning with the work of [START_REF] Procaccia | The distortion of cardinal preferences in voting[END_REF], who analyze the distortion of many common voting rules. [START_REF] Caragiannis | Voting almost maximizes social welfare despite limited communication[END_REF] also evaluate the distortion of prominent voting rules, but from the perspective of optimizing embeddings, which (perhaps randomly) map cardinal utilities to ordinal votes that voting rules take as input. Their work, together with that of [START_REF] Caragiannis | Subset selection via implicit utilitarian voting[END_REF], identifies the best possible distortion via deterministic voting rules to be Θ(m 2 ). [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF] study probabilistic voting rules and derive a lower bound of Ω( √ m) on the optimal distortion for probabilistic voting rules with unit-sum utilities. They also design an artificial rule (tailored specifically to the unit-sum distortion context) which establishes an upper bound of O( √ m log * m). 3 Our O( √ m) upper bound matches their lower bound and eliminates the log * m gap. [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF] also propose the harmonic rule based on the harmonic scoring rule and show that it achieves O( √ m log m) distortion for unit-sum utilities. [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF] point out that this voting rule is truthful (in expectation with respect to any consistent utility function), and prove that any truthful rule must incur at least Ω( √ m log m) distortion, making the harmonic rule asymptotically optimal, subject to truthfulness. Distortion subject to truthfulness had first been studied by [START_REF] Filos | Truthful approximations to range voting[END_REF], who consider unit-range utilities and prove that any truthful rule must incur at least Ω(m 2/3 ) distortion. Their proof also implies this bound for approval utilities. [START_REF] Lee | Maximization of relative social welfare on truthful cardinal voting schemes[END_REF] proposed a truthful method that achieves a matching upper bound for unit-range utilities (see also the work of [START_REF] Filos-Ratsikas | Social Welfare in Algorithmic Mechanism Design Without Money[END_REF]). In the appendix, we show that the harmonic rule achieves distortion Θ(m 2/3 log 1/3 m) for approval and for unit-range utilities, matching the lower bound subject to truthfulness up to a logarithmic factor. Using the techniques of [START_REF] Filos | Truthful approximations to range voting[END_REF] and [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF], we derive a lower bound of Ω( √ m) on our proportional fairness objective subject to truthfulness, and show that the harmonic rule again matches this, up to a logarithmic factor.

Implicit utilitarian voting can be seen as a protocol for reducing communication complexity by asking agents to report ordinal preferences in place of cardinal utilities, so it is natural to study the trade-off between the communication complexity (the number of bits of information each agent is asked to report) and the optimal distortion achievable. [START_REF] Mandal | Efficient and thrifty voting by any means necessary[END_REF][START_REF] Mandal | Optimal communication-distortion tradeoff in voting[END_REF] characterize the Pareto frontier of this tradeoff, showing that in order to achieve distortion d, probabilistic voting rules require agents to communicate only Θ(m/d 3 ) bits of information whereas deterministic voting rules require Θ(m/d) bits, establishing probabilistic rules as superior in this context. [START_REF] Amanatidis | Peeking behind the ordinal curtain: Improving distortion via cardinal queries[END_REF] considered making a few value queries (asking agents to report their utility for an alternative) or comparison queries (asking agents to report whether the ratio of their utilities for two alternatives is at least a threshold) on top of their reported ordinal preferences. They prove that asking only O(log 2 m) value queries or O(log 2 m) comparison queries is sufficient to achieve constant distortion.

Going beyond single-winner voting, [START_REF] Caragiannis | Subset selection via implicit utilitarian voting[END_REF] study distortion (and another closely related objective called regret) for multi-winner voting, where the goal is to select a committee of k alternatives for a given size k. They assume that the utility of an agent for a committee is the maximum utility of the agent for any alternative in the committee. They prove that the optimal distortion of deterministic rules is Θ(1 + m(m -k)/k), implying an optimal distortion of Θ(m 2 ) for deterministic single-winner voting. For probabilistic rules, they leave a gap of Θ(m 1/6 ) between their upper and lower bounds for the optimal distortion. Recently, [START_REF] Borodin | Distortion in voting with top-t preferences[END_REF] close this gap by building upon our work. They extend our single-winner rule with O( √ m) distortion to multi-winner voting and prove that it achieves the optimal distortion of Θ(min( √ m, m/k)). [START_REF] Benade | Preference elicitation for participatory budgeting[END_REF] study participatory budgeting, which is an extension of multi-winner voting in which each alternative has a cost and the goal is to find a subset of alternatives with total cost at most a given budget. They focus on a different utility model, in which the utility of an agent for a set of alternatives is the sum of her utilities for the alternatives in the set. They compare four protocols for eliciting agent preferences and prove that while ranked preferences lead to O( √ m • log m) distortion with probabilistic aggregation, threshold approval votes, which ask agents to identify alternatives for which their utility is at least a specified threshold, lead to a significantly lower distortion of O(log 2 m). Bhaskar et al. [2018] show that the near-optimal O( √ m • log m) distortion for participatory budgeting with ranked preferences can in fact be obtained via a truthful voting rule, establishing that truthfulness comes at minimal cost even in this general model.

In all these papers, agents are modeled to have normalized utilities for alternatives. Initiated by the work of [START_REF] Anshelevich | Approximating optimal social choice under metric preferences[END_REF], a large recent literature about metric distortion instead models agents as having costs for alternatives. This literature makes the assumption that the cost of an agent for an alternative is the distance between them in an underlying metric space, and aims to approximate the utilitarian social cost (i.e., the sum of agent costs) [START_REF] Anshelevich | Blind, greedy, and random: Algorithms for matching and clustering using only ordinal information[END_REF][START_REF] Anshelevich | Randomized social choice functions under metric preferences[END_REF][START_REF] Anshelevich | Approximating optimal social choice under metric preferences[END_REF][START_REF] Munagala | Improved metric distortion for deterministic social choice rules[END_REF][START_REF] Caragiannis | The metric distortion of multiwinner voting[END_REF]. It turns out that the metric structure allows significantly better distortion bounds: the best distortion of deterministic rules is 3 [START_REF] Gkatzelis | Resolving the optimal metric distortion conjecture[END_REF]] (compared to Θ(m 2 ) in the non-metric setting) and that for probabilistic rules is between 2.0261 and 3 -2/m [Kempe, 2020, Charikar and Ramakrishnan, 2022] (compared to Θ( √ m) distortion in the non-metric setting). Note that probabilistic rules are superior to deterministic rules in the metric setting as well.

Fairness of single-winner voting rules has received less attention than distortion. For probabilistic voting rules, fairness has been studied in a series of papers that interpret the output distribution as a division of a budget. Most work has studied this in a model with known approval utilities of the agents [START_REF] Bogomolnaia | Collective choice under dichotomous preferences[END_REF], Aziz et al., 2019[START_REF] Duddy | Fair sharing under dichotomous preferences[END_REF][START_REF] Brandl | Distribution rules under dichotomous preferences: Two out of three ain't bad[END_REF]. [START_REF] Airiau | Portioning using ordinal preferences: Fairness and efficiency[END_REF] study probabilistic voting rules which take as input ranked preferences, and then convert those preferences into utilities using a fixed scoring vector (such as Borda). The rules then maximize the Nash welfare (the geometric mean of agent utiltiies) or the egalitarian welfare (the minimum agent utility) and its leximin refinement. Note that in our work the utilities are unknown. They prove that Nash-welfare-based rules satisfy the SD-core. This is a weaker axiom than the core that we introduce in Section 2, which in the terminology of [START_REF] Aziz | On the tradeoff between efficiency and strategyproofness[END_REF] could be called the strong SD-core. We note that SD-core implies no better than an m-approximation of our (strong) core (for example, random dictatorship satisfies SD-core and is in the m-approximate core), whereas we achieve an O(log m)-approximate core. In a model where voters report their utilities, [START_REF] Fain | The core of the participatory budgeting problem[END_REF] investigate the core and propose a polynomial-time algorithm for finding an outcome in the core via the so-called Lindahl equilibrium. Note that they do not require an approximation to the core because utilities are known. They also point out connections to proportional fairness.

Fairness in voting has been studied in detail for deterministic multi-winner voting rules. Various fairness notions have been studied that require every group of agents to have representation in the committee, with larger and more cohesive groups having better representation. This includes notions such as justified representation (JR), extended justified representation (EJR) [Aziz et al., 2017a], proportional justified representation (PJR) [START_REF] Sánchez-Fernández | Proportional justified representation[END_REF], full justified representation (FJR) [Peters et al., 2021b] and the proportionality degree [START_REF] Skowron | Proportionality degree of multiwinner rules[END_REF]. [START_REF] Cheng | Group fairness in committee selection[END_REF] prove that there always exists a distribution over committees that satisfies a stronger fairness notion called stability; this is the main tool we use to achieve O( √ m) distortion for single-winner voting. [START_REF] Jiang | Approximately stable committee selection[END_REF] derandomize this result to prove that there always exists a committee satisfying 32-approximate stability; we show that this derandomized result can be used to achieve O( √ m) distortion with respect to the Nash welfare, but we are able to improve on that bound to achieve O(log m) distortion using the minimax theorem. Fain et al.

[2018] study a more general model of public goods and achieve different approximations to the core under various constraints on feasible outcomes.

Preliminaries

For t ∈ N, let [t] = {1, . . . , t}. For a set X, let ∆(X) be the set of probability distributions x over X.

Voting. Let N be a set of n agents and A be a set of m alternatives. For k ∈ [m], let P k (A) denote the set of all subsets of A of size k. Each agent i ∈ N submits a preference ranking over the alternatives, encoded by a bijective rank function σ i : A → [m]. For example, if σ i (a) = 1, then a is the most-preferred alternative for agent i. We use a ≻ i a ′ to denote σ i (a) < σ i (a ′ ) (agent i ranks a strictly above a ′ ) and a ≽ i a ′ to denote σ i (a) ⩽ σ i (a ′ ). We refer to the collection ⃗ σ = (σ i ) i∈N as a preference profile. A (probabilistic) voting rule f is a function that takes a preference profile ⃗ σ as input and outputs a distribution over alternatives. Note that the output of a voting rule can be interpreted as a randomized selection of alternatives, but also as a division of some divisible resource (such as time or a budget) between the alternatives.

Utilities. A utility function u : A → R ⩾0 assigns a non-negative utility to each alternative. We can extend u to also assign utility values to distributions x ∈ ∆(A) over alternatives by setting u(x) = E a∼x u(a). We assume that when agents submit ranked preferences, they have more expressive underlying cardinal preferences. Given a preference profile ⃗ σ, we say that a utility function u i for agent i is consistent with her preference ranking if for all a, a ′ ∈ A such that a ≻ i a ′ , we have u i (a) ⩾ u i (a ′ ). Note that we allow alternatives to have equal utility, and then the agent can break ties arbitrarily when submitting a preference ranking. We refer to a collection ⃗ u = (u i ) i∈N as a utility profile. We use the notation ⃗ u ▷ ⃗ σ to indicate that u i is consistent with σ i for each agent i. Note that voting rules have access to the preference profile but not to the utility profile.

Utility classes. Let U all denote the class of all possible utility functions. We also study the following standard restricted utility classes.

• U unit-sum is the class of unit-sum utility functions u satisfying a∈A u(a) = 1.

• U unit-range is the class of unit-range utility functions u satisfying max a∈A u(a) = 1. 4• U approval is the class of approval utility functions u satisfying u(a) ∈ {0, 1} for all a ∈ A and u(a) = 1 for at least one a ∈ A.

We introduce a new class of balanced utility functions, where the highest utility intensity that can be expressed is at most 1, and where the total utility of the utility function is at least 1.

• U balanced is the class of utility functions u satisfying u(a) ⩽ 1 for all a ∈ A and a∈A u(a) ⩾ 1.

Note that U unit-sum ⊆ U balanced and U approval ⊆ U unit-range ⊆ U balanced . Our positive distortion result will work for the entire class of balanced utility functions.

In this work, we focus on two metrics for evaluating voting rules: distortion, which is a measure of social welfare, and proportional fairness, which is a measure of fairness.

Distortion

Given the utility profile ⃗ u, the utilitarian welfare of a distribution over alternatives x ∈ ∆(A) is defined as UW(x, ⃗ u) = i∈N u i (x).

If one could observe the underlying utilities, an argument dating back to [START_REF] Bentham | An Introduction to the Principles of Morals and Legislation[END_REF] suggests that picking the alternative maximizing the utilitarian welfare is the best choice. However, a voting rule is allowed to observe only the preference profile ⃗ σ, thus obtaining partial information about the utility profile ⃗ u. In this case, we measure the efficiency of the voting rule by the worst-case approximation ratio it achieves for maximizing the utilitarian welfare.

Agent i 1 Agent i 2 Agent i 3 Preferences ⃗ σ a 1 ≻ a 2 ≻ a 3 a 2 ≻ a 1 ≻ a 3 a 1 ≻ a 3 ≻ a 2 Utilities ⃗ u 1 1 /2 , 1 /3 , 1 /6 1 /2 , 1 /2 , 0 1 /3 , 1 /3 , 1 /3 ⃗ u 2 1 /2 , 1 /2 , 0 1 , 0 , 0 1 /3 , 1 /3 , 1 /3
Table 2: A preference profile with three agents and three alternatives along with two consistent unit-sum utility profiles.

Definition 2.1 (Distortion). Given a utility profile ⃗ u, the distortion of a distribution x ∈ ∆(A) is the ratio between the highest possible social welfare and the social welfare of x under ⃗ u:

D(x, ⃗ u) = max y∈∆(A) UW(y, ⃗ u) UW(x, ⃗ u) .
The distortion of x on a preference profile ⃗ σ for a utility class U is obtained by taking the worst case over all utility profiles ⃗ u ∈ U n consistent with ⃗ σ.

D(x, ⃗ σ, U) = sup ⃗ u∈U n : ⃗ u▷⃗ σ D(x, ⃗ u).
Given a number m of alternatives, the distortion of a voting rule f for utility class

U is D m (f, U) = sup ⃗ σ D(f (⃗ σ), ⃗ σ, U)
, where the supremum is taken over all preference profiles ⃗ σ with m alternatives and any number of agents.

Example 2.2. Table 2 shows a preference profile with three agents and three alternatives. Consider the distribution x = (a 1 : 1 /2, a 2 : 1 /4, a 3 : 1 /4). Let us evaluate its distortion under two utility profiles given in the table.

• For utility profile ⃗ u 1 , the social welfare of x is UW(x, ⃗ u 1 ) = 3 /8 + 3 /8 + 1 /3 = 13 /12. For ⃗ u 1 , the optimal outcome is y = (a 1 : 1) with UW(y, ⃗ u 1 ) =4 /3. Hence, D(x, ⃗ u 1 ) =

• For utility profile ⃗ u 2 , the social welfare of x is UW(x, ⃗ u 2 ) = 5 /12 + 11 /24 + 1 /12 = 23 /24. For ⃗ u 2 , the optimal outcome is y = (a 1 : 1) with UW(y, ⃗ u 2 ) = 11 /6. Hence, D(x, ⃗ u 2 ) = 11 /6

23 /24 = 44 /23 ≈ 1.91.

Thus, under ⃗ u 1 , it is possible to obtain 23% more social welfare than x, and under ⃗ u 2 , it is possible to obtain 91% more. Using a simple linear program, one can check that ⃗ u 2 is the worst case for utility profiles from U unit-sum , so D(x, ⃗ σ, U unit-sum ) = 44 /23 ≈ 1.91. Using a more sophisticated linear program [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF], one can find the distribution with the lowest possible distortion for unit-sum utilities, which on this profile is x * ≈ (a 1 : 0.5882, a 2 : 0.4118, a 3 : 0), achieving distortion of approximately 1.54.

As we mention in Example 2.2, given a preference profile ⃗ σ, one can find a distribution x minimizing D(x, ⃗ σ, U unit-sum ) by solving a linear program proposed by [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF]. Their approach works for any utility class that is described by linear constraints, so it can be used to find instance-optimal distributions for unit-sum, for unit-range, and for balanced utilities. We show in Lemma B.1 in the appendix that the distribution minimizing distortion for unit-range utilities also minimizes distortion for approval utilities, and so instance-optimal distributions for approval utilities can also be found in polynomial time.

We have defined the distortion for a class of utility functions U by taking the worst case over all utility profiles ⃗ u in which the utility function u i of every agent i belongs to U. Most naturally, one would like to analyze the distortion for the class of all utility functions U all . However, the worst-case distortion for this class is degenerate: the rule that always selects the uniform distribution has O(m) distortion, and it is easy to see that any rule has at least Ω(m) distortion (by considering utility profiles where some agents care a lot and others not at all). Thus, without some additional restrictions on cardinal utilities (such as unit-sum or unit-range), it turns out that ordinal preferences do not provide significant information about utilitarian welfare.

Nash Welfare Distortion

Distortion is typically defined with respect to utilitarian welfare, but the same principle can be applied to other welfare functions. We will in particular study Nash welfare (NW), which is the geometric mean of agent utilities: NW(x, ⃗ u) = i∈N u i (x) 1 /n . We can define the distortion D NW m (f, U) of a voting rule f for Nash welfare by replacing the utilitarian welfare UW in Definition 2.1 by NW.

Nash welfare is sometimes viewed as a combined measure of efficiency and fairness. It measures efficiency in a Pareto sense (if everyone's utility increases then so does Nash welfare), and it measures fairness because if some agent has very low utility then this has a strong negative impact on overall Nash welfare.

Remarkably, the Nash welfare is scale invariant, i.e., multiplying the utility function of an agent by some factor does not change the comparison between the Nash welfare of two distributions over alternatives. Hence, we have that

D NW m (f, U all ) = D NW m (f, U unit-sum ) = D NW m (f, U unit-range
) for every voting rule f .

Core

When we view a distribution x as a division of a budget between the alternatives, the core is a fairness axiom that intuitively guarantees every group of agents an influence proportional to its size, provided the agents in the group have similar enough preferences. Let α ⩾ 1. We will define an α-approximate notion of the core which coincides with the standard version when α = 1. Similar α-approximations to the core have been studied in discrete budgeting settings [START_REF] Fain | Fair allocation of indivisible public goods[END_REF][START_REF] Peters | Proportionality and the limits of welfarism[END_REF][START_REF] Munagala | Approximate core for committee selection via multilinear extension and market clearing[END_REF]. A distribution over alternatives x ∈ ∆(A) is said to be in the α-core with respect to utility profile ⃗ u if there is no subset of agents S and distribution over alternatives y ∈ ∆(A) such that

|S| |N | • u i (y) ⩾ α • u i (x) for every agent i ∈ S,
and at least one of these inequalities is strict. 5 A voting rule f is said to be in the α-core if, for every preference profile ⃗ σ, f (⃗ σ) is in the α-core with respect to every utility profile ⃗ u consistent with ⃗ σ.

The core notion is inspired by cooperative game theory, where it is seen as a stability notion: if a group of agents is not treated fairly, then those agents can leave the system in order to use their fraction of the budget in a preferable way. The core is typically defined in settings where agents' utility functions are known; our notion is phrased for the case where the rule has access to only ordinal information. Note that to be in the α-core, a rule needs to avoid deviations for all consistent utilities. This makes sense as a conservative stability notion because agents will presumably make their decision to leave based on their actual utilities.

While 1-core can be achieved when exact utilities are known (see Section 2.4), it is easy to see that no rule can satisfy 1-core given only the ordinal preferences. For example, consider the profile from Example 2.2 with preferences (a 1 ≻ a 2 ≻ a 3 , a 2 ≻ a 1 ≻ a 3 , a 1 ≻ a 3 ≻ a 2 ). For the utility profile where each agent approves just their top alternative, there is a unique distribution x that satisfies the 1-core, namely x = (a 1 : 2 /3, a 2 : 1 /3, a 3 : 0). This is because if x(a 1 ) was any lower, then the first and third agents could deviate; if x(a 2 ) was lower, then the second agent could deviate. However, x fails the 1-core if we change the utility profile so that the second agent gives the same utility to all alternatives. For that utility profile, all three agents can deviate together by proposing to place the entire budget on a 1 .

Proportional Fairness

We have now seen two notions that are connected to fairness (Nash welfare and the core). A third such notion is proportional fairness, which was first proposed in communication networks [START_REF] Kelly | Rate control for communication networks: shadow prices, proportional fairness and stability[END_REF]] but is easily adapted to social choice more generally. This is a quantitative way of measuring the fairness of a distribution. As we will see, proportional fairness is intimately connected to the other two notions. Definition 2.3 (Proportional Fairness). Let x ∈ ∆(A) be a distribution over alternatives. Given a utility profile ⃗ u, we write

PF(x, ⃗ u) = max y∈∆(A) 1 n i∈N u i (y) u i (x) = max a∈A 1 n i∈N u i (a) u i (x) . 6 (1) 
Given a preference profile ⃗ σ and a utility class U, we write

PF(x, ⃗ σ, U) = sup ⃗ u∈U n : ⃗ u▷⃗ σ PF(x, ⃗ u).
If PF(x, ⃗ σ, U) ⩽ α, we say that x is α-proportionally fair (for utility class U).

Given a number m of alternatives, we say that a voting rule f is α-proportionally fair (for utility class U) if for every preference profile ⃗ σ with m alternatives and any number of agents, we have PF

(f (⃗ σ), ⃗ σ, U) ⩽ α. We also write PF m (f, U) = sup ⃗ σ PF(f (⃗ σ), ⃗ σ, U) so that f is α-proportionally fair if and only if PF m (f, U) ⩽ α.
Example 2.4. Take the example in Table 2. For distribution x = (a 1 : 1 /2, a 2 : 1 /4, a 3 : 1 /4) and utilities ⃗ u 1 , we have PF(x, ⃗ u 1 ) = 1 3 max{ 11 /3, 29 /9, 13 /9} = 11 /9 ≈ 1.22. For utilities ⃗ u 2 , we have PF(x, ⃗ u 2 ) = 1 3 max{7 /3, 19 /3, 1} = 19 /9 ≈ 2.11. Using Lemma 4.1 in Section 4, we can check that ⃗ u 2 is the worst-case utility profile for distribution x, so that PF(x, ⃗ u) ⩽ 19 /9 ≈ 2.11 for all utility profiles ⃗ u ∈ U all . Hence x is 2.11-proportionally fair.

Using the techniques described in Section 4.3, we can establish that the optimal distribution with respect to proportional fairness is x * ≈ (a 1 : 0.586, a 2 : 0.414, a 3 : 0), and PF(x * , ⃗ u) ⩽ 1.47 for all utility profiles ⃗ u ∈ U all . 7 For every utility profile ⃗ u, there exists a distribution x with PF(x, ⃗ u) = 1; in fact, the distribution that maximizes Nash welfare with respect to ⃗ u has this property [e.g., Fain et al., 2018, Sec. 2.2]. This is the lowest possible value (no distribution can obtain a value smaller than 1; take y = x in the definition of PF(x, ⃗ u)). To illustrate why proportional fairness is a measure of fairness, we can note that if x is a distribution such that u i (x) = 0 for some agent i ∈ N , then PF(x, ⃗ u) = ∞, which we can see by taking any y for which u i (y) > 0. Thus, an α-proportionally fair distribution, with α not too high, guarantees to every agent a base level of utility compared to what the agent can receive in any other distribution (in particular, no agent's preferences can be completely ignored).

Like the Nash welfare, proportional fairness is also scale invariant. Hence, we have PF m (f, U all ) = PF m (f, U unit-sum ) = PF m (f, U unit-range ) for every voting rule f . Our results for proportional fairness all hold with respect to U all , so we drop it from the notation and simply use PF(x, ⃗ σ) and PF m (f ).

An appealing strength of proportional fairness is that it is related to other fairness properties of interest. In particular, an α-proportionally fair voting rule is also in the α-core, and has a distortion with respect to Nash welfare of at most α.

Proportional fairness ⇒ the core. The following is a well-known relation between proportional fairness and the core. 8Proposition 2.5. For every α ⩾ 1, if f is an α-proportionally fair voting rule, then f is in the α-core.

Proof. Suppose for contradiction that PF m (f ) ⩽ α, but there exists a consistent pair of utility profile ⃗ u and preference profile ⃗ σ such that x = f (⃗ σ) is not in the α-core with respect to ⃗ u. Then, by definition, there exists a subset of agents S and a distribution over alternatives

y ∈ ∆(A) such that |S| n • u i (y) ⩾ α • u i (x) (i.e., ui(y) ui(x) ⩾ α • n |S| )
for every agent i ∈ S and at least one of these inequalities is strict. Hence,

i∈S u i (y) u i (x) > α • n ⇒ 1 n i∈N u i (y) u i (x) ⩾ 1 n i∈S u i (y) u i (x) > α,
contradicting the assumption that PF m (f ) ⩽ α.

Proportional fairness ⇒ distortion with respect to the Nash welfare. It is also well-known that proportional fairness is an upper bound on the approximation of (i.e., distortion with respect to) the Nash welfare.9 

second transition in Equation (1) holds because

1 n i∈N u i (y)/u i (x) is linear in y.
Proposition 2.6. For every voting rule f , we have

D NW m (f, U all ) ⩽ PF m (f, U all ).
Proof. This holds because for any pair of distributions over alternatives x, y ∈ ∆(A) and utility profile ⃗ u, we have NW(y, ⃗ u)

NW(x, ⃗ u) = i∈N u i (y) u i (x) 1/n ⩽ 1 n i∈N u i (y) u i (x) ,
by the inequality of arithmetic and geometric means.

The Minimax Theorem

In several places, we will use some basic elements of the theory of zero-sum games and the minimax theorem. Recall that if X ⊆ R n is a convex set and f : We can interpret this theorem as a statement about a two-player zero-sum game between a player and an adversary. The player can choose a strategy x from the set X while aiming to maximize the value f (x, y), and the adversary can choose y ∈ Y aiming to minimize the value. The minimax theorem states that (under certain convexity conditions) it does not matter in which order the players make their moves. In our applications, we have X = ∆(S 1 ) and Y = ∆(S 2 ) for some finite sets S 1 and S 2 of pure strategies, so that X and Y are sets of mixed strategies. In this case, the function f typically encodes an expected payoff, f (x, y) = E s1∼x,s2∼y [g(s 1 , s 2 )] for some g : S 1 × S 2 → R. Such an f is linear in both arguments and hence satisfies the conditions of the minimax theorem. In our results about proportional fairness, we will need the full strength of the minimax theorem, allowing for functions f that are not linear in both arguments. The equal value of the max-min and min-max expressions is known as the value of the zero-sum game.

X → R is a function, then f is convex if for all x 1 , x 2 ∈ X and all 0 ⩽ λ ⩽ 1, we have f (λx 1 + (1 -λ)x 2 ) ⩽ λf (x 1 ) + (1 -λ)f (x 2 ). Further, f is concave if -f is convex. For example, f (x) = x 2 is convex and f (x) =

Distortion

We begin by aiming to achieve low distortion with respect to utilitarian social welfare. Boutilier et al.

[2015] consider unit-sum utilities and show that any rule must incur distortion at least Ω( √ m). They also construct an intricate and artificial voting rule that achieves distortion O( √ m log * m), thus leaving a tiny gap. They also present a more natural voting rule that achieves distortion O( √ m log m), which we call the harmonic rule f HR . It is based on the harmonic scoring rule, according to which each agent i gives 1/k points to the alternative she ranks in the k-th position. Given a preference profile ⃗ σ, the harmonic score of an alternative a is hsc(a) = i∈N 1/σ i (a). Now, with probability 1 2 , the harmonic rule chooses an alternative uniformly at random, and with probability 1 2 , it chooses an alternative a with probability proportional to hsc(a). Note that the harmonic scores of all alternatives sum to nH m where

H m = 1 + 1 2 + • • • + 1 m . Thus if x = f HR (⃗ σ) then x(a) = 1 2m + hsc(a)
2nH m for all a ∈ A.

In this section, we introduce a new rule that achieves distortion O( √ m), which is optimal up to a constant factor. This rule is based on concepts from cooperative game theory and from the theory of committee selection, and can be computed in polynomial time. Our rule turns out to have robustly good performance, in that its distortion remains low for other utility classes and other welfare functions. We will compare it throughout to the harmonic rule.

Stable Lotteries

Below the hood, our new voting rule is based on multi-winner voting, also known as committee selection, which concerns the well-studied problem of selecting a committee X ⊆ A of k alternatives, based on the agents' preferences over the alternatives [START_REF] Faliszewski | Multiwinner voting: A new challenge for social choice theory[END_REF]. One aim of the literature on multi-winner voting is to identify representative committees, where as many agents as possible are represented in the committee, in the sense that one of their highly-ranked alternatives is included [START_REF] Chamberlin | Representative deliberations and representative decisions: Proportional representation and the Borda rule[END_REF]. This is a type of fairness consideration and related to the idea of proportional representation which is particularly well-developed in the context of approval utilities [START_REF] Lackner | Approval-based committee voting[END_REF].

Representative committees are interesting in the distortion context due to the following intuition: if a voting rule places very little weight on alternatives that are highly ranked by many agents, then the rule is in danger of incurring high distortion, because those unrepresented agents may feel strongly about their high-ranked alternatives, while others may be more-or-less indifferent.

For ranked preferences, a recently studied representation axiom is (local) stability [Aziz et al., 2017b[START_REF] Cheng | Group fairness in committee selection[END_REF]. This axiom is based on the idea that a group of n k agents should be able to decide over one of the k slots in the committee. Formally, for a committee X with |X| = k and an alternative a * , write V (a * , X) = |{i ∈ N : a * ≻ i X}| for the number of agents who prefer a * to all alternatives in the committee. We say that X is stable if for all alternatives a * ̸ ∈ X, we have V (a * , X) < n k . Such a committee is stable in a sense familiar from cooperative game theory.

There are examples of preference profiles and sizes k where no stable committee exists [Jiang et al., 2020, Thm. 4]. However, Cheng et al. [2020] proved that there always exists a probability distribution over committees which satisfies a probabilistic generalization of the stability property. Definition 3.1. A distribution X ∈ ∆(P k (A)) over committees X of size k is a stable lottery if for all alternatives a * ∈ A, we have

E X∼X [V (a * , X)] < n k .
To be self-contained, we include a short proof of existence, following the simplified treatment due to Jiang et al. [2020, Lem. 4].

Theorem 3.2 [START_REF] Cheng | Group fairness in committee selection[END_REF]. For every preference profile ⃗ σ and for every k, there exists a stable lottery.

Proof. Let ⃗ σ be a preference profile. We view our task as proving the following bound: min

X∈∆(P k (A)) max a * ∈A E X∼X [V (a * , X)] < n k .
If the bound holds, then taking an X that solves the minimization problem is a stable lottery. We can view the expression on the left-hand side as a zero-sum game, where one player chooses a distribution and the adversary responds with an alternative. Applying the minimax theorem, it suffices to show that max y∈∆(A)

min

X∈∆(P k (A)) E X∼X,a * ∼y [V (a * , X)] < n k .
Let y ∈ ∆(A). Define a distribution X over committees by the following process. Draw k alternatives a 1 , . . . , a k from the distribution y independently and with replacement. Let X be the random set of alternatives thus selected, if necessary filled up with arbitrary additional alternatives until |X| = k. Now note that for every agent i ∈ N , the probability Pr a * ∼y,X∼X [a * ≻ i X] is at most the probability that a * is the strictly most-preferred among the at most k + 1 alternatives a * , a 1 , . . . , a k which are drawn i.i.d.

Hence by symmetry Pr a * ∼y,X∼X [a

* ≻ i X] ⩽ 1/(k + 1) < 1/k.
Summing up over all i ∈ N , it follows that E X∼X,a * ∼y [V (a * , X)] < n k , as desired. Cheng et al. [2020] prove that a stable lottery can be found in (expected) polynomial time using the multiplicative weights update algorithm for zero-sum games. That algorithm finds a solution whose value is ε-close to the optimum value. But the existence proof above in fact established that the value of the game is at most n/(k + 1), when all we need is a solution with value less than n/k. Thus, we can run the algorithm with ε = 1 2 • ( n k -n k+1 ) and obtain an exactly stable lottery in expected polynomial time.

The Stable Lottery Rule

We propose a voting rule based on stable lotteries for committees of size k = √ m. Like the previously proposed harmonic rule, our rule spreads half of the probability mass uniformly over all alternatives. 10 It then assigns the remaining probability mass to alternatives in proportion to the probability that they are included in the committee selected by the stable lottery. Definition 3.3 (Stable Lottery Rule, f SLR ). Let X be a stable lottery over committees X of size k = √ m. The Stable Lottery Rule f SLR works as follows: With probability 1/2, sample a committee X ∼ X and choose an alternative uniformly at random from X, and with probability 1/2, choose an alternative uniformly at random from A. Therefore, each alternative a ∈ A will be selected with probability

x(a) = 1 2 √ m • Pr X∼X [a ∈ X] + 1 2m .
Our first main result states that f SLR achieves distortion Θ( √ m) on the class of balanced utility functions, and hence also for unit-sum, unit-range, and approval utilities. 

D m (f SLR , U balanced ) = O( √ m).
Proof. Let ⃗ u be a utility profile consistent with a profile ⃗ σ, with u i ∈ U balanced for all i ∈ N . We begin the proof by making the following observation. Let X be a committee, and let a * ∈ A be a distinguished alternative. Write u i (X) = a∈X u i (a) and UW(X, ⃗ u) = i∈N u i (X). Then,

UW(X, ⃗ u) ⩾ UW(a * , ⃗ u) -V (a * , X). (2) 
Indeed, for every agent i such that a * ≻ i X, we have u i (X) ⩾ 0 ⩾ u i (a * ) -max a∈A u i (a) ⩾ u i (a * ) -1 because u i ∈ U balanced , and for every agent i such that a * ̸ ≻ i X, there exists some alternative a ∈ X such that a ≻ i a * , so u i (X) ⩾ u i (a) ⩾ u i (a * ). Equation ( 2) follows by summing these inequalities over all i ∈ N , noting that the number of agents of the first type is V (a * , X). Let x = f SLR (⃗ σ) be the distribution selected the Stable Lottery Rule, and let X be the underlying stable lottery over committees of size √ m. Let us write x = 1 2 x 1 + 1 2 x 2 , where x 1 is the part of x based on the stable lottery and x 2 is the uniform distribution over A. Thus,

x 1 (a) = 1 √ m • Pr X∼X [a ∈ X] and x 2 (a) = 1/m for all a ∈ A.
Note that for all i ∈ N , we have

u i (x 2 ) ⩾ 1 m a∈A u i (a) ⩾ 1 m because u i ∈ U balanced . Hence UW(x 2 , ⃗ u) ⩾ n m and so m n • UW(x 2 , ⃗ u) ⩾ 1. Now fix an arbitrary a * ∈ A. Then, √ m • UW(x 1 , ⃗ u) = √ m • a∈A 1 √ m Pr X∼X [a ∈ X] • UW(a, ⃗ u) = E X∼X [ a∈X UW(a, ⃗ u)] = E X∼X [UW(X, ⃗ u)] ⩾ E X∼X [UW(a * , ⃗ u) -V (a * , X)] (by equation (2)) = UW(a * , ⃗ u) -E X∼X [V (a * , X)] (linearity of expectation) ⩾ UW(a * , ⃗ u) -n √ m (stability of X) ⩾ UW(a * , ⃗ u) -n √ m • m n • UW(x 2 , ⃗ u) (since m n • UW(x 2 , ⃗ u) ⩾ 1) = UW(a * , ⃗ u) - √ m • UW(x 2 , ⃗ u).
Hence,

UW(x, ⃗ u) = 1 2 UW(x 1 , ⃗ u) + 1 2 UW(x 2 , ⃗ u) ⩾ UW(a * , ⃗ u) 2 √ m for all a * ∈ A.
Therefore, we have that

D m (f SLR , U balanced ) ⩽ D(x, ⃗ σ, U balanced ) ⩽ max a * ∈A UW(a * , ⃗ u) UW(a * ,⃗ u) 2 √ m = 2 √ m = O( √ m).
This proof generalizes to utility functions that are imbalanced to some degree.

Corollary 3.5. For 0 < α < 1, write U α-balanced for the class of α-balanced utility functions with α • max a∈A u(a) ⩽ 1 ⩽ a∈A u(a). On this class, the Stable Lottery Rule achieves O( m/α) distortion:

D m (f SLR , U α-balanced ) = O( m/α).
In contrast to the O( √ m) distortion of the Stable Lottery Rule, the Harmonic Rule f HR achieves worse distortion for both unit-sum and, especially, unit-range utilities.

Theorem 3.6. The distortion of the Harmonic Rule is D m (f HR , U unit-sum ) = Θ( √ m log m) for unit-sum utilities and D m (f HR , U unit-range ) = Θ(m 2/3 log 1/3 m) for unit-range utilities.

For unit-sum utilities, the upper bound is due to Boutilier et al. [2015] and the lower bound follows from the work of Bhaskar et al. [2018], though we include an explicit lower bound example in Appendix C.1. The analysis of the distortion of f HR for unit-range utilities is new. The polynomial increase in the distortion of f HR compared to that of f SLR can be explained by noting that f HR is truthful, and for unit-range utilities, Filos-Ratsikas and Miltersen [2014] prove that any truthful rule has distortion Ω(m 2/3 ), meaning that f HR still has close to the best distortion achievable via truthful rules. We give proofs of these results in Appendix C.1.

Lower Bounds

Boutilier et al. [2015] prove that the distortion of every voting rule for the class U unit-sum of unit-sum utilities is Ω( √ m), showing that f SLR is asymptotically optimal on this class. In Appendix A, we generalize their bound slightly to a broader parametric class of utility functions, which in particular implies that the distortion of f SLR on the class of α-balanced utility functions discussed in Corollary 3.5 is optimal in both m and α.

Here, we present a lower bound for the class of approval utility functions, which also applies to the larger class of unit-range utilities. This bound implies that f SLR achieves asymptotically optimal distortion on both of these utility classes. Let f be a voting rule and let x be the distribution selected by f on this profile. By the pigeonhole principle, there must exist one index r ∈ [

√ n] such that x(a n+r ) ⩽ 1/ √ n. Without loss of generality, assume that x(a n+1 ) ⩽ 1/ √ n. Consider the approval utility profile ⃗ u under which all agents in N 1 approve their top two alternatives (i.e., their top choice and a n+1 ), and all other agents approve only their top alternative.

Then, UW(a n+1 , ⃗ u) = √ n whereas UW(a ′ , ⃗ u) = 1 for every alternative a ′ ∈ A \ {a n+1 }. Therefore, we have

D m (f, U approval ) ⩾ UW(a n+1 , ⃗ u) UW(x, ⃗ u) ⩾ √ n 1 -1 √ n • 1 + 1 √ n • √ n ⩾ √ n 2 = Ω √ m ,
where the final transition holds due to m = n + √ n. Because U approval ⊆ U unit-range , we also have D m (f, U unit-range ) = Ω( √ m).

Proportional Fairness

In this section, we turn our attention to proportional fairness (see Definition 2.3). As we noted in Section 2.4, the proportional fairness objective is scale invariant, and thus PF m (f, U all ) = PF m (f, U unit-sum ) = PF m (f, U unit-range ) for all voting rules f . Thus, we will just consider U all throughout this section, and thus suppress the utility class U from our notation.

Upper Bounds

A natural question at this point is whether the stable-lottery-based approach from the previous section, which provides optimal distortion, also works for proportional fairness. In Appendix E, we present a close cousin of our stable lottery rule, namely the stable committee rule (f SCR ), which uses an approximately stable deterministic committee in place of an exactly stable lottery over committees; such committees with constant approximations are guaranteed to exist due to the recent work of Jiang et al. [2020]. In the appendix, we show that this rule is O( √ m)-proportionally fair. This raises the obvious question of whether it is possible to do better. Surprisingly, we show that it is! Using the minimax theorem, we are able to show that there exists an O(log m)-proportionally fair voting rule. We later show this upper bound to be tight. In Section 4.3, we use the projected subgradient descent algorithm to turn this non-constructive argument into an efficient algorithm.

We begin with a useful lemma that simplifies the analysis of the proportional fairness of a given distribution x. Let us write h i (a) = {a ′ ∈ A : a ′ ≽ i a} for the set of alternatives that agent i ranks weakly above a, and for a distribution x, let x(h i (a)) = a ′ ∈hi(a) x(a ′ ) be the total weight that x places on them.

Lemma 4.1. Given a preference profile ⃗ σ and a distribution x, we have

PF(x, ⃗ σ) = max a∈A 1 n i∈N 1 x(h i (a)) , ( 3 
)
and this is convex in x.

Proof. Recall from Section 2.4 that

PF(x, ⃗ σ) = sup ⃗ u∈(U all ) n :⃗ u▷⃗ σ max a∈A 1 n • i∈N u i (a) u i (x) .
Fix any a ∈ A. Note that we can take the worst case over the utility function u i of each agent i separately as its contribution to the above expression, for any fixed x and a, is independent of that of the other utility functions.

Thus, it is sufficient to show that sup ui∈U all :ui▷σi u i (a)/u i (x) = 1/x(h i (a)). This follows from the simple observation that u i (a ′ ) ⩾ u i (a) for all a ′ ∈ h i (a), which implies u i (x) ⩾ x(h i (a)) • u i (a), i.e., u i (a)/u i (x) ⩽ 1/x(h i (a)), and noting that this upper bound is achieved by setting, for example, u i (a ′ ) = 1 for all a ′ ∈ h i (a) and u i (a ′ ) = 0 for all a ′ ∈ A \ h i (a).

Convexity in x follows because the function g(z) = 1/z is a convex function, and taking the sum and maximum of a collection of convex functions yields a convex function.

Note that the last line of the proof shows that the worst case for proportional fairness is achieved at an approval utility profile. Hence, PF m (f, U all ) = PF m (f, U approval ) for all voting rules f . With this simplified formulation in hand, we can now derive an upper bound on the optimal proportional fairness.

Theorem 4.2. There exists a voting rule which is 2(1 + ln(2m))-proportionally fair.

Proof. We consider the instance-optimal voting rule which, given a preference profile, selects a distribution x that is α-proportionally fair for the smallest α. We interpret this distribution as the outcome of a (two-player) zero-sum game and α as the value of that game. We then bound this value in a dual game obtained by applying the minimax theorem.

Formulation as a zero-sum game. Let ⃗ σ be any preference profile. Write PF(⃗ σ) = min x∈∆(A) PF(x, ⃗ σ). Lemma 4.1 implies that

PF(⃗ σ) = min x∈∆(A) max a∈A 1 n i∈N 1 x(h i (a))
.

Hence, PF(⃗ σ) can be viewed as the outcome of a zero-sum game. The set of pure strategies for the (first) player is ∆(A), i.e., the player may choose a distribution over alternatives. In response, the adversary (the second player) can choose a single alternative a ∈ A. Then, for a pair of strategies (x, a) ∈ ∆(A) × A, the payoff to the adversary, which is equal to the negative payoff of the player, is defined as

R(x, a) = 1 n i∈N 1 x(h i (a))
.

With this notation, we have

PF(⃗ σ) = min x∈∆(A) max a∈A R(x, a).
Suppose we allow the adversary to choose a mixed strategy, i.e., a distribution over alternatives S A ∈ ∆(A). Define the expected payoff of the pair (x, S A ) of strategies to be E a∼SA [R(x, a)]. Because this objective is linear in S A , there is always a pure best response for the adversary (selecting a single alternative a ∈ A). Thus, allowing the adversary to choose a mixed strategy does not change the value of the game. Hence PF(⃗ σ) = min

x∈∆(A) max SA∈∆(A) E a∼SA [R(x, a)].
Now note that E a∼SA [R(x, a)] is convex in x (Lemma 4.1) and linear (and hence concave) in S A . Therefore, by the minimax theorem (Theorem 2.7), we have

PF(⃗ σ) = max SA∈∆(A) min x∈∆(A) E a∼SA [R(x, a)].
We call this game the dual game.

Bounding the value of the dual game. In the dual game, for a given strategy S A of the adversary, suppose the player responds with the strategy x with x(a) = 1 2 S A (a) + 1 2m for all a ∈ A (which is not necessarily a best response). Thus, with probability 1 2 the player selects according to S A , and with probability 1 2 , the player selects an alternative uniformly at random. Note that the value of the dual game when the player plays x is an upper bound on the true value of the dual game. Now, we have

PF(⃗ σ) = max SA∈∆(A) min x∈∆(A) E a∼SA [R(x, a)] ⩽ max SA∈∆(A) E a∼SA [R(x, a)]
(first player responds with x)

= max SA∈∆(A) 1 n i∈N E a∼SA 1 x(h i (a)) (linearity of expectation) ⩽ max SA∈∆(A) max i∈N E a∼SA 1 x(h i (a))
.

The last term is maximized at some distribution S A and some agent i with preference ranking σ i . Without loss of generality, suppose

σ i = a 1 ≻ i a 2 ≻ i • • • ≻ i a m . Write T j = j ℓ=1
x(a ℓ ) and T 0 = 0. Furthermore, note that, in this case, T j = x(h i (a j )). Then the above is equal to

j∈[m] S A (a j ) • 1 x(h i (a j )) < j∈[m] 2 • x(a j ) x(h i (a j )) = 2 j∈[m] T j -T j-1 T j = 2 j∈[m] 1 - T j-1 T j .
Using the fact that 1 -x ⩽ -ln(x),

j∈[m] 1 - T j-1 T j ⩽ 1 + m j=2 (ln(T j ) -ln(T j-1 )) = 1 + ln(T m ) -ln(T 1 ) ⩽ 1 + ln(2m),
where the last inequality holds due to T m = 1 and

T 1 = x(a 1 ) ⩾ 1 2m . It follows that PF(⃗ σ) ⩽ 2(1+ln(2m)), as desired.
This upper bound on proportional fairness immediately implies upper bounds on the α-core and distortion with respect to Nash welfare, using Propositions 2.5 and 2.6. Corollary 4.3. Let α = 2(1 + ln(2m)). There exists a voting rule f which is in the α-core and whose distortion with respect to Nash welfare is D NW m (f ) ⩽ α. We can also show that the harmonic rule f HR is Θ( √ m log m)-proportionally fair. While this is worse by a polynomial factor compared to our O(log m)-proportionally fair rule, it is close to optimal for truthful rules, which we show cannot be better than Ω( √ m)-proportionally fair.

Theorem 4.4. The harmonic rule f HR is Θ( √ m log m)-proportionally fair.

Theorem 4.5. If f is an α-proportionally fair voting rule that is also truthful, then α = Ω( √ m).

We provide proofs of these results in Appendix C.2 and Appendix D, respectively.

Lower Bounds

Next, we give a lower bound that essentially matches our upper bound, showing it is optimal.

Theorem 4.6. If f is an α-proportionally fair voting rule, then α ⩾ H m ⩾ ln(m + 1).

Proof. We show that there exists a preference profile ⃗ σ for which PF(x, ⃗ σ) ⩾ ln(m+1) for every distribution x ∈ ∆(A); this implies the desired claim.

For simplicity, we assume n = m, but the proof works when n is a multiple of m. Take the cyclic preference profile ⃗ σ, in which each agent i ∈ [m] has the preference ranking σ i = a i ≻ a i+1 ≻ . . . ≻ a m ≻ a 1 ≻ . . . ≻ a i-1 . Let x be any distribution. For i ∈ [m] and ℓ ∈ [m], define T i (ℓ) = ℓ-1 k=0 x(a i+k ) with the subscripts cycling as a m+k ≜ a k for all k ∈ [m]. Using this notation, we have x(h i (a)) = T i (σ i (a)) for any i ∈ [m] and a ∈ A. Then,

PF(x, ⃗ σ) = max a∈A 1 m i∈[m] 1 T i (σ i (a)) ⩾ 1 m 2 a∈A i∈[m] 1 T i (σ i (a)) = 1 m 2 ℓ∈[m] i∈[m] 1 T i (ℓ) ⩾ ℓ∈[m] 1 i∈[m] T i (ℓ)
,

where the final transition is the standard inequality between arithmetic and harmonic means.

For each fixed ℓ, note that i∈[m] T i (ℓ) = ℓ as each alternative appears in the top ℓ positions in exactly ℓ of the rankings. Using this above, we get PF(x, ⃗ σ)

⩾ ℓ∈[m] 1/ℓ = H m ⩾ ln(m + 1).
The profile used in the proof of Theorem 4.6 can also be used to derive a lower bound on distortion with respect to Nash welfare using a similar analysis. Proof. Consider the cyclic profile ⃗ σ from the proof of Theorem 4.6. Fix any distribution x and let T i (ℓ) be defined as in the proof of Theorem 4.6. Then, using the same argument as before, we have

D NW (x, ⃗ σ) = max y∈∆(A) i∈[m] sup ui:ui▷σi u i (y) u i (x) 1/m ⩾ max a∈A i∈[m] sup ui:ui▷σi u i (a) u i (x) 1/m = max a∈A i∈[m] 1 x(h i (a)) 1/m ⩾ a∈A i∈[m] 1 x(h i (a)) 1/m 2 = ℓ∈[m] i∈[m] 1 T i (ℓ) 1/m 2 ⩾ ℓ∈[m] m i∈[m] T i (ℓ) 1/m = ℓ∈[m] m ℓ 1/m
, where the penultimate transition uses the inequality between geometric and harmonic means. The final expression is the desired lower bound.

It can be checked that the lower bound from Proposition 4.7 converges to e from below as m → ∞. For m = 2, the lower bound is √ 2. In Appendix F, we show that this is tight by proposing a voting rule that achieves the √ 2 bound.

Computation

Lemma 4.1 gives a simple formula for calculating the value PF(x, ⃗ σ) of a given distribution x. Now, we turn to the computational problem of finding an α-proportionally fair distribution x with the lowest possible α, for a given preference profile ⃗ σ. We show that this can be (approximately) achieved in polynomial time. Our argument depends on the convexity of PF(x, ⃗ σ) in x (Lemma 4.1), which allows us to use convex optimization methods (in particular, the projected subgradient descent algorithm). For definitions of a subgradient and the subdifferential ∂f of a convex function f , we refer the reader to the books of [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF], Vishnoi [2021]. ; and (e) some ε > 0, outputs a sequence

x 0 , x 1 , . . . , x T -1 such that 1 T T -1 i=0 f (x i ) -f (x * ) ⩽ ε, where T = DG ε 2 .
As in the proof of Theorem 4.2, let PF(⃗ σ) = min x∈∆(A) PF(x, ⃗ σ) denote the best possible approximation of proportional fairness on a given preference profile ⃗ σ. Theorem 4.9. Given a preference profile ⃗ σ and ε > 0, an α-proportionally fair distribution over alternatives with α ⩽ PF(⃗ σ) + ε can be computed in poly(n, m, 1/ε) time.

Proof. We apply the projected subgradient method described in Theorem 4.8 to f (x) = PF(x, ⃗ σ) = max a∈A R(x, a), where R(x, a) = 1 n i∈N 1/x(h i (a)). We have shown f to be convex in x (Lemma 4.1). Note that for a given x ∈ ∆(A), f (x) can be computed in poly(n, m) time. We want to optimize f over x ∈ ∆(A). However, the subgradients at points close to the boundary of the probability simplex can be unbounded. We will avoid this by carefully restricting the domain of f .

For each a ∈ A, let p a be the fraction of agents who rank a as their top choice. Let β = 2(1 + ln(2m)) be the upper bound proven in Theorem 4.2 on PF(⃗ σ). We set Q = {x ∈ ∆(A) : x(a) ⩾ p a /β, ∀a ∈ A}.

First, we will show that an optimal distribution x * ∈ arg max x∈∆(A) f (x) lies in Q, ensuring that it is sufficient to optimize f over Q. Subsequently, we will show that the norm of any subgradient of f at any point in Q is bounded by poly(n, m) and that such a subgradient can be computed in polynomial time, giving us conditions (a) and (b) of Theorem 4.8. Then, the only missing piece left to be able to apply Theorem 4.8 is a starting point: we can choose any x 0 ∈ Q (e.g., x 0 (a) = p a for each a ∈ A) and use D = √ 2, which is an upper bound on the Euclidean distance between any two probability distributions.

Optimality. Let x * ∈ arg min x∈∆(A) f (x). Assume for a contradiction that x * / ∈ Q. Thus, there exists an alternative a ∈ A with p a > 0 such that x * (a) < p a /β. Then,

PF(⃗ σ) = PF(x * , ⃗ σ) ⩾ 1 n i∈N 1 x * (h i (a)) ⩾ p a • 1 x * (a) > β.
This contradicts Theorem 4.2, where we proved that PF(⃗ σ) ⩽ β for all ⃗ σ. Therefore, x * ∈ Q.

Bounding and computing subgradients. Take any x ∈ Q. For each fixed a ∈ A, the function R(x, a) is differentiable and convex in x. More specifically, for all a, a ′ ∈ A, we have

∂ ∂x a ′ R(x, a) = 1 n i∈N :a ′ ≽ia -1 x(h i (a)) 2 .
For each i ∈ N , let a * i be the top alternative of agent i. Because p a * i ⩾ 1/n and x ∈ Q, we have

x(h i (a)) ⩾ x(a * i ) ⩾ p a * i β ⩾ 1 2n(1 + ln(2m))
.

Therefore, ∥∇ R(x, a)∥ ∞ = O((n ln m) 2
) for all a. Furthermore, it is known that any gradient ∇ R(x, a * ), where a * ∈ arg max a∈A R(x, a) is a subgradient of PF(x, ⃗ σ) = max a∈A R(x, a). Hence, it follows that the norm of such a subgradient is bounded by poly(n, m) and we can compute such a subgradient in poly(n, m) time.

Discussion

We have proved that the best distortion (with respect to the utilitarian welfare) that probabilistic voting rules can achieve with ranked preferences is Θ( √ m), resolving an open question by [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF]. We have also initiated the study of proportional fairness as the counterpart of distortion which focuses on fairness rather than efficiency, proving that the value of this objective with ranked preferences is Θ(log m).

The O(log m) upper bound on the approximation of proportional fairness carries over to distortion with respect to the Nash welfare. However, our lower bound for this objective is at most e, leaving open the question of whether constant distortion with respect to the Nash welfare is achievable. Similarly, one can also focus on distortion with respect to other welfare functions, such as the egalitarian welfare or, more generally, the p-mean welfare [START_REF] Barman | Tight approximation algorithms for p-mean welfare under subadditive valuations[END_REF][START_REF] Bhaskar | Fair and efficient allocations under subadditive valuations[END_REF]. For the egalitarian welfare, it is easy to see that the best distortion for approval utilities is Θ(m),11 but it is unclear what the answer is for unit-sum utilities.

Beyond our setting, there is significant literature on studying distortion with respect to the utilitarian welfare for ballot formats other than ranked preferences [START_REF] Benade | Preference elicitation for participatory budgeting[END_REF][START_REF] Mandal | Efficient and thrifty voting by any means necessary[END_REF][START_REF] Kempe | Communication, distortion, and randomness in metric voting[END_REF][START_REF] Amanatidis | Peeking behind the ordinal curtain: Improving distortion via cardinal queries[END_REF][START_REF] Borodin | Distortion in voting with top-t preferences[END_REF]. A natural direction for future work is to study proportional fairness and distortion with respect to other welfare functions for such ballot formats. One can also extend these ideas from single-winner selection to committee selection, where the output of a voting rule is a (randomized) subset of alternatives of a given size, and participatory budgeting, where each alternative has a cost and the output is a (randomized) subset of alternatives with total cost at most a given budget.

Finally, centuries of research on voting theory has focused on simple voting rules (such as plurality or Borda count) that are easy for voters to understand and satisfy appealing axiomatic properties. A significant barrier to the modern optimization-based approaches, which focus on quantitative objectives such as distortion or proportional fairness, is that they often yield rules that are difficult to understand (and sometimes difficult to compute). Significant challenges lie ahead in paving the path for increased practicability of such approaches: Can we design simple rules that perform well on these quantitative metrics? Alternatively, can we convey the intricate rules emerging from such approaches to the end users by providing simple-to-digest explanations of either their end goal or their properties [Peters et al., 2021a]? Can we reconcile these quantitative approaches with the classical axiomatic approach to find rules that achieve the best of both worlds?

Proof. As U approval ⊆ U unit-range , we trivially have D m (f, U approval ) ⩽ D m (f, U unit-range ). We show that the inequality also holds in the opposite direction. We will prove a stronger argument: for every distribution x and preference profile ⃗ σ, we have D(x, ⃗ σ, U unit-range ) ⩽ D(x, ⃗ σ, U approval ). Fix any distribution x and preference profile ⃗ σ.

Let ⃗ u ∈ (U unit-range ) n be a utility profile consistent with ⃗ σ that maximizes D(x, ⃗ u), and among all such utility profiles, let it be the one that minimizes the number of agents who do not have approval utilities. If ⃗ u ∈ (U approval ) n , then we are done. Suppose this is not the case. Fix any agent i such that u i / ∈ U approval . Let a * ∈ arg max a∈A UW(a, ⃗ u) be an alternative maximizing utilitarian welfare under ⃗ u. Then,

D(x, ⃗ u) = UW(a * , ⃗ u) UW(x, ⃗ u) = UW(a * , ⃗ u -i ) + u i (a * ) UW(x, ⃗ u -i ) + a∈A x(a) • u i (a) , (4) 
where ⃗ u -i denotes the utility profile containing the utility functions of all agents except agent i. If a * is the top alternative of agent i (i.e., σ i (a * ) = 1), then by the definition of unit-range utilities, we must have u i (a * ) = 1. In that case, it is easy to see that the expression in Equation ( 4) is maximized when u i (a) = 0 for all a ∈ A \ {a * }. That is, define ⃗ u * such that ⃗ u * -i = ⃗ u -i , u * i (a * ) = 1, and u * i (a) = 0 for all a ∈ A \ {a * }. Then, D(x, ⃗ u * ) ⩾ D(x, ⃗ u), which is a contradiction because ⃗ u * has at least one more agent with an approval utility function compared to ⃗ u. Now, suppose σ i (a * ) ⩾ 2. Denote by a + the top alternative of agent i satisfying σ i (a

+ ) = 1. Write hi (a * ) = {a ∈ A \ {a + } : a ≽ i a * }. Consider a different utility profile ⃗ u ′ , where ⃗ u ′ -i = ⃗ u -i , u ′ i (a + ) = u i (a + ) = 1, u ′ i (a) = u i (a *
) for all a ∈ hi (a * ), and u i (a) = 0 for all a ∈ A with a * ≻ i a. Note that we are reducing the utility of agent i for any alternative she ranks higher than a * to u i (a * ), and reducing her utility for any alternative she ranks lower than a * to 0, without changing her utility for a * . This can only (weakly) reduce the denominator in Equation ( 4) without changing the numerator, implying that D(x, ⃗ u ′ ) ⩾ D(x, ⃗ u).

Next, notice that

D(x, ⃗ u ′ ) = UW(a * , ⃗ u -i ) + u i (a * ) UW(x, ⃗ u -i ) + x(a + ) • 1 + x( hi (a * )) • u i (a * ) ⩽ max UW(a * , ⃗ u -i ) + 1 UW(x, ⃗ u -i ) + x(a + ) • 1 + x( hi (a * )) • 1 , UW(a * , ⃗ u -i ) UW(x, ⃗ u -i ) + x(a + ) • 1 ,
where the final transition holds due to the (weighted) mediant inequality. 12 Hence, we can see that one of two choices -either increasing the utility of agent i for all the alternatives in hi (a * ) to 1 or decreasing them all to 0 -does not reduce the distortion. This yields another utility profile ⃗ u * consistent with ⃗ σ such that D(x, ⃗ u * ) ⩾ D(x, ⃗ u ′ ) ⩾ D(x, ⃗ u), but ⃗ u * has at least one more agent having an approval utility function, which is the desired contradiction.

In the proof of Lemma 4.1, we proved that the same conclusion holds for proportional fairness. Because proportional fairness is scale-invariant, this actually holds with respect to the class U all of all utility functions. Lemma B.2. For every voting rule f , we have PF m (f, U all ) = PF m (f, U approval ).

Using a slight generalization of that argument, one can prove this for distortion with respect to Nash welfare too.

Lemma B.3. For every voting rule f , we have

D NW (f, U all ) = D NW (f, U approval ).
Proof. We prove something stronger: for every distribution x and every preference profile ⃗ σ, we have

D NW (x, ⃗ σ, U all ) = D NW (x, ⃗ σ, U approval ). Recall that D NW (x, ⃗ σ, U all ) = sup ⃗ u∈(U all ) n :⃗ u▷⃗ σ sup y i∈N u i (y) u i (x) 1/n .
First, as in the proof of Lemma 4.1, we see that we can take the worst case over the utility function u i of each agent i separately as its contribution to the distortion expression is independent of that of the 12 The general form is given as min i

a i b i ⩽ i w i a i i w i b i ⩽ max i a i b i . Here, we take (a 1 , b 1 ) = (UW(a * , ⃗ u -i ), UW(x, ⃗ u -i ) + x(a + )), (a 2 , b 2 ) = (UW(a * , ⃗ u -i ) + 1, UW(x, ⃗ u -i ) + x(a + ) + x( hi (a * ))), and (w 1 , w 2 ) = (1 -u i (a * ), u i (a * )).
other utility functions. Thus, it is sufficient to prove that for fixed distributions x and y and agent i, there is an approval utility function u i that maximizes ui(y) ui(x) across all utility functions consistent with ⃗ σ. Fix any distributions x and y, agent i, and utility function u i : A → R ⩾0 .

For simplicity, label alternatives so that σ i is a 1 ≻ i a 2 ≻ i • • • ≻ i a m , and hence u i (a 1 ) ⩾ . . . ⩾ u i (a m ). Take the m different approval utility functions consistent with σ i : for all j ∈ [m], let v j be the utility function that approves alternatives a 1 to a j . Note that u i can be written as a non-negative linear combination of the approval utilities, that is, u i = j∈[m] α j v j for some α 1 , . . . , α m ⩾ 0. (Explicitly, we can take α m = u i (a m ) and α j = u i (a j ) -u i (a j+1 ) ⩾ 0 for each j < m.) Then,

u i (y) u i (x) = j∈[m] α j v j (y) j∈[m] α j v j (x) ⩽ max j∈[m] v j (y) v j (x) ,
where the final transition is due to the weighted mediant inequality given as min k

a k b k ⩽ k α k a k k α k b k ⩽ max k a k
b k . This proves that u i (y)/u i (x) ⩽ v j (y)/v j (x) for some approval utility function v j , as desired.

C. The Harmonic Rule

In this section, we provide a detailed analysis of the harmonic rule f HR proposed by [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF]. Recall that for each a ∈ A, we write hsc(a) := i∈N 1/σ i (a) for its harmonic score. With probability 1/2, f HR chooses an alternative uniformly at random, and with probability 1/2, f HR chooses an alternative proportionally to its harmonic score. In other words, we choose each a ∈ A with probability x(a)

:= 1 2m + hsc(a) 2 a ′ ∈A hsc(a ′ ) . Note that a ′ ∈A hsc(a ′ ) = nH m , where H m := i∈[m]
1/m is the m th harmonic number, so we may rewrite x(a) = 1 2m + hsc(a) 2nHm .

C.1. Distortion

Boutilier et al. [2015] show that the distortion of the harmonic rule for unit-sum utilities satisfies D m (f HR , U unit-sum ) = O( √ m log m). Bhaskar et al. [2018] show that every truthful rule f incurs distortion D m (f, U unit-sum ) = Ω( √ m log m). Since f HR is a truthful rule, this implies that the analysis of Boutilier et al. [2015] is tight and the harmonic rule has distortion exactly Θ( √ m log m). For convenience, we include an explicit proof of the lower bound that does not use truthfulness.

Theorem C.1. D m (f HR , U unit-sum ) = Ω √ m log m .
Proof. Consider the preference profile ⃗ σ with n = m -1 agents (the construction also works when n is a multiple of m -1), in which each agent places a distinguished alternative a * at position k = m 2Hm

(for simplicity, assume this is an integer) and the remaining alternatives are arranged cyclically in the remaining positions so that every remaining alternative appears in every remaining position once. Consider a consistent utility profile ⃗ u in which each agent has utility 1/k for her k most preferred alternatives and utility 0 for all other alternatives. First, note that the optimal social welfare is UW(a

* , ⃗ u) = (m -1) • 1 k ⩾ m 2k
, where the last transition holds for m ⩾ 2. In contrast, for any a ∈ A \ {a * }, we have UW(a, ⃗ u) = (k -1) • 1 k ⩽ 1 because alternative a is among the top k alternatives of precisely k -1 agents.

Finally, the harmonic score of a * is hsc(a * , ⃗ σ) = (m -1) • 1/k, meaning that the harmonic rule f HR selects a * with probability x(a

* ) = 1 2m + 1/k 2Hm ⩽ max( 1 m , 1 2kHm ). Hence, the distortion of f HR satisfies D m (f HR , U unit-sum ) ⩾ UW(a * , ⃗ u) x(a * ) • UW(a * , ⃗ u) + (1 -x(a * )) • 1 ⩾ UW(a * , ⃗ u) x(a * ) • UW(a * , ⃗ u) + 1 = 1 x(a * ) + 1 UW(a * ,⃗ u) ⩾ 1 max 1 m , 1 2kHm + 2k m ⩾ 1 2 max 1 m , 1 2kHm , 2k m .
Setting k = m 2Hm , we get that the distortion is at least min(m/2, mH m /8) = Ω(m log m).

Next, we analyze the distortion of f HR for unit-range and approval utilities. Strikingly, while the distortion of f HR for unit-sum utilities is only a sublogarithmic factor worse than the best possible distortion, we find that its distortion for approval and unit-range utilities is Θ(m 2/3 log 1/3 m), which is worse than the best possible distortion of Θ( √ m) for these utility classes by a polynomial factor. This contrast can be explained due to a result of [START_REF] Filos | Truthful approximations to range voting[END_REF] and [START_REF] Lee | Maximization of relative social welfare on truthful cardinal voting schemes[END_REF]: for unitrange utilities, the best distortion achieved by any strategyproof voting rule is Θ(m 2/3 ). 13 Because f HR is known to be strategyproof [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF], it must have distortion Ω(m 2/3 ); further, its distortion for unit-range utilities is still only a sublogarithmic factor worse than that of the best strategyproof voting rule. Note that our stable lottery rule f SLR achieves Θ( √ m) distortion for both unit-sum and approval utilities.

Theorem C.2. The distortion of the harmonic rule with respect to the class of unit-range and of approval utilities is

D m (f HR , U unit-range ) = D m (f HR , U approval ) = Θ(m 2/3 log 1/3 m).
Proof. We begin by proving the upper bound.

Upper bound. By Lemma B.1, for proving the upper bound for unit-range utilities, it suffices to consider approval utilities. Fix an arbitrary profile ⃗ σ, and let ⃗ u be some consistent utility profile of approval utilities. For each agent i ∈ N , let r i = a∈A u i (a) ⩾ 1 be the number of alternatives approved by i. Let a * ∈ arg max a∈A UW(a, ⃗ u) be an optimal alternative, and let x = f HR (⃗ σ) be the distribution selected by the harmonic rule.

Let τ be a threshold value to be set later. Consider two cases.

Case 1: Suppose hsc(a * ) ⩾ τ . Then x(a * ) ⩾ 1 2 • τ n•Hm and so UW(x, ⃗ u) ⩾ 1 2 • τ n•Hm UW(a * , ⃗ u). Thus D(x, ⃗ u) = UW(a * , ⃗ u)/ UW(x, ⃗ u) ⩽ 2nH m /τ . Case 2: Suppose hsc(a * ) ⩽ τ . Let Y = {i ∈ N : u i (a * ) = 1} be the set of agents approving a * . Note that UW(a * , ⃗ u) = |Y |. Because x(a) ⩾ 1/(2m) for each a ∈ A, we have UW(x, ⃗ u) ⩾ i∈N ri 2m . Thus D(x, ⃗ u) = UW(a * , ⃗ u)/ UW(x, ⃗ u) ⩽ 2m|Y |/( i∈N r i ). (5) 
We will upper bound this quantity in two different ways.

First, we have D(x, ⃗ u) ⩽ 2m|Y |/n because r i ⩾ 1 for each i ∈ N .

Second, we can observe that

τ ⩾ hsc(a * ) ⩾ i∈Y 1 r i ⩾ |Y | 2 i∈Y r i ⩾ |Y | 2 i∈N r i , (6) 
where the first inequality is due to the assumption of Case 2, the second inequality is because every i ∈ Y ranks a * among the first r i positions, and the third inequality is the AM-HM inequality. Rewriting (6), we have |Y |/( i∈N r i ) ⩽ τ /|Y |. Plugging this into (5), we see that D(x, ⃗ u) ⩽ 2mτ /|Y |.

Combining the two bounds, and using min(x, y) ⩽ √ xy, we see that in Case 2 we have

D(x, ⃗ u) ⩽ min 2m|Y | n , 2mτ |Y | ⩽ 2m τ n .
Finally, combining Case 1 and Case 2, we can see that the distortion is at most D(x, ⃗ u) ⩽ max 2nH m /τ, 2m τ n .

Setting τ = n • (H m /m) 2/3 yields the optimal upper bound of 2H

1/3 m m 2/3 .
Lower bound. Assume m ⩾ 2 without loss of generality. Let t = (H m /m) 1/3 and r = 1/t = (m/H m ) 1/3 . Choose an arbitrary alternative a * ∈ A and construct a preference profile as follows:

• Alternative a * is ranked r-th by n • t "special" agents and m-th by the remaining n • (1 -t) "ordinary" agents.

• The remaining preferences are filled arbitrarily subject to the condition that each of the remaining m -1 alternatives appear as the top choice of n • (1 -t)/(m -1) ordinary agents and in the first r -1 positions in the preference rankings of n • t • (r -1)/(m -1) special agents.

We set a consistent utility profile as follows:

• Every special agent has utility 1 for her top r alternatives and 0 for the rest.

• Every ordinary agent has utility 1 for her top alternative and 0 for the rest.

Let us analyze the harmonic scores and welfare of various alternatives. For our chosen alternative a * , we have

hsc(a * ) = n • t r + 1 -t m ⩽ n • (t 2 + 1/m) ⩽ 2nt 2 ,
where the final transition uses the fact that 1/m ⩽ t 2 = (H m /m) 2/3 . Based on this, we get that the probability of a * being chosen under f HR is

Pr(a * ) ⩽ 1 2 • 2t 2 H m + 1 2m ⩽ 3t 2 2H m ,
where the final transition uses the fact that 1/m ⩽ t 2 /H m . Next, the social welfare of a * is

UW(a * , ⃗ u) = n • t,
whereas the social welfare of every other alternative a

∈ A \ {a * } is UW(a, ⃗ u) = n • t • (r -1) m -1 + n • (1 -t) m -1 ⩽ n m -1 • (tr + 1) = 4n m ,
where the final transition uses rt = 1 and m -1 ⩾ m/2. Hence, we get that the distortion of f HR is at least

n • t n • t • 3t 2 2Hm + 4n m • 1 = 2 • m • t 11 = 2 11 • H 1/3 m • m 2/3 , as needed.

C.2. Proportional Fairness

Finally, we show that the harmonic rule is Θ( √ m log m)-proportionally fair. However, since we have shown that the best voting rule is Θ(log m)-proportionally fair, this is also worse by a polynomial factor. Later, we explain this contrast once again via strategyproofness of the harmonic rule, by proving that if an α-proportionally fair voting rule is strategyproof, then α = Ω( √ m). Hence, the harmonic rule is only a sublogarithmic factor worse than the best strategyproof voting rule according to the proportional fairness metric.

Theorem C.3. The harmonic rule is Θ( √ m log m)-proportionally fair.

Proof. Let us begin by proving the upper bound. Fix a consistent pair of utility profile ⃗ u and preference profile ⃗ σ. Let x = f HR (⃗ σ) be the probability distribution returned by f HR on ⃗ σ. Recall that

PF(x, ⃗ u) = max a∈A 1 n • i∈N u i (a) u i (x) ⩽ max a∈A 1 n • i∈N 1 x(h i (a)) , (7) 
where h i (a) = {b : b ≽ i a} is the set of alternatives that agent i ranks at least as high as a. Let a * denote arg max of the right-hand side above. For r ∈ [m], let α r denote the fraction of agents who rank a * in position r. Note that m r=1 α r = 1. Further, the harmonic score of a * is given by hsc(a * ) = n • m r=1 α r /r. We consider two cases. Case 1. Suppose m r=1 αr r ⩾ H m /m. Then, hsc(a * ) ⩾ n H m /m. Hence,

x(h i (a * )) ⩾ x(a * ) ⩾ 1 2 • 1 √ mH m .
Plugging this in Equation ( 7), we get that PF(x, ⃗ u) ⩽ 2 √ mH m , as desired. Next, we prove the lower bound. Fix a special alternative a * . Construct a preference profile ⃗ σ in which there are n = m -1 agents. Alternative a * is ranked in position r = m/H m by all the agents. The other alternatives are placed in the remaining positions in a cyclic manner, so that every other alternative appears in every remaining position exactly once. Let x = f HR (⃗ σ) be the probability distribution returned by the harmonic rule on this profile. Note that

x(a * ) = 1 2 hsc(a * ) nH m + 1 2 1 m = 1 2 1 rH m + 1 2 1 m ⩽ 1 √ mH m ,
where the last inequality holds because m ⩾ H m . By symmetry, the remaining probability is equally distributed among the remaining alternatives. Hence, we have x(a) ⩽ 1/(m -1) for all a ∈ A \ {a * }.

Next, fix a utility profile ⃗ u in which every agent i has utility 1 for her r most favorite alternatives. Note that for every agent i ∈ N , we have

u i (x) ⩽ 1 √ mH m + r -1 m -1 ⩽ 1 √ mH m + r m = 2 √ mH m .
In contrast, u i (a * ) = 1 for all agents i ∈ N . Hence,

PF(x, ⃗ u) ⩾ 1 n i∈N u i (a * ) u i (x) ⩾ √ mH m 2 ,
as desired.

D. Proportional Fairness of Strategyproof Voting Rules

In this section, we prove that every strategyproof voting rule can only be Ω( √ m)-proportionally fair. Since the harmonic rule is Θ( √ m log m)-proportionally fair, it is at most a sublogarithmic factor worse than the best strategyproof voting rule. Let us now define strategyproofness formally. Definition D.1 (Strategyproofness). A voting rule f is called strategyproof (also known as truthful ) if no agent can increase her utility by misreporting her vote. Formally, for any preference profile ⃗ σ, any agent i ∈ N , any utility function u i consistent with σ i , and any ranking of the alternatives σ ′ i , we must have

u i (f (⃗ σ)) ⩾ u i (f ((σ ′ i , ⃗ σ -i ))
), where (σ ′ i , ⃗ σ -i ) is the preference profile obtained by replacing the vote of agent i in ⃗ σ by σ ′ i . Before proving the result, we need to introduce several other definitions. First, we define two well-known and mild properties of (probabilistic) voting rules. Definition D.2 (Anonymity). A voting rule f is called anonymous if its outcome does not depend on the identities of the agents. Formally, for any preference profile ⃗ σ and any permutation of the agents

π N : N → N , we must have f (π N • ⃗ σ) = f (⃗ σ), where π N • ⃗ σ = (σ π N (i)
) i∈N is the profile obtained by permuting the votes in ⃗ σ according to π N . Definition D.3 (Neutrality). A voting rule f is called neutral if its outcome does not depend on the names of the alternatives. Formally, for any preference profile ⃗ σ and any permutation of the alternatives

π A : A → A, we must have f (π A • ⃗ σ) = π A • f (⃗ σ)
, where π A • ⃗ σ is the profile obtained by permuting the alternatives in each vote σ i according to π A , and π A • f (⃗ σ) is the distribution obtained by permuting the names of the alternatives in f (⃗ σ) according to π A .

Next, we introduce two classes of voting rules, following the work of [START_REF] Barberà | Nice decision schemes[END_REF]. Informally, a point-voting scheme, parametrized by the vector ⃗ w, resembles the positional scoring rule parametrized by the same score vector ⃗ w, except that the positional scoring rule would choose the alternative a with the highest total score i∈N w σi(a) whereas the point-voting scheme chooses each alternative a with probability proportional to its score. Another way to view a point-voting scheme is that it chooses an agent uniformly at random and then chooses her r-th ranked alternative with probability w r , for each r ∈ [m].

Note that the first half of the harmonic rule f HR , which chooses each alternative with probability proportional to its harmonic score, is a point-voting scheme.14 Definition D.5 (Supporting-Size Schemes). A voting rule f is called a supporting-size scheme if there exists a vector ⃗ z = (z 0 , . . . , z n ) with

• z n ⩾ z n-1 ⩾ . . . ⩾ z 0 , and • z k + z n-k = 1 for each k ∈ [n] ∪ {0}
such that for every preference profile ⃗ σ, writing x = f (⃗ σ), we have

x(a) = 1 m 2 b∈A\{a}
z n a≻b for all a ∈ A, where n a≻b = |{i ∈ N : a ≻ i b}|.

In other words, f chooses a pair of alternatives (a, b) uniformly at random and then chooses each of them with probability obtained from the vector ⃗ z at index that is equal to the number of agents preferring that alternative over the other. [START_REF] Barberà | Nice decision schemes[END_REF] proved the following result.

Proposition D.6. A voting rule is anonymous, neutral, and strategyproof if and only if it is a probability mixture of a point-voting scheme and a supporting-size scheme.

The reason this is useful is that by analyzing the best objective value (distortion or proportional fairness) achievable by any mixture of a point-voting scheme and a supporting-size scheme, we also obtain the best objective value achievable by any anonymous, neutral, and strategyproof voting rule. Could a strategyproof voting rule that violates anonymity and/or neutrality achieve a better objective value? For distortion, Filos-Ratsikas and Miltersen [2014] prove that this is not the case, and this observation was used by them and by [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF] to derive the aforementioned lower bounds on the distortion of any strategyproof voting rule with respect to the unit-range and unit-sum utility classes, respectively. It is easy to see that the same observation holds for proportional fairness as well.

Lemma D.7. For every strategyproof voting rule f , there exists an anonymous, neutral, and strategyproof voting rule f ′ such that PF m (f ′ ) ⩽ PF m (f ).

Proof. Like Filos-Ratsikas and Miltersen [2014], we consider a strategyproof voting rule f and construct a voting rule f ′ which works as follows: given an input preference profile ⃗ σ, it applies a uniformly random permutation of the agents π N and an independently chosen uniformly random permutation of alternatives π A to ⃗ σ, then applies rule f on the resulting profile π A • π N • ⃗ σ, and finally applies the inverse of π A , denoted (π A ) -1 , on the resulting distribution to revert the change of names of alternatives.

Filos-Ratsikas and Miltersen [2014] argue that if f is strategyproof, then f ′ is anonymous, neutral, and strategyproof. Further, D(f ′ , U unit-range ) ⩽ D m (f, U unit-range ) (and D(f ′ , U unit-sum ) ⩽ D m (f, U unit-sum ) using the same argument). We want to show that PF m (f ′ ) ⩽ PF m (f ) as well. The argument for this is slightly more involved because, unlike the social welfare function, proportional fairness is non-linear. Crucially, we use the fact that PF(x, ⃗ σ) is convex in x as we observed following Lemma 4.1.

Take any preference profile ⃗ σ and let x = f ′ (⃗ σ). Let Π N and Π A denote the set of permutations of agents and alternatives, respectively. Note that

x = 1 |Π N | • |Π A | π N ∈Π N ,π A ∈Π A (π A ) -1 • f (π A • π N • ⃗ σ). Hence, we have PF(x, ⃗ σ) ⩽ 1 |Π N | • |Π A | π N ∈Π N ,π A ∈Π A PF((π A ) -1 • f (π A • π N • ⃗ σ), ⃗ σ) ⩽ max π N ∈Π N ,π A ∈Π A PF((π A ) -1 • f (π A • π N • ⃗ σ), ⃗ σ) = max π N ∈Π N ,π A ∈Π A PF((π A ) -1 • f (π A • π N • ⃗ σ), π N • ⃗ σ) = max π N ∈Π N ,π A ∈Π A PF(f (π A • π N • ⃗ σ), π A • π N • ⃗ σ) ⩽ max ⃗ σ ′ PF(f (⃗ σ ′ ), ⃗ σ ′ ) = PF m (f )
, where the first transition is due to convexity of the proportional fairness objective, the second transition upper bounds an average by the maximum, the third transition uses the fact that proportional fairness is an anonymous objective (i.e., permuting the votes does not change the proportional fairness value of a distribution on the preference profile), the fourth transition uses the fact that proportional fairness is a neutral objective (i.e., permuting the names of alternatives in both the distribution and the preference profile keeps the proportional fairness value unchanged), and the final transition upper bounds the maximum over a subset of preference profiles by a maximum over all preference profiles. Since this holds for each preference profile ⃗ σ, we have PF m (f ′ ) ⩽ PF m (f ), as required.

We are now equipped to prove a lower bound on proportional fairness of any strategyproof voting rule.

Theorem D.8. For every strategyproof voting rule f , we have PF m (f ) = Ω( √ m).

Proof. Let f be a strategyproof voting rule. Due to Lemma D.7, we may assume that f is anonymous and neutral. Due to Proposition D.6, f is a probability mixture that implements some point-voting scheme characterized by ⃗ w with probability p ∈ [0, 1] and some supporting-size scheme characterized by ⃗ z with probability 1 -p.

Let α = PF m (f ). We will show that α = Ω( √ m). Similarly to [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF], we construct a sequence of profiles ⃗ σ r , one for each r ∈ [m], and show that f must select a distribution that is at least Ω( √ m)-proportionally fair on at least one of these profiles, so that α = Ω( √ m).

Fix any r ∈ [m] and construct the preference profile ⃗ σ r with n = m -1 votes, 15 such that a special alternative a * appears in position r in all the votes, while the remaining m -1 alternatives fill the remaining positions in a cyclic order. Let x r = f (⃗ σ r ). Then,

x r (a * ) = p • 1 n • i∈N w σi(a * ) + (1 -p) • 1 m 2 • a∈A\{a * } z n a * ≻a ⩽ 1 • 1 n • i∈N w r + 1 • 1 m 2 • a∈A\{a * } 1 = w r + 2 m . (8) 
As argued by [START_REF] Bhaskar | Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections[END_REF], this observation would effectively allow us to ignore the impact of the supporting-size scheme, which can only select the "desired" alternative a * with a small probability of 2/m, and focus on the impact of the point-voting scheme. Let us lower bound proportional fairness of x r on ⃗ σ r . Now, we have

PF(x r , ⃗ σ r ) = max a∈A 1 n i∈N 1 x r (h i (a))
(by Lemma 4.1)

⩾ 1 n i∈N 1 x r (h i (a * )) ⩾ n i∈N x r (h i (a * )) (by the AM-HM inequality) = n n • x r (a * ) + r-1 m-1 • (1 -x r (a * )) ⩾ 1 x r (a * ) + r m • (1 -x r (a * )) ⩾ 1 x r (a * ) + r m ,
where the fourth transition holds because anonymity and neutrality of f implies x r (a) = 1-x r (a * ) m-1 for each a ∈ A \ {a * }. By definition of α, we have α ⩾ PF(x r , ⃗ σ r ). Thus it follows that x r (a * ) + r m ⩾ 1 α .

Using Equation ( 8), we have

w r ⩾ max 1 α - r + 2 m , 0 . Summing over all r ∈ [m], we get 1 = r∈[m] w r ⩾ r∈[m] max 1 α - r + 2 m , 0 = ⌊ m α ⌋-2 r=1 1 α - r + 2 m ⩾ m α -3 α - m α m α + 1 -6 2m ⩾ m 2α 2 - 7 2α + 3 m ,
where the fourth transition uses m/α -1 ⩽ ⌊m/α⌋ ⩽ m/α. The above expression simplifies to (2m -6)α 2 + 7mα -m 2 ⩾ 0, 15 The profile can easily be replicated to make n any multiple of m -1.

which shows

α ⩾ -7m + 49m 2 + 4m 2 (2m -6) 2(2m -6) = Ω( √ m),
as needed.

E. Proportional Fairness via Approximately Stable Committees

As indicated in Section 4, we prove that a rule similar to our stable lottery rule (f SLR ), which uses a deterministic committee satisfying approximate stability instead of a lottery over committees satisfying exact stability, is O( √ m)-proportionally fair, and therefore achieves O( √ m) distortion with respect to the Nash welfare. Let us first formally introduce approximate stability for committees.

Definition E.1 (Approximately Stable Committees

). For a committee X with |X| = k and an alternative a * , recall that V (a * , X) = |{i ∈ N : a * ≻ i X}| denotes the number of agents who prefer a * to all alternatives in X. We say that X is c-stable if for all alternatives a * ̸ ∈ X, we have V (a * , X) ⩽ c • n k . Note that 1-stable committees are precisely the stable committees introduced in Section 3.1. As mentioned in that section, there exist preference profiles and sizes k where no stable committee of size k exists [Jiang et al., 2020, Thm. 4]. However, by derandomizing the stable lottery of Cheng et al. Let us introduce a voting rule that uses an approximately stable committee in the same manner in which the rule f SLR from Section 3 uses an exactly stable lottery. Note that despite the use of a deterministic committee, the rule is still probabilistic in the end. Proof. For constant c, consider the f c-SCR rule. Fix an arbitrary preference profile ⃗ σ. Let X be the c-stable committee of size √ m that our rule uses to output distribution x on this profile. We want to prove that PF(x, ⃗ σ) = O( √ m). By Lemma 4.1, we have that PF(x, ⃗ σ) = max

a∈A 1 n i∈N 1 x(h i (a)) = 1 n i∈N 1 x(h i (a * )) , (9) 
where x(h i (a)) is the probability placed on the set of alternatives h i (a) = {a ′ : a ′ ≽ i a} under x and a * is taken to be an arg max. Let S ⊆ N denote the set of V (a * , X) many agents who prefer a * to every alternative in X. Because X is c-stable, we know that |S| = V (a * , X) ⩽ c • n/ √ m. By definition of S, each agent i ∈ N \ S satisfies h i (a * ) ∩ X ̸ = ∅, implying that x(h i (a * )) ⩾ 1

Plugging these in Equation (9), we get

PF(x, ⃗ σ) = 1 n i∈N 1 x(h i (a * )) = 1 n   i∈S 1 x(h i (a * )) + i∈N \S 1 x(h i (a * ))   ⩽ 1 n |S| • 2m + |N \ S| • 2 √ m ⩽ 1 n c • n √ m • 2m + n • 2 √ m = 2 • (c + 1) • √ m = O( √ m).
This completes the proof.

Note that an upper bound on proportional fairness also applies to distortion with respect to the Nash welfare.

Corollary E.5. For constant c, the distortion of f c-SCR with respect to the Nash welfare is D NW (f c-SCR , U all ) = O( √ m).

For distortion with respect to the utilitarian social welfare, the proof of Theorem 3.4 can easily be modified to show that for each constant c, we have D UW (f c-SCR , U balanced ) = O( √ m), i.e., the distortion of f c-SCR is O( √ m) for balanced utilities (and therefore also for unit-sum and unit-range utilities). In the main body, we focused on the Stable Lottery Rule instead of the Stable Committee Rule because for the former it is easier to prove existence, its output is easier to compute, and due to the existence of an exact stable lottery (as opposed to an approximately stable committee), we get a distortion upper bound of 2 √ m, which is close to the lower bound of √ m/2.16 We end this section by recalling that in Section 4, we show that a better performance on proportional fairness can be achieved, using a different technique based on the minimax theorem.

F. The Case of Two Alternatives

In this section, we analyze the case of exactly two alternatives, say, a 1 and a 2 . For each of the objectives that we studied in this paper (distortion with unit-sum utilities, distortion with unit-range utilities, distortion with respect to Nash welfare, proportional fairness), we will explicitly write down a voting rule that, for every preference profile, selects the instance-optimal distribution. We will also compute the worst-case distortion/proportional fairness of these rules and hence the best possible values obtainable in the two-alternative case. (These values turn out to be 3/2, 4/3, √ 2, and 3/2, respectively.) As there are only two possible rankings over two alternatives, we can summarize a preference profile ⃗ σ by a real number α(⃗ σ) ∈ [0, 1], which denotes the fraction of agents who prefer a 1 to a 2 ; then, the remaining 1 -α(⃗ σ) fraction of agents prefer a 2 to a 1 . Similarly, the outcome of a voting rule on a preference profile ⃗ σ can also be viewed as a real number β(⃗ σ) ∈ [0, 1] which is the probability placed on a 1 . We will adapt our notation accordingly throughout this section.

We can disregard the extreme cases where α(⃗ σ) ∈ {0, 1} because in such cases, one alternative is the more preferred one for all the agents (a 1 if α(⃗ σ) = 1 and a 2 if α(⃗ σ) = 0); the voting rule should clearly choose it as this achieves the optimal distortion of 1 with respect to any welfare function for the class U all of all utility functions as well as the optimal 1-proportional fairness.

F.1. Distortion With Unit-Sum Utilities

Given a preference profile ⃗ σ, the voting rule f unit-sum 2-UW is defined to choose β(⃗ σ) satisfying

β(⃗ σ) (1 -β(⃗ σ)) = (2 -α(⃗ σ)) • α(⃗ σ) (1 -α(⃗ σ)) • (1 + α(⃗ σ)) . (10) 
In other words, the rule sets β(⃗ σ) = (2-α(⃗ σ))•α(⃗ σ) 1+2α(⃗ σ)•(1-α(⃗ σ)) .

Theorem F.1. For m = 2 alternatives, and for any preference profile ⃗ σ, the voting rule f unit-sum 2-UW selects a distribution x minimizing D UW (x, ⃗ σ, U unit-sum ).

The rule achieves distortion D UW 

Worst-case utilities. In Equation ( 11), let us analyze the worst-case utility profile ⃗ u for the term with the numerator UW(a 1 , ⃗ u). Using the fact that UW(a 1 , ⃗ u) + UW(a 2 , ⃗ u) = n (by the unit-sum assumption), the expression of interest in Equation ( 11) is

UW(a 1 , ⃗ u) β • UW(a 1 , ⃗ u) + (1 -β)(n -UW(a 1 , ⃗ u)) = 1 β + (1 -β)(n -UW(a 1 , ⃗ u))/ UW(a 1 , ⃗ u) ,
which is maximized when UW(a 1 , ⃗ u) is maximized. To obtain the highest utilitarian welfare for a 1 , α fraction of agents i who rank a 1 first must have (u i (a 1 ), u i (a 2 )) = (1, 0) and the remaining 1 -α fraction of agents i who rank a 1 second must have (u i (a 2 ), u i (a 1 )) = ( 1 /2, 1 /2). Similarly, the worst-case utility profile ⃗ u for the term with the numerator UW(a 2 , ⃗ u) is achieved when the α fraction of agents i who rank a 2 second have (u i (a 1 ), u i (a 2 )) = ( 1 /2, 1 /2) and the remaining 1 -α fraction of agents i who rank a 2 first have (u i (a 2 ), u i (a 1 )) = (1, 0). Therefore, Equation ( 11 The left term in the maximum is decreasing in β while the right term is increasing. Hence, the maximum of the two is minimized when the two terms become equal, i.e.,

β + (1 -α)/2 α + (1 -α)/2 • (1 -β) = α/2 α/2 + 1 -α • β + 1 -β ⇐⇒ β • 1 α/2 1-α + 1 = (1 -β) • 1 1-α 2α + 1 ⇐⇒ 1 -β β = (1 -α)(1 + α) (2 -α)α ,
which precisely yields the β satisfying Equation (10), proving that f unit-sum 2-UW returns the distribution with the best possible distortion on profile ⃗ σ. Further, at this value of β, the distortion achieved is D UW 2 (f unit-sum 2-UW ) = max α∈[0,1] D UW (α) = 3 /2, which is attained at α = 1 /2 (for which the optimal β is also β = 1 /2).

From Section 3, we know that, with m alternatives, the optimal distortion with respect to utilitarian welfare and unit-sum utilities is Θ( √ m), where the constant hidden in the asymptotic notation lies in [ 1 2 , 2]. Interestingly, Theorem F.1 shows that the optimal distortion for m = 2 is

3 2 = 3 2 √ 2 •
√ m, leading one to wonder whether the constant 3 2 √ 2 ≈ 1.06066 is (close to) the true constant for this problem.

Theorem 3. 4 .

 4 On the utility class U balanced , the Stable Lottery Rule achieves O( √ m) distortion:

Theorem 3. 7 .

 7 For any voting rule f , we have D m (f, U approval ) = Ω( √ m) and D m (f, U unit-range ) = Ω( √ m). Proof. Assume √ n is a positive integer, and let m = n + √ n. Each agent i ranks alternative a i first, alternative a n+⌈i/ √ n⌉ second, and the remaining alternatives in an arbitrary order. Note that this naturally divides the agents into √ n groups, N 1 , . . . , N √ n , where, for r ∈ [ √ n], N r denotes the group of agents who rank alternative a n+r second.

Proposition 4 . 7 .

 47 Every voting rule has distortion at least ( m m m! ) 1 m with respect to the Nash welfare.

Theorem 4 . 8 (

 48 [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF], Chapter 3.2, Vishnoi [2021], Theorem 7.1). Let f be a convex function over a bounded closed convex set Q. There is an algorithm (based on subgradient descent) that, given (a) an oracle that, given x ∈ Q, can return f (x) and a subgradient g ∈ ∂f (x); (b) a number G such that for all x ∈ Q and subgradients g ∈ ∂f (x), we have ∥g∥ 2 ⩽ G; (c) an initial point x 0 ∈ Q; (d) a number D such that x 0 -x * 2 ⩽ D where x * = arg min x∈Q f (x)

Case 2 .

 2 Suppose m r=1 αr r ⩽ H m /m. Note that x(a) ⩾ 1 2m for every alternative a ∈ A. Hence, if agent i ranks a * in position r, we have x(h i (a)) ⩾ r 2m . Plugging this into Equation (7), we get PF(x, ⃗ u) ⩽ m r=1 (2m) • α r r ⩽ 2 mH m , as desired.

Definition D. 4 (

 4 Point-Voting Schemes). A voting rule f is called a point-voting scheme if there exists a vector ⃗ w = (w 1 , . . . , w m ) with w 1 ⩾ w 2 ⩾ . . . ⩾ w m ⩾ 0 and r∈[m] w r = 1, such that for every preference profile ⃗ σ, writing x = f (⃗ σ), we have x(a) = 1 n i∈N w σi(a) for all a ∈ A.

  [2020],[START_REF] Jiang | Approximately stable committee selection[END_REF] proved the following: Theorem E.2[START_REF] Jiang | Approximately stable committee selection[END_REF]. Given any ranked preference profile and k ∈ [m], a 16-stable committee of size k exists and a (16 + ε)-stable committee of size k can be computed in poly(n, m, 1/ε) time for sufficiently small constant ε > 0.

  Definition E.3 (c-Stable Committee Rule, f c-SCR ). Let X be a c-stable committee of size k = √ m. The c-Stable Lottery Rule (f c-SCR ) works as follows: With probability 1/2, choose an alternative uniformly at random from X, and with probability 1/2, choose an alternative uniformly at random from A. Therefore, each alternative a ∈ A is selected with probabilityx(a) = 1 2 √ m • I[a ∈ X] + 1 2m, where I is the indicator function.Next, we prove that f c-SCR is O( √ m)-proportionally fair when c is constant.Theorem E.4. For constant c, we have PF m (f c-SCR ) = O( √ m).

2 (,

 2 U unit-sum ) = 3/2, which is the best possible among all voting rules.Proof. Fix a preference profile ⃗ σ. Let us write α = α(⃗ σ) and letD UW (α) = min x∈∆(A) D UW (x, ⃗ σ, U unit-sum )be the best achievable distortion on profile ⃗ σ with unit-sum utilities. Then,D UW (α) = min β∈[0,1] max ⃗ u∈(U unit-sum ) n :⃗ u▷⃗ σ max{UW(a 1 , ⃗ u), UW(a 2 , ⃗ u)} β • UW(a 1 , ⃗ u) + (1 -β) • UW(a 2 , ⃗ u) = min β∈[0,1] max max ⃗ u∈(U unit-sum ) n :⃗ u▷⃗ σ UW(a 1 , ⃗ u) β • UW(a 1 , ⃗ u) + (1 -β) • UW(a 2 , ⃗ u) , max ⃗ u∈(U unit-sum ) n :⃗ u▷⃗ σ UW(a 2 , ⃗ u) β • UW(a 1 , ⃗ u) + (1 -β) • UW(a 2 , ⃗ u).

  log x is concave; linear functions are both convex and concave. Theorem 2.7 (Minimax Theorem, von Neumann, 1928). Let X ⊆ R n and Y ⊆ R m be compact convex sets. Let f : X × Y → R be a continuous function that is concave in its first argument and convex in

its second argument (that is, f (•, y) is concave for each fixed y ∈ Y and f (x, •) is convex for each fixed x ∈ X). Then max x∈X min y∈Y f (x, y) = min y∈Y max x∈X f (x, y).

Distortion for approval utilities makes sense in contexts where agents may find it easier to rank alternatives than to assign them approval utilities. For example, if the alternatives are budget divisions, a project leader would naturally rank the divisions by the amount of money allocated to their project. But the eventual utility depends on whether the money is enough to deliver the project or not, and the required amount may be unknown at the time of voting.

We show a constant lower bound of e for the distortion for Nash welfare, thus leaving a substantial gap.

log * m is the iterated logarithm of m, which is the number of times log needs to be applied to m until the result is at most 1.

Some definitions of unit-range utilities require min a∈A u(a) = 0 in addition, but this is not necessary for our results.

/3 13 /12 ≈ 1.23.

Equivalently, this condition requires that there is no set S ⊆ N and partial distribution y : A → [0, 1] with a ya = |S|/n such that u i (y) ⩾ α • u i (x) for every agent i ∈ S and at least one of these inequalities is strict[START_REF] Fain | The core of the participatory budgeting problem[END_REF][START_REF] Fain | Fair allocation of indivisible public goods[END_REF].

This is the maximum possible average multiplicative increase in agent utilities when moving from x to any other y. The

On this small example, one can find this optimum distribution x * by hand after noting that a 3 must receive probability 0. One derivesx * = {a 1 : 2 -√ 2, a 2 : √ 2 -1, a 3 : 0} with PF(x * , ⃗ σ, U all ) = 1 + √ 2/3.

 8 This result has not been explicitly stated, but essentially the same proof is frequently used to show that distributions maximizing Nash welfare lie in the core [e.g.,Fain et al., 2018, Section 2.2; Aziz et al., 2019, Theorem 3]

.9 Observations to this effect can be found, for example, in Appendix D of[START_REF] Caragiannis | The unreasonable fairness of maximum Nash welfare[END_REF] and in the derivation of Equation (2) in Inoue and Kobayashi[2022].

Instead of 1 /2, one can use any other constant fraction (such as 0.0001) without changing the conclusion of Theorem 3.4. One can also shift probability from a Pareto-dominated alternatives to a dominating alternative without worsening distortion.

The upper bound can be achieved by assigning a probability of 1/m to each alternative. For the lower bound, consider a cyclic profile over m alternatives. Any probabilistic voting rule assigns probability at most 1/m to some alternative; one can set approval utilities such that the egalitarian welfare is 1 for this alternative and 0 for every other alternative.

Strategyproofness is defined in Appendix C.2.

In fact, it is easy to observe that the entire harmonic rule is a point-voting scheme with each agent awarding 1/r + Hm/m points to the alternative she ranks in position r, for each r ∈ [m].

√ m . For each agent i ∈ S, we have x(h i (a * )) ⩾ x(a * ) ⩾ 1 2m .

[START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF] prove a lower bound of √ m/3, but a careful look at their analysis shows that it actually yields a lower bound of √ m/2.

Appendix

A. Lower Bound for Almost Balanced Utilities

Here, we generalize the lower bound of [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF] to give a lower bound on the distortion of the utility class of utilities that are at most slightly imbalanced.

For ε ∈ [1/m, 1], let U ε be the class containing the following utility functions:

• For each a * ∈ A, it contains a utility function u under which u(a * ) = 1 and u(a) = 0 for all a ∈ A \ {a * }. Note that this corresponds to "single-minded" agents.

• It contains a utility function u under which u(a) = ε/m for all a ∈ A. Note that this corresponds to agents who are indifferent among all alternatives.

We prove that every voting rule has distortion Ω( m/ε) on U ε . Because U unit-sum ⊃ U ε=1 and because the distortion (weakly) increases when the utility class grows, this implies Ω( √ m) bound for U unit-sum , generalizing the result of [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF]. We also note that U approval ⊃ U ε=m ; however, the construction below does not immediately work for ε > 1. We leave it open to check if it can be generalized to larger ε, perhaps in a way that subsumes Theorem 3.7 (our lower bound on distortion for approval utilities) as a special case. Finally, we note that U ε ⊆ U ε-balanced , implying that the distortion of f SLR on the class of α-balanced utilities discussed in Corollary 3.5 is optimal.

Theorem A.1. For any ε ∈ [1/m, 1], the distortion of every voting rule f on the utility class

Proof. Assume m/ε is a positive integer. Fix a set of alternatives T = {a 1 , . . . , a √ m/ε }, and partition the set of agents into m/ε buckets B 1 , . . . , B √ m/ε , where each bucket consists of n/ m/ε agents. Now, construct a profile ⃗ σ in which for all j ∈ [ m/ε], all agents in B j rank alternative a j first, and the remaining alternatives are ranked arbitrarily.

Let f be a voting rule, and let x be the distribution that f selects on this profile. By the pigeonhole principle, there must exist

. Now, construct a utility profile ⃗ u where all agents in B i assign utility 1 to a i and utility 0 to all other alternatives, and where all agents in other blocks assign utility ε/m to all alternatives. We can see that UW(a i , ⃗ u) ⩾ n √ m/ε from the agents in B i , whereas UW(a j , ⃗ u) ⩽ n • ε m for all j ̸ = i. This also means that a i is the alternative with maximum utility in this profile. Now, we have

This implies the distortion of

as needed.

B. Approval vs. Unit-Range Utilities

In this section, we show that approval utilities are the worst case for distortion among the broader class of unit-range utilities. Hence, any upper bounds derived for approval utilities (like in Theorem C.2 in the next section) apply to the broader class of unit-range utilities as well. The proof also implies that a distribution x that minimizes D(x, ⃗ σ, U unit-range ) thereby also minimizes D(x, ⃗ σ, U approval ), which simplifies the computational problem of optimizing the latter quantity (see the discussion after Example 2.2).

Lemma B.1. For every voting rule f , we have

F.2. Distortion With Unit-Range Utilities

Given a preference profile ⃗ σ, the voting rule

Theorem F.2. For m = 2 alternatives, and for any preference profile ⃗ σ, the voting rule f unit-range 2-UW selects a distribution x minimizing D UW (x, ⃗ σ, U unit-range ).

The rule achieves distortion D UW 2 (f unit-range

2-UW

, U unit-range ) = 4/3, which is the best possible among all voting rules.

Proof. Fix a preference profile ⃗ σ. Let us write α = α(⃗ σ) and let

be the best achievable distortion on profile ⃗ σ with unit-range utilities. Then, as in the proof of Theorem F.1, we have

Worst-case utilities. The only difference compared to the proof of Theorem F.1 is the analysis of the worst-case utility profiles in the two expressions inside the maximum in Equation (12). By Lemma B.1, we know that the worst-case utility profile is an approval utility profile. All agents approve their first-ranked alternative and the only question is whether they also approve their second-ranked alternative.

Consider the first term inside the maximum in Equation ( 12) with UW(a 1 , ⃗ u) in the numerator. We want to find the utility profile ⃗ u that maximizes this term. For the α fraction of agents who rank a 1 above a 2 , we can assume wlog that u i (a 2 ) = 0 as it can only increase this term. For the rest of the agents i that rank a 2 above a 1 , we know u i (a 2 ) = 1. Hence, UW(a 2 , ⃗ u) = (1 -α) • n. Given this fixed value of UW(a 2 , ⃗ u), note that

is increasing in UW(a 1 , ⃗ u). Hence, the term is maximized when UW(a 1 , ⃗ u) is the highest, meaning that the agents who rank a 2 above a 1 also approve a 1 .

Similarly, for the term in Equation (12) with UW(a 2 , ⃗ u) in the numerator, the worst-case utility profile is as follows: α fraction of agents i who rank a 1 first have (u i (a 1 ), u i (a 2 )) = (1, 1) and the remaining 1 -α fraction of agents i who rank a 2 first have (u i (a 2 ), u i (a 1 )) = (1, 0). Therefore, Equation (12) becomes

The left term in the maximum is decreasing in β while the right term is increasing. Hence, the maximum of the two terms is minimized when the two terms are equal, which yields β = α. This proves that f unit-range 2-UW returns the distribution with the best possible distortion on profile ⃗ σ. Further, at this value of β, the distortion achieved is

F.3. Distortion With Respect to Nash Welfare

Given a preference profile ⃗ σ, the voting rule f 2Nash is defined to choose β(⃗ σ) satisfying

In other words, the rule sets β(⃗ σ) = g -1 (α(⃗ σ)), where g(x) = ln(1-x) ln(x)+ln(1-x) . Theorem F.3. For m = 2 alternatives, and for any preference profile ⃗ σ, the voting rule f 2Nash selects a distribution x minimizing D NW (x, ⃗ σ, U all ), the distortion with respect to Nash welfare.

The rule achieves distortion D NW 2 (f 2Nash , U all ) = √ 2 with respect to Nash welfare, which is the best possible among all voting rules.

Proof. The lower bound √ 2 for all voting rules was proved in Proposition 4.7. Hence, it remains to prove the upper bound for f 2Nash . Fix a preference profile ⃗ σ. Let us write α = α(⃗ σ) and let D NW (α) = min x∈∆(A) D NW (x, ⃗ σ, U all ) be the best achievable distortion on profile ⃗ σ. Note that

Reduction to approval utilities. From Lemma B.3, we know that the worst case for distortion with respect to Nash welfare is achieved at an approval utility profile. Under an approval utility profile ⃗ u, the α fraction of agents i who prefer a 1 to a 2 have (u i (a 1 ), u i (a 2 )) equal to (1, 0) or (1, 1), and the remaining 1 -α fraction of agents i have (u i (a 1 ), u i (a 2 )) equal to (0, 1) or (1, 1). If an agent approves both alternatives, then ui(y) ui(x) = 1 regardless of x and y. Based on these observations, we can rewrite D NW (α) from Equation ( 14) as

Finding the optimal distribution. If z > β, then 1-z 1-β < 1 and the inner expression evaluates to ( z β ) α , which is maximized at z = 1. Similarly, when z < β, the inner expression evaluates to ( 1-z 1-β ) 1-α , which is maximized at z = 0. Therefore, we have

One can check that the unique minimizer of this expression is precisely the β satisfying Equation (13), which our rule f 2Nash chooses. Further, at this β, the distortion achieved is D

which is attained at α = 1 /2 (for which the optimal β is also β = 1 /2).

F.4. Proportional Fairness

Given a preference profile ⃗ σ, the voting rule f 2PF is defined to choose β(⃗ σ) satisfying

In other words, the rule sets

.

Theorem F.4. For m = 2 alternatives, and for any preference profile ⃗ σ, the voting rule f 2PF selects a distribution x minimizing PF(x, ⃗ σ).

The rule is (3/2)-proportionally fair, which is the best possible among all voting rules.

Proof. The lower bound for all voting rules proved in Theorem 4.6 is the desired lower bound of H 2 = 3 /2 when m = 2. Hence, it remains to prove the upper bound for f 2PF . 

This expression is minimized when

which precisely yields the β satisfying Equation (15), proving that f 2PF returns the distribution with the best possible proportional fairness on profile ⃗ σ. Further, at this value of β, the proportional fairness achieved is PF 2 (f 2PF ) = max α∈[0,1] PF(α) = 3 /2, which is attained at α = 1 /2 (for which the optimal β is also β = 1 /2).