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Abstract

A preference profile is single-peaked on a tree if the candidate set can be equipped
with a tree structure so that the preferences of each voter are decreasing from their top
candidate along all paths in the tree. This notion was introduced by Demange (1982), and
subsequently Trick (1989b) described an efficient algorithm for deciding if a given profile is
single-peaked on a tree. We study the complexity of multiwinner elections under several
variants of the Chamberlin–Courant rule for preferences single-peaked on trees. We show
that in this setting the egalitarian version of this rule admits a polynomial-time winner
determination algorithm. For the utilitarian version, we prove that winner determination
remains NP-hard for the Borda scoring function; indeed, this hardness results extends to a
large family of scoring functions. However, a winning committee can be found in polynomial
time if either the number of leaves or the number of internal vertices of the underlying tree
is bounded by a constant. To benefit from these positive results, we need a procedure that
can determine whether a given profile is single-peaked on a tree that has additional desirable
properties (such as, e.g., a small number of leaves). To address this challenge, we develop a
structural approach that enables us to compactly represent all trees with respect to which a
given profile is single-peaked. We show how to use this representation to efficiently find
the best tree for a given profile for use with our winner determination algorithms: Given a
profile, we can efficiently find a tree with the minimum number of leaves, or a tree with
the minimum number of internal vertices among trees on which the profile is single-peaked.
We then explore the power and limitations of this framework: we develop polynomial-time
algorithms to find trees with the smallest maximum degree, diameter, or pathwidth, but
show that it is NP-hard to check whether a given profile is single-peaked on a tree that is
isomorphic to a given tree, or on a regular tree.

1. Introduction

Computational social choice deals with algorithmic aspects of collective decision-making.
One of the fundamental questions studied in this area is the complexity of determining the

©2022 AI Access Foundation. All rights reserved.



Peters, Yu, Chan, & Elkind

election winner(s) for voting rules: indeed, for a rule to be practically applicable, it has to
be the case that we can find the winner of an election in a reasonable amount of time.

Most common rules that are designed to output a single winner admit polynomial-time
winner determination algorithms; examples include such diverse rules as Plurality, Borda,
Maximin, Copeland, and Bucklin (for definitions, see, e.g., the handbook by Arrow et al.,
2002). However, there are also some intuitively appealing single-winner rules for which
winner determination is known to be computationally hard: this is the case, for instance, for
Dodgson’s rule (Bartholdi et al., 1989; Hemaspaandra et al., 1997), Young’s rule (Rothe
et al., 2003), and Kemeny’s rule (Bartholdi et al., 1989; Hemaspaandra et al., 2005). More
recently, there has been much interest in the computational complexity of voting rules
whose purpose is to elect a representative committee of candidates rather than select a
single winner (Faliszewski et al., 2017). One can adapt common single-winner rules to this
setting, for example by appointing the candidates with the top k scores, where k is the
target committee size. Such rules will pick candidates of high “quality”, and are useful for
shortlisting purposes. However, if we aim for a representative committee, it is preferable to
use a voting rule that is specifically designed for this purpose. We note that Faliszewski
et al. (2017) provide a detailed discussion of different goals in multi-winner elections, and
which types of rules are suitable for each goal.

An important representation-focused rule was proposed by Chamberlin and Courant
(1983). Given a committee A of k candidates, the rule assumes that each voter i is
represented by her most-preferred candidate in A, that is, the member of A ranked highest
in her preferences. Voter i is assumed to obtain utility from this representation. This utility
is non-decreasing in the rank of her representative in her preference ranking. For example,
her utility could be obtained as the Borda score she assigns to her representative (i.e., the
number of candidates she ranks below that representative), but other scoring functions can
be used as well. There are no constraints on the number of voters that can be represented by
a single candidate; the assumption is that the committee will make its decisions by weighted
voting, where the weight of each candidate is proportional to the fraction of the electorate
that she represents (or, alternatively, that the purpose of the committee is deliberation
rather than decision-making, so the goal is to select a diverse committee that represents
many voters). Given a target committee size k, Chamberlin and Courant’s scheme outputs a
size-k committee that maximizes the sum of voters’ utilities according to the chosen scoring
function (see Section 2 for a formal definition).1 Subsequently, Betzler et al. (2013) suggested
an egalitarian, or maximin, variant, where the quality of a committee is measured by the
utility of the worst-off voter rather than the sum of individual utilities.

Unfortunately, the problem of identifying an optimal committee under the Chamberlin–
Courant rule is known to be computationally hard, even for fairly simple scoring functions.
In particular, Procaccia et al. (2008) show that this is the case under r-approval scoring
functions, where a voter obtains utility 1 if her representative is one of her r highest-ranked
candidates, and utility 0 otherwise. Lu and Boutilier (2011) give an NP-hardness proof for
the Chamberlin–Courant rule under the Borda scoring function. Betzler et al. (2013) extend
these hardness results to the egalitarian variant.

1. Monroe (1995) has subsequently proposed a variant of this scheme where the committee is assumed
to use non-weighted voting, and, consequently, each member of the committee is required to represent
approximately the same number of voters (up to a rounding error).
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Clearly, this is bad news if we want to use the Chamberlin–Courant rule in practice:
elections may involve millions of voters and hundreds of candidates, and the election outcome
needs to be announced soon after the votes have been cast. On the other hand, simply
abandoning these voting rules in favor of easy-to-compute adaptations of single-winner
rules is not acceptable if the goal is to select a truly representative committee. Thus, it is
natural to try to circumvent the hardness results, either by designing efficient algorithms that
compute an approximately optimal committee or by identifying reasonable assumptions on
the structure of the election that ensure computational tractability. The former approach was
initiated by Lu and Boutilier (2011), and subsequently Skowron et al. (2015a) and Munagala
et al. (2021) have developed algorithms with strong approximation guarantees; see the survey
by Faliszewski et al. (2017). The latter approach was proposed by Betzler et al. (2013), who
provide an extensive analysis of the fixed-parameter tractability of the winner determination
problem under both utilitarian and egalitarian variants of the Chamberlin–Courant rule.
They also investigate the complexity of this problem for single-peaked electorates.

A profile is said to be single-peaked (Black, 1958) if the set of candidates can be placed
on a one-dimensional axis, so that a voter prefers candidates that are close to her top
choice on the axis. We can expect a profile to be single-peaked when every voter evaluates
the candidates according to their position on a numerical issue, such as the income tax
rate or minimum wage level, or by their position on the left-right ideological axis. Many
voting-related problems that are known to be computationally hard for general preferences
become easy when voters’ preferences are assumed to be single-peaked (Elkind et al., 2017).
For instance, this is the case for the winner determination problem under Dodgson’s, Young’s
and Kemeny’s rules (Brandt et al., 2015). Betzler et al. (2013) show that this is also the
case for winner determination of both the utilitarian and the egalitarian version of the
Chamberlin–Courant rule.

Our Contribution The goal of this paper is to investigate whether the easiness results of
Betzler et al. (2013) for single-peaked electorates can be extended to a more general class of
profiles. To this end, we explore a generalization of single-peaked preferences introduced
by Demange (1982), which captures a much broader class of voters’ preferences, while still
implying the existence of a Condorcet winner. This is the class of preference profiles that
are single-peaked on a tree. Informally, an election belongs to this class if we can construct
a tree whose vertices are candidates in the election, and each voter ranks all candidates
according to their perceived distance along this tree from her most-preferred candidate, with
closer candidates preferred to those who are further away. A profile is single-peaked if and
only if it is single-peaked on a path. Preferences that are single-peaked on a tree capture,
e.g., the setting where voters’ preferences are single-peaked over non-extreme candidates,
but a small number of extreme candidates prove to be difficult to order; the resulting tree
may then have each of the extreme candidates as a leaf. They also arise in the context of
choosing a location for a facility (such as a hospital or a convenience store) given an acyclic
road network. Further examples are provided by Demange (1982). Moreover, this preference
domain is a natural and well-studied extension of the single-peaked domain, and checking if
the algorithms of Betzler et al. (2013) extend to preferences that are single-peaked on trees
helps us understand whether the linear structure is essential for tractability. As we will see,
it turns out that the answer to this question is ‘no’.
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We focus on the Chamberlin–Courant rule. We first show that, for the egalitarian variant
of this rule, winner determination is easy for an arbitrary scoring function when voters’
preferences are single-peaked on a tree. Our proof proceeds by reducing our problem to an
easy variant of the Hitting Set problem. For the utilitarian setting, we show that winner
determination for the Chamberlin–Courant rule remains NP-complete if preferences are
single-peaked on a tree, for many scoring functions, including the Borda scoring function.
Hardness holds even if preferences are single-peaked on a tree of bounded diameter and
bounded pathwidth. However, we present an efficient winner determination algorithm for
preferences that are single-peaked on a tree with a small number of leaves : the running time
of our algorithm is polynomial in the size of the profile, but exponential in the number of
leaves. Formally, the problem is in XP with respect to the number of leaves. Further, we
give an algorithm that works for trees with a small number of internal vertices (i.e., with a
large number of leaves) when using the Borda scoring function. This algorithm places the
problem in XP with respect to the number of internal vertices and in FPT with respect to
the combined parameter ‘committee size+the number of internal vertices’.

Now, these parameterized algorithms assume that the tree with respect to which the
preferences are single-peaked is given as an input. However, in practice we cannot expect this
to be the case: typically, we are only given the voters’ preferences and have to construct such
a tree (if it exists) ourselves. While the algorithm of Betzler et al. faces the same issue (i.e., it
needs to know the societal axis), there exist efficient algorithms for determining the societal
axis given the voters’ preferences (Bartholdi & Trick, 1986; Doignon & Falmagne, 1994;
Escoffier et al., 2008). In contrast, for trees the situation is more complicated. Trick (1989b)
describes a polynomial-time algorithm that decides whether there exists a tree such that a
given election is single-peaked with respect to it, and constructs some such tree if this is
indeed the case. However, Trick’s algorithm leaves us a lot of freedom when constructing the
tree. As a result, if the election is single-peaked with respect to several different trees, the
output of Trick’s algorithm will be dependent on the implementation details. In particular,
there is no guarantee that an arbitrary implementation will find a tree that caters to the
demands of the winner determination algorithms that we present: for example, the algorithm
may return a tree with many leaves, while we wish to find one that has as few leaves as
possible. Indeed, Trick’s algorithm may output a complex tree even when the input profile
is single-peaked on a line.

To address this issue, we propose a general framework for finding trees with desired
properties, and use it to obtain polynomial-time algorithms for identifying ‘nice’ trees when
they exist, for several appealing notions of ‘niceness’. Specifically, we define a digraph that
encodes, in a compact fashion, all trees with respect to which a given profile is single-peaked.
This digraph enables us to count and/or enumerate all such trees. Moreover, we show that
it has many useful structural properties. These properties can be exploited to efficiently
find trees with the minimum number of leaves, or the number of internal vertices, or the
degree, or diameter, or pathwidth, among all trees with respect to which a given profile is
single-peaked. These recognition algorithms complement our parameterized algorithms for
winner determination. However, not all interesting questions about finding special trees are
easy to solve. In particular, we show that it is NP-hard to decide whether a given profile
is single-peaked on a regular tree, i.e., a tree all of whose internal vertices have the same
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degree. It is also NP-complete to decide whether a profile is single-peaked on a tree which is
isomorphic to a given tree.

Related Work The recent literature on the use of structured preferences in computational
social choice is surveyed by Elkind et al. (2016, 2017).

Demange (1982) introduced the domain of preferences single-peaked on a tree and
showed that every profile in this domain admits a Condorcet winner. Thus, there exists
a strategyproof voting rule on this domain. Danilov (1994) characterized the set of all
strategyproof voting rules on this domain, generalizing the classic characterization for
preferences single-peaked on a line by Moulin (1980). Schummer and Vohra (2002) consider
strategyproofness for the case where the tree is embedded in R2 and preferences are Euclidean.
Peters et al. (2019) characterize strategyproof probabilistic voting rules for preferences single-
peaked on trees and other graphs. The domain of single-crossing preferences (Mirrlees, 1971;
Roberts, 1977) has also been extended to trees and other graphs (Kung, 2015; Clearwater
et al., 2015; Puppe & Slinko, 2019).

A polynomial-time algorithm for recognizing whether a profile is single-peaked on a line
was given by Bartholdi and Trick (1986). Subsequently, faster algorithms were developed by
Doignon and Falmagne (1994) and Escoffier et al. (2008). Fitzsimmons and Lackner (2020)
put forward an efficient algorithm for preferences that may contain ties. For single-peakedness
on trees, Trick (1989b) gives an algorithm that we describe in detail later. Trick’s algorithm
only works when voters’ preferences are strict. For preferences that may contain ties, more
complicated algorithms have been proposed (Trick, 1989a; Conitzer et al., 2004; Tarjan &
Yannakakis, 1984; Sheng Bao & Zhang, 2012). Peters and Lackner (2020) give a polynomial-
time algorithm for recognizing preferences single-peaked on a circle; very recently, these
results have been extended to pseudotrees (Escoffier et al., 2020). On the other hand, a result
of Gottlob and Greco (2013) implies that recognizing whether preferences are single-peaked
on a graph of treewidth 3 is NP-hard.

The complexity of winner determination under the Chamberlin–Courant rule has been
investigated by a number of authors, starting with the work of Procaccia et al. (2008) and Lu
and Boutilier (2011); see the survey of Faliszewski et al. (2017). The first paper to consider
this problem for a structured preference domain was the work of Betzler et al. (2013), who
gave a dynamic programming algorithm for single-peaked preferences. This result was
extended by Cornaz et al. (2012) to profiles with bounded single-peaked width. Skowron
et al. (2015b) show that a winning committee under the Chamberlin–Courant rule can be
computed in polynomial time for preferences that are single-crossing, or, more generally,
have bounded single-crossing width. Constantinescu and Elkind (2021) build on the work of
Clearwater et al. (2015) to extend this result to preferences that are single-crossing on a
tree. Peters and Lackner (2020) develop a polynomial-time winner determination algorithm
for profiles that are single-peaked on a circle, via an integer linear program that is totally
unimodular if preferences are single-peaked on a circle, and hence optimally solved by its
linear programming relaxation. In contrast, for 2D-Euclidean preferences, Godziszewski et al.
(2021) obtain an NP-hardness result for a variant of the Chamberlin–Courant rule that uses
approval ballots. The computational complexity of the winner determination problem under
structured preferences has also been studied for other voting rules: for example, Brandt et al.
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(2015) consider the complexity of the Dodgson rule and the Kemeny rule under single-peaked
preferences.

Conitzer (2009) showed that single-peakedness offers advantages if we wish to elicit
voters’ preferences using comparison queries: Without any information about the structure
of the preferences, one requires Ω(nm logm) comparison queries to discover the preferences
of n voters over m alternatives. If preferences are known to be single-peaked on a line,
then O(nm) queries suffice. Dey and Misra (2016) show that single-peakedness on trees
can also be used to speed up elicitation, as long as we know the underlying tree and this
tree is well-structured (the relevant notions of structure are similar to the ones considered
in Section 8). Sliwinski and Elkind (2019) consider the problem of sampling preferences
that are single-peaked on a given tree uniformly at random, and explain how to identify a
tree that is most likely to generate a given profile, assuming that preferences are sampled
uniformly at random.

2. Preliminaries

Let C be a finite set of candidates, and let N = {1, . . . , n} be a set of voters. A preference
profile P assigns to each voter a strict total order over C. For each i ∈ N we write ≻i for
the preference order of i. If a ≻i b, then we say that voter i prefers a to b.

Given a profile P , we denote by pos(i, a) the position of candidate a ∈ C in the preference
order of voter i ∈ N :

pos(i, a) = |{b ∈ C : b ≻i a}|+ 1.

We write top(i) for voter i’s most-preferred candidate, i.e., the candidate in position 1,
we write second(i) for the candidate in position 2, and bottom(i) for i’s least-preferred
candidate, i.e., the candidate in position m. Given a subset of candidates W ⊆ C, we
extend this notation and let top(i,W ), second(i,W ), and bottom(i,W ) denote voter i’s
most-, second-most- and least-preferred candidate in W , respectively, provided that |W | ⩾ 3.

Given a subset W ⊆ C, we write P |W for the profile obtained from P by restricting the
candidate set to W .

Multi-Winner Elections A scoring function for a given N and C is a mapping µ : N ×
C → Z such that pos(i, a) < pos(i, b) implies µ(i, a) ⩾ µ(i, b). Intuitively, µ(i, a) indicates
how well candidate a represents voter i. A scoring function is said to be positional if there
exists a vector s = (s1, . . . , sm) ∈ Zm with s1 ⩾ s2 ⩾ . . . ⩾ sm such that µ(i, a) = spos(i,a);
when this is the case, we will say that the scoring function is induced by the vector s. It
will be convenient to work with vectors s such that s1 = 0 and s2, . . . , sm ⩽ 0, where
negative values correspond to ‘misrepresentation’. This choice is without loss of generality,
as applying a positive affine transformation to s does not change the output of the voting
rules we introduce below. We will refer to the positional scoring function that corresponds
to the vector (0,−1, . . . ,−m+ 1) as the Borda scoring function.

Given a preference profile P , a committee of candidates W ⊆ C, and a scoring function
µ : N × C → Z, we take voter i’s utility from the committee W to be µ(i, top(i,W )), that
is, the score she gives to her favorite candidate in W . We also write

score+µ (P,W ) =
∑
i∈N

µ(i, top(i,W ))
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for the sum of the utilities of all voters (the utilitarian Chamberlin–Courant score), and

scoremin
µ (P,W ) = min

i∈N
µ(i, top(i,W ))

for the utility obtained by the worst-off voter (the egalitarian Chamberlin–Courant score).
Given a committee size k with 1 ⩽ k ⩽ |C|, the utilitarian Chamberlin–Courant rule
elects all committees W ⊆ C with |W | = k such that score+µ (P,W ) is maximum. The
egalitarian Chamberlin–Courant rule elects all committees W ⊆ C with |W | = k such that
scoremin

µ (P,W ) is maximum. When referring to the Chamberlin–Courant rule, we will mean
the utilitarian version by default. Sometimes it is useful to think of this rule as minimizing
costs rather than maximizing scores, so we will write cost+µ (P,W ) = −score+µ (P,W ) and

costmin
µ (P,W ) = −scoremin

µ (P,W ). The Chamberlin–Courant rule minimizes these costs.

To study the computation of winning committees under these rules, we now formally
define the decision problems associated with their optimization versions.

Definition 2.1. An instance of the Utilitarian CC (respectively, Egalitarian CC)
problem is given by a preference profile P , a committee size k, 1 ⩽ k ⩽ |C|, a scoring function
µ : N × C → Z, and a bound B ∈ Z. It is a ‘yes’-instance if there is a subset of candidates
W ⊆ C with |W | = k such that score+µ (P,W ) ⩾ B (respectively, scoremin

µ (P,W ) ⩾ B) and a
‘no’-instance otherwise.2

We will sometimes consider the complexity of these problems for specific families of
scoring functions. Note that a scoring function is defined for fixed C and N , so the question
of asymptotic complexity makes sense for families of scoring functions (parameterized by C
and N), but not for individual scoring functions. For instance, the Borda scoring function
can be viewed as a family of scoring functions, as it is well-defined for any C and N .

Graphs and Digraphs A digraph D = (C,A) is given by a set C of vertices and a set
A ⊆ C × C of pairs, which we call arcs. If (a, b) ∈ A, we say that (a, b) is an outgoing arc
of a. An acyclic digraph (a dag) is a digraph with no directed cycles. For a vertex a ∈ C,
its out-degree d+(a) = |{b ∈ C : (a, b) ∈ A}| is the number of outgoing arcs of a. A sink is a
vertex a with d+(a) = 0, i.e., a vertex without outgoing arcs. It is easy to see that every dag
has at least one sink. Given a digraph D = (C,A), we write G(D) for the undirected graph
(C,E) where for all a, b ∈ C we have {a, b} ∈ E if and only if (a, b) ∈ A or (b, a) ∈ A. Thus,
G(D) is the graph obtained from D when we forget about the orientations of the arcs of D.

Given a digraph D = (C,A) and a set W ⊆ C, we write D|W for the induced subdigraph.
Similarly, for a graph G = (C,E), we write G|W for the induced subgraph. We say that a
set W ⊆ C is connected in a graph G if G|W is connected.

2. Under our definition it may happen that some candidate in the committee does not represent any voter,
i.e., there exists an a ∈ W such that a ̸= top(i,W ) for all i ∈ N ; equivalently, we allow for committees
of size k′ < k. It is assumed that the voting weight of such candidate in the resulting committee will
be 0. This definition is also used by, e.g., Cornaz et al. (2012) and Skowron et al. (2015a). In contrast,
Betzler et al. (2013) define the Chamberlin–Courant rule by explicitly specifying an assignment of voters
to candidates, so that each candidate in W has at least one voter who is assigned to her. The resulting
voting rule is somewhat harder to analyze algorithmically. Note that when |{top(i, C) : i ∈ N}| ⩾ k, the
two variants of the Chamberlin–Courant rule coincide.
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(a) Star (b) Caterpillar (c) Subdivision of a star

Figure 1: Examples of different classes of trees

Classes of Trees Recall that a tree is a connected graph that has no cycles. A leaf of a
tree is a vertex of degree 1. Vertices that are not leaves are internal vertices. A path is a
tree that has exactly two leaves. A star K1,n is a tree that has exactly one internal vertex
and n leaves. The internal vertex is called the center of the star. The diameter of a tree
T is the maximum distance between two vertices of T ; e.g., the diameter of a star is 2. A
k-regular tree is a tree in which every internal vertex has degree k. Note that paths are
2-regular, and the star K1,n is n-regular. A caterpillar is a tree in which every vertex is
within distance 1 of a central path. A subdivision of a star is a tree obtained from a star by
means of replacing each edge by a path. Figure 1 illustrates some of these concepts.

Pathwidth The pathwidth of a tree T is a measure of how close T is to being a path. A
path decomposition of T = (C,E) is given by a sequence S1, . . . , Sr of subsets of C (called
bags) such that

• for each edge {a, b} ∈ E, there is a bag Si with a, b ∈ Si, and

• for each a ∈ C, the bags containing a form an interval of the sequence, so that if a ∈ Si

and a ∈ Sj for i < j, then a also belongs to each of Si+1, Si+2, . . . , Sj−1.

The width of the path decomposition is maxi∈[r] |Si|− 1. The pathwidth of T is the minimum
width of a path decomposition of T . For more on pathwidth and the related concept of
treewidth, see, e.g., the survey by Bodlaender (1994).

Preferences that are Single-Peaked on a Tree Consider a tree T with vertex set C.
A preference profile P is said to be single-peaked on T (Demange, 1982) if for every voter
i ∈ N and every pair of distinct candidates a, b ∈ C such that b lies on the unique path from
top(i) to a in T it holds that top(i) ≻i b ≻i a. The profile P is said to be single-peaked on a
tree if there exists a tree T with vertex set C such that P is single-peaked on T . The profile
P is said to be single-peaked if P is single-peaked on some tree T that is a path.

The following proposition considers alternative ways of defining preferences single-peaked
on a tree T . The (known) proof is straightforward from the definitions.

Proposition 2.2. Let P be a preference profile and let T be a tree on vertex set C. The
following properties are equivalent:

• P is single-peaked on T .

• For every W ⊆ C that is connected in T , P |W is single-peaked on T |W .
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• For every i ∈ N and every a ∈ C, the top-initial segment {b ∈ C : b ≻i a} is connected
in T .

Given a profile P , we denote the set of all trees T such that P is single-peaked on T by
T (P ).

3. Egalitarian Chamberlin–Courant on Arbitrary Trees

We start by presenting a simple algorithm for finding a winning committee under the
egalitarian Chamberlin–Courant rule that works for preferences single-peaked on arbitrary
trees. Our algorithm proceeds by finding a committee of minimum size that satisfies a given
worst-case utility bound.

First, we show that the winner determination problem in the egalitarian case can be
reduced to the following variant of the Hitting Set problem, where the ground set is the
vertex set of a tree T , and we need to hit a collection of connected subsets of T .

Definition 3.1. An instance of the Tree Hitting Set problem is given by a tree T on a
vertex set C, a family C = {C1, . . . , Cn} of subsets of C such that each Ci is connected in T ,
and a target cover size k ∈ Z+. It is a ‘yes’-instance if there is a subset of vertices W ⊆ C
with |W | ⩽ k such that W ∩ Ci ̸= ∅ for i = 1, . . . , n, and a ‘no’-instance otherwise.

Guo and Niedermeier (2006) show that the Tree Hitting Set problem can be solved in
polynomial time. Since they consider a dual formulation (in terms of set cover), we present
an adaptation of the short argument here.

Theorem 3.2 (Guo and Niedermeier (2006)). Tree Hitting Set can be solved in polyno-
mial time.

Proof. Consider a vertex a ∈ C that is a leaf of T , and let b ∈ C be the (unique) vertex that
a is adjacent to. Suppose that a ∈ Ci for some i. Then, because Ci is a connected subset of
T , we either have Ci = {a} or b ∈ Ci.

With this observation, we can now give a simple algorithm that constructs a minimum
hitting set: Consider a leaf vertex a ∈ C adjacent to b ∈ C. If there exists some Ci ∈ C with
Ci = {a}, then any hitting set must include a, so add a to the hitting set under construction,
remove a from T and remove all copies of {a} from C. Otherwise, every set Ci that would
be hit by a is also hit by b, so any hitting set including a remains a hitting set when a is
replaced by b. Hence it is safe to delete a from T and from each Ci ∈ C. Now repeat the
process on the smaller instance constructed. Once all vertices have been deleted, return the
constructed hitting set, which is minimum by our argument.

Now we show how to reduce our winner determination problem to the hitting set problem.
Suppose we are given an instance of the Egalitarian CC problem consisting of a profile
P , a tree T on which P is single-peaked, a target committee size k, and the bound B. We
construct a Tree Hitting Set instance as follows.

The ground set is the candidate set C, the tree T is the tree with respect to which voters’
preferences are single-peaked, and the target cover size equals the committee size k. For
each i ∈ N = {1, . . . , n}, construct the set

Ci = {a ∈ C : µ(i, a) ⩾ B}.
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Since µ is monotone, the set Ci is a top-initial segment of i’s preference order, i.e., is of the
form {a ∈ C : a ≻i b} for some b ∈ C. By Proposition 2.2, since P is single-peaked on T ,
each set Ci is connected in T , so we have constructed an instance of Tree Hitting Set.
Now note that for every set W ∈ C we have

scoremax
µ (P,W ) ⩾ B if and only if W ∩ Ci = W ∩ {a ∈ C : µ(i, a) ⩾ B} ≠ ∅ for all i.

It follows that our reduction is correct.
Using this reduction and the algorithm for Tree Hitting Set, we can solve Egalitar-

ian CC in polynomial time.

Theorem 3.3. For profiles that are single-peaked on a tree, we can find a winning committee
under the egalitarian Chamberlin–Courant rule in polynomial time.

4. Hardness of Utilitarian Chamberlin–Courant on Arbitrary Trees

For preferences single-peaked on a path, the utilitarian version of the Chamberlin–Courant
rule is computationally easy: a winning committee can be computed using a dynamic
programming algorithm (Betzler et al., 2013). While we are able to generalize this algorithm
to work for some other trees (see Section 5), it is not clear how to extend it to arbitrary
trees. Indeed, we will now show that for the utilitarian Chamberlin–Courant rule the winner
determination problem remains NP-complete for preferences single-peaked on a tree. This
hardness result holds for the Borda scoring function, and applies even to trees that have
diameter 4 and pathwidth 2.

We have defined the Borda scoring function as the vector (0,−1, . . . ,−(m− 1)). Recall
that we defined cost+µ (P,W ) = −score+µ (P,W ), and we will use costs in the following proof
to avoid negative numbers.

Theorem 4.1. Given a profile P that is single-peaked on a tree, a target committee size k,
and a target score B, it is NP-complete to decide whether there exists a committee of size k
with score at least B under the utilitarian Chamberlin–Courant rule with the Borda scoring
function. Hardness holds even restricted to profiles single-peaked on a tree with diameter 4
and pathwidth 2.

Proof. We will reduce the classic Vertex Cover problem to Utilitarian CC. An instance
of Vertex Cover is given by an undirected graph G = (V,E) and a positive integer t. It is
a ‘yes’-instance if it admits a vertex cover of size t, i.e., a subset of vertices S ⊆ V such that
for each {u, v} ∈ E we have that u ∈ S or v ∈ S. This problem is known to be NP-hard
(Karp, 1972).

Given an instance (G, t) of Vertex Cover such that G = (V,E), V = {u1, . . . , up} and
E = {e1, . . . , eq}, we construct an instance of Utilitarian CC as follows.

Let M = 5pq; intuitively, M is a large number. We introduce a candidate a, two
candidates yi and zi for each vertex ui ∈ V , and M dummy candidates. Formally, we set

Y = {y1, . . . , yp}, Z = {z1, . . . , zp}, D = {d1, . . . , dM},

and define the candidate set to be

C = {a} ∪ Y ∪ Z ∪D.
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We set the target committee size to be k = p+ t.
We now introduce the voters, who will come in three types N = N1 ∪N2 ∪N3.

N1 N2 N3

5q · · · 5q 1 · · · 1 M · · · M

y1 yp a a z1 zp

z1 zp yj1,1 yjq,1 y1 yp

a a yj1,2 yjq,2 a a
...

... d1 d1
...

...
...

...

dM dM
...

...

• The set N1 consists of 5q identical voters for each ui ∈ V : they rank yi first, zi second,
and a third, followed by all other candidates as specified below. Intuitively, the purpose
of these voters is to ensure that good committees contain representatives yi of vertices
in V .

• The set N2 consists of a single voter for each edge ej ∈ E: this voter ranks a first,
followed by the two candidates from Y that correspond to the endpoints of ej (in an
arbitrary order), followed by the dummy candidates d1, . . . , dM , followed by all other
candidates as specified below. The purpose of these voters is to ensure that every edge
is covered by one of the vertices that correspond to a committee member, and to incur
a heavy penalty of M if the edge is uncovered.

• The set N3 is a set of M identical voters for each ui ∈ V who all rank zi first, yi
second, and a third, followed by all other candidates as specified below. The purpose
of these voters is to force every good committee to include all the zi candidates.

We complete the voters’ preferences so that the resulting profile is single-peaked on the
following tree:

a

y1 · · · yp d1 · · · dM

z1 · · · zp

This tree is obtained by taking a star with center a and leaves Y ∪D, and then attaching
zi as a leaf onto yi for every i = 1, . . . , p. It is easy to see that it has diameter 4 and
pathwidth 2 (with bags {a, y1, z1}, . . . , {a, yp, zp}, {a, d1}, . . . , {a, dM}). We will now specify
how to complete each vote in our profile to ensure that the resulting profile is single-peaked
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on this tree. Inspecting the tree, we see that it suffices to ensure that for each i = 1, . . . , p it
holds that in all votes where the positions of yi and zi are not given explicitly, candidate yi
is ranked above zi.

This completes the construction of the profile P with voter set N and candidate set
C. We use the Borda scoring function s = (0,−1,−2, . . . ), and set the cost bound to be
B = (5q)(p − t) + 2q and ask whether there exists a committee with cost+µ (P,W ) ⩽ B.
Note that, by construction, M > B. This completes the description of our instance of the
Utilitarian CC problem. Intuitively, the ‘correct committee’ we have in mind consists of
all zi candidates (of which there are p) and a selection of yi candidates that corresponds to
a vertex cover (of which there should be t), should a vertex cover of size t exist. Now let us
prove that the reduction is correct.

Suppose we have started with a ‘yes’-instance of Vertex Cover, and let S be a collection
of t vertices that form a vertex cover of G. Consider the committee W = Z ∪ {yi : ui ∈ S};
note that |W | = p+ t = k. The voters in N3 and 5qt voters in N1 have their most-preferred
candidate in W , so they contribute 0 to the cost of W . The remaining (5q)(p− t) voters
in N1 contribute 1 to the cost of W , since zi ∈ W for all i. Further, each voter in N2

contributes at most 2 to the cost of W . Indeed, the candidates that correspond to the
endpoints of the respective edge are ranked in positions 2 and 3 in this voter’s ranking,
and since S is a vertex cover for G, one of these candidates is in W . We conclude that
cost+µ (P,W ) ⩽ (5q)(p− t) + 2q = B.

Conversely, suppose there exists a committee W of size k = p+ t with cost+µ (P,W ) ⩽ B.
Note first that W has to contain all candidates in Z: otherwise, there are M voters in N3

who contribute at least 1 to the cost of W , and then the utilitarian Chamberlin–Courant
cost of W is at least M > B. Thus Z ⊆ W . We will now argue that W \ Z is a subset
of Y , and that S′ = {ui : yi ∈ W \ Z} is a vertex cover of G. Suppose that W \ Z
contains too few candidates from Y , i.e., at most t − 1 candidates from Y . Then N1

contains at least (5q)(p − (t − 1)) voters who contribute at least 1 to the cost of W , so
cost+µ (P,W ) ⩾ (5q)(p − t + 1) > (5q)(p − t) + 2q = B, a contradiction. Thus, we have
W \ Z ⊆ Y . Now, suppose that S′ is not a vertex cover for G. Let ej ∈ E be an edge that
is not covered by S′, and consider the voter in N2 corresponding to ej . Clearly, none of the
candidates ranked in positions 1, . . . ,M + 3 by this voter appear in W . Thus, this voter
contributes more than M to the cost of W , so the total cost of W is more than M > B, a
contradiction. Thus, a ‘yes’-instance of Utilitarian CC corresponds to a ‘yes’-instance of
Vertex Cover.

In the appendix, we modify this reduction to establish that Utilitarian CC remains
hard even on trees with maximum degree 3 (Theorem A.1); intuitively, it suffices to ‘clone’
candidate a.

5. Utilitarian Chamberlin–Courant on Trees with Few Leaves

The hardness result in Section 4 shows that single-peakedness on trees is not a strong enough
assumption to make Utilitarian CC tractable. However, we will now show that it is
possible to achieve tractability by placing further constraints on the shape of the underlying
tree.
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Specifically, in this section, we present an algorithm for the utilitarian Chamberlin–
Courant rule whose running time is polynomial on any profile that is single-peaked on a tree
with a constant number of leaves. The algorithm proceeds by dynamic programming. It can
be viewed as a generalization of the algorithm due to Betzler et al. (2013) for preferences
single-peaked on a path (i.e., a tree with two leaves).

Theorem 5.1. Given a profile P with |C| = m and |N | = n, a tree T with λ leaves such
that P is single-peaked on T , and a target committee size k, we can find a winning committee
under the utilitarian Chamberlin–Courant rule in time poly(n,mλ, kλ).

Proof. We use dynamic programming to find a committee of size k that maximizes the
utilitarian Chamberlin–Courant score.

r∗

Figure 2: An anti-chain

We pick an arbitrary vertex r∗ to be the root of T .
This choice induces a partial order ≻ on C: we set a ≻ b
if a lies on the (unique) path from r∗ to b in T . Thus,
r∗ ≻ a for every a ∈ C \ {r∗}. A set A ⊆ C is said to be
an anti-chain if no two elements of A are comparable
with respect to ≻. Figure 2 on the right provides an
example; if we added the left child of r∗ to the set, it
would no longer be an anti-chain. Observe that for every
subset of C its set of maximal elements with respect to ≻ forms an anti-chain. Note also
that every two ancestors of a leaf are comparable with respect to ≻. Hence, if a and b belong
to an anti-chain A ⊆ C and c is a leaf of T , then it cannot be the case that both a and b are
ancestors of c. Therefore, |A| ⩽ λ.

Given a vertex r, let Tr be the subtree of T rooted at r. The vertex set of Tr is
Cr = {r} ∪ {a : r ≻ a}. Let Nr = {i ∈ N : top(i) ∈ Cr} be the set of all voters whose
most-preferred candidate belongs to Cr. Let Pr be the profile obtained from P by restricting
the candidate set to Cr and the voter set to Nr. For each r ∈ C and each ℓ = 1, . . . , k let

M(r, ℓ) = max
{
score+µ (Pr,W ) : W ⊆ Cr with |W | = ℓ and r ∈W

}
be the highest Chamberlin–Courant score obtainable in Pr by a committee from Cr of size
at most ℓ, subject to r being selected.

Suppose that we have computed these quantities for all descendants of r. We will now
explain how to compute them for r. Let W ⊆ Cr be an optimal committee for Pr that has
size ℓ and includes r, so that score+µ (Pr,W ) = M(r, ℓ). Let A = {r1, . . . , rs} be the set of
maximal elements of W \ {r} with respect to ≻ and let ℓj = |W ∩ Crj | for j = 1, . . . , s; we
have ℓ1 + · · ·+ ℓs = ℓ− 1. Since Pr is single-peaked on T , for each j = 1, . . . , s it holds that
each voter in Nrj is better represented by rj than by any candidate not in Crj . Thus, the
contribution of voters in Nrj to the total score M(r, ℓ) of W is given by score+µ (Prj ,W ∩Crj ).
In fact, this quantity must equal M(rj , ℓj), since otherwise we could replace the candidates
in W ∩Crj by an optimizer of M(rj , ℓj), thereby increasing the score of W , which would be
a contradiction. On the other hand, consider a voter i in Nr \ (Nr1 ∪ · · · ∪Nrs). Since Pr is
single-peaked on T , for each j = 1, . . . , s it holds that candidate rj is a better representative
for i than any other candidate in Crj . Thus, voter i’s most-preferred candidate in W must
be one of r, r1, . . . , rs.
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This suggests the following procedure for computing M(r, ℓ). The case ℓ = 1 is straight-
forward, as the unique optimal committee in this case is {r}. For ℓ > 1, let Tr be the set of
all anti-chains in Tr. A t-division scheme for an anti-chain A = {r1, . . . , rs} ∈ Tr is a list
L = (ℓ1, . . . , ℓs) such that ℓj ⩾ 1 for all j = 1, . . . , s and ℓ1 + · · ·+ ℓs = t. We denote by LAt
the set of all t-division schemes for A. Now, for every anti-chain A = {r1, . . . , rs} ∈ Tr \{{r}}
and every (ℓ− 1)-division scheme L = (ℓ1, . . . , ℓs) ∈ LAℓ−1, we set N ′

r = Nr \ (Nr1 ∪ . . .∪Nrs)
and

M(A,L) =
s∑

j=1

M(rj , ℓj) +
∑
i∈N ′

r

µ(i, top(i, A ∪ {r})).

We then have M(r, ℓ) = maxA∈Tr\{{r}},L∈LA
ℓ−1

M(A,L), where we maximize over all anti-

chains in Tr except {r} and over all ways of dividing the ℓ− 1 slots among the elements of
the anti-chain. The base case for this recurrence corresponds to the case where r is a leaf,
and is easy to deal with.

Now, the score of an optimum Chamberlin–Courant committee containing r∗ is M(r∗, k).
We can repeat the algorithm for all possible choices of r∗. Then, the optimum Chamberlin–
Courant score is the highest value of M(r∗, k) that we have encountered.

We have argued that the size of each anti-chain is at most λ. Therefore, to calculate each
M(r, ℓ), we enumerate at most mλ anti-chains and at most kλ divisions. This calculation
needs to be performed for every vertex r (proceeding from the leaves towards the root) and
for each ℓ ∈ [k]. This establishes our bound on the running time.

Notice that the time bound in Theorem 5.1 implies that our problem is in XP with
respect to the number λ of leaves in the underlying tree. Whether there is an FPT algorithm
for this parameter, or even for the combined parameter (k, λ), remains an open problem.

6. Utilitarian Chamberlin–Courant on Trees with Few Internal Vertices

Consider the star with center candidate z and leaf candidates c1, . . . , c7. Which preference
orders are single-peaked on this tree?

c1
c2

c3

c4c5

c6

c7

z

A ranking could begin with z. After z, we can rank the other candidates in an arbitrary
order without violating single-peakedness. But suppose we begin the ranking with a leaf
candidate such as c1. Then z must be the second candidate, because the set consisting of
the top two candidates must be connected in the tree. After ranking c1 and z, we can then
order the remaining candidates arbitrarily without violating single-peakedness. Thus, the
rankings that are single-peaked on the star are precisely the rankings in which the center
vertex is ranked first or second.

Proposition 6.1. A preference profile is single-peaked on a star if and only if there exists a
candidate that every voter ranks in first or second position.
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This observation implies that, in some sense, the restriction of being single-peaked on a
tree does not give us much information. For example, consider the problem of computing an
optimal Kemeny ranking, i.e., a ranking that minimizes the sum of Kendall tau distances
to the rankings in the input profile. This problem is NP-hard in general (Bartholdi et al.,
1989), and we can easily see that it remains hard for preferences single-peaked on a star.
Indeed, we can transform a general instance of this problem into one that is single-peaked
on a star by adding a new candidate that is ranked in the first position by every voter; the
resulting problem is clearly as hard as the original one.

For some other problems, though, the restriction to stars makes the problem easy. In
particular, this is the case for the utilitarian Chamberlin–Courant rule with the Borda
scoring function. To see this, note that it will often be a good idea to include the candidate
who is the center vertex of the star in the committee. Once we have done so, every voter is
already quite well represented: the Borda score of each voter’s representative is either 0 or
−1. Thus, it remains to identify k − 1 candidates whose inclusion in the committee would
bring the score of as many voters as possible up to 0, which amounts to simply selecting
k − 1 candidates with highest Plurality scores.3 Finally, we need to consider the case where
an optimal committee does not include the center vertex. One can check that in this case
the committee necessarily consists of k candidates with highest Plurality scores (see the
proof of Theorem 6.2 below). By selecting the better of these two committees, we find a
winning committee. This procedure works for many scoring functions other than Borda
(see the end of this section). However, as we show in the appendix, this argument does not
extend to all scoring functions: For some positional scoring functions, winner determination
for utilitarian Chamberlin–Courant remains hard even for preferences single-peaked on a
star (Theorem B.1).

The algorithm we have sketched for the Borda scoring function on stars can be generalized
to trees that have a small number of internal vertices (and thus a large number of leaves).
While for stars it suffices to guess whether the center vertex would be part of the winning
committee, we now have to make a similar guess for each internal vertex.

Theorem 6.2. Given a profile P with |C| = m and |N | = n, a tree T ∈ T (P ) with η
internal vertices such that P is single-peaked on T , and a target committee size k ⩾ 1, we
can find a winning committee of size k for P under the Chamberlin–Courant rule with the
Borda scoring function in time poly(n,m, (k + 1)η).

Proof. Given a candidate c ∈ C, let plu(c) = |{i ∈ N : top(i) = c}| be the number of voters
in P that rank c first. Let C◦ be the set of internal vertices of T . For each candidate c ∈ C◦,
let lvs(c) denote the set of leaf candidates in C \ C◦ that are adjacent to c in T .

Our algorithm proceeds as follows. For each candidate c ∈ C◦ it guesses a pair (x(c), ℓ(c)),
where x(c) ∈ {0, 1} and 0 ⩽ ℓ(c) ⩽ |lvs(c)|. The component x(c) indicates whether c itself is
in the committee, and ℓ(c) indicates how many candidates in lvs(c) are in the committee.
We require

∑
c∈C◦(x(c) + ℓ(c)) = k. Next, the algorithm sets W = {c ∈ C◦ : x(c) = 1},

and then for each c ∈ C◦ it orders the candidates in lvs(c) in non-increasing order of plu(c)
(breaking ties according to a fixed ordering ▷ over C), and adds the first ℓ(c) candidates in
this order to W .

3. Recall that a candidate’s Plurality score is the number of voters who rank this candidate first.
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Each guess corresponds to a committee of size k. Guessing can be implemented de-
terministically: consider all options for the collection of pairs {(x(c), ℓ(c))}c∈C◦ satisfying∑

c∈C◦(x(c)+ℓ(c)) = k (there are at most 2η ·(k+1)η possibilities), compute the Chamberlin–
Courant score of the resulting committee for each option, and output the best one.

It remains to argue that this algorithm finds a committee with the maximum Chamberlin–
Courant score. To see this, let S be the set of all size-k committees with the maximum
Chamberlin–Courant score, and let S∗ be the maximal committee in argmaxW∈S |W ∩ C◦|
with respect to the fixed tie-breaking ordering ▷ (where, given two size-k committees
S, S′ ∈ S, we write S′ ▷ S if a′ ▷ a, where a′ is the maximal element of S′ \ S with respect
to ▷ and a is the maximal element of S \ S′ with respect to ▷).

For each c ∈ C◦, let x∗(c) = 1 if c ∈ S∗ and x∗(c) = 0 otherwise, and let ℓ∗(c) =
|lvs(c) ∩ S∗|. Our algorithm will consider the collection of pairs {(x∗(c), ℓ∗(c))}c∈C◦ at some
point, and construct a committee S based on this collection. We will now argue that S = S∗.
This would show correctness of our algorithm, since it returns a committee with a total
score at least as high as that of S.

Clearly, we have C◦ ∩ S = C◦ ∩ S∗, so it remains to argue that lvs(c) ∩ S∗ = lvs(c) ∩ S
for each c ∈ C◦. Suppose for the sake of contradiction that this is not the case, i.e., there
exists a c ∈ C◦ and a pair of candidates a, b ∈ lvs(c) with a ∈ S \ S∗ and b ∈ S∗ \ S. We
distinguish two cases: c ∈ S∗ or c ̸∈ S∗.

If c ∈ S∗, consider the committee S′ = (S∗ \ {b}) ∪ {a}. We claim that S′ has the same
Chamberlin–Courant score as S∗. Note that when moving from S∗ to S′,

• the contribution of the plu(b) voters who rank b first changes from 0 to −1,

• the contribution of the plu(a) voters who rank a first changes from −1 to 0,

• the contribution of all other voters is unaffected by the change, since they prefer
c ∈ S∗ ∩ S′ to both a and b.

We also have plu(a) ⩾ plu(b) by construction of S, and so the score of S′ is at least the
score of S∗, and hence plu(a) = plu(b). But then by construction of S we have a▷ b, and
this contradicts our choice of S∗ from argmaxW∈S |W ∩ C◦|.

Now, suppose that c ̸∈ S∗. Consider the committee S′ = (S∗ \ {b}) ∪ {c}. Again, we
claim that S′ has the same Chamberlin–Courant score as S∗. Note that when moving from
S∗ to S′,

• the contribution of each of the plu(b) voters who rank b first decreases by 1 (as all of
them rank c second),

• the contribution of each of the plu(a) voters who rank a first increases by at least 1
(as all of them rank c second),

• the contribution of any other voter does not decrease (as all of them prefer c to b).

Again, we have plu(a) ⩾ plu(b) by construction of S, and so the score of S′ is at least
the score of S∗, and hence plu(a) = plu(b). Thus, the Chamberlin–Courant score of S′ is
optimal, and so S′ ∈ S. But |S′ ∩ C◦| > |S∗ ∩ C◦|, which contradicts our choice of S∗ from
argmaxW∈S |W ∩ C◦|.
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The reader may wonder if Theorem 6.2 can be strengthened to an FPT result with
respect to η, e.g., by guessing the subset of internal nodes to be selected and then picking
the leaves in a globally greedy fashion in order of their Plurality scores. However, it can
be shown that this approach does not necessarily produce an optimal committee: this is
because, when considering a leaf that is adjacent to an internal node that is not selected, we
need to take into account its contribution to the utility of voters who do not rank it first,
and this contribution may depend on what other leaves have been selected.

Further, it is clear from our proof that Theorem 6.2 holds for every positional scoring
function whose score vector satisfies s1 = 0, s2 = −1, s3 ⩽ −2. The proof does not extend
to arbitrary positional scoring functions, and Theorem B.1 in the appendix shows that
for some positional scoring functions Utilitarian CC is NP-hard even if preferences are
single-peaked on a star. Note that, in contrast, Theorem 5.1 holds for any positional scoring
function. On the other hand, the algorithm described in the proof of Theorem 6.2 is in
FPT with respect to the combined parameter (k, η). In contrast, for general preferences
computing the Chamberlin–Courant winners is W[2]-hard with respect to k under the Borda
scoring function (Betzler et al., 2013).

7. Structure of the Set of Trees a Profile is Single-Peaked on: The
Attachment Digraph

We now move on from our study of multiwinner elections and turn towards the problem
of recognizing when a given preference profile is single-peaked on a tree. In particular, for
each profile P , we will study the collection T (P ) of all trees on which P is single-peaked.
It turns out that the set T (P ) has interesting structural properties, and admits a concise
representation. In many cases, this will allow us to pick a ‘nice’ tree from T (P ) i.e., a
tree that satisfies certain additional requirements. For example, to use the algorithm from
Section 5, we would want to pick a tree from T (P ) with the smallest number of leaves, and
to use the algorithm from Section 6, we would want to use a tree with the smallest number
of internal vertices.

Trick (1989b) presents an algorithm that decides whether T (P ) is non-empty. If so, the
algorithm produces some tree T with T ∈ T (P ). While building the tree, the algorithm makes
various arbitrary choices. In our approach, we will store all the choices that the algorithm
could take. To this end, we introduce a data structure, which we call the attachment digraph
of profile P .

We will start by giving a description of Trick’s algorithm and its proof of correctness.
We follow the presentation of Trick’s paper closely, but give somewhat more detailed proofs.

Trick’s algorithm can be seen as taking inspiration from algorithms for recognizing
preferences that are single-peaked on a line. Those typically start out by noticing that an
alternative that is ranked bottom-most by some voter must be placed at one of the ends of
the axis. Trick’s algorithm uses the same idea; the analogue for trees is as follows.

Proposition 7.1 (Trick, 1989b). Suppose P is single-peaked on T , and suppose a occurs as
a bottom-most alternative, that is, bottom(i) = a for some i ∈ N . Then a is a leaf of T .

Proof. The set A \ {a} is a top-initial segment of the i-th vote, and hence must be connected
in T . This can only be the case if a is a leaf of T .
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Suppose we have identified a bottom-ranked alternative a. We deduce that if our profile
is single-peaked on any tree T , then a is a leaf of T . Now, being a leaf, a must have exactly
one neighboring vertex b. Which vertex could this be? The following simple observation
gives some necessary conditions.

Proposition 7.2 (Trick, 1989b). Suppose P is single-peaked on T , and suppose a ∈ C is a
leaf of T , adjacent to b ∈ C. Let i ∈ N be a voter. Then either

(i) b ≻i a, or

(ii) a = top(i) and b = second(i).

Proof. (i) Suppose first that a is not i’s top-ranked alternative, and rather top(i) = c. Take
the unique path in T from c to a, which passes through b since b is the only neighbor of a.
Since i’s vote is single-peaked on T , it is single-peaked on this path, and hence i’s preference
decreases along it from c to a. Since b is visited before a, it follows that b ≻i a.

(ii) Suppose, otherwise, that a is i’s top-ranked alternative. Then {a, second(i)} is a
top-initial segment of i’s vote, which by Proposition 2.2 is a connected set in T , and hence
forms an edge. Thus, a is adjacent to second(i), so second(i) = b as required.

Thus, in our search for a neighbor of the leaf a, we can restrict our attention to those
alternatives b that satisfy either (i) or (ii) in the proposition above, for every voter i ∈ N .
Let us write this down more formally: For each a ∈ C and i ∈ N , define

B(i, a) =

{
{c ∈ C : c ≻i a} if top(i) ̸= a,

{second(i)} if top(i) = a.

Applying Proposition 7.2 to all voters i ∈ N , we see that a needs to be adjacent to an
element in

B(a) =
⋂
i∈N

B(i, a).

Thus, we have the following corollary.

Corollary 7.3 (Trick, 1989b). Suppose a profile is single-peaked on T , and a ∈ C is a leaf
of T . Then a must be adjacent to an element of B(a).

We have established that it is necessary for leaf a to be adjacent to some alternative in
B(a). It turns out that if the profile is single-peaked on a tree, then for every alternative
b ∈ B(a) there is some tree T ∈ T (P ) in which a is adjacent to b.

Proposition 7.4 (Trick, 1989b). Let P be a profile in which a occurs bottom-ranked. Suppose
that P |C\{a} is single-peaked on some tree T−a with vertex set C \ {a}, and let T be a tree
obtained from T−a by attaching a as a leaf adjacent to some element b ∈ B(a). Then P is
single-peaked on T .

Proof. Let T be a tree obtained as described. We show that P is single-peaked on T . Let
S ⊆ C be a top-initial segment of the ranking of some voter i in P . We need to show that S
is connected in T .
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• If a ̸∈ S, then S is connected in T−a because P |C\{a} is single-peaked on T−a. Hence
S is also connected in T .

• If S = {a}, then S is trivially connected in T .

• If a ∈ S and S ̸= {a}, then S \{a} is connected in T−a because P |C\{a} is single-peaked
on T−a. Therefore, to show that S is connected in T , it suffices to show that a’s
neighbor b is also an element of S. Since b ∈ B(a) =

⋂
i∈N B(i, a), we have that

b ∈ B(i, a). If top(i) = a, then B(i, a) = {second(i)}, so b = second(i). As S is a
top-initial segment of i with |S| ⩾ 2, we have b ∈ S, as desired. Otherwise top(i) ̸= a,
and so B(i, a) = {c : c ≻i a}, hence b ≻i a. As S is a top-initial segment of i including
a, we must have b ∈ S, as desired.

Algorithm 1 Trick’s algorithm to decide whether a profile is single-peaked on a tree

T ← (C,∅), the empty graph on C
C1 ← C, r ← 1
while |Cr| ⩾ 3 do

Lr ← {bottom(i, Cr) : i ∈ N}
for each candidate a ∈ Lr do

B(a)←
⋂

i∈N B(i, Cr, a)
if B(a) = ∅ then

return fail : P is not single-peaked on any tree
else

select b ∈ B(a) arbitrarily
add an edge between a and b in T

Ci+1 ← Cr \ Lr

r ← r + 1

if |Cr| = 2 then
add an edge between the two candidates in Cr to T

return P is single-peaked on T

With these results in place, we can now see how a recognition algorithm could work.
Select an alternative a that is ranked bottom-most by some voter, select an arbitrary
candidate b ∈ B(a), add an edge {b, a} to the tree under construction, remove a from the
profile, and recurse on the remaining candidates. If at any point we find that B(a) = ∅,
then we can conclude from Corollary 7.3 that the profile is not single-peaked on any tree.
Algorithm 1 formalizes this procedure. To avoid recursion, the algorithm uses the following
notation: for every subset S ⊂ C, for each a ∈ S, and each i ∈ N , define

B(i, S, a) =

{
{c ∈ S : c ≻i a} if top(i, S) ̸= a,

{second(i, S)} if top(i, S) = a.

Theorem 7.5 (Trick, 1989b). Algorithm 1 correctly decides whether a profile is single-peaked
on a tree.
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Proof. First, note that if Algorithm 1 succeeds and returns a graph T , then T is a tree.
Indeed, it is easy to see that T has |C| − 1 edges. Moreover, T is connected, because every
vertex has a path to a vertex in the set Cr at the end of the algorithm, and Cr is either a
singleton or a connected set of size 2.

We show that the algorithm is correct by induction on |C|. If |C| = 1 or |C| = 2, every
profile is single-peaked on the unique tree on C, and Algorithm 1 correctly determines this.
If |C| ⩾ 3, then the while-loop is executed at least once. If in the first iteration the algorithm
claims that the profile is not single-peaked on a tree because B(a) = ∅ for some a ∈ L1, then
this statement is correct by Corollary 7.3. Otherwise, after the first iteration the algorithm
behaves as if it was run on P |C2 (recall that C2 = C \ L1).

Now, if the algorithm fails in later iterations, by the inductive hypothesis, P |C2 is not
single-peaked on a tree. But then P is not single-peaked on a tree either: Suppose it was
single-peaked on T . Then, by Proposition 7.1, all candidates in L1 are leaves of T , and
therefore T |C2 is still a tree, and so P |C2 is single-peaked on T |C2 (by Proposition 2.2), a
contradiction. Thus, in this case, the algorithm executed on P correctly determines that P
is not single-peaked on a tree.

On the other hand, if the algorithm’s run on P terminates and returns a tree T , then its
run on P |C2 would have terminated and returned the tree T |C2 . By the inductive hypothesis,
P |C2 is single-peaked on T |C2 . Hence, by Proposition 7.4, P is single-peaked on T , and so
the algorithm is correct.

This concludes our presentation of Trick’s approach.

Trick’s algorithm makes some arbitrary choices when selecting alternatives b ∈ B(a).
Our aim is to understand the set T (P ) of all trees that the input profile P is single-peaked
on, so a natural approach is to record all possible choices that Trick’s algorithm could
make at each step, as this will encode all possible outputs of the algorithm. We do this by
running Algorithm 2, which has the same structure as Algorithm 1. Given a profile that is
single-peaked on some tree, it constructs and returns a digraph D with vertex set C which
contains all possible choices that Trick’s algorithm can make. We call D the attachment
digraph of the input profile.

Example 7.6. The attachment digraphs of the following three profiles are shown in Figure 3.

(a) Suppose C = {a, b, c, d, e}, and let P1 be the profile with voters N = {1, 2} such that

a ≻1 b ≻1 c ≻1 d ≻1 e and e ≻2 d ≻2 c ≻2 b ≻2 a,

so that the two votes are the reverse of each other. Running Algorithm 2, we consider the
sets L1 = {a, e} and L2 = {b, d}.

(b) Suppose C = {a, b, c, d, e}, and let P2 be the profile with voters N = {1, 2} such that

a ≻1 b ≻1 c ≻1 d ≻1 e and e ≻2 b ≻2 c ≻2 d ≻2 a.

Running Algorithm 2, we consider the sets L1 = {a, e} and L2 = {d}.
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Algorithm 2 Build attachment digraph D = (C,A) of P

D ← (C,A), A← ∅, so D is the empty digraph on C
C1 ← C, r ← 1
while |Cr| ⩾ 3 do

Lr ← {bottom(i, Cr) : i ∈ N}
for each candidate a ∈ Lr do

B(a)←
⋂

i∈N B(i, Cr, a)
if B(a) = ∅ then

return fail : P is not single-peaked on any tree
else

for each b ∈ B(a), add an arc (a, b) to A

Ci+1 ← Cr \ Lr

r ← r + 1

if |Cr| = 2 then
add an arc between the two candidates in Cr to A, arbitrarily directed

return D

a b c d e

(a)

a b c

de

(b)

c d

b

a

e f g

h

i
j

k

(c)

Figure 3: The attachment digraphs of the profiles in Example 7.6. If a vertex has a unique
outgoing arc, the arc is drawn in black. If the vertex has at least two outgoing arcs, the arcs
are drawn in gray and curved.

(c) Suppose C = {a, b, c, d, e, f, g, h, i, j, k}, and let P3 be the profile with voters N =
{1, 2, 3} such that

k ≻1 f ≻1 e ≻1 d ≻1 g ≻1 h ≻1 c ≻1 i ≻1 j ≻1 b ≻1 a,

d ≻2 c ≻2 b ≻2 e ≻2 a ≻2 f ≻2 g ≻2 h ≻2 i ≻2 j ≻2 k,

g ≻3 f ≻3 h ≻3 i ≻3 e ≻3 d ≻3 c ≻3 b ≻3 a ≻3 j ≻3 k.

Running Algorithm 2, we consider the sets L1 = {a, k}, L2 = {b, j}, L3 = {c, i}, L4 = {d, h},
and L5 = {e, g}.
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Algorithm 2 runs in time O(|N | · |C|2). In the rest of this section, we will analyze the
structure of the attachment digraph, and its relation to the set T (P ) of trees on which P
is single-peaked. Throughout, we fix the profile P and let Cr, Lr, and B(a) refer to the
sets constructed while running the r-th iteration of Algorithm 2 on P . We start with a few
simple properties.

Proposition 7.7. Let a ∈ C be a candidate with a ∈ Lr. Then B(a) ∩ Lr = ∅. Hence, for
every arc (a, b) ∈ A with a ∈ Lr and b ∈ Ls, we have that s > r.

Proof. Note that the set Lr is only well-defined when |Cr| ⩾ 3. Assume for a contradiction
that b ∈ B(a) and b ∈ Lr. Since b ∈ Lr, there is some voter i ∈ N such that b = bottom(i, Cr).
But then b ̸≻i a and b ̸= second(i, Cr) (as |Cr| ⩾ 3), so it cannot be the case that
b ∈ B(i, Cr, a), a contradiction.

For the second statement, note that if (a, b) ∈ A is an arc, then b ∈ B(a). Since
B(a) ⊆ Cr = C \ (L1 ∪ . . . ∪ Lr−1), we must have s ⩾ r. By the previous paragraph, s = r
is impossible, and hence s > r.

Proposition 7.8. Every attachment digraph D = (C,A) is acyclic and has exactly one sink.

Proof. Suppose that the while-loop of Algorithm 2 is executed R− 1 times, and consider the
sets L1, . . . , LR−1. Set LR := C \ (L1 ∪ . . . ∪ LR−1). Then L1, . . . , LR is a partition of C.

For acyclicity, note that for each a ∈ Lr with 1 ⩽ r < R we have B(i, Cr, a) ⊆ Cr and
hence B(a) ⊆ Cr. Together with Proposition 7.7, this implies that if a ∈ Lr then all outgoing
arcs of a point into Lr+1 ∪ . . . ∪ LR. Hence, based on the partition L1, . . . , LR, the set D
can be topologically ordered and thus cannot contain a cycle.

For the number of sinks, note that there is at least one sink in D because D is acyclic.
Since for every a ∈ C \ LR we have B(a) ̸= ∅, at least one outgoing arc of a is added to D.
Thus, no vertex in C \ LR is a sink. The condition of the while-loop implies that |LR| ⩽ 2.
If |LR| = 1, then there is exactly one sink, and we are done. If |LR| = 2, then the final if
clause of the algorithm adds an arc between the two vertices in LR, which ensures that only
one of them is a sink.

If we wish to extract a tree T ∈ T (P ) from the attachment digraph D, Trick’s algorithm
tells us that we must choose, for each non-sink vertex of D, exactly one outgoing arc, and
add this arc as an edge. To formalize this process, we denote the sink vertex by t, and say
that a function f : C \ {t} → C is an attachment function for D if (a, f(a)) ∈ A is an arc of
D for every a ∈ C \ {t}. Thus, f specifies one outgoing arc for each a ∈ C \ {t}. Given an
attachment function f , we write T (f) for the tree on C with edge set

{{a, f(a)} : a ∈ C \ {t}}.

We now prove that every attachment function corresponds to a tree, and all trees in T (P )
can be obtained in this way.

Theorem 7.9. Let P be a profile that is single-peaked on some tree, and let D be its
attachment digraph. Then T ∈ T (P ) if and only if T = T (f) for some attachment function f .
In other words, P is single-peaked on a tree T if and only if the set of edges of T is obtained
by picking exactly one outgoing arc for each non-sink vertex of D and converting it into an
undirected edge.
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a b c d

e

Figure 4: The set T (P2) of trees on which the profile P2 from Example 7.6 is single-peaked
consists of these two trees. For the tree on the left, the attachment function has f(d) = b,
while for the tree on the right, it has f(d) = c.

Proof. Suppose T = T (f) for some attachment function f . Then T is a possible output
of Algorithm 1, for a suitable way of making the selections from B(a) for each vertex a
processed in the while-loop. Thus, by Theorem 7.5, the profile P is single-peaked on T .

We prove the converse by induction on |C|. If |C| ⩽ 2, then P is single-peaked on the
unique tree on C, which can be obtained as T (f) for the unique attachment function f .
So suppose that |C| ⩾ 3, and that T = (C,E) is a tree such that P is single-peaked on T .
During the first iteration of Algorithm 2, the algorithm determines the set L1 of candidates
occurring in bottom position, and sets C2 = C \L1. By Proposition 7.1, each vertex in L1 is
a leaf of T . Hence, the induced subgraph T |C2 is also a tree, and thus P |C2 is single-peaked
on T |C2 . Also, by inspection of Algorithm 2, the attachment digraph of P |C2 is D|C2 . By the
inductive hypothesis, T |C2 = T (f ′) for some attachment function f ′ defined for D|C2 . Thus,
we can define an attachment function f so that for each a ∈ C2 \ {t} we set f(a) = f ′(a),
and for each a ∈ L1 we set f(a) to be the unique neighbor of a in T . By Corollary 7.3, T is
obtained from T |C2 by attaching each a ∈ L1 to an element of B(a), which implies that f is
a legal attachment function. Thus, T = T (f), which proves the claim.

Using this characterization of the set T (P ) and noting that T (f1) ̸= T (f2) whenever
f1 ≠ f2, we can conclude that the number of trees in T (P ) is equal to the number of different
attachment functions. This observation can be restated as follows.

Corollary 7.10. The number of trees in T (P ) is equal to the product of the out-degrees of
the non-sink vertices of D. Hence we can compute |T (P )| in polynomial time.

For the profiles in Example 7.6, we see that P1 is single-peaked on a unique tree (a path),
that P2 is single-peaked on exactly 2 trees (shown in Figure 4), and that P3 is single-peaked
on exactly 336 different trees.

It turns out that attachment digraphs have a lot of structure beyond the results of
Proposition 7.8. A key property, which will allow us to use essentially greedy algorithms, is
what we call circumtransitivity.

Definition 7.11. A directed acyclic graph D = (C,A) is circumtransitive if its vertices can
be partitioned into a set →C of forced vertices and a set ⇒C = C \ →C of free vertices such
that

1. every forced vertex a ∈ →C has out-degree at most 1, and if (a, b) ∈ A then also b ∈ →C ,
and
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2. every free vertex a ∈ ⇒C has out-degree at least 2, and whenever a, b ∈ ⇒C and c ∈ C
are such that (a, b), (b, c) ∈ A, then (a, c) ∈ A.

Intuitively, a circumtransitive digraph consists of an inner part (the forced part), and an
outer part, which is transitively attached to the inner part.

Recall that every directed acyclic graph D has at least one sink. If D is also circumtran-
sitive, then its sink must be among the forced vertices.

Theorem 7.12. Every attachment digraph (C,A) is circumtransitive.

Proof. We will argue that the partition

→C = {a : d+(a) ⩽ 1}, ⇒C = {a : d+(a) ⩾ 2}.

satisfies the conditions in Definition 7.11. Suppose that the while-loop of Algorithm 2
is executed R − 1 times, partitioning the set C as L1 ∪ . . . LR−1 ∪ LR, where LR :=
C \ (L1 ∪ . . . ∪ LR−1).

Forced: Let a ∈ →C . If d+(a) = 0, there is nothing to prove, so assume that d+(a) = 1, i.e.,
(a, b) ∈ A for some b ∈ C. We will show that d+(b) ∈ {0, 1} and hence that b ∈ →C .

If b is a sink, we are done. Otherwise, there exists an arc (b, c) ∈ A for some c ∈ C.
Suppose that a ∈ Lr and b ∈ Ls for some 1 ⩽ r, s ⩽ R. Note that r < s ⩽ R − 1
because neither a nor b are sinks, and (a, b) ∈ A (see Proposition 7.7). We will argue that
top(i, Cs) = b for some i ∈ N ; this shows that b has exactly one out-neighbor, as desired.

Indeed, suppose this is not the case. Then c ∈ B(b) implies that c ≻i b for each i ∈ N .
As c ∈ Cr, it cannot be the case that top(i, Cr) = a, second(i, Cr) = b for some i ∈ N .
Consequently, B(i, Cr, a) = {x ∈ Cr : x ≻i a} for each i ∈ N . As we have B(a) = {b}, it
follows that b ≻i a for each i ∈ N . But then by transitivity c ≻i a for each i ∈ N , and hence
c ∈ B(a), a contradiction.
Free: Consider vertices a, b, c ∈ C with a, b ∈ ⇒C and (a, b), (b, c) ∈ A. Since a, b ∈ ⇒C , we
have a, b ̸∈ LR (indeed, recall that the out-degree of each vertex in LR is at most 1). Thus,
there exist r, s with 1 ⩽ r < s < R such that a ∈ Lr and b ∈ Ls. Note that if there was a
voter i ∈ N with top(i, Cr) = a, then |B(a)| = 1, a contradiction with d+(a) > 1. Hence
top(i, Cr) ̸= a for all i ∈ N . As (a, b) ∈ A, we have b ∈ B(i, Cr, a) and therefore b ≻i a for
all i ∈ N . Similarly, since (b, c) ∈ A and d+(b) > 1, we have c ≻i b for all i ∈ N . Hence, by
transitivity, c ≻i a for all i ∈ N . Therefore c ∈

⋂
i∈N B(i, Cr, a) = B(a), and so (a, c) ∈ A,

as desired.

Suppose that f is an attachment function for D. Then for each forced vertex a ∈ →C \{t},
the value of f(a) is uniquely determined, since a has exactly one out-neighbor. Note also
that D| →C is connected because we can reach the sink t from every forced vertex. Hence,
G(D| →C ) is a tree. It follows that for every T ∈ T (P ), the tree G(D| →C ) is a subtree of T .

We will now study the free vertices ⇒C in more detail. The following proposition states
that for every free vertex a, we can identify a pair of forced vertices that are adjacent in D
such that a can be attached to either of these vertices.

Proposition 7.13. Suppose |C| ⩾ 3. For every free vertex a ∈ ⇒C of the attachment digraph
D = (C,A), there are two forced vertices b, c ∈ →C with (a, b), (a, c), (b, c) ∈ A.
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Proof. Our proof proceeds in four steps. Let a ∈ ⇒C be a free vertex.

Step 1. There is a forced vertex b ∈ →C with (a, b) ∈ A.
Proof. The directed acyclic graph D has a unique sink t, so there exists a directed path
a = c1 → c2 → · · · → cp = t from a to t. Take such a path of minimum length. We will
argue that c2 is a forced vertex. If p = 2, we are done, since in this case (a, t) ∈ A, and
t ∈ →C . Now, suppose that p ⩾ 3. Suppose for the sake of contradiction that c2 is a free
vertex. Then c1, c2 ∈ ⇒C , and (c1, c2), (c2, c3) ∈ A. Since D is circumtransitive, we have
(c1, c3) ∈ A. But then c1 → c3 → · · · → cp is a shorter path from a to t, a contradiction
with our choice of the path.

Step 2. There are at least two forced vertices b, c ∈ →C with (a, b), (a, c) ∈ A.
Proof. Let us say that a free vertex a is semi-forced if there is a unique forced vertex b ∈ →C
with (a, b) ∈ A; we need to argue that the set of semi-forced vertices is empty. Assume for
the sake of contradiction that this is not the case, and consider the maximum value of r such
that Lr contains a semi-forced vertex; let a be some semi-forced vertex in Lr. As a ∈ ⇒C , we
have d+(a) ⩾ 2, and so there exists a free vertex x ∈ ⇒C with (a, x) ∈ A. Since (a, x) ∈ A,
we have x ∈ Ls for some s > r. Now, x is a free vertex, and s > r implies that x is not
semi-forced. Thus, there exist two distinct forced vertices y, z ∈ →C with (x, y), (x, z) ∈ A.
But then by circumtransitivity we have (a, y) ∈ A, (a, z) ∈ A, which is a contradiction with
our choice of a.

Step 3. The set {b ∈ →C : (a, b) ∈ A} induces a subtree in G(D).
Proof. Consider a vertex a ∈ Lr, and suppose that A contains arcs (a, b) and (a, c) where
b, c ∈ →C . Since G(D| →C ) is a tree, there is a unique path Q from b to c in G(D| →C );
let CQ ⊆ →C be the vertex set of this path. Fix some tree T ∈ T (P ). Then G(D| →C )
is a subgraph of T , and so Q is a path in T . Pick a voter i ∈ N . Since b, c ∈ B(a),
we have |B(a)| > 1 and so |B(i, Cr, a)| > 1. Hence, a ̸= top(i, Cr) and thus we have
b ≻i a, c ≻i a. Consider the top-initial segment of i’s vote given by W = {x ∈ C : x ≻i a}.
By Proposition 2.2, since P is single-peaked on T , the set W is connected in T . Since
b, c ∈W , the path Q must be contained in T |W , and hence CQ ⊆W . Thus, x ≻i a for each
x ∈ CQ, and so CQ ⊆ B(i, Cr, a). As this holds for every i ∈ N , we have CQ ⊆ B(a), and so
CQ ⊆ {b ∈ →C : (a, b) ∈ A}. Hence, {b ∈ →C : (a, b) ∈ A} is connected in G(D| →C ).

Step 4. There are two forced vertices b, c ∈ →C with (a, b), (a, c), (b, c) ∈ A.
Proof. The set {b ∈ →C : (a, b) ∈ A} is connected (by Step 3) and contains at least two
members (by Step 2). Hence, by definition of G, it contains some vertices b and c with
(b, c) ∈ A.

In the next section, we will use the properties of attachment digraphs established in this
section to develop algorithms that can check whether a given profile is single-peaked on a
tree that satisfies certain constraints.

8. Recognition Algorithms: Finding Nice Trees

Suppose we are given a profile P with T (P ) ̸= ∅ and wish to find trees in T (P ) that satisfy
additional desiderata. In particular, we may want to find trees that can be used with the
parameterized algorithms for the Chamberlin–Courant rule that we presented earlier. We
will now show how the attachment digraph can be used to achieve this. We consider a
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variety of objectives, going beyond minimizing the number of internal vertices or the number
of leaves. These results may be useful for applications other than the computation of the
Chamberlin–Courant rule.

We assume throughout this section that |C| ⩾ 3, since otherwise there is a unique tree T
on C, and the problem of selecting the best tree is trivial.

8.1 Minimum Number of Internal Vertices

In Section 6, we saw an algorithm that could efficiently solve Utilitarian CC with the
Borda scoring function for profiles single-peaked on a tree T with few internal vertices, where
T was taken as input to the algorithm. We now show how to find, given a profile P , a
tree T ∈ T (P ) that has the fewest internal vertices. Algorithm 3 constructs an attachment
function, and tries to make every vertex a leaf, if possible. In particular, every free vertex
in the attachment digraph will become a leaf. We begin by showing that Algorithm 3 is
well-defined, in the sense that whenever the algorithm chooses a vertex from a set, this set
is non-empty, and whenever the attachment function is assigned a value, the respective arc
is present in the attachment digraph.

Algorithm 3 Find T ∈ T (P ) with fewest internal vertices

Let D = (C,A) be the attachment digraph of P
Let →C , ⇒C be the sets of forced and free vertices in D
Let t be the sink vertex of D
f ← ∅, the attachment function under construction
for each a ∈ →C \ {t} do

f(a)← b where b is the unique b ∈ C with (a, b) ∈ A

if | →C | = 2 then
pick some c ∈ →C
for each a ∈ ⇒C do

f(a)← c

else if | →C | > 2 then
for each a ∈ ⇒C do

find c ∈ →C such that (a, c) ∈ A and c is internal in G(D| →C )
f(a)← c

return T ∗ = T (f)

Proposition 8.1. Algorithm 3 returns a tree T ∗ ∈ T (P ).

Proof. Our claim follows from Theorem 7.9 once we can show that the choices of the algorithm
are possible. Our running assumption that |C| ⩾ 3, combined with Proposition 7.13, implies
that | →C | ⩾ 2.

Suppose that | →C | = 2. By Proposition 7.13, each a ∈ ⇒C is adjacent to both vertices in
→C , and thus (a, c) ∈ A irrespective of which c ∈ →C is chosen by the algorithm. Thus the
function f is an attachment function, i.e., the algorithm returns a tree in T (P ).

On the other hand, suppose that | →C | > 2. By Proposition 7.13, each free vertex a ∈ ⇒C
has outgoing arcs to two forced vertices that are adjacent in G(D| →C ). Since | →C | > 2,
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at most one of them can be a leaf in the tree G(D| →C ). Hence, there is a c ∈ →C with
(a, c) ∈ A such that c is internal in G(D| →C ). Thus, the algorithm is well-defined in this case
as well.

Next, we show that Algorithm 3 returns an optimal tree.

Proposition 8.2. Algorithm 3 runs in polynomial time and returns a tree T ∗ ∈ T (P ) with
the minimum number of internal vertices among trees in T (P ).

Proof. The bound on the running time is immediate from the description of the algorithm.

By Theorem 7.9 and the definition of →C , for every tree T ∈ T (P ) we have G(D| →C ) ⊆ T .
Thus, if a ∈ →C is not a leaf in the tree G(D| →C ), then a cannot be a leaf in T .

Suppose that | →C | = 2. Since |C| ⩾ 3, we have ⇒C ̸= ∅. Since the two members of
→C are adjacent in any T ∈ T (P ), it cannot be the case that both of them are leaves in
T . Hence the number of leaves in T ∈ T (P ) is at most | ⇒C |+ 1. The tree T ∗ has exactly
| ⇒C |+ 1 leaves, and hence is optimal.

On the other hand, suppose that | →C | > 2. Note that every free vertex a ∈ ⇒C is a leaf in
T ∗ because f(a) ∈ →C for all a ∈ C \ {t}. Further, every leaf of G(D| →C ) is also a leaf in T ∗.
By our initial observation, none of the remaining vertices can be leaves in any T ∈ T (P ), so
T ∗ has the maximum possible number of leaves, and hence the minimum number of internal
vertices.

8.2 Minimum Diameter

It turns out that the tree found by Algorithm 3 is also optimal with respect to another
metric: it minimizes the diameter.

Proposition 8.3. Algorithm 3 returns a tree T ∗ ∈ T (P ) with the minimum diameter among
trees in T (P ).

Proof. Suppose that | →C | = 2. Then T ∗ is a star with center c; no tree on three or more
vertices has smaller diameter than a star.

On the other hand, suppose that | →C | > 2. In this case the diameter of T ∗ is equal to
the diameter of G(D| →C ). To see this, consider a longest path (c1, . . . , ck) in T ∗. If k = 2,
then T ∗ is a star, which is a minimum-diameter tree when there are |C| ⩾ 3 vertices. So
suppose that k ⩾ 3. On a longest path, only c1 and ck can be free vertices, since all free
vertices are leaves in T ∗. Suppose c1 ∈ ⇒C . Then by construction of T ∗ we have c2 ∈ →C ,
and c2 is an internal vertex of G(D| →C ). Hence, c2 has at least two neighbors in G(D) that
are forced. Thus, we can find a neighbor c′1 of c2 such that c′1 is forced and c′1 ̸= c3. Then we
can replace c1 by c′1 in the longest path (noting that c′1 cannot appear elsewhere on the path
because G(D| →C ) is a tree). Similarly, if ck ∈ ⇒C , we can replace ck by a forced neighbor of
ck−1. Having replaced all free vertices on the path by forced vertices, we have obtained a
longest path in T ∗ that is completely contained in G(D| →C ). Hence, the diameter of T ∗ is
equal to the diameter of G(D| →C ).

As G(D| →C ) ⊆ T for every T ∈ T (P ), the diameter of any T ∈ T (P ) must be at least
the diameter of G(D| →C ). Hence T ∗ has the minimum diameter.
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8.3 Minimum Number of Leaves

In Section 5, we saw an algorithm for Utilitarian CC that is efficient when the input
profile is single-peaked on a tree with few leaves. The algorithm assumed that the tree T
is part of the input. We will now describe a procedure that, given a profile P , finds a tree
T ∗ ∈ T (P ) with the minimum number of leaves.

Algorithm 4 Find T ∈ T (P ) with fewest leaves

Let D = (C,A) be the attachment digraph of P
f ← ∅, the attachment function under construction
Let t be the sink vertex of D, and let s ∈ →C be a forced vertex with a unique outgoing
arc (s, t) ∈ A (such a vertex exists by Proposition 7.13)
f(s)← t
Construct a bipartite graph H with vertex set L ∪R where L = {ℓa : a ∈ C \ {s, t}} and
R = {ra : a ∈ C}, and edge set EH = {{ℓa, rc} : (a, c) ∈ A}
Find a maximum matching M ⊆ EH in H
for each a ∈ C \ {s, t} do

if ℓa is matched in M , i.e. {ℓa, rc} ∈M for some c ∈ C then
f(a)← c

else
take any c ∈ C with (a, c) ∈ A
f(a)← c

return T ∗ = T (f)

Minimizing the number of leaves of a tree is equivalent to maximizing its number of
internal vertices. Thus, to proceed, we first characterize the set of internal vertices of a tree
T (f).

Proposition 8.4. Let f be an attachment function for the attachment digraph D. Then
a ∈ C \ {t} is an internal vertex of the tree T (f) if and only if |f−1(a)| ⩾ 1, i.e., a is in the
range of f . The sink vertex t is an internal vertex of T (f) if and only if |f−1(t)| ⩾ 2, i.e.,
there are two distinct vertices a, b ∈ C with f(a) = f(b) = t.

Proof. A vertex is internal in a tree if and only if it has degree at least two. From the
definition of T (f), for a ∈ C \ {t}, the degree of a is 1 + |f−1(a)|, and the degree of t is
|f−1(t)|. The claim follows immediately.

Using this observation, we can prove that Algorithm 4 returns an optimal tree. The
algorithm is based on constructing a maximum matching.

Proposition 8.5. Algorithm 4 runs in polynomial time and returns a tree T ∗ ∈ T (P ) with
the minimum number of leaves among trees in T (P ).

Proof. The bound on the running time is immediate from the description of the algorithm.
The algorithm constructs an attachment function, and hence by Theorem 7.9 the output T ∗

of the algorithm is a member of T (P ).
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We will now argue that T ∗ has the maximum number of internal vertices among trees in
T (P ). By Proposition 8.4, it suffices to show that Algorithm 4 finds an attachment function
f that maximizes the number of vertices a with |f−1(a)| ⩾ 1 if a ̸= t or |f−1(a)| ⩾ 2 if a = t.

First, we claim that under the attachment function f constructed by Algorithm 4, a
vertex c ∈ C is an internal vertex of T (f) if and only if rc is matched in a maximum matching
M . We start with the ‘if’ direction.

• Suppose c = t. If rt is matched in M to ℓa, then both a ∈ f−1(t) and s ∈ f−1(t),
where s is the vertex chosen at the very start of the algorithm. By definition of the
bipartite graph H, a ̸= s, and so |f−1(t)| ⩾ 2, and hence t is an internal vertex by
Proposition 8.4.

• Suppose c ̸= t. If rc is matched in M to ℓa, then a ∈ f−1(c), and so c is an internal
vertex by Proposition 8.4.

For the ‘only if’ direction, suppose that rc is not matched in M . Then in the for -loop of
Algorithm 4, we never set f(a)← c for any a ∈ C \ {t}, because otherwise we could add the
edge {ℓa, rc} to the matching M , contradicting its maximality. Hence, if c = t and c is not
matched, then f−1(t) = {s}, and so t is not internal. If c ̸= t and rc is not matched, then
f−1(c) = ∅, so c is not internal. It follows that the number of internal vertices of T (f) is
|M |.

Now suppose that T (f) is not optimal, and that T ′ ∈ T (P ) is a tree with q > |M |
internal vertices. By Theorem 7.9, since T ′ ∈ T (P ), we have T ′ = T (g) for some attachment
function g. But then we can construct a matching M ′ in H of size |M ′| = q, as follows:

• If t is an internal vertex in T ′, then by Proposition 8.4, we have |g−1(t)| ⩾ 2. Select
some a ∈ g−1(t) with a ̸= s, and add {ℓa, rt} to M ′.

• For each c ∈ C \ {t} that is an internal vertex of T ′, select some a ∈ g−1(c) (which
exists by Proposition 8.4), and add {ℓa, rc} to M ′.

Clearly, we have added q edges to M ′. As g is a function, M ′ is a matching. Since |M ′| > |M |,
we have a contradiction to the maximality of M .

8.4 Minimum Max-Degree

Another measure of tree complexity is its maximum degree. To minimize this quantity, we
can use the following algorithm, which accepts as input a profile P and a positive integer k,
and decides whether P is single-peaked on some tree with maximum degree at most k. It is
based on constructing a maximum flow network. An example network is shown in Figure 5.

Proposition 8.6. Algorithm 5 runs in polynomial time and returns a tree T ∗ ∈ T (P ) with
maximum degree at most k if one exists.

Proof. The bound on the running time is immediate from the description of the algorithm.
Let f be some attachment function. By definition of T (f), for each a ∈ C \ {t}, the

degree of a in T (f) is 1 + |f−1(a)|, because there is one edge in T (f) corresponding to an
outgoing arc of a in D, and |f−1(a)| edges in T (f) corresponding to incoming arcs of a in D.
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Figure 5: Flow network H constructed by Algorithm 5.

Algorithm 5 Decide whether there is T ∈ T (P ) with maximum degree at most k

Let D = (C,A) be the attachment digraph of P
Let t be the sink vertex of D
Let L = {ℓa : a ∈ C \ {t}} and R = {ra : a ∈ C} and construct a flow network H on
vertex set {x, z} ∪ L ∪R with arc set

EH = {(x, ℓa) : a ∈ C \ {t}} ∪ {(ℓa, rb) : a, b ∈ C, (a, b) ∈ A} ∪ {(ra, z) : a ∈ C},

and capacities cap(x, ℓa) = 1 for all a ∈ C \ {t}, cap(ℓa, rb) = 1 for all (a, b) ∈ A,
cap(ra, z) = k − 1 for all a ∈ C \ {t}, and cap(rt, z) = k
Find a maximum flow in H
f ← ∅, the attachment function under construction
if the size of the maximum flow is |C| − 1 then

For each (a, b) ∈ A such that the arc (ℓa, rb) is saturated, set f(a)← b
return T ∗ = T (f)

else
return there is no T ∗ ∈ T (P ) with maximum degree at most k

Also, the degree of the sink vertex t in T (f) is |f−1(t)|. Thus, our task reduces to deciding
whether there exists an attachment function f with

1 + |f−1(a)| ⩽ k (i.e., |f−1(a)| ⩽ k − 1) for each a ∈ C \ {t} and |f−1(t)| ⩽ k. (1)

Such attachment functions are in one-to-one correspondence with (integral) flows of size
|C| − 1 in the flow network constructed by Algorithm 5. Indeed, suppose f is an attachment
function satisfying (??). Send one unit of flow from the super-source x along each of its
|C| − 1 outgoing links. For each a ∈ C \ {t}, send the one unit of flow that arrives to
ℓa towards rf(a). Finally, for each b ∈ C, send the flow that arrives into rb towards the
super-sink z. This flow satisfies the capacity constraints because f satisfies (??). Conversely,
any integral flow of size |C| − 1 can be used to define an attachment function that satisfies
(??): for each a ∈ C \{t} there must be one unit of flow leaving ℓa; we set f(a) = b, where rb
is the destination of this flow. The resulting f satisfies (??) due to the capacity constraints
of the links between nodes in R and the super-sink z.
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8.5 Minimum Pathwidth

Here, we show how to find a tree T ∈ T (P ) of minimum pathwidth. Our algorithm is based
on an algorithm by Scheffler (1990), which computes a minimum-width path decomposition
of a given tree in linear time.

We need a preliminary result showing that a tree always admits a minimum-width path
decomposition with a certain property: one endpoint of each edge appears in a bag of the
path decomposition that has some ‘slack’, in the sense that the bag does not have maximum
cardinality.

Lemma 8.7. For every tree T = (C,E), there exists a path decomposition S1, . . . , Sr of T
of minimum width w such that, for every edge e ∈ E, there is an endpoint a ∈ e for which
there exists a bag Si with a ∈ Si such that |Si| ⩽ w (note that maxi |Si| = w + 1).

Proof. We show how to transform an arbitrary path decomposition of T into a path
decomposition of the same width having the desired property.

Suppose S1, . . . , Sr is a path decomposition of T with width w. For each edge {a, b} ∈ E,
we do the following: Because {a, b} is an edge, there exists a bag containing both a and b
Consider the smallest value of i ∈ {1, . . . , r} such that a, b ∈ Si.

If i = 1, we set S∗ = Si \ {b}, and append the new bag S∗ to the left of the sequence
S1, . . . , Sr. Then S∗, S1, . . . Sr is still a path decomposition of T , in this path decomposition
a appears in S∗, and |S∗| < |S1| ⩽ w + 1, so |S∗| ⩽ w.

If i > 1, then one of a or b does not appear in Si−1. Assume without loss of generality
that b ̸∈ Si−1. Again, set S

∗ = Si \ {b}, and note that |S∗| ⩽ w. Place the new bag S∗ in
between Si−1 and Si. Then S1, . . . , Si−1, S

∗, Si, . . . , Sr is still a path decomposition of T , in
this path decomposition a appears in S∗, and |S∗| ⩽ w.

Clearly, the transformation described in the proof of Lemma 8.7 can be performed in
polynomial time. Since one can find some path decomposition of a tree in polynomial time
(Scheffler, 1990), one can find a path decomposition with the property stated in Lemma 8.7
in polynomial time as well.

Proposition 8.8. Algorithm 6 returns a tree T ∗ ∈ T (P ) with minimum pathwidth among
trees in T (P ) in polynomial time.

Proof. Note first that the forced part G(D| →C ) is a tree and hence its minimum-width path
decomposition can be computed efficiently.

Next we claim that the path decomposition constructed by Algorithm 6 is in fact a path
decomposition of the output tree T (f). Indeed, each free vertex a ∈ ⇒C becomes a leaf
in T (f), and only occurs in a single bag Sa in the constructed path decomposition. Since
a is a leaf, there is only one edge of T that contains it (namely, {a, f(a)}), and we have
a, f(a) ∈ Sa. Also, since a only occurs in a single bag, the set of bags containing a is trivially
an interval of the path decomposition sequence.

Next, observe that the path decomposition of T (f) has the same width w as the pathwidth
of the forced part G(D| →C ), because all new bags have cardinality at most w + 1. Now,
because G(D| →C ) is a subgraph of every T ∈ T (P ), no tree in T (P ) can have a smaller
pathwidth than G(D| →C ). Since Algorithm 6 identifies a tree T ∈ T (P ) with the same
pathwidth as G(D| →C ), it outputs an optimal solution.
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Algorithm 6 Find a tree T ∈ T (P ) of minimum pathwidth

Let D = (C,A) be the attachment digraph of P
Let S1, . . . , Sr be a path decomposition of G(D| →C ) of minimum width w that satisfies
the condition of Lemma 8.7
f ← ∅, the attachment function under construction
for each a ∈ C \ {t} do

if a ∈ →C then
f(a)← b, for the unique b ∈ C with (a, b) ∈ A

else if a ∈ ⇒C then
Let c1, c2 ∈ →C be two forced vertices such that (c1, c2), (a, c1), (a, c2) ∈ A

(these exist by Proposition 7.13)
Since {c1, c2} is an edge of G(D| →C ), by the condition of Lemma 8.7,

there is a bag Sj with ci ∈ Sj and |Sj | ⩽ w, for some i ∈ {1, 2}
f(a)← ci
Make a new bag Sa = Sj ∪ {a} and place it to the right of Sj

in the sequence of the path decomposition

return T ∗ = T (f)

8.6 Other Graph Types

To conclude this section, we explain how to recognize whether T (P ) contains trees of certain
types.

Paths The literature contains several algorithms for recognizing profiles that are single-
peaked on a path. The algorithms by Doignon and Falmagne (1994) and Escoffier et al.
(2008) can be implemented to run in time O(mn). One could also use some of the algorithms
presented above. Algorithm 4 finds a tree T ∈ T (P ) with a minimum number of leaves.
Clearly, if T (P ) contains a path, then this will be discovered by the algorithm. Alternatively,
Algorithm 5 can be used to look for a tree T ∈ T (P ) with maximum degree k = 2; it
will succeed if and only if P is single-peaked on a path. However, both Algorithm 4 and
Algorithm 5 depend on pre-computing the attachment digraph, which takes time O(m2n).
Thus, an attachment digraph-based approach would necessarily be slower than the linear-time
algorithms from previous work.

Stars In Proposition 6.1, we observed that a profile is single-peaked on a star graph if
and only if there is a candidate c ∈ C such that every voter ranks c in either first or second
position. This condition can easily be verified in O(n) time, without needing to compute the
attachment digraph. Note that Algorithm 3 (minimizing the number of internal vertices)
will output a star whenever T (P ) contains a star graph.

Caterpillars Caterpillar graphs are exactly the trees of pathwidth 1 (Proskurowski &
Telle, 1999), and so Algorithm 6 can check whether a profile is single-peaked on a caterpillar.
In fact, one can use an even simpler algorithm: it suffices to compute G(D| →C ) and check
that it is a caterpillar. Indeed, if not, then no tree in T (P ) can be a caterpillar. On the
other hand, if G(D| →C ) is a caterpillar then Algorithm 3 finds a caterpillar graph in T (P ).
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To see this, recall that this algorithm attaches every free vertex as a leaf to an internal
vertex of G(D| →C ).

Subdivision of a Star A tree is a subdivision of a star if at most one vertex has degree
3 or higher. We can find a subdivision of a star in T (P ), should one exist, by adapting
Algorithm 5: we guess the center of the subdivision of the star, and then assign suitable
upper bounds on the vertex degrees by appropriately setting the capacity constrains in the
flow network.

9. Hardness of Recognizing Single-Peakedness on a Specific Tree

The algorithms presented in Section 8 enable us to answer a wide range of questions about
the set T (P ). However the following NP-hardness result shows that not every such question
can be answered efficiently unless P = NP.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there is a
bijection ϕ : V1 → V2 such that for all u, v ∈ V1, it holds that {u, v} ∈ E1 if and only if
{ϕ(u), ϕ(v)} ∈ E2; we write G1

∼= G2 whenever this is the case. We consider the following
computational problem.

Single-Peaked Tree Labeling

Instance: Profile P over C, a tree T0 on |C| vertices
Question: Is there a tree T = (C,E) such that T ∼= T0 and P is single-peaked on T?

In this problem, we are given a ‘template’ unlabeled tree T0, and need to decide whether
we can label the vertices in this template by candidates so as to make the input profile
single-peaked on the resulting labeled tree. For example, if T0 is a path, then the problem is
to decide whether the profile P is single-peaked on a path, and in this case the problem is
easy to solve. However, the template T0 occurs in the input to the decision problem, and it
is not clear how to proceed if we would like to check whether T0 ‘fits’ into the attachment
digraph. In fact, as we now show, this problem is NP-complete.

Theorem 9.1. The problem Single-Peaked Tree Labeling is NP-complete even if T0

is restricted to diameter at most four.

Proof. The problem is in NP since, having guessed a tree T and an isomorphism ϕ, we
can easily check that ϕ is an isomorphism between T and T0 and that the input profile is
single-peaked on T .

For the hardness proof, we reduce Exact Cover by 3-Sets (X3C) to our problem.
An instance of X3C is given by a ground set X and a collection Y of size-3 subsets of X. It
is a ‘yes’-instance if there is a subcollection Y ′ ⊆ Y of size |X|/3 such that each element of
X appears in exactly one set in Y ′. This problem is NP-hard (Garey & Johnson, 1979).

Suppose we are given an X3C-instance with ground set X = {x1, . . . , xp}, where p = 3p′

for some positive integer p′, and a collection Y = {Y1, . . . , Yq} of 3-element subsets of X.
We then construct an instance of Single-Peaked Tree Labeling as follows. First, we
construct a tree T0 with vertex set C0 = {a, b1, . . . , bq−p′ , c1, . . . , cp′} ∪ {di,j : 1 ⩽ i ⩽ p′, 1 ⩽
j ⩽ 3}, and edge set E0 = {{a, bi} : 1 ⩽ i ⩽ q − p′} ∪ {{a, ci} : 1 ⩽ i ⩽ p′} ∪ {{ci, di,j} : 1 ⩽
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i ⩽ p′, 1 ⩽ j ⩽ 3}. The resulting tree is drawn below. It has 3p′+ p′+1+(q− p′) = p+ q+1
vertices and diameter 4.

b1 b2 b3 . . . bi . . . bq−p′

a

c1 c2 . . . cp′

d1,1 d1,2 d1,3 d2,1 d2,2 d2,3 . . . dp′,1 dp′,2 dp′,3

Next, we construct a profile P with |N | = p + q voters on the candidate set C =
{z, x1, . . . , xp, y1, . . . , yq}. P will contain one vote for each object in X and one vote for each
set in Y . In the following, all indifferences can be broken arbitrarily. For each object xi, we
add a voter vxi :

z ≻ {yj : Yj ∋ xi} ≻ xi ≻ {yj : Yj ̸∋ xi} ≻ X \ {xi}.

Intuitively, the presence of this voter will force xi to be attached to z or to a candidate that
corresponds to a set containing xi. For each set Yj , we add a voter vYj :

z ≻ yj ≻ {yℓ : 1 ⩽ ℓ ⩽ q, ℓ ̸= j} ≻ X.

The presence of this voter will force an edge from z to yj .
This completes the description of the reduction. We now prove that it is correct.
Suppose the given X3C-instance is a ‘yes’-instance, and let Y ′ be a cover consisting of p′

sets. Renumbering the elements and sets if necessary, we can assume that Y ′ = {Y1, . . . , Yp′}
and Yj = {x3j−2, x3j−1, x3j} for each j = 1, . . . , p′. Then we build a labeling isomorphism
ϕ : C0 → C as follows: We set ϕ(a) = z. For each j = 1, . . . , p′, we set ϕ(cj) = yj , and
ϕ(dj,k) = x3(j−1)+k for k = 1, 2, 3. Also, for each j = 1, . . . , q − p′, we set ϕ(bj) = yp′+j .
Note that ϕ is a bijection because Y ′ is an exact cover. The resulting labeled tree T is shown
below. It is easy to check that the profile P is single-peaked on T .

yp′+1 yp′+2 yp′+3 . . . yr . . . yq

z

y1 y2 . . . yp′

x1 x2 x3 x4 x5 x6 . . . xp−2 xp−1 xp

Conversely, suppose that there is a tree T isomorphic to T0 such that P is single-peaked
on T . Let ϕ : C0 → C is a witnessing isomorphism. Note that the vertex z of T must have
degree at least q, because for each j ∈ {1, . . . , q}, voter vYj can only be single-peaked on T if
z and yj are adjacent in T . There is only one such vertex in T0, namely a, and hence ϕ(a) = z.
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The vertex z of T has exactly q neighbors, which then must all be labeled by some yj . Exactly
p′ of the q neighbors of z have degree 4. Let Y ′ = {Yj ∈ Y : yj = ϕ(ci) for some 1 ⩽ i ⩽ p′}
be the collection of the p′ sets corresponding to candidates that occupy the vertices of degree
4. We claim that Y ′ is a cover. Let xi ∈ X. The vertex labeled with xi must be a leaf of T
because all internal vertices of T have already been labeled otherwise. Then, because vxi is
single-peaked on T , the set {z, xi} ∪ {yj : Yj ∋ xi} must be connected in T , so the neighbor
of xi must be a member of that set. But xi cannot be a neighbor of z, so xi is a neighbor of
some yj where xi ∈ Yj . This implies that yj is the label of a degree-4 vertex. Hence Yj ∈ Y ′,
and so xi is covered by Y ′.

By creating multiple copies of the center vertex and adding some peripheral vertices,
we can adjust this reduction to show that Single Peaked Tree Labeling remains hard
even if each vertex of T0 has degree at most three (we omit the somewhat tedious proof).

In the appendix, by modifying the reduction in the proof of Theorem 9.1, we show that
it is also NP-complete to decide whether a given preference profile is single-peaked on a
regular tree, i.e., a tree where all internal vertices have the same degree (Theorem C.1). This
hardness result stands in contrast to the many easiness results of Section 8.

10. Conclusions

Without any restrictions on the structure of voters’ preferences, winner determination
under the Chamberlin–Courant rule is NP-hard. Positive results have been obtained when
preferences are assumed to be single-peaked, and we studied whether these results can be
extended to preferences that are single-peaked on a tree. For the egalitarian variant of the
rule, we showed that this is indeed the case: a winning committee can be computed in
polynomial time for any tree and any scoring function. For the utilitarian setting, we show
that winner determination is hard for general preferences single-peaked on a tree, but we
find positive results when imposing additional restrictions. One algorithm we present runs in
polynomial time when preferences are single-peaked on a tree which has a constant number
of leaves, and another runs efficiently on a tree with a small number of internal vertices.
Interestingly, the two algorithms are, in some sense, incomparable. Specifically, the former
algorithm works for all scoring functions, while for the latter algorithm this is not the case
(though it does work for the most common scoring function, i.e., the Borda scoring function).
On the other hand, the latter algorithm establishes that computing a winning committee is
in FPT with respect to the combined parameter ‘committee size, number of internal vertices’,
while the former algorithm does not establish fixed-parameter tractability with respect to
the combined parameter ‘committee size, number of leaves’. An open question is whether
there exist FPT algorithms or W[1]-hardness results for the parameters ‘number of internal
vertices’ and the combined parameter ‘committee size, number of leaves’.

It would be interesting to see whether our easiness results for preferences that are single-
peaked on a tree extend to the egalitarian version of the Monroe rule (Monroe, 1995), where
each committee member has to represent approximately the same number of voters. Betzler
et al. (2013) show that this rule becomes easy for preferences single-peaked on a path, but
their argument for that rule is much more intricate than for egalitarian Chamberlin–Courant.
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To make our parameterized winner determination algorithms applicable, we have in-
vestigated the problem of deciding whether the input profile is single-peaked on a ‘nice’
tree, for several notions of ‘niceness’. To this end, we have proposed a new data structure,
namely, the attachment digraph, which compactly encodes the set T (P ) of all trees T such
that the profile P is single-peaked on T , and showed how to use it to identify trees with
desirable properties. In particular, we showed how to find a tree in T (P ) with the minimum
number of leaves or the minimum number of internal vertices, to be used with our winner
determination algorithms. To demonstrate the power of our framework, we also designed
efficient algorithms for several other notions of ‘niceness’, such as small diameter, small
maximum degree and small pathwidth. However, there are also notions of ‘niceness’ that defy
this approach: we show that it is NP-hard to decide whether an input profile is single-peaked
on a regular tree. Another interesting measure of ‘niceness’ is vertex deletion distance to a
path, i.e., the number of vertices that need to be deleted from a tree so that the remaining
graph is a path. In particular, this parameter is relevant for the elicitation results of Dey
and Misra (2016). Finding a tree in T (P ) that minimizes this parameter is equivalent to
finding a tree with the maximum diameter, which is closely related to the problem of finding
a maximum-length path in the attachment digraph. However, we were not able to design a
polynomial-time algorithm for this problem (or to show that it is computationally hard).
Similarly, the complexity of finding a tree in T (P ) that has the minimum path cover number
(another parameter considered by Dey and Misra (2016)) is an open problem.

It would also be interesting to explore the parameterized complexity of the problems
related to the identification of ‘nice’ trees. For instance, Single-Peaked Tree Labeling
is trivially fixed-parameter tractable with respect to the number of candidates, as we could
explore all possible labelings; however, its parameterized complexity with respect to the
number of voters is an interesting open problem. In a similar vein, we can ask if we can find a
tree in T (P ) with approximately minimal vertex deletion distance to a path or approximately
minimal path cover number. Indeed, constant-factor approximation algorithms for these
problems can still be used in conjunction with the elicitation algorithms of Dey and Misra
(2016) in order to improve over elicitation algorithms for unstructured preferences.
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Appendix A. Hardness of Utilitarian Chamberlin–Courant for Low-Degree
Trees

Here we modify the reduction in the proof of Theorem 4.1 to establish that Utilitarian
CC remains hard on trees of maximum degree 3.

Theorem A.1. Given a profile P that is single-peaked on a tree with maximum degree 3,
a target committee size k, and a target score B, it is NP-complete to decide whether there
exists a committee of size k with score at least B under the utilitarian Chamberlin–Courant
rule with the Borda scoring function.

Proof. We will provide a reduction from the classic Vertex Cover problem. Given an
instance (G, t) of Vertex Cover such that G = (V,E), V = {u1, . . . , up} and E =
{e1, . . . , eq}, we construct an instance of Utilitarian CC as follows.

Let M = 5p2q; intuitively, M is a large number. We introduce three candidates ai, yi
and zi for each vertex ui ∈ V , and M dummy candidates. Formally, we set A = {a1, . . . , ap},
Y = {y1, . . . , yp}, Z = {z1, . . . , zp}, D = {d1, . . . , dM}, and define the candidate set to be
C = A ∪ Y ∪ Z ∪D. We set the target committee size to be k = p+ t.

We now introduce the voters, who will come in three types: N = N1 ∪N2 ∪N3.

N1 N2 N3

5pq · · · 5pq 1 · · · 1 M · · · M

y1 yp A A z1 zp

z1 zp yj1,1 yjq,1 y1 yp

A A yj1,2 yjq,2 A A

D D D D D D
...

...
...

...
...

...

• The set N1 consists of 5pq identical voters for each ui ∈ V : they rank yi first, zi second,
and ai third, followed by other candidates:

yi ≻ zi ≻ ai ≻ ai+1 ≻ · · · ≻ ap ≻ ai−1 ≻ · · · ≻ a1 ≻ d1 ≻ · · · ≻ dM ≻ · · ·

• The set N2 consists of a single voter for each edge ej ∈ E: this voter ranks candidates
in A first (as a1 ≻ · · · ≻ ap), followed by the two candidates from Y that correspond
to the endpoints of ej (in an arbitrary order), followed by the dummy candidates
d1, . . . , dM , followed by all other candidates as specified below. The purpose of these
voters is to ensure that every edge is covered by one of the vertices that correspond to
a committee member, and to incur a heavy penalty of M if the edge is uncovered.

• The set N3 is a set of M identical voters for each ui ∈ V who all rank zi first and yi
second:

zi ≻ yi ≻ ai ≻ ai+1 ≻ · · · ≻ ap ≻ ai−1 ≻ · · · ≻ a1 ≻ d1 ≻ · · · ≻ dM ≻ · · ·
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We complete the voters’ preferences so that the resulting profile is single-peaked on the
following tree:

a1 · · · ap d1 · · · dM

y1 · · · yp

z1 · · · zp

This tree is obtained by starting with a path through A and D, and then attaching yi as a
leaf onto ai and zi as a leaf onto yi for every i = 1, . . . , p. Note that the resulting tree has
maximum degree 3. It remains to specify how to complete each vote in our profile to ensure
that the resulting profile is single-peaked on this tree. Inspecting the tree, we see that it
suffices to ensure that for each i = 1, . . . , p it holds that in all votes where the positions of
yi and zi are not given explicitly, candidate yi is ranked above zi.

We will again reason about costs rather than scores. We set the upper bound on cost to
be B = (5pq)(p − t) + q(p + 1) (note that by construction, M > B). This completes the
description of our instance of the Utilitarian CC problem with the Borda scoring function
s = (0,−1,−2, . . . ). Intuitively, the ‘correct committee’ we have in mind consists of all zi
candidates (of which there are p) and a selection of yi candidates that corresponds to a
vertex cover (of which there should be t), should a vertex cover of size t exist. Now let us
prove that the reduction is correct.

Suppose we have started with a ‘yes’-instance of Vertex Cover, and let S be a collection
of t vertices that forms a vertex cover of G. Consider the committee W = Z ∪ {yi : ui ∈ S}.
Note that |W | = p+ t = k. The voters in N3 and 5pqt voters in N1 have their most-preferred
candidate in W , so they contribute 0 to the cost of W . For the remaining (5pq)(p− t) voters
in N1, their contribution to the cost of W is 1, since zi ∈W for all i. Further, each voter
in N2 contributes at most p + 1 to the cost. Indeed, the candidates that correspond to
the endpoints of the respective edge are ranked in positions p+ 1 and p+ 2 in this voter’s
ranking, and since S is a vertex cover for G, one of these candidates is in S. We conclude
that cost+µ (P,W ) ⩽ (5pq)(p− t) + q(p+ 1) = B.

Conversely, suppose there exists a committee W of size k = p+ t with cost+µ (P,W ) ⩽ B.
Note first that W has to contain all candidates in Z: otherwise, there are M voters in
N3 with cost at least 1, and then the utilitarian Chamberlin–Courant cost of W is at
least M > B, a contradiction. Thus Z ⊆ W . We will now argue that W \ Z is a subset
of Y , and that S′ = {ui : yi ∈ W \ Z} is a vertex cover of G. Suppose that W \ Z
contains too few candidates from Y , i.e., at most t − 1 candidates from Y . Then N1

contains at least (5pq)(p − (t − 1)) voters who contribute at least 1 to the cost of W , so
cost+µ (P,W ) ⩾ (5pq)(p− t+1) > (5pq)(p− t)+ q(p+1) = B, a contradiction. Thus, we have
W \ Z ⊆ Y . Now, suppose that S′ is not a vertex cover for G. Let ej ∈ E be an edge that
is not covered by S′, and consider the voter in N2 corresponding to ej . Clearly, none of the
candidates ranked in positions 1, . . . , p+ 2 +M by this voter appear in W . Thus, this voter
contributes more than M to the cost of W , so the total cost of W is more than M > B, a
contradiction. Thus, a ‘yes’-instance of Utilitarian CC corresponds to a ‘yes’-instance of
Vertex Cover.
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Appendix B. Hardness of Utilitarian Chamberlin–Courant for Stars

For the Borda scoring function, we have seen in Theorem 4.1 that Utilitarian CC is
NP-complete for trees of diameter 4, but in Section 6 we have argued that this problem is
easy for stars, i.e., trees of diameter 2. The algorithm that worked for stars uses specific
properties of the Borda scoring function. In this section, we show that for some positional
scoring functions Utilitarian CC remains hard even on stars.

Recall from Proposition 6.1 that a profile P is single-peaked on a star if and only if there
is a candidate c such that for every i ∈ N , either top(i) = c or second(i) = c.

Theorem B.1. Utilitarian CC is NP-hard even for profiles that are single-peaked on a
star. The hardness result holds for any family of positional scoring functions whose scoring
vectors s satisfy s1 = 0, s2 = · · · = sℓ < 0, sℓ+1 < sℓ for some ℓ ⩾ 5.

Proof. We will reduce from the restricted version of Exact Cover by 3-Sets (X3C) to
our problem. Recall that an instance of X3C is given by a ground set X and a collection Y
of size-3 subsets of X; it is a ‘yes’-instance if there is a subcollection Y ′ ⊆ Y of size |X|/3
such that each element of X appears in exactly one set in Y ′. This problem is NP-hard.
Moreover it remains NP-hard even if each element of X appears in at most three sets in Y
(Gonzalez, 1985).

Fix a family of positional scoring functions µ that satisfy the condition in the statement
of the theorem for some ℓ ⩾ 5. For brevity, we write s = s2 and S = sℓ+1.

Given an instance (X,Y) of X3C such that X = {x1, . . . , xp}, p = 3p′, Y = {Y1, . . . , Yq},
and |{Yj ∈ Y : xi ∈ Yj}| ⩽ 3 for each xi ∈ X, we construct an instance of our problem as
follows. We set Y = {y1, . . . , yq}, create p sets of dummy candidates D1, . . . , Dp of size ℓ
each, and let C = {a, z} ∪X ∪ Y ∪D1 ∪ . . . ∪Dp.

We now introduce the voters, who will come in three types N = N1 ∪N2 ∪N3.

For each Yj ∈ Y we construct p+1 voters who rank yj first, a second and z third, followed
by all other candidates in an arbitrary order; let N1 denote the set of voters constructed
in this way. Further, for each xi ∈ X, we construct a voter who ranks xi first, followed
by a, followed by the candidates yj such that xi ∈ Yj (in an arbitrary order), followed by
candidates in Di, followed by all other candidates in an arbitrary order. Denote the resulting
set of voters by N2. Finally, let N3 be a set of (p+1)(q+1) voters who all rank z first and a
second, followed by all other candidates in an arbitrary order. Set B = s((p+ 1)(q− p′) + p)
and k = p′ + 1. This completes the description of our instance of the Utilitarian CC
problem. Observe that every voter in N ranks a second, so by Proposition 6.1 the constructed
profile in single-peaked on a star.
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N1 N2 N3

p+ 1 · · · p+ 1 1 · · · 1 (p+ 1)(q + 1)

y1 yq x1 xp z

a a a a a

z z yj1,1 yjp,1
...

...
... yj1,2 yjp,2

yj1,3 yjp,3

d1 d1
...

...

dM dM
...

...

Suppose we have started with a ‘yes’-instance of X3C, and let Y ′ be a collection of p′

subsets in Y that cover X. Set W = {z} ∪ {yj : Yj ∈ Y ′}. Clearly, all voters in N3 and
(p+ 1)p′ voters in N1 are perfectly represented by W and so contribute 0 to the score of
W . The remaining voters in N1 contribute s = s3 to the score of W , since z ∈W . Further,
each voter in N2 contributes at least s = s5 to the score of W . Indeed, consider a voter who
ranks some xi ∈ X first. Then he ranks the candidates yj such that xi ∈ Yj in positions
5 or higher. Since Y ′ is a cover of X, at least one of these candidates appears in W . We
conclude that score+µ (P,W ) ⩾ s((p+ 1)(q − p′) + p) = B.

Conversely, suppose there exists a committee W of size p′+1 such that score+µ (P,W ) ⩾ B.
Note first that W has to contain z: otherwise, each voter in N3 would contribute at most
s to the score, and the total score of W would be at most s|N3| < B. We will now argue
that W \ {z} is a subset of Y and that Y ′′ = {Yj : yj ∈ W \ {z}} is an exact cover of
X. Suppose first that W \ {z} contains at most p′ − 1 candidates from Y . Then N1

contains at least (p+ 1)(q − p′ + 1) voters who contribute at most s to the score of W , so
score+µ (P,W ) ⩽ s(p+1)(q− p′+1) < B, a contradiction. Thus, we have W \ {z} ⊆ Y . Now,
suppose that Y ′′ is not an exact cover of X, let xi be an element of X that is not covered by
Y ′′, and consider the voter in N2 that ranks xi first. Clearly, none of the candidates ranked
in positions 1, . . . , ℓ by this voter appear in W . Thus, this voter contributes at most S to
the score of W . All other voters in N2 contribute at most s to the score of W . Further,
there are (p+ 1)(q − p′) voters in N1 who are not perfectly represented by W . We conclude
that the total score of W is at most s((p+ 1)(q − p′) + (p− 1)) + S < B, a contradiction.
Thus, a ‘yes’-instance of Utilitarian CC corresponds to a ‘yes’-instance of X3C.

Appendix C. Hardness of Recognizing Preferences Single-Peaked on
Regular Trees

Recall that a tree is k-regular if every non-leaf vertex has degree k.

270



Preferences Single-Peaked on a Tree

Theorem C.1. Given a profile P , it is NP-complete to decide whether P is single-peaked
on a regular tree, i.e., whether there exists a positive integer k such that P is single-peaked
on a k-regular tree. The problem is also hard for each fixed k ⩾ 4.

Proof. The problem is in NP since for a given k-regular tree T we can easily check whether
P is single-peaked on T .

We start by giving a hardness proof for fixed k = 4, and later explain how to modify the
reduction for other fixed k and for non-fixed k.

Again, we reduce from X3C. Suppose that we are given an X3C-instance with ground set
{x1, . . . , xp}, p = 3p′, and a collection of subsets Y = {Y1, . . . , Yq}. We construct a profile
over the following candidates. Let

X = {x1, . . . , xp}, S = {s0, s1, . . . , sq, sq+1}, L = {ℓ1, . . . , ℓq}, Y = {y1, . . . , yq}.

Then our candidate set is X ∪S ∪L∪Y ; that is, there is one candidate per element xi, three
candidates sj , ℓj , yj for each set Yj , and two further candidates s0 and sq+1. The candidate
yj represents the set Yj . We now introduce the voters; the reader may find it helpful to look
at the tree in Figure 6 to understand the intuition behind the construction.

First, we force (s0, s1, . . . , sq, sq+1) to form a path. For this, we need to force that
(sj , sj+1) is an edge, for each j = 0, . . . , q. To this end, for each j = 0, . . . , q we create a
voter who ranks the candidates as

sj ≻ sj+1 ≻ sj+2 ≻ · · · ≻ sq+1 ≻ sj−1 ≻ · · · ≻ s1 ≻ s0 ≻ Y ≻ L ≻ X.

We also force s0 and sq+1 to be leaves. This requires introducing two more voters:

s1 ≻ · · · ≻ sq+1 ≻ Y ≻ L ≻ X ≻ s0,

s0 ≻ · · · ≻ sq ≻ Y ≻ L ≻ X ≻ sq+1.

Further, we force each ℓj ∈ L and each xi ∈ X to be a leaf. That is, for each j = 1, . . . , q we
introduce a voter who ranks the candidates as

S ≻ Y ≻ L \ {ℓj} ≻ X ≻ ℓj ,

and for each i = 1, . . . , p we introduce a voter who ranks the candidates as

S ≻ Y ≻ L ≻ X \ {xi} ≻ xi.

Here (and below) we write S as shorthand for s0 ≻ s1 ≻ · · · ≻ sq+1.
Now, for each j = 1, . . . , q the vertices ℓj and yj need to have an edge to sj . Thus, for

each j = 1, . . . , q we introduce two voters who rank the candidates as

ℓj ≻ sj ≻ sj+1 ≻ · · · ≻ sq+1 ≻ sj−1 ≻ · · · ≻ s0 ≻ Y ≻ L \ {ℓj} ≻ X,

yj ≻ sj ≻ sj+1 ≻ · · · ≻ sq+1 ≻ sj−1 ≻ · · · ≻ s0 ≻ Y \ {yj} ≻ L ≻ X.

Finally, for each i = 1, . . . , p, we introduce a voter whose role is to ensure that xi is attached
to a vertex yj such that xi ∈ Yj (or to an element of S, but this will never happen):

S ≻ {yj : xi ∈ Yj} ≻ xi ≻ {yj : xi ̸∈ Yj} ≻ L ≻ X \ {xi}. (2)
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This concludes the description of the reduction. We will now prove that it is correct.

Suppose that a collection Y ′ = {Yj1 , . . . , Yjp′} forms an exact cover of X. Then the
constructed profile is single-peaked on the 4-regular tree on the candidate set with the
following set of edges E (see Figure 6): {sj , sj+1} for all j = 0, . . . , q; {ℓj , sj} for all
j = 1, . . . , q; {yj , sj} for all j = 1, . . . , q; {xi, yk} for all xi ∈ X, where Yk is the set in Y ′

that contains xi. By considering top-initial segments of the votes given above, we see that
this choice makes all votes single-peaked on this tree.

ℓ1 ℓ2 ℓ3 . . . ℓq−2 ℓq−1 ℓq

s0 s1 s2 s3 . . . sq−2 sq−1 sq sq+1

y1 y2 y3 . . . yq−2 yq−1 yq

xi1 xi2 xi3 xi4 xi5 xi6 xip−2 xip−1 xip

Figure 6: Tree T constructed in the proof of Theorem C.1.

Conversely, suppose there is a 4-regular tree T = (C,E) such that all votes are single-
peaked on T . We show that in this case our instance of X3C admits an exact cover.
When introducing the voters, we argued that for any such tree it must be the case that
{sj , sj+1} ∈ E, for all j = 0, . . . , q and {ℓj , sj}, {yj , sj} ∈ E for all j = 1, . . . , q. Further,
we know that each of the vertices in L ∪X ∪ {s0, sq+1} is a leaf of T . However, we do not
yet know how the vertices in X are attached to the rest of the tree. As no vertex can be
attached to a leaf, each vertex xi ∈ X is attached to some vertex in Y ∪ S \ {s0, sq+1}. Now,
each vertex sj in S \ {s0, sq+1} already has four neighbors in T (namely, sj−1, sj+1, ℓj , yj);
thus, since T is 4-regular, xi cannot be a neighbor of sj . Thus xi’s neighbor is some yj ∈ Y .
Now, consider the voter whose preferences are given by (2); for this voter’s preferences to be
single-peaked on T , xi must be attached to a vertex yj that corresponds to a set Yj ∋ xi. On
the other hand, by 4-regularity, each yj is connected to either 0 or 3 vertices in X. Hence
this tree encodes an exact cover of X.

For other fixed values of k ⩾ 5, we can perform essentially the same reduction from the
problem exact cover by (k − 1)-sets, which is also NP-hard;4 the only modification we
need to make is to use k − 3 copies of the set L.

If the value of k is not fixed, we can do the following (see picture): Prepend s−1 to the
path S (where now s−1 is forced to be a leaf, but s0 is not), and introduce new leaves a and
b that must be attached to s0. Modify the votes given by (2) in such a way that xi can be
attached to s1, . . . , sq or an appropriate yj , but not to s0. Then any regular tree on which
the profile is single-peaked will have to be 4-regular, due to s0 having degree 4, and the

4. For example, one can reduce from X3C to X4C by taking an X3C instance with 3p elements, adding p
dummy elements d1, . . . , dp, and replacing each 3-set Y by the p 4-sets Y ∪ {d1}, . . . Y ∪ {dp}.
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argument above goes through.

a ℓ1 . . .

s−1 s0 s1 . . .

b y1 . . .

xi1 xi2 xi3
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Escoffier, B., Spanjaard, O., & Tydrichová, M. (2020). Recognizing single-peaked prefer-
ences on an arbitrary graph: Complexity and algorithms. In Proceedings of the 13th
International Symposium on Algorithmic Game Theory (SAGT).
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