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Abstract

We study the existence of allocations of indivisible goods that are envy-free up to one
good (EF1), under the additional constraint that each bundle needs to be connected in
an underlying item graph. If the graph is a path and the utility functions are monotonic
over bundles, we show the existence of EF1 allocations for at most four agents, and the
existence of EF2 allocations for any number of agents; our proofs involve discrete analogues
of the Stromquist’s moving-knife protocol and the Su–Simmons argument based on Sperner’s
lemma. For identical utilities, we provide a polynomial-time algorithm that computes an
EF1 allocation for any number of agents. For the case of two agents, we characterize the
class of graphs that guarantee the existence of EF1 allocations as those whose biconnected
components are arranged in a path; this property can be checked in linear time.
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1. Introduction

A famous literature considers the problem of cake-cutting (Brams and Taylor, 1996;
Robertson and Webb, 1998; Procaccia, 2016). There, a divisible heterogeneous resource (a
cake, usually formalized as the interval [0, 1]) needs to be divided among n agents. Each
agent has a valuation function over subsets of the cake, usually formalized as an atomless
measure over [0, 1]. The aim is to partition the cake into n pieces, and allocate each piece to
one agent, in a “fair” way. By fair, we will mean that the allocation is envy-free: no agent
thinks that another agent’s piece is more valuable than her own.

When there are two agents, the classic procedure of cut-and-choose can produce an
envy-free division: a knife is moved from left to right, until an agent shouts to indicate
that she thinks the pieces to either side are equally valuable. The other agent then picks
one of the pieces, leaving the remainder for the shouter. As is easy to see, the result is an
envy-free allocation. For three or more agents, finding an envy-free division has turned out
to be much trickier. An early result by Dubins and Spanier (1961) used Lyapunov’s Theorem
and measure-theoretic techniques to show, non-constructively, that an envy-free allocation
always exists. However, as Stromquist (1980) memorably writes, “their result depends on a
liberal definition of a ‘piece’ of cake, in which the possible pieces form an entire σ-algebra of
subsets. A player who only hopes for a modest interval of cake may be presented instead
with a countable union of crumbs.” In many applications of resource allocation (such as land
division, or the allocation of time slots), agents have little use for a severely disconnected
piece of cake.

Stromquist (1980) himself offered a solution, and gave a new non-constructive argument
(using topology) which proved that there always exists an envy-free division of the cake
into intervals. Forest Simmons later observed that the proof could be simplified by using
Sperner’s lemma, and this technique was subsequently presented in a paper by Su (1999). For
the three-agent case, Stromquist (1980) also presented an appealing moving-knife procedure
that more directly yields a connected envy-free allocation. For n > 4 agents, no explicit
procedures are known to produce a connected envy-free allocation (i.e., an allocation where
the cake is cut in exactly n− 1 places). However, for n = 4, several moving-knife procedures
exist that only need a few cuts; for example, the Brams–Taylor–Zwicker (1997) procedure
requires 11 cuts, and a protocol of Barbanel and Brams (2004) requires 5 cuts.

In many applications, the resources to be allocated are not infinitely divisible, and we
face the problem of allocating indivisible goods. Most of the literature on indivisible goods
has not assumed any kind of structure on the item space, in contrast to the rich structure
of the interval [0, 1] in cake-cutting. Thus, there has been little attention on minimizing
the number of “cuts” required in an allocation. However, when the items have a spatial or
temporal structure, this consideration is important.

In this paper, we study the allocation of items that are arranged on a path or other
structure, and impose the requirement that only connected subsets of items may be allocated
to the agents. Formally, we work in the model of Bouveret et al. (2017), who assume that the
items form the vertex set of a graph G, and a bundle is connected if it induces a connected
subgraph of G. For example, such connectivity requirements are encountered in allocation
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problems in which the items correspond to indivisible pieces of an underlying region of
Euclidean space (such as plots of land), and each allocated bundle (i.e., a collection of pieces)
must be a connected portion of the space. We are most interested in the case when G is
a path, on which connectivity requirements are natural when the items are time slots, for
example. In practice, connectivity may not be a hard constraint, and agents may find bundles
with few connected components acceptable, but we will not consider such relaxations.

In the work of Bouveret et al. (2017), it became apparent that techniques from cake-cutting
can be usefully ported to achieve good connected allocations in the indivisible case. For
example, moving-knife procedures that achieve proportionality in cake-cutting have analogues
that produce allocations that satisfy the maximin share guarantee (Budish, 2011).1

Do envy-free procedures for cake-cutting also translate to the indivisible case? Of course,
in general, it is impossible to achieve envy-freeness with indivisibilities (consider two agents
and a single desirable item), but we can look for approximations. A relaxation of envy-freeness
that has been very influential recently is envy-freeness up to one good (EF1), introduced
by Budish (2011). It requires that an agent’s envy towards another bundle vanishes if we
remove some item from the envied bundle. In the setting without connectivity constraints
and with additive valuations, the maximum Nash welfare solution satisfies EF1, as does
a simple round-robin procedure (Caragiannis et al., 2019). The well-known envy-graph
algorithm (Lipton et al., 2004) also guarantees EF1. However, none of these procedures
respects connectivity constraints.

When items are arranged on a path, we prove that connected EF1 allocations exist when
there are two, three, or four agents. As was necessary in cake-cutting, we use successively
more complicated tools to establish these existence results. For two agents, there is a discrete
analogue of cut-and-choose that satisfies EF1. In that procedure, a knife moves across the
path, and an agent shouts when the knife reaches what we call a lumpy tie, that is when
the bundles to either side of the knife have equal value up to one item. For three agents,
we design an algorithm mirroring Stromquist’s moving-knife procedure which guarantees
EF1. For four agents, we show that Sperner’s lemma can be used to prove that an EF1
allocation exists, via a technique inspired by the Simmons–Su approach, and an appropriately
triangulated simplex of connected partitions of the path. For five or more agents, we were
not able to establish the existence of EF1 allocations on a path, but we can show (again via
Sperner’s lemma) that EF2 allocations exist, strengthening a prior result of Suksompong
(2019). We also show that if all agents have the same valuation function over bundles, then
an egalitarian-welfare-optimal allocation, after suitably reallocating some items, is EF1.

These existence results require only that agents’ valuations are monotonic (they need not
be additive), and in addition, ensure that the constructed allocation satisfies the maximin
share guarantee (see Appendix 9.1). Moreover, the fairness guarantee of our algorithms is
slightly stronger than the standard notion of EF1: in the returned allocations, envy can
be avoided by removing just an outer item – one whose removal leaves the envied bundle

1Another paper by Suksompong (2019) works in the same model, and also found that procedures for
proportionality and other concepts can be applied to the indivisible setting.
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# of agents EF1 EF2

Existence n = 2 X (Thm. 3.2) X
n = 3 X (Thm. 4.3) X
n = 4 X (Thm. 6.2) X
n > 5 open problem X (Thm. 5.4)
n agents, identical valuations X (Thm. 7.1) X

Complexity n = 2 O(logm) (Oh et al., 2019) O(logm)
n = 3 O(m) (Thm. 4.3) O(m)
n > 4 O(mn) O(mn)
n agents, identical valuations O(mn) (Thm. 7.1) O(mn)

Table 1: Overview of our results for paths. Here, n denotes the number of agents and m the number of
items. Agents’ valuations are assumed to be monotone. The mark X represents that a connected allocation
satisfying the corresponding fairness notion exists. When no reference is given, the result follows from other
results in the table.

connected. Computationally speaking, all our existence results are constructive in the weak
sense that an EF1 allocation can be found by iterating through all O(mn) connected allocation
(this stands in contrast to cake-cutting where we cannot iterate through all possibilities).
While we know of no faster algorithms to obtain an EF1 or EF2 allocation in the cases where
we appeal to Sperner’s lemma, our other procedures (for two or three agents, or for identical
valuations) can all be implemented efficiently to produce a fair allocation in polynomial time.
We summarize our results concerning paths in Table 1.

In simultaneous and independent work, Oh et al. (2019) designed protocols to find EF1
allocations in the setting without connectivity constraints, aiming for low query complexity.
They found that adapting cake-cutting protocols to the setting of indivisible items arranged
on a path is an especially potent way to achieve low query complexity. This led them to
also study a discrete version of the cut-and-choose protocol which achieves connected EF1
allocations for two agents, and they found an alternative proof that an EF1 allocation on a
path always exists with identical valuations. They also present a discrete analogue of the
Selfridge–Conway procedure which, for three agents with additive valuations, produces an
allocation of a path into bundles that have a constant number of connected components.
However, they do not study connected allocations on graphs that are not paths, and they do
not consider the case of (non-identical) general valuations with more than two agents.

A recurring theme in our algorithms is the specific way that the moving knives from
cake-cutting are rendered in the discrete setting. While one might expect knives to be placed
over the edges of the path, and ‘move’ from edge to edge, we find that this movement is
too ‘fast’ to ensure EF1 (see also footnote 5 regarding EF2). Instead, our knives alternate
between hovering over edges and items. When a knife hovers over an item, we imagine the
knife’s blade to be ‘thick’: the knife covers the item, and agents then pretend that the covered
item does not exist. These intermediate steps are useful, since they can tell us that envy will
vanish if we hide an item from a bundle.
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What about graphs G other than paths? Our existential results for paths immediately
generalize to traceable graphs (those that contain a Hamiltonian path), since we can run
the algorithms pretending that the graph only consists of the Hamiltonian path. For the
two-agent case, we completely characterize the class of graphs that guarantee the existence
of EF1 allocations: Our discrete cut-and-choose protocol can be shown to work on all graphs
G that admit a bipolar numbering, which exists if and only if the biconnected components
(blocks) of G can be arranged in a path. By constructing counterexamples, we prove that no
graph failing this condition (for example, a star) guarantees EF1, even for identical, additive,
binary valuations. For the case of three or more agents, it is a challenging open problem
to characterize the class of graphs guaranteeing EF1 (or even to find an infinite class of
non-traceable graphs that guarantees EF1).

2. Preliminaries

For each natural number s ∈ N, write [s] = {1, 2, . . . , s}. Let N = [n] be a finite set
of agents and G = (V,E) be an undirected finite graph, where V = {v1, v2, . . . , vm}. The
vertices in V correspond to items. A subset I of V is connected if it induces a connected
subgraph of G. We write C(V ) for the set of connected subsets of V . We call a set I ∈ C(V ) a
(connected) bundle. Each agent i ∈ N has a valuation function ui : C(V )→ R over connected
bundles, which we will always assume to be monotonic, that is, X ⊆ Y implies ui(X) 6 ui(Y ).
We also assume that ui(∅) = 0 for each i ∈ N . Monotonicity implies that items are goods ; we
do not consider bads (or chores) in this paper. We say that an agent i ∈ N weakly prefers
bundle X to bundle Y if ui(X) > ui(Y ).2 A (connected) allocation A : N → C(V ) assigns
each agent i ∈ N a connected bundle A(i) ∈ C(V ) such that each item occurs in exactly
one bundle, i.e.,

⋃
i∈N A(i) = V and A(i) ∩ A(j) = ∅ when i 6= j. We often write I i for the

bundle A(i) assigned to agent i.
We say that the agents have identical valuations if, for all i, j ∈ N and every bundle

I ∈ C(V ), we have ui(I) = uj(I). A valuation function ui is additive if ui(I) =
∑

v∈I ui({v})
for each bundle I ∈ C(V ). Many examples in this paper will use identical additive valuations,
and will take G to be a path. In this case, we use a shorthand to specify these examples;
the meaning of this notation should be clear. For example, we write “2–1–3–1” to denote
an instance with four items v1, v2, v3, v4 arranged on a path, and where ui({v1}) = 2, . . . ,
ui({v4}) = 1 for each i. For such an instance, an allocation will be written as a tuple, e.g.,
(2, 1–3–1) denoting an allocation allocating bundles {v1} and {v2, v3, v4}, noting that with
identical valuations it does not usually matter which agent receives which bundle.

An allocation A is envy-free if ui(A(i)) > ui(A(j)) for every pair i, j ∈ N of agents, that
is, if every agent thinks that their bundle is at least as good as any other bundle in the
allocation. It is well-known that an envy-free allocation may not exist (consider two agents

2Our arguments only operate based on agents’ ordinal preferences over bundles, and the (cardinal) valuation
functions are only used for notational convenience. One exception, perhaps, is in Algorithm 1 where we
calculate a leximin allocation, but the algorithm can be applied after choosing an arbitrary utility function
consistent with the ordinal preferences.
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and one good). The main fairness notion that we study is a version of envy-freeness up to one
good (EF1), a relaxation of envy-freeness introduced by Budish (2011), adapted to the model
with connectivity constraints. This property states that an agent i will not envy another
agent j after we remove some item from j’s bundle. Since we only allow connected bundles in
our set-up, we may only remove an item from A(j) if removal of this item leaves the bundle
connected.

Definition 2.1 (EF1: envy-freeness up to one outer good). An allocation A satisfies
EF1 if, for any pair i, j ∈ N of agents, either A(j) = ∅ or there is a good v ∈ A(j) such that
A(j) \ {v} is connected and ui(A(i)) > ui(A(j) \ {v}).

In the instance 2–1–3–1 for two agents, the allocation (2–1, 3–1) is EF1, since the left
agent’s envy can be eliminated by removing the item of value 3 from the right-hand bundle.
However, the allocation (2, 1–3–1) fails to be EF1 according to our definition, since eliminating
either outer good of the right bundle does not prevent envy.3

Definition 2.2. A graph G guarantees EF1 for n agents if, for all possible monotonic
valuations for n agents, there exists some connected allocation that is EF1. A graph G
guarantees EF1 for n agents and a restricted class of valuations if, for all allowed valuations,
a connected EF1 allocation exists.

For reasoning about EF1 allocations, let us introduce a few shorthands. Given an
allocation A we will say that i ∈ N does not envy j ∈ N up to v if ui(A(i)) > ui(A(j) \ {v}).
The up-to-one valuation u−i : C(V )→ R>0 of agent i ∈ N is defined, for every I ∈ C(V ), as

u−i (I) :=

{
0 if I = ∅,
min

{
ui(I \ {v}) : v ∈ I such that I \ {v} is connected

}
if I 6= ∅.

(2.1)

Thus, an allocation A satisfies EF1 if and only if ui(A(i)) > u−i (A(j)) for any pair i, j ∈ N
of agents.

As we show in the appendix in Example 9.5, allocations satisfying a strengthened version
of EF1 called envy-freeness up to the least good (EFX) (Caragiannis et al., 2019) may not
exist on a path.

Given an ordered sequence of the vertices P = (v1, v2, . . . , vm), and j, k ∈ [m] with j 6 k,
we write P (vj, vk) for the subsequence from vj to vk, so P (vj, vk) = (vj, vj+1, . . . , vk−1, vk).
With a little abuse of notation, we often identify a subsequence P (vj, vk) with the bundle of
the corresponding vertices. Let L(vj) = P (v1, vj−1) be the subsequence of vertices strictly left
of vj and R(vj) = P (vj+1, vm) be the subsequence of vertices strictly right of vj . When graph

3This example shows that our definition is strictly stronger than the standard definition of EF1 without
connectivity constraints. In the instance 2–1–3–1, considered without connectivity constraints, the allocation
(2, 1–3–1) does satisfy EF1 since in the standard setting we are allowed to remove the middle item (with
value 3) of the right bundle.
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G is a path, we always implicitly assume that its vertices v1, v2, . . . , vm are numbered from
left to right according to the order they appear along the path, so that the set of the edges of
G is {{vj, vj+1} : 1 6 j < m}. Each connected bundle in the path clearly corresponds to a
subpath or subsequence of the vertices. A Hamiltonian path of a graph G is a path that visits
all the vertices of the graph exactly once. A graph is traceable if it contains a Hamiltonian
path.

3. EF1 existence for two agents

In cake-cutting for two agents, the standard way of obtaining an envy-free allocation is
the cut-and-choose protocol: Alice divides the cake into two equally-valued pieces, and Bob
selects the piece he prefers; the other piece goes to Alice. The same strategy almost works
in the indivisible case when items form a path; the problem is that Alice might not be able
to divide the items into two exactly equal pieces. Instead, we ask Alice to divide the items
into pieces that are equally valued “up to one good”. The formal version is as follows. For a
sequence of vertices P = (v1, v2, . . . , vm) and an agent i, we say that vj is the lumpy tie over
P for agent i if j is the smallest index such that

ui(L(vj) ∪ {vj}) > ui(R(vj)) and ui(R(vj) ∪ {vj}) > ui(L(vj)). (3.1)

For example, when i has additive valuations 1–3–2–1–3–1, then the third item (of value 2) is
the lumpy tie for i, since 1 + 3 + 2 > 1 + 3 + 1 and 2 + 1 + 3 + 1 > 1 + 3. The lumpy tie always
exists: taking j to be the smallest index such that ui(L(vj) ∪ {vj}) > ui(R(vj)) (which exists
as the inequality holds for j = m by monotonicity), the first part of (3.1) holds. If j = 1, the
second part of (3.1) is immediate by monotonicity. If j > 1, then since j is minimal, we have
ui(L(vj)) = ui(L(vj−1) ∪ {vj−1}) < ui(R(vj−1)) = ui(R(vj) ∪ {vj}) as required.

Using lumpy ties, our discrete version of the cut-and-choose protocol is specified as follows.

Definition 3.1. The discrete cut-and-choose protocol for n = 2 agents on a sequence
P = (v1, v2, . . . , vm) proceeds as follows:

• Step 1. Alice selects her lumpy tie vj over (v1, v2, . . . , vm).

• Step 2. Bob chooses a weakly preferred bundle among L(vj) and R(vj).

• Step 3. Alice receives the bundle of all the remaining vertices, including vj.

Intuitively, the protocol allows Alice to select an item vj that she will receive for sure,
with the advice that the two pieces to either side of vj should have almost equal value to her.
Then, Bob is allowed to choose which side of vj he wishes to receive. In our example with
valuations 1–3–2–1–3–1, Alice selects the lumpy tie of value 2, then Bob chooses the bundle
1–3–1 to the right and receives it, and Alice receives the bundle 1–3–2. The result is EF1.
This is true in general, and also if valuations are not identical.

Proposition 3.2. When G is a path and there are n = 2 agents, the discrete cut-and-choose
protocol yields an EF1 allocation.
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Proof. Clearly, the protocol returns a connected allocation. The returned allocation satisfies
EF1: Bob does not envy Alice up to item vj, since Bob receives his preferred bundle among
L(vj) and R(vj). Also, by (3.1), Alice does not envy Bob, since Alice either receives the
bundle L(vj) ∪ {vj} which she weakly prefers to Bob’s bundle R(vj), or she receives the
bundle R(vj) ∪ {vj}, which she weakly prefers to Bob’s bundle L(vj). �

Proposition 3.2 implies that an EF1 allocation always exists on a path. Hence, an EF1
allocation exists for every traceable graph G: simply use the discrete cut-and-choose protocol
on a Hamiltonian path of G. In fact, the discrete cut-and-choose protocol works on a broader
class of graphs: We only need to require that the vertices of the graph can be numbered in a
way that the allocation resulting from the discrete cut-and-choose protocol is guaranteed to
be connected. Since the protocol always partitions the items into an initial and a terminal
segment of the sequence, such a numbering needs to satisfy the following property.

Definition 3.3. A bipolar numbering of a graph G is an ordering (v1, v2, . . . , vm) of its
vertices such that for all j ∈ [n], the sets L(vj) ∪ {vj} and R(vj) ∪ {vj} are connected in G.

In a slightly different context, bipolar numberings are known as st-numberings and turn
out to be useful in algorithms for testing planarity and for graph drawing (Lempel et al.,
1967; Even and Tarjan, 1976; Tarjan, 1986). The more common (equivalent) definition is
phrased to say that a numbering is bipolar if, for every j ∈ [n], the vertex vj has a neighbor
that appears earlier in the sequence, and a neighbor that appears later in the sequence.

Clearly, every traceable graph has a bipolar numbering, since we can just use a Hamiltonian
path. However, there are also non-traceable graphs that admit a bipolar numbering. Figure 1
shows some examples.

1 2

3

4

5 6 1 2

3

4

5

6 7 1 2

3 4

5 6

7 8

Figure 1: Non-traceable graphs with bipolar numberings.

Proposition 3.4. When there are n = 2 agents, then the discrete cut-and-choose protocol
run on a bipolar numbering of G yields an EF1 allocation.

Proof. The discrete cut-and-choose protocol returns an allocation whose bundles are either
initial or terminal segments of the ordered sequence (v1, v2, . . . , vm). By definition of a bipolar
numbering, such an allocation is connected, and it is EF1 by the same argument as in
Proposition 3.2. �
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It is clear that the discrete cut-and-choose protocol cannot be extended to graphs other
than those admitting a bipolar numbering. However, it could be that a different protocol is
able to produce EF1 allocations on other graphs. In the remainder of this section, we prove
that this is not the case: for n = 2 agents, a connected graph G guarantees the existence of
an EF1 allocation if and only if it admits a bipolar numbering. This completely characterizes
the class of graphs that guarantee EF1 existence in the two-agent case.4

For a different number of agents, the class of graphs guaranteeing an EF1 allocation will
be different. In particular, the star with three leaves does not guarantee an EF1 allocation
for two agents (as it does not have a bipolar numbering, see below), but one can check that
this star does guarantee an EF1 allocation for three or more agents (see Example 9.6 in the
appendix).

3.1. Characterization of graphs guaranteeing EF1 for two agents

Based on a known characterization of graphs admitting a bipolar numbering, we char-
acterize this class in terms of forbidden substructures. We then show that these forbidden
structures are also forbidden for EF1: if a graph contains such a structure, we can exhibit an
additive valuation profile for which no EF1 allocation exists.

As a simple example, consider the star with three leaves, which is the smallest connected
graph that does not have a bipolar numbering.

Take two agents with identical additive valuations that value each item at 1. Any connected
allocation must allocate three items to one agent, and a single item to the other agent. Then
the latter agent envies the former agent, even up to one good. This star is an example of a
forbidden substructure called a trident, which takes one of two forms, illustrated in Figure 2.

Definition 3.5. A graph G contains a trident if either

(a) there is a vertex s whose removal from G leaves three or more connected components
(a type I trident), or

(b) there are subgraphs C,P1, P2, P3 of G such that (i) P1, P2, P3 are vertex-disjoint, (ii)
each Pi contains at least two vertices, (iii) C has exactly one contact vertex si in common
with Pi, i = 1, 2, 3, and (iv) for i = 1, 2, 3, removal of vertex si from G disconnects
Pi \ {si} from C \ {si} (hence from the other two Pj) in G (a type II trident).

4Note that no non-trivial disconnected graph guarantees EF1 for two agents: If G is disconnected, take a
connected component C with at least two vertices. Let both agents have additive valuations that value each
item in C at 1, and value items outside of C at 0. Then, in a connected allocation, all items in C must go to
a single agent, since the other agent needs to receive items from another connected component. This induces
envy in the other agent that is not bounded by one good.
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CP1 P3

P2

Figure 2: A type I trident (left) and a type II trident (right).

We will prove that a graph G fails to admit a bipolar numbering, and fails to guarantee EF1
for two agents, if and only if G contains a trident. To reason about these structures, it is
useful to consider the standard concept of the block decomposition of a graph (see, e.g., the
textbook Bondy and Murty, 2008, Sec. 5.2).

Definition 3.6. A decomposition of a graph G = (V,E) is a family {F1, F2, . . . , Ft} of edge-
disjoint subgraphs of G such that

⋃t
i=1E(Fi) = E where E(Fi) is the set of edges of Fi. A

vertex is called a cut vertex of a graph G if removing it increases the number of connected
components of G. A graph G is biconnected if G is connected and does not have a cut vertex.
A block of G is a maximal biconnected subgraph of G.

Equivalently, a block of a graph G can be defined as a maximal subgraph of G where each
pair of vertices lie on a common cycle (Bondy and Murty, 2008). Given a connected graph
G, we define a bipartite graph B(G) with bipartition (B, S), where B is the set of blocks of
G and S is the set of cut vertices of G; a block B and a cut vertex v are adjacent in B(G) if
and only if B includes v. Since every cycle of a graph is included in some block, the graph
B(G) is a tree:

Lemma 3.7 (e.g., Bondy and Murty, 2008, Prop. 5.3). Let G be a connected graph.
Then

• any two blocks of G have at most one cut vertex in common;

• the set of blocks forms a decomposition of G; and

• the graph B(G) is a tree.

Thus, for a connected graph G, we call B(G) the block tree of G. It turns out that G
admits a bipolar numbering if and only if B(G) is a path. For example, the graphs shown
in Figure 1 all have their blocks arranged in a path (so that B(G) is a path), as shown in
Figure 3.

Lemma 3.8. A graph G admits a bipolar numbering if its block tree B(G) is a path.

10
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Figure 3: Block decompositions of the graphs in Figure 1.

Proof. Lempel et al. (1967) show that G admits a bipolar numbering if there are s, t ∈ V
such that adding an edge {s, t} to G makes it biconnected. If B(G) is a path, let B1 and B2

be the leaf blocks at the ends of the path B(G). Take any s ∈ B1 and t ∈ B2. If we add the
edge {s, t} to G, the graph becomes biconnected. Hence, G admits a bipolar numbering. �

There is a linear-time algorithm based on depth-first search to construct a bipolar
numbering for any biconnected graph (Even and Tarjan, 1976; Tarjan, 1986), and one can
also calculate the block tree B(G) of a given graph in linear time (Hopcroft and Tarjan,
1973). Thus, in linear time, we can compute a bipolar numbering of a graph or report that
none exists. Clearly, given a bipolar numbering, the discrete cut-and-choose protocol can
also be run in linear time.

Next, we show that if B(G) is not a path, then G cannot guarantee EF1. The proof
constructs explicit counter-examples, which have a very simple structure. We say that additive
valuations ui are binary if ui({v}) ∈ {0, 1} for every v ∈ V .

Lemma 3.9. Let G be a connected graph.

• If the block tree B(G) of G is not a path, then G contains a trident.

• If G contains a trident, then there exist identical, additive, binary valuations over G
for two agents such that no connected allocation is EF1.

Proof. If B(G) is not a path, then it contains a vertex with at least three neighbors, and
thus either

(a) there is a cut vertex s adjacent to three blocks B1, B2, and B3; or

(b) there is a block B adjacent to three different cut vertices s1, s2, and s3.

Note that in both cases, all blocks contain at least two vertices each, as maximality guarantees
that a block in a connected graph G never consists of a single vertex, unless G itself has only
one vertex. Thus, in case (a), G contains a type I trident. In case (b), the cut vertices s1,
s2, and s3 serve as the contact vertices in the earlier definition of type II tridents and are
adjacent to blocks that serve as the subgraphs P1, P2, and P3. This proves the first part.

To prove the second part, we construct identical additive valuations that do not admit an
EF1 allocation. If G contains a type I trident, let s be the corresponding cut vertex, and
choose vertices v1, v2, v3 from each of three different connected components that remain after
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s is deleted from G. The two agents have utility 1 for each of s, v1, v2, and v3, and 0 for the
remaining vertices. Now take any connected allocation (I1, I2). One of the bundles, say I1,
includes the cut vertex s. Then I2 can contain at most one of the vertices v1, v2, v3, since I2

is connected and does not contain s yet any path between distinct vi and vj goes through s.
Hence ui(I2) 6 1. Now, the bundle I1 contains s and at least two of v1, v2, v3, so ui(I1) > 3.
Thus, the allocation is not EF1.

Suppose G contains a type II trident consisting of subgraphs C,P1, P2, P3 with contact
vertices s1, s2, s3. Then for i = 1, 2, 3 choose a vertex vi 6= si from Pi. The two agents have
utility 1 for each of s1, s2, s3, v1, v2, and v3, and 0 for the remaining vertices. Now take
any connected allocation (I1, I2). One of the bundles, say I1, contains at least two contact
vertices si and the other contains at most one contact vertex si. Say that s1, s2 ∈ I1. Now,
G \ {s1, s2} has at least three connected components, and since I2 is connected, it must be
contained in one of these components. But each component contains at most two vertices
with utility 1, so ui(I2) 6 2. Since there are six vertices with utility 1 in total, ui(I1) > 4.
Thus, the allocation is not EF1. �

Combining these results, we obtain the promised characterization.

Theorem 3.10. The following conditions are equivalent for every connected graph G:

1. G admits a bipolar numbering.

2. G guarantees EF1 for two agents.

3. G guarantees EF1 for two agents with identical, additive, binary valuations.

4. G does not contain a trident.

5. The block tree B(G) is a path.

Proof. The implication (1)⇒ (2) follows from Proposition 3.4 which shows that the discrete
cut-and-choose protocol yields a connected EF1 allocation when run on a bipolar numbering.
The implication (2)⇒ (3) is immediate. The implications (3)⇒ (4) and (4)⇒ (5) follow
from Lemma 3.9 which proves the contrapositives. Finally, (5)⇒ (1) follows from Lemma
3.8. �

The equivalence (2) ⇔ (3) is noteworthy and perhaps surprising: It is often easier to
guarantee fairness when agents’ valuations are identical, yet in terms of the graphs that
guarantee EF1 for two agents, there is no difference between identical and non-identical
valuations. Intriguingly, even for more than two agents, we do not know of a graph which
guarantees EF1 for identical valuations, but fails it for non-identical valuations.
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Figure 4: Stromquist’s moving knife protocol

4. EF1 existence for three agents: A moving-knife protocol

We will now consider the case of three agents. Stromquist (1980) designed a protocol that
results in an envy-free contiguous allocation of a divisible cake. We now give a brief outline
of the protocol, illustrated by Figure 4.

A referee holds a sword over the cake. Each of the three agents holds their own knife over
the portion of the cake to the right of the sword, positioning it so that this portion is divided
into two pieces they judge to have the same value. Now, initially, the sword is at the left
end of the cake. It starts moving at a constant speed from left to right, while the agents
continuously move their knives to keep dividing the right-hand portion into equally-valued
pieces. At some point (when the leftmost piece becomes valuable enough), one of the agents
shouts “cut”, and the cake will be cut twice: once by the sword, and once by the middle
one of the three knives. Agents shout “cut” as soon as the left piece is a highest-valued
piece among the three. The agent who shouts receives the left piece. The remaining agents
each receive a piece containing their knife. The resulting allocation is envy-free, since the
agent receiving the left piece prefers it to the other pieces, and the other agents who are not
shouting receive at least half the value of the part of the cake to the right of the sword.

Let G be a path, P = (v1, v2, . . . , vm). There are several difficulties in translating
Stromquist’s continuous procedure to the discrete setting for G. First, agents need to divide
the piece to the right of the sword in half, and this might not be possible exactly given
indivisibilities; but this can be handled using our concept of lumpy ties from Section 3. Next,
when the sword moves one item to the right, the lumpy ties of the agents may need to jump
several items to the right, for example, because the new member of the leftmost bundle is
very valuable. To ensure EF1, we will need to smoothen these jumps, so that the middle
piece grows one item at a time. Also, it will be helpful to have the sword move in half-steps:
it alternates between being placed between items (so it cuts the edge between the items), and
being placed over an item, in which case the sword covers the item and agents ignore that
item. Finally, while the sword covers an item, we will only terminate if at least two agents
shout to indicate that they prefer the leftmost piece; this will ensure that there is an agent
who is flexible about which of the bundles they are assigned. The algorithm moves in steps,
and alternates between moving the sword, and updating the lumpy ties.

In our formal description of the algorithm, we do not use swords and knives. Instead,
we maintain three bundles L, M , and R that can be seen as resulting from a certain
configuration this cutting implements. We also need a few definitions. For a subsequence of
vertices P (vs, vr) = (vs, vs+1, . . . , vr) and an agent i, recall that vj (s 6 j 6 r) is the lumpy

13



tie over P (vs, vr) for i if j is the smallest index such that

ui(L(vj) ∪ {vj}) > ui(R(vj)) and ui(R(vj) ∪ {vj}) > ui(L(vj)). (4.1)

Here, the definitions of L(vj) and R(vj) apply to the subsequence P (vs, vr). The lumpy tie
always exists by the discussion after equation (3.1). Each of the three agents has a lumpy tie
over P (vs, vr); a key concept for us is the median lumpy tie which is the median of the lumpy
ties of the three agents, where the median is taken with respect to the ordering of P (vs, vr).
We say that i ∈ N is a left agent (respectively, a middle agent or a right agent) over P (vs, vr)
if the lumpy tie for i appears strictly before (respectively, is equal to, or appears strictly after)
the median lumpy tie. Note that by definition of the median, there is at most one left agent,
at most one right agent, and at least one middle agent. Suppose that the median lumpy tie
over the subsequence P (vs, vr) is vj, and let i be an agent. Then using the definitions of
lumpy tie and left/right agents, we find that

ui(L(vj)) > ui(R(vj) ∪ {vj}) if i is a left agent, and
ui(R(vj)) > ui(L(vj) ∪ {vj}) if i is a right agent.

(4.2)

Given the median lumpy tie vj over P (vs, vr), and a two-agent set S = {i, k} ⊆ N , we define
Lumpy(S, vj, P (vs, vr)) to be the allocation of the items in P (vs, vr) to S such that

• if i is a left agent and k is a right agent, then i receives L(vj) and k receives R(vj)∪{vj};

• if i is a middle agent, then agent k receives k’s preferred bundle among L(vj) and R(vj),
and agent i receives the other bundle along with vj.

Using (4.1) and (4.2), we see that Lumpy(S, vj, P (vs, vr)) is an EF1 allocation:

Lemma 4.1 (Median Lumpy Ties Lemma). Let S = {i, k} ⊆ N and let vj be the me-
dian lumpy tie over P (vs, vr). Then Lumpy(S, vj, P (vs, vr)) is an EF1 allocation of the items
in P (vs, vr) to S. Further, each agent in S weakly prefers their bundle to L(vj) and R(vj).

The algorithm is specified in Definition 4.2. It alternately moves a left pointer ` (in Steps
2 and 3) and a right pointer r (in Step 4). It also maintains bundles L, M , and R during the
execution of the algorithm.

Definition 4.2. The discrete moving-knife protocol for n = 3 agents on a sequence
P = (v1, v2, . . . , vm) proceeds as follows. We say that an agent i ∈ N is a shouter if
ui(L) > ui(M) and ui(L) > ui(R).

• Step 1. Initialize ` = 0 and set r so that vr is the median lumpy tie over the subsequence
P (v2, vm). Initialize L = ∅, M = {v2, v3, . . . , vr−1}, and R = {vr+1, vr+2, . . . , vm}.

• Step 2. Add an additional item to L, i.e., set ` = `+ 1 and L = {v1, v2, . . . , v`}. If no
agent shouts, go to Step 3. If some agent sleft shouts, sleft receives the left bundle L.
Allocate the remaining items according to Lumpy(N \ {sleft}, vr, P (v`+1, vm)).
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• Step 3. Delete the leftmost point of the middle bundle, i.e., setM = {v`+2, v`+3, . . . , vr−1}.
If the number of shouters is smaller than two, go to Step 4. If at least two agents shout,
we show (next page) that there is a shouter s who is a middle agent over P (v`+1, vm).
Then, allocate L to a shouter sleft distinct from s. Let the agent c distinct from s and
sleft choose his preferred bundle among {v`+1} ∪M and {vr} ∪R. Agent s receives the
other bundle.

• Step 4. If vr is the median lumpy tie over P (v`+2, vm), directly move to the following
cases (a)–(d). If vr is not the median lumpy tie over P (v`+2, vm), set r = r + 1,
M = {v`+2, v`+3, . . . , vr−1}, and R = {vr+1, vr+2, . . . , vm}; then, go to cases (a)–(d).

(a) If at least two agents shout, find a shouter s who did not shout at the previous
step. If there is a shouter sleft who shouted at the previous step, sleft receives L;
else, give L to an arbitrary shouter sleft distinct from s. The agent c distinct from
s and sleft choose his preferred bundle among {v`+1} ∪M and {vr} ∪R, breaking
ties in favor of the former option. Agent s receives the other bundle.

(b) If vr is the median lumpy tie over P (v`+2, vm) and only one agent sleft shouts, give
L∪{v`+1} to sleft and allocate the rest according to Lumpy(N\{sleft}, vr, P (v`+2, vm)).

(c) If vr is the median lumpy tie over P (v`+2, vm) but no agent shouts, go to Step 2.

(d) Otherwise vr is not the median lumpy tie over P (v`+2, vm): Repeat Step 4.

Theorem 4.3. The moving-knife protocol finds an EF1 allocation for three agents and runs
in O(m) time, when G is a path.

Proof. The algorithm is well-defined – there is one place where this is not immediate: If
two agents shout in Step 3, the algorithm description claims that there is a shouter who is
a middle agent over the subsequence P (v`+1, vm). Suppose for the moment that there is a
shouter i who is a right agent. Due to (4.2), we have ui(R) > ui({v`+1} ∪M ∪ {vr}). Since i
is a shouter, we have ui(L) > ui(R), so ui(L) > ui({v`+1}∪M ∪{vr}). But i did not shout in
the previous Step 2 (when no-one shouted), so either ui(R) > ui(L) or ui({v`+1}∪M) > ui(L),
and either case is a contradiction. Hence neither of the at least two shouters of Step 3 is a
right agent, so at least one shouter is a middle agent, since there is at most one left agent.

The algorithm terminates and returns an allocation, since the bundle L grows throughout
the algorithm until eventually, at least two agents will think that L is a best bundle and thus
will shout and thereby terminate the algorithm. We will now consider every possible way
that the algorithm could have terminated, and show that the resulting allocation is EF1.

Step 2.

• Agent sleft receives L and does not envy the other agents (up to good vr) since sleft is a
shouter.

• An agent i who is not a shouter does not envy sleft because i prefers either M or R to L,
and hence by Lemma 4.1 receives a bundle preferred to L.
Agent i also does not envy the other agent j 6= sleft up to one good by Lemma 4.1.
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• An agent i 6= sleft who is a shouter does not envy sleft up to one good: If this is the first
time Step 2 was performed, then L = {v1}, so i does not envy sleft up to v1. Otherwise,
the last step was an iteration of Step 4(c), where by definition of Step 4(c) no-one shouted.
Since i did not shout during Step 4(c), and Step 2 did not change the bundles M and R,
then i strictly prefers either M or R to the left bundle L \ {v`} of Step 4(c). By Lemma
4.1, agent i gets a bundle at least as good as M or R. Thus, i does not envy sleft up to v`.
Also by Lemma 4.1, agent i does not envy the other agent j 6= sleft up to one good.

Step 3.

• Agent sleft receives L and, because sleft shouted, does not envy the bundle {v`+1} ∪M up
to good v`+1, and does not envy the bundle {vr} ∪R up to good vr.

• Agent c gets his preferred bundle among {v`+1} ∪M and {vr} ∪R, and so does not envy
agent s who receives the other bundle. Further, agent c does not envy agent sleft since
c did not shout at the last Step 2 (where no-one shouted), which, since bundle L did
not change in Step 3, means that c prefers either {v`+1} ∪M or R to L, and hence also
prefers his chosen bundle to L.

• Agent s is a middle agent, so the lumpy tie of s over P (v`+1, vm) is vr, and hence by (4.1),

us({vr} ∪R) > us({v`+1} ∪M). (4.3)

Now, agent s did not shout at the preceding Step 2 (when no-one shouted). However, s
does shout after deleting v`+1 from M . Since L and R have not changed, the reason s did
not shout at Step 2 was that L is worse than the middle bundle during Step 2, so

us({v`+1} ∪M) > us(L). (4.4)

Combining (4.3) and (4.4), we also have

us({vr} ∪R) > us(L).

Since s receives either {v`+1} ∪M or {vr} ∪R, agent s does not envy agent sleft receiving
L.

Finally, from (4.3), agent s weakly prefers {vr} ∪ R to {v`+1} ∪M . Thus, if c picks
{v`+1} ∪M , then s does not envy c. On the other hand, if c picks the bundle {vr} ∪R,
then s does not envy c up to good vr: we have us(L) > us(R) since s shouts, and so by
(4.4), also

us({v`+1} ∪M) > us(R).

Step 4(a). We first prove that if i is a shouter who did not shout in the previous step, then

ui({vr} ∪R) > ui(L) > ui(M). (4.5)
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In the previous step (which was either Step 3 or Step 4), the middle bundle was M \ {vr−1}
and the right bundle was {vr} ∪R. (While Step 4 allows for the possibility that the middle
and right bundles are not changed in Step 4, this is not the case if we enter Step 4(a): if
the bundles are unchanged and two agents shout, these agents already shouted in Step 3,
contradicting that we did not terminate then.) Since i did not shout with the middle and
right bundles of the previous step, we have

ui(M \ {vr−1}) > ui(L) or ui({vr} ∪R) > ui(L).

Since i is a shouter, ui(L) > ui(M), so that the first case is impossible by monotonicity.
Hence ui({vr} ∪R) > ui(L), showing (4.5), when combined with ui(L) > ui(M).

• Agent sleft receives L and does not envy other agents up to one good like in Step 3.

• Agent c gets his preferred bundle among {v`+1} ∪M and {vr} ∪R, and so does not envy
agent s who receives the other bundle. Agent c also does not envy sleft: If c is not a
shouter, then c does not envy sleft because c prefers either M or R to L, and hence prefers
his picked piece to L. If c is a shouter, then all three agents are shouters, and by choice
of c, this means that c was not a shouter at the previous step, when there was at most
one shouter. By (4.5), uc({vr} ∪R) > uc(L), and hence

max{uc({v`+1} ∪M), uc({vr} ∪R)} > uc(L),

so that c does not envy sleft.

• Agent s does not envy others up to one good:

– Suppose agent c strictly prefers {vr} ∪R to {v`+1} ∪M . Then agent c’s lumpy tie
over P (v`+1, vm) appears at or after vr by definition of the lumpy tie. As we argued
before, the bundles M and R were changed in the execution of Step 4, and r was
increased by 1. Thus, vr appears strictly after the median lumpy tie over P (v`+1, vm).
Thus, c is the right agent over P (v`+1, vm). Hence s is either a left or middle agent
over P (v`+1, vm) since there is at most one right agent. Using (4.1) or (4.2), this
implies

us({v`+1} ∪M) > us({vr} ∪R), (4.6)

so that s does not envy c.

By definition of s, agent s did not shout in the previous step. By (4.5), us({vr}∪R) >
us(L), so together with (4.6), we have us({v`+1} ∪M) > us(L), so s does not envy
sleft.

– Suppose c weakly prefers {v`+1}∪M to {vr}∪R. Then s receives the bundle {vr}∪R
(since c breaks ties in favor of {v`+1} ∪M). By choice of s, agent s did not shout
at the last step. So by (4.5), we have us({vr} ∪R) > us(L) so that s does not envy
sleft, and also by (4.5), we have us({vr} ∪R) > us(M) so that s does not envy c up
to item v`+1.
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Step 4(b).

• Agent sleft gets L ∪ {v`+1} and does not envy the other agents (up to good vr) as sleft

shouts.

• Any agent i 6= sleft is not a shouter, and thus prefers either M or R to L. Hence by
Lemma 4.1 receives a bundle preferred to L, and so does not envy sleft up to item v`+1.
Agent i also does not envy the other agent j 6= sleft up to one good by Lemma 4.1.

Thus, the allocation returned by any of the steps satisfies EF1. Our algorithm can be
implemented in O(m) time: Each of steps 2, 3, and 4 will be executed at most m times (since
` and r can only be incremented m times). The execution of each step takes constant time:
In each step, we need to check which agents shout, and this can be done in a constant number
of queries to agents’ valuations; also, in Step 4 we need to calculate the lumpy ties of the
agents, but this can be done in amortized constant time, since during the execution of the
algorithm, the position of each agent’s lumpy tie can only move to the right. Finally, when
enough agents shout, we can clearly compute and return the final allocation in O(m) time.�

5. EF2 existence for any number of agents

For two or three agents, we have seen algorithms that are guaranteed to find an EF1
allocation on a path (and on traceable graphs). Both algorithms were adaptations of
procedures that identify envy-free divisions in the cake-cutting problem. For the case of
four or more agents, we face a problem: there are no known procedures that find connected
envy-free division in cake-cutting if the number of agents is larger than three. However, in
the divisible setting, a non-constructive existence result is known: Su (1999) proved, using
Sperner’s lemma, that for any number of agents, a connected envy-free division of a cake
always exists. One might try to use this result as a black box to obtain a fair allocation for
the indivisible problem on a path: Translate an indivisible instance with additive valuations
into a divisible cake (where each item corresponds to a region of the cake), obtain an envy-free
division of the cake, and round it to get an allocation of the items. Suksompong (2019)
followed this approach and showed that the result is an allocation where any agent i’s envy
ui(A(j))− ui(A(i)) is at most 2umax, where umax is the maximum valuation for a single item.

In this section, rather than using Su’s (1999) result as a black box, we directly apply
Sperner’s lemma to the indivisible problem. This allows us to obtain a stronger fairness
guarantee: We show that on paths (and on traceable graphs), there always exists an EF2
allocation.5 An allocation is EF2 if any agent’s envy can be avoided by removing up to two
items from the envied bundle. Again, we only allow removal of items if this operation leaves
a connected bundle.

5To see that EF2 is a stronger property than bounding envy up to 2umax, consider a path of four items
and two agents with additive valuations 1–10–2–2. The allocation (1, 10–2–2) is not EF2, but the first agent
has an envy of 13 < 20 = 2umax.
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Definition 5.1 (EF2: envy-freeness up to two outer goods). An allocation A satis-
fies EF2 if, for any pair i, j ∈ N of agents, either |A(j)| 6 1, or there are two goods
u, v ∈ A(j) such that A(j) \ {u, v} is connected and ui(A(i)) > ui(A(j) \ {u, v}).

Let us first give a high-level illustration with three agents of how Sperner’s lemma can be
used to find low-envy allocations.

∅, ∅, abcd ∅, a, bcd ∅, ab, cd ∅, abc, d ∅, abcd, ∅

a, ∅, bcd a, b, cd a, bc, d a, bcd, ∅

ab, ∅, cd ab, c, d ab, cd, ∅

abc, ∅, d abc, d, ∅

abcd, ∅, ∅

Figure 5: Connected partitions as a subdivided simplex

Given a path P = (a, b, c, d), the family of connected partitions of P can naturally be
arranged as the vertices of a subdivided simplex, as in Figure 5.

For each of these partitions, each agent i labels the corresponding vertex by the index of
a bundle from that partition that i most-prefers. For example, the top vertex will be labelled
as “index 1” by all agents, since they all most-prefer the leftmost bundle in (abcd, ∅, ∅).
Now, Sperner’s lemma will imply that at least one of the simplices (say the shaded one)
is “fully-labeled”, which means that the first agent most-prefers the leftmost bundle at one
vertex, the second agent most-prefers the middle bundle at another vertex, and the third
agent most-prefers the rightmost bundle at the last vertex. Notice that the partitions at the
corner points of the shaded simplex are all “similar” to each other (they can be obtained
from each other by moving only one item). Hence, we can “round” the corner-partitions into
a common allocation A∗, say by picking one of the corner partitions arbitrarily and then
allocating bundles to agents according to the labels. The resulting allocation has the property
that any agents’ envy can be eliminated by moving at most one good.6

6One can generalize this argument to show that on paths, there exists an allocation A satisfying a weak
form of EF1: for any i, j ∈ [n], we have ui(Ii∪{gi}) > ui(Ij \{gj}) for some items gi, gj such that Ii∪{gi} and
Ij \ {gj} are connected. For additive valuations, this implies that envy is bounded by ui(gi) + ui(gj) 6 2umax,
which is the result of Suksompong (2019).
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The argument sketched above does not yield an EF1 nor even an EF2 allocation. Intuitively,
the problem is that the connected partitions at the corners of the fully-labeled simplex are
“too far apart”, so that no matter how we round the corner partitions into a common allocation
A∗, some agents’ bundles will have changed too much, and so we cannot prevent envy even up
to one or two goods. In the following, we present a solution to this problem, by considering a
finer subdivision: we introduce n− 1 knives which move in half-steps (rather than full steps),
and which might ‘cover’ an item so that it appears in none of the bundles. The result is that
the partial partitions in the corners of the fully-labeled simplex are closer together, and can
be successfully rounded into an EF2 allocation A∗.

In our approach, we use a specific triangulation (Kuhn’s triangulation, Kuhn, 1960). This
triangulation has the needed property that the partitions at the corners of sub-simplices are
close together, and adjacent partitions can be obtained from each other in a natural way.
While this type of triangulation has also been used in cake-cutting, e.g., by Deng et al. (2012),
there it was only used to speed up algorithms (compared to the barycentric subdivision used
by Su (1999)), not to obtain better fairness properties.

5.1. Sperner’s lemma

We start by formally introducing Sperner’s lemma (cf. Flegg, 1974). Let conv(v1,v2, . . . ,vk)
denote the convex hull of k vectors v1,v2, . . . ,vk. An n-simplex is an n-dimensional polytope
which is the convex hull of its n+ 1 main vertices. A k-face of the n-simplex is the k-simplex
formed by the span of any subset of k + 1 main vertices. A triangulation T of a simplex S is
a collection of sub-n-simplices whose union is S with the property that the intersection of
any two of them is either the empty set, or a face common to both. Each of the sub-simplices
S∗ ∈ T is called an elementary simplex of the triangulation T . We denote by V (T ) the set of
vertices of the triangulation T , i.e., the union of vertices of the elementary simplices of T .

Let T be some fixed triangulation of an (n − 1)-simplex S = conv(v1,v2, . . . , vn). A
labeling function is a function L : V (T )→ [n] that assigns a number in [n] (called a color) to
each vertex of the triangulation T . A labeling function L is called proper if

• For each main vertex vi of the simplex, L assigns color i to vi: L(vi) = i; and

• L(v) 6= i for any vertex v ∈ V (T ) belonging to the (n− 2)-face of S not containing vi.

Sperner’s lemma states that if L is a proper labeling function, then there exists an elementary
simplex of T whose vertices have all different labels.

We will consider a generalized version of Sperner’s lemma, proved, for example, by Bapat
(1989). In this version, there are n labeling functions L1, . . . , Ln, and we are looking for
an elementary simplex that is fully-labeled for some way of assigning labeling functions to
vertices, where we must use each labeling function exactly once. The formal definition is as
follows.

Definition 5.2 (Fully-labeled simplex). Let T be a triangulation of an (n− 1)-simplex,
and let L1, . . . , Ln, be labeling functions. An elementary simplex S∗ of T is fully-labeled if we
can write S∗ = conv(v∗1,v

∗
2, . . . ,v

∗
n) such that there exists a permutation φ : [n]→ [n] with

Li(v
∗
i ) = φ(i) for each i ∈ [n].
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The generalized version of Sperner’s lemma that we consider, taken from Bapat (1989),
guarantees the existence of a fully-labeled simplex.

Lemma 5.3 (Generalized Sperner’s Lemma). Let T be a triangulation of an (n − 1)-
simplex S, and let L1, . . . , Ln be proper labeling functions. Then there is a fully-labeled simplex
S∗ of T .

5.2. Existence of EF2 allocations

Suppose that our graph G is a path P = (1, 2, . . . ,m), where the items are named by
integers. We assume that m > n, so that there are at least as many items as agents (when
m < n it is easy to find EF1 allocations). Our aim is to cut the path P into n intervals
(bundles) I1

∗ , I
2
∗ , . . . , I

n
∗ . Throughout the argument, we use superscripts to denote indices of

bundles; index 1 refers to the leftmost bundle and index n refers to the rightmost bundle.

Construction of the triangulation.. Consider the (n− 1)-simplex7

Sm = {x ∈ Rn−1 : 1
2
6 x1 6 x2 6 . . . 6 xn−1 6 m+ 1

2
}. (5.1)

We construct a triangulation Thalf of Sm whose vertices V (Thalf) are the points x ∈ Sm such
that each xj is either integral or half-integral, namely,

V (Thalf) = {x ∈ Sm : xj ∈ {1
2
, 1, 3

2
, 2, 5

2
. . . ,m,m+ 1

2
} for all j ∈ [n]}.

For reasons that will become clear shortly, we call a vector x ∈ V (Thalf) a knife position.
Using Kuhn’s triangulation (Kuhn, 1960; Scarf, 1982; Deng et al., 2012), we construct

Thalf so we can write each elementary simplex S ′ ∈ Thalf as S ′ = conv(x1,x2, . . .xn) and
there is a permutation π : [n]→ [n] with

xi+1 = xi + 1
2
eπ(i) for each i ∈ [n− 1], (5.2)

where ej = (0, . . . , 1, . . . , 0) is the j-th unit vector.
We give an interpretation of (5.2) shortly. Each vertex x = (x1, x2, . . . , xn−1) ∈ V (Thalf)

of the triangulation Thalf corresponds to a partial partition A(x) = (I1(x), I2(x), . . . , In(x))
of P where Ij(x) := {y ∈ {1, 2, . . . ,m} : xj−1 < y < xj}, writing x0 = 1

2
and xn = m+ 1

2
for

convenience. Intuitively, x specifies the location of n − 1 knives that cut P into n pieces.
If xj is integral, that is xj ∈ {1, . . . ,m}, then the j-th knife ‘covers’ the item xj, which is
then part of neither Ij(x) nor Ij+1(x). This is why A(x) is a partial partition. Since there
are only n− 1 knives but m > n items, not all items are covered, so at least one bundle is
non-empty.

Property (5.2) means that, if we visit the knife positions x1,x2, . . .xn at the corners of
an elementary simplex in the listed order, then at each step exactly one of the knives moves
by half a step, and each knife moves only at one of the steps.

7The simplex Sm is affinely equivalent to the standard (n−1)-simplex ∆n−1 = {(l1, . . . , ln) > 0 :
∑

li = 1}
via xi = m · (l1 + l2 + · · ·+ li) + 1

2 . In these coordinates, li is the length of the i-th piece (times 1/m).
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Construction of the labeling functions.. We now construct, for each agent i ∈ [n], a labeling
function Li : V (Thalf)→ [n]. The function Li takes as input a vertex x of the triangulation
Thalf (interpreted as the partial partition A(x)), and returns a color in [n]. The color will
specify the index of a bundle in A(x) that agent i likes the most. Formally,

Li(x) ∈ {j ∈ [n] : ui(I
j(x)) > ui(I

k(x)) for all k ∈ [n]}.

If there are several most-preferred bundles in A(x), ties can be broken arbitrarily. However,
we insist that the index Li(x) always corresponds to a non-empty bundle (this can be ensured
since A(x) always contains a non-empty bundle, and ui is monotonic).

The labeling functions Li are proper. For each j ∈ [m], the main vertex vj of the simplex
Sm has the form vj = (1

2
, . . . , 1

2
,m + 1

2
, . . . ,m + 1

2
), where the first j − 1 entries are 1

2
and

the rest are m + 1
2
. In the partition A(vj), the bundle Ij(vj) contains all the items, so is

most-preferred (since ui is monotonic and by our tie-breaking), and so Li(vj) = j. Further,
any vertex x belonging to the (n− 2)-face of Sm not containing vj satisfies xj−1 = xj, and
thus in partition A(x), bundle Ij(x) is empty, hence is not selected, and so Li(x) 6= j.

By the generalized version of Sperner’s lemma (Lemma 5.3), there exists an elementary
simplex S∗ = conv(x1,x2, . . . ,xn) of the triangulation Thalf which is fully-labeled, so that,
for some permutation φ : [n]→ [n], we have Li(xi) = φ(i) for all i ∈ [n].

Translation into partial partitions.. The fully-labeled elementary simplex S∗ corresponds to
a sequence (A1, A2, . . . , An) of partial partitions of P , which we call the Sperner sequence,
where Ai = (I1

i , . . . , I
n
i ) := A(xi) for each i ∈ [n]. An example of a Sperner sequence is shown

in Figure 6. From the labeling, for each agent i ∈ [n], since Li(xi) = φ(i), the bundle with
index φ(i) in the partition Ai is a best bundle for i:

ui(I
φ(i)
i ) > ui(I

j
i ) for each j ∈ [n]. (5.3)

Now, for each j ∈ [n], we define the basic bundle Bj := Ij1 ∩ · · · ∩ Ijn to be the bundle of
items that appear in the j-th bundle of every partition in the Sperner sequence. The set of
basic bundles is a partial partition. Let us analyze the items between basic bundles.

From (5.2), each of the n − 1 knives moves exactly once, by half a step, while passing
through the Sperner sequence (A1, A2, . . . , An). Thus, the numbers xj1, . . . , x

j
n take on two

different values, one of which is integral and the other half-integral. We write yj for the
integral value (so yj = xji for some i ∈ [n]), and call yj a boundary item. The j-th knife
covers the item yj in some, but not all, of the partial partitions in the Sperner sequence.
Now, there are two cases:

(a) xj1 = · · · = xji = yj − 1
2

and xji+1 = · · · = xjn = yj for some i ∈ [n], so that yj never
occurs in the j-th bundle in the Sperner sequence but sometimes occurs in the (j+1)-th
bundle, or

(b) xj1 = · · · = xji = yj and xji+1 = · · · = xjn = yj + 1
2

for some i ∈ [n], so that yj sometimes
occurs in the j-th bundle in the Sperner sequence but never occurs in the (j + 1)-th
bundle.
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1
2

1 3
2

2 5
2
· · · · · · m+ 1

2

A1 y1 y2 y3

A2 y1 y2 y3

A3 y1 y2 y3

A4 y1 y2 y3

B1 B2 B3 B4

A∗ y1 y2 y3

Figure 6: Example of the Sperner sequence A1, . . . , A4 for n = 4, as well as the derived partition A∗. Vertical
lines indicate the positions x1

i , x
2
i , x

3
i of the knives, i = 1, . . . , 4. Shaded in gray, for i = 1, . . . , 4, is the bundle

I
φ(i)
i selected by agent i as their favorite bundle in Ai.

Since yj is sometimes covered by a knife, it is not part of any basic bundle. Note that

Bj ⊆ Iji ⊆ {yj−1} ∪Bj ∪ {yj} for every i, j ∈ [n]. (5.4)

Rounding into a complete partition.. We now construct a complete partition of the path P
into the bundles (I1

∗ , I
2
∗ , . . . , I

n
∗ ) which are defined as follows:

Ij∗ := Ij1 ∪ · · · ∪ Ijn for each j ∈ [n].

Thus, the bundle Ij∗ contains the basic bundle Bj, plus all of the boundary items yj−1 or
yj that occur in the j-th bundle at some point of the Sperner sequence. Precisely, for each
boundary item yj, j ∈ [n− 1], the item yj is placed in bundle Ij+1

∗ in case (a) above, and it
is placed in bundle Ij∗ in case (b). Thus, every item is allocated to exactly one bundle.

An EF2 allocation.. We first show that the partition (I1
∗ , I

2
∗ , . . . , I

n
∗ ) is such that agents’

expectations about the value of the bundles Ij∗ are approximately correct (up to two items):

ui(I
j
∗) > ui(I

j
i ) > ui(B

j) for every agent i ∈ [n] and every j ∈ [n]. (5.5)

This follows by monotonicity of ui, since Ij∗ = Ij1 ∪ · · · ∪ Ijn ⊇ Iji ⊇ Bj by (5.4).

Now, based on the partition, we define an allocation A∗ by A∗(i) = I
φ(i)
∗ for each agent
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i ∈ [n]. Then A∗ satisfies EF2: For any pair i, j ∈ [n] of agents, we have

ui(A∗(i)) = ui(I
φ(i)
∗ ) > ui(I

φ(i)
i ) by (5.5)

> ui(I
φ(j)
i ) by (5.3)

> ui(B
φ(j)) by (5.5)

= ui(A∗(j) \ {yj−1, yj}). by (5.4)

Hence, we have proved the main result of this section:

Theorem 5.4. On a path, for any number of agents with monotone valuation functions, a
connected EF2 allocation exists.

6. EF1 existence for four agents

We have seen that Sperner’s lemma can be used to show EF2 existence for any number
of agents. Why does our proof in the previous section only establish EF2, and not EF1?
The reason is that agents’ expectations about the contents of a bundle might differ by up
to two goods from what the bundle will actually contain. In the notation of the previous
section, an agent i may be presented with a partial partition Ii where the j-th bundle Iji is
the basic bundle, i.e., Iji = Bj . The agent then selects their favorite bundle from Ii, implicitly
assuming that the j-th bundle in the rounded partition I∗ will also equal Bj , i.e., that Ij∗ = Bj .
However, it may happen that in fact Ij∗ = {yj−1} ∪ Bj ∪ {yj}, and then i envies the agent
who receives bundle j by a margin of two goods.

For four agents, we can adapt our argument to achieve EF1. To do this, we both change
the way we round the Sperner sequence into an allocation, and define new labeling functions
that better anticipate how a partial partition will be rounded into the final allocation. In
this way, agents’ expectations about bundles can only be wrong up to one good. In crude
terms, agents will expect that each of the two interior bundles will be assigned at least one of
the boundary items, and the rounding method ensures that this will indeed happen.

Let n = 4. Formally, to define the labeling function, for each agent i ∈ [n] we construct a
virtual valuation function ûi(x, j) which assigns a value to each bundle j ∈ [n] of a partial
allocation as specified by a vertex x ∈ V (Thalf). The way these virtual valuations are defined
differs based on the index j; in particular, end bundles (j = 1, 4) are treated differently from
interior bundles (j = 2, 3). The virtual valuations are defined as follows, for each x ∈ V (Thalf)
and each i ∈ [n], where the middle row (6.2) applies to j = 2 and j = 3:

ûi(x, 1) =

{
ui({1, . . . , x1 − 1}) if x1 ∈ Z,

ui({1, . . . , x1 − 3
2
}) if x1 6∈ Z.

(6.1)

ûi(x, j) =

{
u−i ({xj−1, . . . , xj}) if xj−1 ∈ Z and xj ∈ Z,

ui(I
j(x)) otherwise.

(6.2)

ûi(x, 4) =

{
ui({x3 + 1, . . . ,m}) if x3 ∈ Z,

ui({x3 + 3
2
, . . . ,m}) if x3 6∈ Z.

(6.3)
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Thus, for an interior bundle j = 2, 3, if both the items xj−1 and xj to either side of the
bundle are covered by a knife, an agent expects that one of these items (the less-valuable
one) will be put into bundle Ij∗ of the final rounded allocation (recall the definition of u−i
in equation (2.1)). For exterior bundles, j = 1 (resp. j = 4), if the item x1 (resp. x3) is not
covered by a knife, the agent does not expect the interior item (next to the knife) to belong
to the final bundle Ij∗ , even though it belongs to the observed bundle Iji . Otherwise, the
virtual allocations are equal to ui(I

j(x)), so the agent expects that Ij∗ = Iji . Later, we show
that these expectations are correct up to one item.

Using these virtual valuations, we define labeling functions L̂i : V (Thalf)→ [n] so that

L̂i(x) ∈ {j ∈ [n] : ûi(x, j) > ûi(x, k) for all k ∈ [n]}.

One can check that these valuation functions are still proper.
Again, by Sperner’s lemma, there exists an elementary simplex S∗ = conv(x1,x2, . . . ,xn)

of the triangulation Thalf which is fully-labeled according to our new labeling function: there
is a permutation φ : [n] → [n], with L̂i(xi) = φ(i) for all i ∈ [n]. Again, this elementary
simplex induces a Sperner sequence (A1, . . . , An) of partial partitions.

To shorten a case distinction, we assume that y2 ∈ I2
1 ∪ I2

2 ∪ I2
3 ∪ I2

4 , i.e., that the boundary
item y2 appears in the second but not in the third bundle in the Sperner sequence. This
assumption is without loss of generality, since by the left-right symmetry of the definition of
virtual valuations, if necessary we can reverse the path P and consider the same elementary
simplex with vertices ordered in reverse (x4,x3,x2,x1); it will still be fully-labeled.

With this assumption made throughout the rest of the argument, we now round the
Sperner sequence into a complete partition (I1

∗ , I
2
∗ , I

3
∗ , I

4
∗ ) of P defined as follows:

I1
∗ := I1

1 ∪ · · · ∪ I1
4 , I2

∗ := I2
1 ∪ · · · ∪ I2

4 , I3
∗ := B3 ∪ {y3}, I4

∗ := B4.

Depending on the placement of the boundary item y1, we will either have I1
∗ = B1 or

I1
∗ = B1 ∪ {y1}; and either I2

∗ = {y1} ∪ B2 ∪ {y2} or I2
∗ = B2 ∪ {y2}. With these choices,

each interior bundle (j = 2, 3) receives at least one of the boundary items adjacent to it.
The main part of showing that the partition (I1

∗ , I
2
∗ , I

3
∗ , I

4
∗ ) can be made into an EF1

allocation is an analogue of (5.5), which shows that agents’ expectations about their bundle
are approximately correct. The following analogous proposition is proved by case analysis.

Proposition 6.1. For each i ∈ [n] and each j ∈ [n], we have ui(I
j
∗) > ûi(xi, j) > u−i (Ij∗).

Proof. We consider each bundle j = 1, 2, 3, 4 separately.

• Suppose j = 1.

– Suppose x1
i ∈ Z. Then y1 = x1

i and B1 = {1, . . . , x1
i − 1}. Thus ui(I

1
∗ ) > ûi(xi, 1) =

ui(B
1) > u−i (I1

∗ ), since I1
∗ is either B1 or B1 ∪ {y1}.

– Suppose x1
i 6∈ Z. Then ûi(xi, 1) = ui({1, . . . , x1

i − 3
2
}). Now, either

∗ y1 = x1
i − 1

2
so that y1 ∈ I1

i , and so I1
∗ = B1 ∪ {y1} = {1, . . . , x1

i − 1
2
}, or
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∗ y1 = x1
i + 1

2
so that y1 6∈ I1

∗ , and so I1
∗ = B1 = {1, . . . , x1

i − 1
2
}.

In either case, I1
∗ = {1, . . . , x1

i − 3
2
, x1

i − 1
2
}, so ui(I

1
∗ ) > ûi(xi, 1) > u−i (I1

∗ ).

• Suppose j = 2, and suppose that I2
∗ = B2 ∪ {y2}

– Suppose x1
i ∈ Z and x2

i ∈ Z. So x1
i = y1 and x2

i = y2. Then ûi(xi, 2) =
u−i ({y1, . . . , y2}). Thus ui(I

2
∗ ) > ûi(xi, 2) > u−i (I2

∗ ) since I2
∗ = B2 ∪ {y2}.

– Otherwise ûi(xi, 2) = ui(I
2
i (x)). Since y1 6∈ I2

1 (x) (because y1 ∈ I1
∗ ), we have that

I2
i (x) is either B2 or B2 ∪ {y2}. So ui(I

2
∗ ) > ûi(xi, 2) = ui(I

2
i (x)) > u−i (I2

∗ ) since
I2
∗ = B2 ∪ {y2}.

• Suppose j = 2, and suppose that I2
∗ = {y1} ∪B2 ∪ {y2}.

– Suppose x1
i ∈ Z and x2

i ∈ Z. So x1
i = y1 and x2

i = y2. Then ûi(xi, 2) =
u−i ({y1, . . . , y2}). Thus ui(I

2
∗ ) > ûi(xi, 2) = u−i (I2

∗ ) since I2
∗ = {y1} ∪B2 ∪ {y2}.

– Otherwise ûi(xi, 2) = ui(I
2
i (x)). First note that I2

i (x) 6= B2: this is because both
y1 and y2 appear in the second bundle of the Sperner sequence (by the case and
the wlog assumption), so that x1

i 6 y1 and y2 6 x2
i . Since at least one of x1

i or
x2
i is not integral, at least one of y1 or y2 must be in I2

i (x). Hence I2
i (x) is either

{y1} ∪ B2 ∪ {y2} or {y1} ∪ B2 or B2 ∪ {y2}. In each case, ui(I
2
∗ ) > ûi(xi, 2) =

ui(I
2
i (x)) > u−i (I2

∗ ) since I2
∗ = {y1} ∪B2 ∪ {y2}.

• Suppose j = 3.

– Suppose x2
i ∈ Z and x3

i ∈ Z. So x2
i = y2 and x3

i = y3. Then ûi(xi, 3) =
u−i ({y2, . . . , y3}). Thus ui(I

3
∗ ) > ûi(xi, 3) > u−i (I3

∗ ) since I3
∗ = B3 ∪ {y3}.

– Otherwise, since y2 does not appear in I3
1 (x) (by our wlog assumption), we have

that I3
i (x) is either B3 or B3 ∪ {y3}. Now ui(I

3
∗ ) > ûi(xi, 3) = ui(I

3
i (x)) > u−i (I3

∗ )
since I3

∗ = B3 ∪ {y3}.

• Suppose j = 4.

– Suppose x3
i ∈ Z. Then y3 = x3

i and B4 = {x3
i +1, . . . ,m}. Thus ui(I

4
∗ ) > ûi(xi, 4) =

ui(B
4) > u−i (I4

∗ ), since I4
∗ = B4.

– Suppose x3
i 6∈ Z. Then ûi(xi, 4) = ui({x3

i + 3
2
, . . . ,m}). Now, either

∗ y3 = x3
i + 1

2
so I4

∗ = B4 = {x3
i + 3

2
, . . . ,m}, or

∗ y3 = x3
i − 1

2
so I4

∗ = B4 = {x3
i + 1

2
, . . . ,m}.

In either case, ui(I
4
∗ ) > ûi(xi, 4) = ui({x3

i + 3
2
, . . . ,m}) > u−i (I4

∗ ). �

Now again, based on the partition, we can define an allocation A∗ by A∗(i) = I
φ(i)
∗ for each

agent i ∈ [n]. Thus, each agent i receives the bundle in the complete partition corresponding
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to i’s most-preferred index φ(i). We prove that A∗ satisfies EF1: For any pair i, j ∈ [n] of
agents, we have

ui(A∗(i)) = ui(I
φ(i)
∗ ) > ûi(xi, φ(i)) by Proposition 6.1

> ûi(xi, φ(j)) since L̂i(xi) = φ(i)

> u−i (Iφ(j)
∗ ) = u−i (A∗(j)). by Proposition 6.1

Hence, we have proved the main result of this section:

Theorem 6.2. On a path, for four agents with monotone valuation functions, a connected
EF1 allocation exists.

For five or more agents, we were not able to construct labeling functions and a rounding
scheme which ensure that agents’ expectations are correct up to one item. In the four-agent
case, each interior bundle is adjacent to an exterior bundle (which helps in the construction),
but for five agents, there is a middle bundle whose neighboring bundles are also interior.

7. EF1 existence for identical valuations

A special case of the fair division problem is the case of identical valuations, where all
agents have the same valuation for the goods: for all agents i, j ∈ N and every bundle
I ∈ C(V ), we have ui(I) = uj(I). We then write u(I) for the common valuation of bundle
I. The case of identical valuations often allows for more positive results and an easier
analysis. Indeed, we can prove that, for identical valuations and any number of agents, an
EF1 allocation connected on a path is guaranteed to exist and can be found in polynomial
time.

Now, one might guess that in the restricted case of identical valuations, egalitarian
allocations are EF1. However, the leximin-optimal connected allocation may fail EF1:
Consider a path with five items and additive valuations 1–3–1–1–1 shared by three agents.
The unique leximin allocation is (1, 3, 1–1–1), which induces envy even up to one good. The
same allocation also uniquely maximizes Nash welfare, so the Nash optimum also does not
guarantee EF1. In contrast, when requiring bundles to satisfy matroid constraints (rather
than connectivity constraints), the Nash optimum is EF1 with identical valuations (Biswas
and Barman, 2018).

Maximizing an egalitarian objective seemed promising because it ensures that no-one
is too badly off, and therefore has not much reason to envy others. The problem is that
some bundles might be too desirable. To fix this, we could try to reallocate items so that no
bundle is too valuable. This is exactly the strategy of our algorithm: It starts with a leximin
allocation, and then moves items from high-value bundles to lower-value bundles, until the
result is EF1. In more detail, the algorithm identifies one agent i who is worst-off in the
leximin allocation, and then adjusts the allocation so that i does not envy any other bundle
up to one good. The algorithm does this by going through all bundles in the allocation,
outside-in, and if i envies a bundle Ij even up to one good, it moves one item from Ij inwards
(in i’s direction), see Figure 7. As we will show, a key invariant preserved by the algorithm
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is that the value of I i never increases, and i remains worst-off. Thus, since i does not envy
others up to one good, the allocation at the end is EF1.

I i Ij−1 Ij

Figure 7: If i envies j even up to one good, Algorithm 1 takes an item out of bundle Ij and moves it in i’s
direction.

Formally, a leximin allocation is an allocation which maximizes the lowest utility of an
agent; subject to that it maximizes the second-lowest utility, and so on. In particular, if the
highest achievable minimum utility is uL, then the leximin allocation is such that every agent
has utility at least uL, and the number of agents with utility exactly uL is minimum.

Algorithm 1 Find a connected EF1 allocation of a path P with identical and monotonic
valuations

Input: a path P = (v1, v2, . . . , vm), and n agents with identical and monotonic valuations u
Output: an EF1 connected allocation of P

1: Let A = (I1, . . . , In) be a leximin allocation of P
2: Fix an agent i with minimum utility in A, i.e., u(I i) 6 u(Ij) for all j ∈ [n]
3: for j = 1, . . . , i− 1 do
4: if i envies Ij even up to one good, i.e., u(I i) < u−(Ij) then
5: repeatedly delete the rightmost item of Ij and add it to Ij+1 until u(I i) > u−(Ij)
6: for j = n, . . . , i+ 1 do
7: if i envies Ij even up to one good, i.e., u(I i) < u−(Ij) then
8: repeatedly delete the leftmost item of Ij and add it to Ij−1 until u(I i) > u−(Ij)
9: return A

Theorem 7.1. For identical valuations on a path, Algorithm 1 finds an EF1 allocation.

Proof. For an allocation A = (I1, . . . , In), write uL(A) := minj∈N u(Ij) for the minimum
utility obtained in A, and write L(A) := {j ∈ [n] : u(Ij) = uL(A)} for the set of agents
(losers) who obtain this utility. For the leximin allocation Aleximin obtained at the start of the
algorithm, write u∗L := uL(Aleximin) and L∗ := L(Aleximin). Note that by leximin-optimality,
for every allocation A we must have uL(A) 6 u∗L, and if uL(A) = u∗L then |L(A)| > |L∗|. Let
i ∈ L∗ be the agent fixed at the start of the algorithm.

Claim 1. Throughout the algorithm, uL(A) = u∗L and L(A) = L∗.
The claim is true before we start the for-loops. Suppose the claim holds up until some

iteration of the first for-loop, and we now move an item from Ij to Ij+1, obtaining the new
bundles Ijnew and Ij+1

new in the new allocation Anew. Then u(Ijnew) > u−(Ij) > u(I i) = u∗L,
where the strict inequality holds by the if- and until-clauses. Since no agent other than j has
become worse-off in Anew, it follows that uL(Anew) > uL(A) = u∗L. As noted, by optimality
of u∗L, we have uL(Anew) 6 u∗L. Hence uL(Anew) = u∗L. Thus, by optimality of L∗, we have
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|L(Anew)| > |L∗|. Because agent j has not become a loser (since u(Ijnew) > u∗L as shown before)
and no other agent has become a loser, we have L(Anew) ⊆ L(A) = L∗. Thus L(Anew) = L∗,
as required. The second for-loop is handled similarly.

Claim 2. After both for-loops terminate, agent i does not envy any agent up to one good.
For any j 6= i, agent i does not envy j up to one good immediately after the relevant loop

has handled j, and at no later stage of the algorithm does Ij change.
It follows that the allocation A returned by the algorithm is EF1: By Claim 1, we have

i ∈ L(A), so that u(Ij) > u(I i) for all j ∈ [n]. By Claim 2, agent i does not envy any other
agent up to one good, so that u(I i) > u−(Ik) for all k ∈ [n]. Hence, for all j, k ∈ [n], we have
u(Ij) > u−(Ik), that is, no agent envies another agent up to one good. �

Algorithm 1 can be implemented to run in polynomial time, because with identical
valuations, one can use dynamic programming to find a leximin allocation in time O(m2n2),
and the remainder of Algorithm 1 takes time O(mn), as each item is moved at most n times.
A slight speed-up can be achieved by observing that the proof of Theorem 7.1 only needed
that the initial allocation optimizes the egalitarian welfare uL and minimizes the cardinality
of the set L of losers. Such an allocation can be found by dynamic programming in time
O(m2n), and, after some refinements on the implementation of the dynamic programming
approach, the running time can be lowered to O(mn) (see Algorithm 2 in the appendix).

The reallocation stage of our algorithm bears some similarity to Suksompong’s (2019,
Thm. 2) proof that a umax-equitable allocation exists. Oh et al. (2019, Lem. C.2) proved
independently, using an inductive argument, that EF1 allocations on a path exist for identical
valuations, and can be found in polynomial time. More recently, Misra et al. (2021) presented
another algorithm for this task in the context of aiming for connected allocations satisfying
equitability up to one good (EQ1).

8. Concluding remarks

We have studied the existence of EF1 allocations under connectivity constraints imposed
by an undirected graph. We have shown that for two, three, or four agents, an EF1 allocation
exists if the graph is traceable and if the agents have monotone valuations. For any number
of agents, we also proved that traceable graphs guarantee the existence of an EF2 allocation.
The latter two results are proved using Sperner’s lemma, which has been used many times in
economics and game theory to show the existence of equilibria and fair allocations (Scarf,
1982; Su, 1999). Unusually, in our application we were able to use Sperner’s lemma in a
setting with indivisibilities. We leave as an open question whether EF1 allocations on a path
exist for five and more agents.

Our procedures for identical valuations as well as for the cases of two or three agents can
be efficiently implemented, so that we can find EF1 allocations in polynomial time. For our
results based on Sperner’s lemma, it is not clear how to compute EF1 and EF2 allocations
efficiently. On the other hand, as is the case with the computation of other structures whose
existence follows from Sperner’s lemma (such as Nash equilibrium or more broadly PPAD
problems), our proof based on Sperner’s lemma allows for a “path-following” algorithm
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through the subdivided simplex. This type of algorithm has been observed to be practically
efficient in other contexts (Scarf, 1967), and may also be efficient in our allocation setting
on practical instances. Formally, we do not know of a computational complexity result for
the problem of finding EF1 or EF2 allocations on a path. For divisible cake-cutting, it is
PPAD-complete to find an ε-approximate envy-free allocation (Deng et al., 2012), implying
that it is unlikely that there is an algorithm that runs in time polynomial in n and log 1

ε
.

However, the PPAD-hardness proof of Deng et al. (2012) uses non-monotone valuations,
and thus does not easily extend to our setting, where we assume monotone valuations. For
general graphs, Deligkas et al. (2021, Thm. 2) recently showed that deciding whether an EF1
allocation exists on a given instance is NP-hard. Their result applies when the underlying
graph is a star, and holds even if the n agents have binary additive valuations.

Regarding strategic aspects, existing results from the literature imply that there are no
EF1 allocation rules which are strategyproof.8 Amanatidis et al. (2017a) characterized all
strategyproof allocation mechanisms when there are n = 2 agents with additive valuations
over indivisible items (with no connectivity constraints). They then proved that no mechanism
in their class guarantees EF1 (Amanatidis et al., 2017a, Sec. 4.2) for m > 5 items. It follows
that there is also no strategyproof EF1 mechanism that respects connectivity constraints. We
can also obtain such a result by reduction from divisible cake-cutting. Fix some ε > 0, and
suppose we had a mechanism for allocating a path of M items among n agents while being
strategyproof and EF1. Then we can use this mechanism as a mechanism for cake-cutting:
Given continuous agent valuations over the interval [0, 1], approximate these by additive
valuations over the path of M items and run the mechanism on this instance. For sufficiently
large M , the resulting mechanism for cake-cutting will be ε-strategyproof (in the sense that a
misreport can increase utility by at most ε) and ε-envy-free (in the sense that envy is bounded
by ε). However, the literature on cake-cutting contains impossibilities about strategyproofness
and envy-freeness when requiring connected pieces (Bei et al., 2017, Theorem 1, Bei et al.,
2018, Theorem 3), and the proofs also establish impossibility for the ε-versions of these
properties for small enough ε. Hence, for large enough M , no strategyproof EF1 mechanism
for the indivisible setting can exist. By using the result of Bei et al. (2018), we can obtain an
impossibility for n = 2 and even for binary additive valuations where each agent approves an
interval of items beginning with the left-most item. Finally, Peters (2019, Chapter 12) gives
a simple direct proof that there are no strategyproof EF1 mechanisms, even for n = 2 agents
and m = 5 items on a line.

We gave a forbidden minor type characterization of all graphs that guarantee the existence
of EF1 allocations for two agents. It is natural to also consider the case of more than two
agents. However, there are several difficulties in extending the characterization result beyond
two agents. First, one cannot generalize the notion of a bipolar ordering in a meaningful way;
indeed, a tripolar ordering, requiring each initial, middle, and last segment to be connected in
a given graph, reduces to the notion of a Hamiltonian path because every consecutive pair of
such an ordering must be connected. Second, our two-agent characterization heavily depends

8In this paragraph, we follow the exposition of Peters (2019, Chapter 12).
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on having a simple envy-free protocol: the cut-and-choose procedure. Unfortunately, for
three agents, the known protocol becomes much more complex (see Section 4), and for four
agents, there is no known explicit protocol that constructs an envy-free division. Nevertheless,
Igarashi and Zwicker (2021) recently proposed a forbidden minor type conjecture for the
continuous variant of our problem. It would be interesting to explore the discrete version of
their conjecture.

In the setting without connectivity constraints, it is possible to achieve efficiency and
fairness simultaneously: the maximum Nash welfare solution yields an allocation that is
both EF1 and Pareto-optimal (Caragiannis et al., 2019). In our model, this is unfortunately
impossible, since on a path there are instances where there is no connected allocation which
is EF1 and Pareto-optimal, and it is NP-hard to decide whether such an allocation exists
(Igarashi and Peters, 2019).

In this paper, we have only considered goods, with monotonic valuations. The setting
where some or all items are undesirable (so-called chores) is also of interest (Aziz et al., 2019;
Bogomolnaia et al., 2016; Meunier and Zerbib, 2019; Segal-Halevi, 2018; Bouveret et al., 2019;
Höhne and van Stee, 2021). On a path, a connected allocation satisfying proportionality
up to one good (PROP1) always exists (Aziz et al., 2019), but the existence of EF1 or EF2
allocations in this domain is open. For cake-cutting, when agents consider some parts of the
cake undesirable, Sperner’s lemma does not directly produce a connected envy-free allocation
(Segal-Halevi, 2018), but other methods can prove the existence of such allocations in most
cases (Segal-Halevi, 2018; Meunier and Zerbib, 2019).
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9. Appendix

9.1. Maximin share allocations

The maximin share guarantee of an agent i ∈ N is

MMSi := max
(P 1,P 2,...,Pn)∈Πn

min
j∈[n]

ui(P
j),
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where Πn denotes the space of all partitions of V into n connected bundles. An allocation
A is a maximin share (MMS) allocation if ui(A(i)) > MMSi for each agent i ∈ N . (Note
that the maximum is taken only over connected partitions, so the MMS value could be lower
than the standard definition from the model without connectivity constraints.) Bouveret
et al. (2017) showed that an MMS allocation exists if the underlying graph G is a tree. On
the other hand, MMS allocations need not exist on a cycle (Bouveret et al., 2017; Lonc and
Truszczynski, 2020) or on a complete graph (Kurokawa et al., 2018). The computational
complexity of determining the existence of MMS allocations under several graph constraints
has also been investigated (Greco and Scarcello, 2020).

Since we have seen that EF1 or EF2 allocations are guaranteed to exist on a path, it is
natural to ask whether we can additionally require MMS: on a path, does there always exist
an allocation that satisfies EF1 and MMS?

First, let us note that not every EF1 allocation is also MMS. For 3–1–1–1–3 and three
agents, the MMS value is 3 via the partition (3, 1–1–1, 3), but the EF1 allocation (3–1, 1, 1–
3) gives the middle agent a utility of only 1. In fact, one can show that this example is
worst possible, for subadditive valuations. Valuations ui are subadditive if, for any bundles
I, I ′, we have ui(I ∪ I ′) 6 ui(I) + ui(I

′). An allocation satisfies α-MMS for some α > 0 if
ui(A(i)) > α ·MMSi for each agent i ∈ N . As MMS allocations need not exist in general,
α-MMS allocations have been widely investigated (Amanatidis et al., 2017b, 2018; Kurokawa
et al., 2018).

Proposition 9.1. For subadditive valuations, an EF1-allocation on a path guarantees 1/3-
MMS.

Proof. Let A be an EF1 allocation, write Ij = A(j) for all j ∈ [n], and fix some agent i.
For each j ∈ [n] \ {i}, let gj ∈ Ij be an item such that ui(I

i) > ui(I
j \ {gj}). We show that

ui(I
i) > 1

3
MMSi.

Let P = (P 1, . . . , P n) be a partition of the items into n bundles such that ui(P
j) > MMSi

for each j ∈ [n]. Since there are n bundles in P but only n− 1 items gj , there must be some
bundle P k such that gj 6∈ P k for all j ∈ [n] \ {i}; we show that ui(P

k) 6 3 · ui(I i).
Suppose for a contradiction that there are three distinct agents j1, j2, j3 ∈ [n] \ {i} such

that P k ∩ Ijr 6= ∅ for r = 1, 2, 3. Since P k and the Ijr ’s are all intervals of a path, the middle
interval must be completely contained in P k, that is, Ijr ⊆ P k for some r. Hence gjr ∈ P k,
contradicting the choice of P k. So P k intersects at most two bundles from A other than
I i. Thus, for some j1, j2 ∈ [n] \ {i}, we have P k ⊆ Ij1 ∪ I i ∪ Ij2 \ {gj1 , gj2}, and thus by
subadditivity,

ui(P
k) 6 ui(I

j1 \ {gj1}) + ui(I
i) + ui(I

j2 \ {gj2}) 6 3 · ui(I i).

Hence, we have ui(I
i) > 1

3
ui(P

k) > 1
3
MMSi, as required. �

Interestingly, using a similar proof, one can show that the two agents receiving the outer
bundles of the path both get at least half of their MMS value. This is also tight; consider
1–1–2–2–1–1 for four agents, and the EF1 allocation (1,1–2,2–1,1).
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If we do not restrict valuations to be subadditive, then EF1 does not guarantee α-MMS
for any α > 0: Consider a path P = (v1, v2, v3) of three items, and two agents with identical
valuations u defined so that u(I) = 1 if I ⊇ {v1, v2} or I ⊇ {v3}, and u(I) = 0 otherwise.
Then the MMS value is 1 via the partition (v1–v2, v3), but the allocation (v1, v2–v3) is EF1
and gives the left agent utility 0.

For graphs that are not paths, Proposition 9.1 does not hold. For a complete graph (i.e.,
in the absence of connectivity constraints), EF1 only implies 1/n-MMS (Caragiannis et al.,
2019; Amanatidis et al., 2018).

While we have seen that EF1 on a path does not immediately imply MMS, it does imply
MMS in many cases. The following lemma will be useful to show that the allocations produced
by our arguments in the main text all satisfy the MMS guarantee.

Lemma 9.2. Suppose there are n > 2 agents, and the items are arranged on a path. Take
any n− 1 items y1 < · · · < yn−1, and define the bundles B1, . . . , Bn as follows:

B1 = L(y1), B2 = P (y1 + 1, y2 − 1), . . . , Bn−1 = P (yn−2 + 1, yn−1 − 1), Bn = R(yn−1).

Then for any agent i, there is some r ∈ [n] such that ui(B
r) > MMSi.

Proof. Let P = (P 1, . . . , P n) be a connected partition of the items (ordered left-to-right)
so that ui(P

j) > MMSi for all j ∈ [n]. Since there are n bundles in P but only n − 1
items y1, . . . , yn−1, there exists a bundle P k in P that does not contain any yj. Writing
Y = {y1, . . . , yn−1}, we see that there is some r ∈ [n] such that

(P 1 ∪ · · · ∪ P k−1) ∩ Y = {y1, . . . , yr−1} and (P k+1 ∪ · · · ∪ Pn) ∩ Y = {yr, . . . , yn−1}.

Thus, we have P k ⊆ P (yr−1 + 1, yr − 1) = Br so that ui(B
r) > ui(P

k) > MMSi. �

Theorem 9.3. For a path, the EF1 allocations constructed by any of our methods guarantee
MMS.

Proof. Discrete cut-and-choose protocol for two agents. Suppose Alice’s lumpy tie is vj.
Then, using the definition of lumpy tie, a connected partition witnessing Alice’s MMS value is
either P1 = (L(vj), R(vj) ∪ {vj}) or P2 = (L(vj) ∪ {vj}, R(vj)). At the end of the procedure,
Alice receives either L(vj)∪{vj} or R(vj)∪{vj}. For either of these options, there is a bundle
in P1 and a bundle in P2 which are weakly worse. So Alice receives a bundle that satisfies
her MMS value. For Bob, he receives his preferred bundle among L(vj) or R(vj). These two
bundles are of the shape described in Lemma 9.2 with y1 = vj, so Bob’s choice satisfies his
MMS value.

Moving-knife protocol for three agents. The allocation returned by the algorithm of
Theorem 4.3 guarantees MMS. To see this, first suppose the algorithm terminates in Step 3
or Step 4(a). At that step, the bundles L, M , and R are of the shape described in Lemma 9.2
with y1 = v`+1 and y2 = vr. The agent sleft who receives L thinks that L is best among
L,M,R (since he shouted), so by Lemma 9.2 agent sleft receives his MMS value. The proof
of Theorem 4.3 shows that no other agent envies sleft (even without removing an item), so
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that every other shouter receives value at least ui(L), meaning that player s receives at least
her MMS value (since she shouted, she finds L weakly better than M and R). Finally, agent
c does not envy any other agent (even without removing an item), and so automatically
receives at least his MMS value. Next, suppose the algorithm terminates in Step 2. As the
proof of Theorem 4.3 shows, the agent sleft does not envy either of the other players, and
hence receives at least his MMS value. Apply Lemma 9.2 with y1 = v` and y2 = vr. It follows
that for every agent, one of L \ {v`}, M , or R provides at least the MMS value. But we know
from the proof that any agent prefers either M or R to L \ {v`}, and we know that all agents
i 6= sleft receive a bundle weakly preferred to both M and R, so i receives his MMS value.
Finally, suppose the algorithm terminates in Step 4(b). Similarly to the argument for Step 2,
apply Lemma 9.2 with y1 = v`+1 and y2 = vr. Then, each player thinks that one of L, M , R
provides the MMS value. By the proof of Theorem 4.3, agent sleft receives a bundle weakly
preferred to each of L,M,R, and agents i 6= sleft prefer either M or R to L, and receive a
bundle that is weakly preferred to both M and R, so they also receive their MMS value.

Identical valuations. Algorithm 1 gives each agent a utility of at least u∗L. By their
definitions, the MMS-value is the same as the optimal egalitarian welfare under identical
valuations.

EF2 via Sperner’s lemma. For each agent i, by Lemma 9.2, there exists a basic bundle
whose value is at least MMSi. We showed that the allocation A∗ is such that agent i weakly
prefers the bundle i receives in A∗ to any basic bundle. Hence, A∗ is an MMS allocation.

EF1 for four agents via Sperner’s lemma. For each vertex xi of the full-labeled simplex
S∗, invoke Lemma 9.2 with y1 = bx1

i c, y2 = bx2
i c, y3 = dx3

i e. By case-analysis one can
check that ûi(xi, j) > ui(B

j) for each j = 1, 2, 3, 4, where the Bj’s are defined like in
Lemma 9.2. By Proposition 6.1, we have that ui(A∗(i)) > ûi(xi, φ(i)) = maxj∈[n] ûi(xi, j) =
maxj∈[n] ui(B

j) > MMSi. �

9.2. Example of an instance with no EFX allocation

We define EFX as follows.

Definition 9.4 (EFX). An allocation A satisfies EFX (Envy-freeness up to any outer good)
if the envy is bounded up to the least valuable outer good, i.e., for any pair i, j ∈ N of
agents, and for every good u ∈ A(j) such that A(j) \ {u} is connected, we have ui(A(i)) >
ui(A(j) \ {u}).

Example 9.5. Consider the instance 2–3–1–3 for three agents. This instance admits no
connected EFX allocation: It is clear that no allocation in which some bundle is empty
satisfies EFX. In (2, 3, 1–3), the left agent envies the right agent even after removing the
outer good of value 1; in (2, 3–1,3), the left agent envies the middle agent even after removing
the outer good of value 1; and in (2–3, 1,3), the middle agent envies the left agent even after
removing the outer good of value 3. One can also consider the instance 1–1–3–3 for two
agents. �
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9.3. Example of a non-traceable graph that guarantees EF1

Example 9.6. Consider a star with three leaves. We will divide the graph among three
agents. Consider the allocation where each agent chooses the most favorite leaf-vertex among
the unallocated vertices in order, with the last agent in that order being assigned to the
central vertex of the star. The resulting allocation satisfies EF1, since the envy towards
agents allocated to a single item can be bounded up to one good, and the first and second
agent do not envy the third agent if one removes the central vertex from his bundle. �

9.4. Efficient computation of SMMS allocations for identical valuations

In this section, we discuss how to compute the initial allocation that is needed for
Algorithm 1 to obtain an EF1 allocation under identical valuations (Theorem 7.1).

Given a path P = (v1, v2, . . . , vm), n agents with identical monotonic valuations u, and an
allocation A = (I1, . . . , In), write uL(A) := minj∈N u(Ij) to denote the egalitarian welfare of
A, i.e., the minimum valuation in A among all agents, and L(A) := {j ∈ [n] : u(Ij) = uL(A)}
for the set of agents who obtain this minimum utility. We refer to the agents in L(A) as the
losers.

Definition 9.7 (SMMS allocation). An allocation of a path for agents with identical
monotonic valuations satisfies strong maximin share (SMMS) if it minimizes the number of
losers among all allocations maximizing the egalitarian welfare.

In the following, we provide an efficient dynamic programming algorithm for computing an
SMMS allocation. We first present a simple algorithm that runs in time O(m2n), and then
we refine it to improve the running time to O(mn).

A suboptimal algorithm.

In order to use a dynamic programming approach, we start by deriving a recurrence
relation characterizing the SMMS allocations.

Given two partial allocations A,A′, we write A � A′ if either uL(A) > uL(A′) holds,
or both uL(A) = uL(A′) and |L(A)| 6 |L(A′)| hold; furthermore, we write A ∼ A′ if both
A � A′ and A � A′ hold. We observe that an allocation A of path P for n agents is SMMS
iff it is “optimal” according to the ordering relation �, i.e., iff A � A′ for any allocation A′

(of path P for n agents).
For any h ∈ [m+ 1] and j ∈ [m], let u[h, j] := u(P (vh, vj)) be the utility assigned by u

to the path segment from vh to vj. If h > j then we use the convention that P (vh, vj) = ∅
and u[h, j] = 0. Given i ∈ [n] and j ∈ [m] ∪ {0}, let A[i, j] be an SMMS allocation of the
subpath P (v1, vj) for i agents. Also, let Egal[i, j] and L[i, j] denote the egalitarian welfare
and the number of losers of the SMMS allocation A[i, j]. Note that our ultimate aim is to
find A[n,m].

For any i ∈ [n] \ {1}, j ∈ [m] ∪ {0} and h ∈ [j + 1], let A[i, h, j] be an allocation of
the subpath P (v1, vj) for i agents that is optimal according to � after constraining the i-th
bundle to be equal to the subpath P (vh, vj); furthermore, let Egal[i, h, j] and L[i, h, j] denote
the egalitarian welfare and the number of losers of allocation A[i, h, j]. Observe that we allow
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h to reach the value j + 1 in order to model the case in which the i-th agent gets an empty
bundle. By definition, it holds that

Egal[i, h, j] = min{Egal[i− 1, h− 1], u[h, j]}, (9.1)

L[i, h, j] =


L[i− 1, h− 1] if Egal[i− 1, h− 1] < u[h, j],

L[i− 1, h− 1] + 1 if Egal[i− 1, h− 1] = u[h, j],

1 if Egal[i− 1, h− 1] > u[h, j],

(9.2)

where Egal[1, h− 1] = u[1, h− 1] and L[1, h− 1] = 1.
One can easily observe that, for any fixed i ∈ [n] and j ∈ [m]∪ {0}, an optimal allocation

A[i, j] of subpath P (v1, vj) for i agents can be computed according to the following recurrence
relation:

A[i, j] :=


∅ if j = 0,

P (v1, vj) if i = 1,

the best allocation in {A[i, h, j] : h ∈ [j + 1]} otherwise,

(9.3)

where the quality of each allocation A[i, h, j] depends on Egal[i, h, j] and L[i, h, j] only.
The recurrence relation (9.3) can be used to design a dynamic programming algorithm

that computes the SMMS allocation A[n,m] in time O(m2n). To do this, we will iteratively
compute an integer k[i, j] such that A[i, j] ∼ A[i, k[i, j], j] for all i ∈ [n] and for all j ∈ [m].

To do this, in each round (i, j), we identify the allocations A[i, h, j] for each h ∈ [j + 1],
and compute the corresponding values Egal[i, h, j] and L[i, h, j] using (9.1) and (9.2). Using
the computed values Egal[i, h, j] and L[i, h, j] we can then use (9.3) to find the index k[i, j]
such that A[i, k[i, j], j] = A[i, j] is optimal, and we store the resulting values Egal[i, j] and
L[i, j] (which will be used in the subsequent rounds). Then we proceed to the next round.
Finally, at the end of the last round (n,m), we can recursively reconstruct the optimal
allocation A[n,m] by using the indices of type k[i, j] previously stored.

By (9.3), the resulting algorithm returns an SMMS allocation, and its time complexity is
O(m2n), given by the number of rounds (which is the number of pairs (i, j) which is O(nm))
multiplied by the complexity of each round (checking each value of h which is in O(m)).

An improved algorithm.

By exploiting the monotonicity properties of the valuation functions, we can improve the
above algorithm and lower its running time. In particular, we will see how to execute each
round (i, j) in constant amortized time, thus lowering the overall time complexity to O(mn).

The problem with the existing algorithm is we need to check all possible values of k[i, j].
Instead we will introduce three quantities k1[i, j], k2[i, j], and k3[i, j], each of which can be
computed quickly, and prove that one of the three values provides a suitable value of k[i, j].
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Specifically, for any i ∈ [n] and j ∈ [m], let9

k1[i, j] := max{sup{h > 1 : Egal[i− 1, h− 1] < u[h, j]}, 1},
k2[i, j] := max{h > 1 : Egal[i− 1, h− 1] 6 u[h, j]},
k3[i, j] := k2[i, j] + 1.

By the monotonicity of the utility function, we have that, for any fixed value of h, u[h, j]
is non-decreasing in j. This implies that for t = 1, 2, 3 and fixed i ∈ [n], the value kt[i, j] is
non-decreasing in j ∈ [m]. Hence the integers of type kt[i, j] can be recursively written as

k1[i, j] = max{sup{h > k1[i, j − 1] : Egal[i− 1, h− 1] < u[h, j]}, k1[i, j − 1]},
k2[i, j] = max{h > k2[i, j − 1] : Egal[i− 1, h− 1] 6 u[h, j]},
k3[i, j] = k2[i, j] + 1, (9.4)

where kt[i, 0] := 1 for t = 1, 2, 3.
In Lemma 9.9 we will show that A[i, j] can be set equal to the best allocation among the

three allocations of type A[i, kt[i, j], j] (with t = 1, 2, 3). We first outline some preliminary
properties in Lemma 9.8.

Lemma 9.8. For any i ∈ [n] and j ∈ [m], we have

(i) A[i, j] � A[i, j − 1]

(ii) Egal[i, h, j] is non-decreasing in h 6 k1[i, j], it is constant in k1[i, j] < h 6 k2[i, j], and
it is non-increasing in h > k2[i, j].

Proof. We first show (i). Given i ∈ [n] and j ∈ [m], let A′[i, j] be the allocation obtained
from A[i, j − 1] by adding item j to the last bundle of A[i, j − 1]. By the optimality of A[i, j],
we have that A[i, j] � A′[i, j] � A[i, j − 1], and this shows (i).

Now, we show (ii). We have the following properties: (a) Egal[i−1, h−1] is non-decreasing
in h (by (i)), and (b) u[h, j] is non-increasing in h (by the monotonicity of the valuation
function). Thus, we get the following additional properties, that immediately imply (ii):

• Egal[i− 1, h− 1] < u[h, j] for any h 6 k1[i, j] (by definition of k1[i, j] and because of
(a) and (b)), and then Egal[i, h, j] = Egal[i− 1, h− 1] is non-decreasing in h 6 k1[i, j]
(by (a));

• u[h, j] < Egal[i− 1, h− 1] for any h > k2[i, j] (by definition of k2[i, j] and because of
(a) and (b)), and then Egal[i, h, j] = u[h, j] is non-increasing in h > k2[i, j] (by (b));

• Egal[i, h, j] = Egal[i− 1, h− 1] = u[h, j] in k1[i, j] < h 6 k2[i, j] (by definition of both
k1[i, j] and k2[i, j]), and then Egal[i, h, j] is necessarily constant in k1[i, j] < h 6 k2[i, j]
(by (a) and (b)). �

9In the definition of k1[i, j], if the set D := {h > 1 : Egal[i − 1, h − 1] < u[h, j]} is empty, taking the
maximum between supD and 1 guarantees that k1[i, j] is equal to 1 in this extreme case.
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Lemma 9.9 (Characterization of SMMS Allocations). Given i ∈ [n] and j ∈ [m], at
least one index k[i, j] ∈ {k1[i, j], k2[i, j], k3[i, j]} guarantees that A[i, k[i, j], j] is an SMMS
allocation of subpath P (v1, vj) for i agents (i.e., A[i, j] ∼ A[i, k[i, j], j]).

Proof. Let i ∈ [n], j ∈ [m], and let k ∈ [j + 1] be an index such that A[i, k, j] is optimal
(i.e., SMMS). We consider three cases, depending on the value of k.

(a) Suppose k 6 k1[i, j]. By exploiting the monotonicity properties of Lemma 9.8 and the
definition of k1[i, j], we will show that A[i, k1[i, j], j] � A[i, k, j]. By Lemma 9.8, the set
H1 of integers h 6 k1[i, j] such that Egal[i, h, j] = Egal[i, j] is an integer interval having
k1[i, j] as its maximum, thus both k and k1[i, j] belong to H1. Furthermore, for any
h ∈ H1, the egalitarian welfare of each allocation A[i, h, j] is equal to that of allocation
A[i− 1, h− 1], and the set of losers in A[i, h, j] is the same as in A[i− 1, h− 1] (indeed,
agent i is not a loser since Egal[i− 1, h− 1] < u[h, j]). Thus, since A[i− 1, k1[i, j]− 1] �
A[i − 1, h − 1] (by Lemma 9.8(i)), we necessarily have that A[i, k1[i, j], j] � A[i, h, j]
for any h ∈ H1, and this shows the optimality of allocation A[i, k1[i, j], j].

(b) Suppose k1[i, j] < k 6 k2[i, j]. Then we can analogously show that A[i, k2[i, j], j] �
A[i, k, j]. The set H2 of values h with k1[i, j] < h 6 k2[i, j] and Egal[i, h, j] = Egal[i, j]
is an integer interval having k2[i, j] as its maximum, thus both k and k2[i, j] belong to
H2. For any h ∈ H2, the valuation u[h, j] for the i-th bundle of A[i, h, j] is equal to the
egalitarian welfare Egal[i, h− 1] of the allocation restricted to the first i− 1 bundles
(by definition of k1[i, j] and k2[i, j], and by Lemma 9.8(ii)). Thus, the number of losers
L[i, h, j] in allocation A[i, h, j] is equal to L[i − 1, h − 1] (i.e., the quantity of losers
among the first i−1 agents) plus 1 (i.e., agent i). As A[i−1, k2[i, j]−1] � A[i−1, h−1]
(by Lemma 9.8(i)) and Egal[i− 1, k2[i, j]− 1] = Egal[i− 1, h− 1], we necessarily have
that L[i, k2[i, j], j] 6 L[i, h, j] for any h ∈ H2. We conclude that the best allocation of
type A[i, h, j] with h ∈ H2 is achieved by h := k2[i, j], and this shows the optimality of
A[i, k2[i, j], j].

(c) Suppose k3[i, j] 6 k. Then we can also show that A[i, k3[i, j], j] � A[i, k, j]. The set
H3 of values h > k3[i, j] with Egal[i, h, j] = Egal[i, j] is an interval whose minimum is
k3[i, j], thus both k and k3[i, j] belong to H3. As u[k3[i, j], j] < Egal[i− 1, k3[i, j]− 1]
(by definition of k3[i, j]), we have that agent i is a loser in A[i, k3[i, j], j], and it is the
only one. Thus, allocation A[i, k3[i, j], j] must be necessarily optimal. �

By exploiting (9.3) and the characterization of optimal allocations given in Lemma 9.9, we
can derive an efficient dynamic programming algorithm (Algorithm 2) that computes an
SMMS allocation.

Theorem 9.10. Algorithm 2 computes an SMMS allocation in O(mn) time.

Proof. We first show that the output of Algorithm 2 is an SMMS allocation. In lines 1–5 of
the algorithm we initialize, for i = 1 or j = 0, the maximum egalitarian welfare Egal[i, j] and
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Algorithm 2 Find an SMMS allocation of a path P with identical and monotonic valuations

Input: a path P (v1, vm), n agents with identical and monotonic valuations u {u[h, j] denotes
valuation u(P (vh, vj)), with the convention that P (vh, vj) = ∅ and u[h, j] = 0 if h > j.}

Output: an SMMS allocation of P
1: for j = 0, . . . ,m do
2: Egal[1, j]← u[1, j], L[1, j]← 1
3: for i = 1, . . . , n do
4: Egal[i, 0]← 0, L[i, 0]← 0
5: kt[i, 0]← 1 for t = 1, 2, 3
{Egal[i, j] and L[i, j] will be computed in such a way to be respectively the egalitarian
welfare and the number of losers of an optimal allocation of subpath P (v1, vj) for i agents;
each kt[i, j] will be defined as in (9.4), and will be used to compute an index k[i, j] such
that A[i, k[i, j], j] is an optimal allocation of subpath P (v1, vj) for i agents.}

6: for i = 2, . . . , n do
7: for j = 1, . . . ,m do
8: k1[i, j]← max{sup{h > k1[i, j − 1] : Egal[i− 1, h− 1] < u[h, j]}, k1[i, j − 1]}
9: k2[i, j] ← max{h > k2[i, j − 1] : Egal[i − 1, h − 1] 6 u[h, j]} {By the monotonicity

of the utility function, to compute k1[i, j], with t = 1 (resp. t = 2), it is sufficient
to analyze in increasing order all the integers h > kt[i, j − 1] until a value h with
Egal[i− 1, h− 1] > u[h, j] (resp. Egal[i− 1, h− 1] > u[h, j]) is reached; then, kt[i, j]
can be set equal to h−1. We conclude that kt[i, j] can be found in kt[i, j]−kt[i, j−1]
iterations (for any fixed i ∈ [n], j ∈ [m], and t = 1, 2).}

10: k3[i, j]← k2[i, j] + 1
11: Mt ← min{Egal[i− 1, kt[i, j]− 1], u[kt[i, j], j]} for t = 1, 2, 3

12: Lt ←


L[i− 1, h− 1] if Egal[i− 1, h− 1] < u[h, j],

L[i− 1, h− 1] + 1 if Egal[i− 1, h− 1] = u[h, j],

1 if Egal[i− 1, h− 1] > u[h, j].

{We observe that Mt and Lt are respectively the egalitarian welfare and the number
of losers of allocation A[i, kt[i, j], j].}

13: t∗ ← the index t maximizing Mt, and then, minimizing Lt
14: Egal[i, j]←Mt∗ , L[i, j]← Lt∗ , k[i, j]← kt∗ [i, j] {t∗ is computed in such a way that

A[i, kt∗ [i, j], j] is the optimal allocation among those of type A[i, kt[i, j], j], and by
Lemma 9.9, A[i, k[i, j], j] is an optimal allocation for subpath P (v1, vj) and i agents.}

15: In ← P (vk[n,m], vm)
16: j ← k[n,m]− 1
17: for i = n− 1, . . . , 2, 1 do
18: I i ← P (vk[i,j], vj)
19: j ← k[i, j]− 1
20: return A = (I1, . . . , In)
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the number of losers L[i, j] of the optimal allocation A[i, j] (of path P (v1, vj) for i agents).
By using the characterization provided in Lemma 9.9, in lines 6–14 we iteratively compute an
index k[i, j] such that A[i, k[i, j], j] is an SMMS allocation of subpath P (v1, vj) for i agents,
and we compute the corresponding maximum egalitarian welfare Egal[i, j] and number of
losers L[i, j]. Finally, in lines 15–20 we recursively reconstruct the optimal allocation A[n,m]
that is returned as output.

Now, we show that the time complexity of Algorithm 2 is O(mn). Observe that the body of
the nested for-loops in lines 6–14 can be performed in time T (i, j) = c

∑2
t=1(kt[i, j]−kt[i, j−1]),

where c is a constant that does not depend on i and j. Indeed, this running time depends
on the computation in lines 8–9 of each index kt[i, j] for t = 1, 2, and to compute it we can
simply analyze all the indices from kt[i, j − 1] + 1 to kt[i, j] + 1 only. We conclude that the
time complexity T of the nested for-loops in lines 6–14 satisfies

T =
n∑
i=1

m∑
j=1

T (i, j) =
n∑
i=1

m∑
j=1

c
2∑
t=1

(kt[i, j]− kt[i, j − 1]) =
2∑
t=1

c
n∑
i=1

m∑
j=1

(kt[i, j]− kt[i, j − 1])

=
2∑
t=1

c
n∑
i=1

(kt[i,m]− kt[i, 0]) 6 2c
n∑
i=1

m = 2cnm ∈ O(mn).

Since the time complexity of the other parts of the algorithm is clearly O(mn), it follows
that Algorithm 2 terminates in O(mn) time. �
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