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ON EXOTIC LINEAR MATERIALS: 2D ELASTICITY AND BEYOND

G. MOU, B. DESMORAT, R. TURLIN, AND N. AUFFRAY

Abstract. The symmetry classes of a linear constitutive law define the different types of anisotropy that

can be modelled by it. However, the spaces of linear materials are very rich and a whole range of intermediate
possibilities exists beyond symmetry classes. Geometric methods developed to characterise spaces of linear

materials in a very fine way allow these intermediate possibilities to be detected. Materials with non-

standard anisotropic properties associated with these intermediate possibilities are called exotic materials.
In this paper, we provide a mathematical and mechanical definition of what an exotic material is. Using

these definitions, we conclude that, for 2D linear elasticity, there is only one possible exotic material that

meets our criteria. An example of a unit cell producing such exotic material is determined. Finally, the
enumeration result obtained for elasticity is generalised to other bi-dimensional linear constitutive laws.

1. Introduction

Anisotropy characterises the way a physical property varies with respect to material directions. Linear
properties, such as elasticity or conductivity, are encoded using constitutive tensors. Depending on their
order, these tensors can model different types of anisotropies ranging from complete anisotropy to isotropy.
These different possibilities are called symmetry classes, and have attracted much interest in recent years
(Forte and Vianello, 1996; Geymonat and Weller, 2002; Le Quang and He, 2011; Olive, 2019).

The geometrical tools developed to determine the symmetry classes of a tensor space have also revealed
the richness of these spaces, as well as the existence of a whole range of intermediate possibilities beyond
the symmetry classes. Indeed, these tools allow to describe the linear material space in a very fine way and
to detect materials with non-standard anisotropic properties. These intermediate possibilities are referred to
here as exotic.

This possibility was identified very early on by authors working in this field (Rychlewski, 2001; Vannucci,
2002; He, 2004). For example, in the case of 2D linear elasticity, P. Vannucci has identified a particular
situation which he calls R0-orthotropy. He says about it:
”The existence of a particular type of planar orthotropic material, [...] but, [...], not linked to a particular
type of elastic symmetry condition. For this reason, the existence of this type of material cannot be revealed
only by the use of certain symmetry conditions on the Cartesian components of C

≈
1.” (Vannucci, 2002)

At the same moment, J. Rychlewski made some related observations and noticed that
”The fact is that materials of appreciably different anisotropy can behave, in certain situations and in certain
aspects, in a completely similar or simply identical way. In particular, some essentially anisotropic materials
may retain some important characteristics of isotropic materials.” (Rychlewski, 2001)
But these early works seem to be curiosities and have not aroused much interest. This is owing to two major
lacks that limited the applicability of these discoveries to the community:

(1) lack of an operative mathematical definition of what an exotic elasticity is. In the contributions cited,
only particular cases of exotic elastic materials have been studied, and no systematic classification
has been undertaken. This is certainly due to the lack of a good definition for such a study;

(2) to the best of our knowledge, mesostructures generating these exotic properties were not determined
at this time2. It is understandable because the topology optimisation was not as mature a technique
as it is now (Ferrer, Cante, Hernández and Oliver, 2018; Wu, Sigmund and Groen, 2021) and additive
manufacturing was also less democratised than now. In fact, there was also something missing with
regard to practical applications.

1C
≈

being the elasticity tensor.
2It should be noted, however, that P. Vannucci has determined a stacking sequence of elementary orthotropic layers producing

a global elastic behaviour R0-othotropic for a laminated plate (Vannucci, 2002).
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Today, these practical locks have been broken. Very efficient multi-scale topology optimisation codes have
been developed by the applied mathematics and mechanics communities (Amstutz, Giusti, Novotny and De
Souza Neto, 2010; Amstutz, 2021; Laurain, 2018). And further, 3D printers have almost become standard
laboratory tools. These tools have already been applied to the design of architectured materials. However, all
these studies are concerned with the optimisation of specific coefficients of the stiffness (or compliance) tensor
in a given base. While this intuition-based method is effective in some cases, it is still rather home-made and
does not exploit the progresses that have been made in describing the geometry of the elastic material space.

It is hence important to revisit this topic because the understanding of exotic linear behaviours opens up
multiple possibilities for smart optimal design of architectured materials that can accommodate seemingly
incompatible design constraints. This is particularly true in 3D, and concerns both static and dynamic
applications (Durand, Lebée, Seppecher and Sab, 2022; Camar-Eddine and Seppecher, 2003; Bückmann,
Schittny, Thiel, Kadic, Milton and Wegener, 2014).

To go further in the design of custom elastic materials and to exploit exotic symmetry sets, it is necessary
to understand the geometry of the elastic tensor space. In particular, how to characterise the strata of this
space, i.e. the subsets of tensors of the same anisotropy type. It is from this description that we will be able
to bring out the mathematical concept of exotic anisotropy.

The questions we ask ourselves and which this article proposes to answer are the following:

(1) what is the mathematical definition for exotic materials ?
(2) what are the properties of these materials ?
(3) can we, a priori, list the number of exotic situations ?

In order to provide a mathematical definition while keeping a reasonable level of complexity, we will work
in this article in a 2D framework, while keeping in mind the will to generalise it to 3D.

Following the observations made by Vanucci (Vannucci, 2002) and Rychlewski (Rychlewski, 2001), we
propose in this paper to adopt the following mechanical definition of what an exotic linear material is:

(1) Specific design: they satisfy constraints independent of those imposed by symmetry arguments;
(2) Hypersymmetric: they produce more symmetrical behaviour than that imposed by material symme-

tries.

It should be noted that some specifically designed materials may have interesting non-standard properties
while not meeting the hypersymmetry requirement. These materials will be referred to as semi-exotic. As
will be seen, this mechanical definition will lead to a mathematical one and is operative since allowing to
enumerate the exotic sets of a constitutive tensor space. As we shall see, in this context, general results can
be obtained.

To avoid being too abstract, our main result will be inferred from the study of bidimensional elasticity.
As such the first five sections will mainly be devoted to linear elasticity. In section 2 the main geometrical
concepts are introduced and illustrated. The section 3 will introduce the concept of symmetry classes and
the geometry of elastic strata. Having these tools at hands, the number of exotic elastic classes is determined
in section 4. It will be shown that, from the definition retained, there is only one type of exotic symmetry
in 2D, which is the one identified by P. Vannucci (Vannucci, 2002). This is due to the extremely simple
harmonic structure of the elasticity tensor. In section 5, a multiscale topology optimisation approach is
used to determine a local geometry producing such exotic effect in 2D linear elasticity. The reasoning used
in section 4 is then generalised to treat more general constitutive tensor spaces. This generalisation is the
object of the section 6. Applications to the piezoelectric law and to Cosserat elasticity are considered. As
the harmonic structures of these constitutive laws are more complex, their number of exotic sets increases
considerably. These results reveal that these coupled constitutive laws are highly non-trivial an opened to
numerous exotic materials with possible mechanical applications.

Two appendix sections are also present in the document. Appendix A is dedicated to the main notations
used in the article, and Appendix B to the symmetry properties (classes, invariants,...) of the compliance
tensor. These sections have been moved to the appendix to improve the readability of the main part of the
manuscript.
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2. Linear elasticity in a nutshell

2.1. The space of elasticity tensors. In the field of linear elasticity, the constitutive law is a local linear relation
between the second-order symmetric Cauchy stress tensor σ

∼
and the second-order symmetric infinitesimal

strain tensor ε
∼

:

σ
∼

= C
≈
.. ε
∼
,

in which σ
∼

and ε
∼

belong to S2(R2), the space of bi-dimensional symmetric second-order tensors, and C
≈

is

the elasticity tensor, element of the following vector space,

Ela := {C
≈
∈ ⊗4R2|C(ij) (kl)}, dimEla = 6,

in which the notation (ij)(kl) indicates the minor index symmetries and ij kl the major one. Let see now
how elasticity tensors are transformed when subjected to an isometry, i.e. to a transformation belonging to
the orthogonal group

O(2) := {g ∈ GL(2),gT = g−1}.
O(2)-action on an element C

≈
of Ela gives a new element C

≈
of Ela,

C
≈

= g ? C
≈
, g ∈ O(2),

in which the star product ? stands for the standard tensorial action. In components, in relation to a rectan-
gular basis of R2, this action is as follows:

Cijkl = gipgjqgkrglsCpqrs i = {1, 2}.

Ela can also be viewed as

Ela = V⊗s V, with V = S2(R2).

i.e. as a symmetric second-order tensor on V ' R3. This picture is important for physical applications since
energetic aspects, such as definite positiveness of the strain energy, are attached to this representation.

Consider O(3) the set of rigid transformations acting on V ' R3.

O(3) := {g ∈ GL(3),gT = g−1}.

Its action on an element C
≈

of Ela gives a new element Ĉ
≈

of Ela,

Ĉ
≈

= ĝ ~ C
≈
, ĝ ∈ O(3),

in which the product ~ stands for the standard tensorial action on R3. In components, in relation to a
rectangular basis of R3, this action is as follows:

ĈIJ = ĝIP ĝJQCPQ I = {1, 2, 3}.

For being physically admissible, an elasticity tensor, considered as a quadratic form on V = S2(R2), should
be positive definite, meaning that its eigenvalues λi should verify

∃ M ∈ R∗+, 0 < λi ≤M.

Let us denote by Ela+ the set of elasticity tensors that satisfy this requirement. We have the following
property

∀C
≈
∈ Ela+, ∃!S

≈
∈ Ela+, S

≈
.. C
≈

= C
≈
.. S
≈

= 1
≈
,

with 1
≈

= I
∼
⊗ I
∼

the identity of S2(R2), and I
∼

the identity of R2. Such an element is known as the compliance

tensor and allows to invert the constitutive law

σ
∼

= C
≈
.. ε
∼
⇔ ε
∼

= S
≈
.. σ
∼
.

In the following the notation S
≈

= C
≈
−1 and C

≈
= S
≈
−1 will be used. The inversion is an O(3)-equivariant

automorphism of Ela+, meaning that

∀ G ∈ O(3), ∀C
≈
∈ Ela+,

(
G~C

≈

)−1
= G~

(
C
≈

)−1
.
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In other words, the following diagram commutes

C
≈

G

��

(·)−1

// S
≈

G

��
Ĉ
≈

(·)−1

// Ŝ
≈

2.2. From elasticity tensors to elastic materials. When subjected to an isometry, the nature of an elastic
material does not change. On the contrary, its elasticity tensor will vary. It results that, generically, multiple
elasticity tensors are associated to the same elastic material. To speak intrinsically of an elastic material, it
is necessary to remove information attached to a particular elasticity tensor.

The first step is to define the set of all elasticity tensors describing the same elastic material. Two stiffness
tensors C

≈
,C
≈
∈ Ela are said to be equivalent, and denoted C

≈
∼ C
≈

, when they are related by an orthogonal

transformation, namely

C
≈
∼ C
≈
⇔ ∃g ∈ O(2) | C

≈
= g ? C

≈
.

In such case, C
≈

and C
≈

describe the same elastic material. The collection of all elasticity tensors describing

an elastic material is a geometric object called the orbit of C
≈

and defined as

Orb(C
≈

) = {C
≈
∈ Ela, ∃g ∈ O(2) | C

≈
= g ? C

≈
}.

It results that an elastic material corresponds to the orbit Orb(C
≈

) of a tensor C
≈
∈ Ela. Instead of considering

geometric sets in Ela, we can also construct a space Ela/O(2), called the orbit space, in which each point
corresponds to an orbit in Ela, i.e. to an elastic material (Abud and Sartori, 1983; Olive, Kolev and Auffray,
2017). A natural question is therefore how to designate points in Ela/O(2).

To speak of an elastic material independently of an elasticity tensor we need to define functions on Ela
that are constant over each orbit and take different values on different orbits. In other words, we need to
determine a separating set Desmorat, Auffray, Desmorat, Olive and Kolev (2021), i.e.

Definition 2.1 (Separating set). A finite set S := {κ1, . . . , κr} of O(2)-invariant functions is a separating set
of Ela/O(2) if for any C

≈
,C
≈

in Ela

Orb(C
≈

) = Orb(C
≈

) ⇐⇒ κi(C≈
) = κi(C≈

), i = 1, . . . , r.

A separating set S is said to be minimal if any strict subset S ′ of S is no longer a separating set.

2.3. Invariant algebra. Let consider the algebra R[Ela] of polynomial functions on Ela

p : Ela → R
C
≈
7→ p(C

≈
).

A polynomial function in C
≈

is a polynomial in the components of C
≈

expressed with respect to a given basis.

We can further consider the algebra R[Ela]O(2) of O(2)-invariant polynomials:

R[Ela]O(2) :=
{

p ∈ R[Ela], p(g ? C
≈

) = p(C
≈

), ∀g ∈ O(2), C
≈
∈ Ela

}
.

As a consequence of Hilbert’s finiteness theorem (Sturmfels, 2008), such an algebra is finitely generated and
any finite generating set {I1, . . . , IN} of R[Ela]O(2) is called an integrity basis (Weyl, 1946; Vianello, 1997).
The generating property means that any O(2)-invariant polynomial J ∈ R[Ela]O(2) is a polynomial function
in I1, . . . , IN :

J(C
≈

) = p(I1(C
≈

), . . . , IN (C
≈

)), C
≈
∈ Ela,

where p is a polynomial in N variables. An integrity basis is minimal if no proper subset of it is an integrity
basis. Knowing an integrity basis is interesting for applications since their elements:

• Generate the algebra of O(2)-invariant polynomials: any O(2)-polynomial function can be written
as a polynomial in the elements of the integrity basis;
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• Separate the O(2)-orbits: the invariants of the integrity basis take the same value if evaluated on
two sets of constitutive tensors that just differ up to an isometry, and take different values if not.

The ability of expressing O(2)-invariant polynomials is important in practice since it allows to specify sets
of materials in the orbit space. Said differently, the family of elastic materials can be defined by relations of
the following forms

V := {X ∈ Ela/O(2) | pi(X) = 0, and, pq(X) ≤ 0, p ∈ R[Ela]O(2)}.

The question is now to determine such an integrity basis. For the case of Ela the answer is known and will
be detailed in subsection 2.5. But to reach this point, the first step is to decompose the space Ela into a
collection of O(2)-irreducible spaces. This decomposition is known as the harmonic decomposition and, in
the next subsection, its explicit decomposition will be provided.

2.4. Harmonic decomposition of elasticity tensors. The harmonic decomposition is an O(2)-equivariant iso-
morphism between the Ela and a direct sum of harmonic tensor spaces

Ela ' 2K0 ⊕K2 ⊕K4.

in which Kn denotes the space of n-th order completely symmetric and traceless tensors on R2, called harmonic
tensors3. Due to the multiplicity of the space K0, the explicit harmonic decomposition is not defined uniquely.
This results in multiple possibilities for choosing a basis for the isotropic components.

Let us denote by f an explicit harmonic decomposition, we have

C
≈

= f(α, β, h
∼
,H
≈

),

and the O(2)-equivariance property

∀g ∈ O(2),g ? C
≈

= f(α, β,g ? h
∼
,g ?H

≈
).

The harmonic decomposition splits any elasticity tensor C
≈

into an isotropic part defined by two scalars α and

β completed by an anisotropic part comprising h
∼
∈ K2 and H

≈
∈ K4. The set of {h

∼
,H
≈
} will be referred to as

the harmonic bouquet of C
≈

, and denoted by HB(C
≈

).

Among the different possibilities4, the Clebsch-Gordan harmonic decomposition (Auffray, Abdoul-Anziz
and Desmorat, 2021a) will be considered here:

Proposition 2.2. The tensor C
≈
∈ Ela admits the uniquely defined Clebsch-Gordan Harmonic Decomposition

associated to the family of projectors {J
≈
,K
≈
}5:

(2.1) C
≈

= αJ
≈

+ βK
≈

+
1

2
(1
∼
⊗ h
∼

+ h
∼
⊗ 1
∼

) + H
≈
,

in which {α, β, h
∼
,H
≈
} are elements of K0 ×K0 ×K2 ×K4 defined from C

≈
as follows:

K0 K2 K4

β = K
≈
.... C
≈

h
∼

= J
≈

: C
≈

: 1
∼

α = D
≈
.... J
≈

H
≈

= D
≈
− α

2 J
≈

where D
≈

= J
≈

: C
≈

: J
≈

denotes the deviatoric part of C
≈

.

From a mechanical standpoint, this decomposition can be interpreted as follows(
σ
∼
d

σ
∼
s

)
=

(
H
≈

+ αJ
≈

1
2h
∼
⊗ 1
∼

1
2 1
∼
⊗ h
∼

βK
≈

)(
ε
∼
d

ε
∼
s

)
,

3In R2, we have dim Kn = 2 for n > 0 and 1 for n = {−1, 0}.
4In 2D, the different decompositions are almost identical and their differences only concern the isotropic part. In 3D, on the

other hand, the choice of a decomposition also involves the anisotropic components and is therefore more important.
5The deviatoric projector J

≈
and spheric projector K

≈
are defined in Appendix A.
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in which t
∼
s, t
∼
d denote, respectively, the spheric and deviatoric part of t

∼
. Hence,σ

d

∼
= H
≈
.. ε
∼
d + αε

∼
d + 1

2 tr(ε
∼
s) h
∼

σ
∼
s = 1

2

(
h
∼
.. ε
∼
d
)

1
∼

+ βε
∼
s

.

where tr(ε
∼
s) is the trace of ε

∼
s.

2.5. Integrity basis for elasticity tensors. Integrity bases for the O(2)-action are known since the second-half
of the 90’ (Blinowski, Ostrowska-Maciejewska and Rychlewski, 1996; Vianello, 1997). Consider the following
quantities:

I1 = α, J1 = β, I2 = h
∼

: h
∼
, J2 = H

≈
:: H
≈
, I3 = h

∼
: H
≈

: h
∼
.

Those elements are polynomial functions of C
≈

that are O(2)-invariant. In the notation, the subscript indicates

the degree of the polynomial in the elasticity tensor. We have the following result (Vianello, 1997):

Theorem 2.3. A minimal integrity basis for O(2)-action on Ela is given by

IB = (I1, J1, I2, J2, I3) .

These elements are free, meaning that they are not related by any polynomial relation. They satisfy,
however, the following inequalities

(2.2) I2 ≥ 0, J2 ≥ 0, I22J2 − 2I23 ≥ 0.

As such they define a closed domain of R5 which will be denoted by V. Note that the last inequality
implies that I3 = 0 as soon as I2 or J2 is zero.

We define the following application from Ela to Ela/O(2) which associates to a tensor its (uniquely defined)
elastic material:

IB(C
≈

) :=
(
I1(C
≈

), J1(C
≈

), I2(C
≈

), J2(C
≈

), I3(C
≈

)
)
.

3. Symmetry classes

In the previous section, no mention was made of the spatial invariance properties that an elasticity tensor
C
≈

may possess. The purpose of this section is to introduce this notion and to see how these properties

translate into the orbit space. Let us start by defining a totally generic elasticity tensor with the lowest level
of spatial invariance.

3.1. Genericity. Elasticity tensors C
≈

, i.e. satisfying I22J2−2I23 > 0 are said to be generic. Almost all elasticity

tensors are generic, meaning that the probability is 1 of randomly picking elasticity tensors satisfying these
relations.

From a geometric point of view, the anisotropic harmonic bouquet HB = {h
∼
,H
≈
} is non degenerated, i.e.

• neither h
∼

nor H
≈

is nil;

• they are not aligned, meaning that (h
∼
∗ h
∼

)×H
≈
6= 0;

in which ∗ and × stand, respectively, for the harmonic and generalised cross product as defined in Appendix A.
This last condition motivates the introduction of the concept of Homogeneous Harmonic Bouquet HHB =
{h
∼
∗ h
∼
,H
≈
}, in which all elements belong to the same harmonic space and therefore transform in the same

way. This notion will allow us to introduce the harmonic normal form of an elasticity tensor. To this end,
let us introduce Kn = (Kn

1 ,K
n
2 ) the orthonormal basis of Kn constructed from the canonical basis B of R2

(Desmorat, Olive, Auffray, Desmorat and Kolev, 2020). Since elasticity tensors sharing the same orbit have
conjugate HHB, the following result is natural

∀C
≈
∈ Ela, ∃g ∈ O(2) s.t. (g ?H

≈
)1 = 0, (g ?H

≈
)2 > 0

with (H
≈

)i = H
≈
.... K4

i . A generic tensor C
≈

is in its harmonic normal form, if (H
≈

)1 = 0, and (H
≈

)2 > 0.

Geometrically, this corresponds to the configuration depicted on Figure 1.
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.2

0.0

0.2

0.4

K4
1

K4
2

H
h*h

Figure 1. Harmonic normal form of a generic elasticity tensor.

Harmonic bouquets not satisfying the genericity conditions are said degenerated. Tensors that are invariant
w.r.t. to some spatial transformations usually posses degenerated bouquet6. But, as will be seen, this mech-
anism is not surjective, meaning that some degenerated systems may not imply a specific spatial invariance.
This is particularly true for tensors with a large harmonic bouquet.

3.2. From symmetry groups to symmetry classes. Let consider the image C
≈

of C
≈

by an isometric transfor-

mation:

C
≈

= g ? C
≈
, g ∈ O(2).

Depending on C
≈

, for some transformations, the resulting tensor may be identical to the original one. The set

of such transformations constitutes its symmetry group

GC
≈

:= {g ∈ O(2) | C
≈

= g ? C
≈
}.

Tensors on the same orbit have conjugate symmetry groups. A weaker equivalence relation than being on the
same orbit can be defined and consists only in having a conjugate symmetry group. This weaker equivalence
relation among elements of Ela is defined as follows

C
≈
≈ C
≈
⇔ {∃g ∈ O(2) | GC

≈
= gGC

≈
g−1}.

This relation indicates that two tensors are equivalent if their symmetry groups are conjugate. The equivalence
classes for this relation are called strata. More specifically, in what follows Σ[H] will denote the equivalence
class of elasticity tensors having their symmetry group conjugate to H. In other words, [H] is the symmetry
class of the elements of the (open) stratum Σ[H] (Auffray, Kolev and Petitot, 2014; Auffray, Kolev and Olive,
2017). The space of 2D elasticity tensors is divided into 4 strata (He and Zheng, 1996; Vianello, 1997; Auffray
et al., 2017):

Ela = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)].

In mechanical terms, Σ[Z2] corresponds to the set of biclinic materials, Σ[D2] to the set of orthotropic materials.

Σ[D4] to the set of tetragonal materials and Σ[O(2)] to isotropic materials7. These four strata are organised
as follows8:

(3.1) Σ[Z2]

(h
∼
∗h
∼
)×H

≈
=0
// Σ[D2]

h
∼
:h
∼
=0

// Σ[D4]

H
≈
::H
≈
=0

// Σ[O(2)].

Geometrically, the harmonic normal forms of elasticity tensors in the three remaining classes are9:

6The case of even-order tensors is a bit special since generic even-order tensors are Z2-invariant.
7The group notation Zk and Dk are defined in Appendix A.
8It should be noted that such an in-line structure is exceptional and is very specific to 2D linear elasticity.
9A tetragonal tensor C

≈
is in its harmonic normal form, if (h

∼
∗ h

∼
)1 = 0, and (h

∼
∗ h

∼
)2 > 0.
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2 1 0 1 2

0.4

0.2

0.0

0.2

0.4

K4
1

K4
2

For orthotropic elasticity tensors

H
h*h

2 1 0 1 2

K4
1

K4
2

For tetragonal elasticity tensors

2 1 0 1 2

K4
1

K4
2

For isotropic elasticity tensors

Figure 2. Harmonic normal form of non generic elasticity tensors.

The symmetry class of the elements belonging to the open stratum Σ[H] is exactly [H]. The closed strata

Σ[H] on its side contains elements which symmetry classes are at least [H]. Since the lattice of symmetry
classes is linear (3.1):

Σ[Z2] = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)](= Ela),

Σ[D2] = Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)],

Σ[D4] = Σ[D4] ∪ Σ[O(2)],

Σ[O(2)] = Σ[O(2)].

At the exception of Σ[O(2)], open strata are not vector spaces. The simplest reason for this is that the
identity element does not belong to strata other than the isotropic one. For the closed strata, the situation
is different. Since elements within a stratum have conjugate symmetry groups, the stability with regard to
linear combination is not automatic. It can be proved that for 2D linear elasticity, all closed strata, except
the orthotropy one, are vector spaces (Vianello, 1997; Antonelli, Desmorat, Kolev and Desmorat, 2022).

3.3. Polynomial invariant conditions characterising symmetry classes. For the least symmetric class, that is
for biclinic elastic materials, the polynomial invariants of IB are algebraically independent. A biclinic material
is described by five independent quantities, that is by a point in V ⊂ R5. The location of this point is not any,
since constrained by the relations (2.2). For elastic materials with higher symmetries, polynomial relations
(also called syzygies) between elements of IB appear. For example, for (at least) orthotropic materials the
following polynomial relation is satisfied:

I22J2 − 2I23 = 0,

hence orthotropic materials belong to ∂V which is a 4D surface in R5. These relations for all strata are
provided in the following table.

Table 1. Polynomial conditions for membership of an open stratum

stratum Tensor representations Polynomial conditions
Σ[Z2] (α, β, h

∼
,H
≈

) I22J2 − 2I23 > 0

Σ[D2] (α, β, h
∼
,H
≈

) I22J2 − 2I23 = 0 and I2 6= 0

Σ[D4] (α, β, 0,H
≈

) I2 = 0 and J2 6= 0

Σ[O(2)] (α, β, 0, 0) I2 + J2 = 0

Polynomial transitions are summed-up on the following lattice:

Σ[Z2]

I22J2−2I
2
3=0 // Σ[D2]

I2=0 // Σ[D4]
J2=0 // Σ[O(2)] .

In the case of 2D elasticity, the geometry of the elastic material space can be visualised. Figure 3 depicts the
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Figure 3. Semi-algebraic variety of elastic materials with respect to (I2, J2, I3) 10.

elastic material space with respect to (I2, J2, I3). The surface, which corresponds to the polynomial equation:
I22J2 − 2I23 = 0 contains all the at-least-orthotropic materials (stratum Σ[D2] = Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)]). The

condition I22J2 − 2I23 > 0 indicates on which side of the orthotropic surface are the biclinic materials located
(stratum Σ[Z2]). Finally, we get that, independently of the values of the isotropic invariants I1 and J1:

• point O corresponds to isotropic materials (stratum Σ[O(2)]);
• open ray ]OA) corresponds to tetragonal materials (stratum Σ[D4]);
• surface without {O}∪ ]OA)∪ ]OB) corresponds to ordinary orthotropic materials (stratum Σ[D2]);
• biclinic materials (stratum Σ[Z2]) are strictly inside the volume defined by the surface.

It can be observed for isotropic and tetragonal materials that spatial symmetries imply the vanishing of
invariant polynomials. But this mechanism does not exhaust all possibilities since, for instance, no spatial
symmetry results from the conditions J2 = 0 or I3 = 0. It follows that if one wants to design a mesostructure
such that the effective elasticity tensor verifies these relationships, this cannot be done by imposing symmetry
restrictions alone. These relations must be imposed by a specific design of the mesostructure. This aspect
satisfies the first point of the properties defining exotic materials, as stated in the introduction.

It may be tempting to define as exotic any material defined by the vanishing of polynomial quantities
not associated to a symmetry invariance. However, it is not sufficient because it does not guarantee the
second requirement, which is to produce a paradoxical behaviour that is more symmetrical in appearance
than expected. Elastic materials that do not fulfil this second requirement will be referred to as semi-exotic.

In order to select from the many possibilities those that really define exotic materials, we will return to
geometrical considerations in the next section. At the core of this approach is the clip product, a tool for
deducing the symmetry classes of a tensor space from its harmonic decomposition. It is important to note
that this approach extends almost directly to 3D situations (Olive, 2019). This is the great strength of this
approach.

4. Towards exotic elastic materials

As previously said, an elasticity material will be said to be exotic, provided

(1) it satisfy constraints independent of those that may be imposed by symmetry arguments;
(2) its behaviour appears to be more symmetrical than that imposed by the material symmetries.

10Without taking the positive definiteness condition into account.
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It should be noted that the second point excludes isotropic materials from the family of exotic materi-
als. Indeed, since the material is already fully isotropic, a specific design, even if possible and potentially
interesting, cannot produce a paradoxical increase of symmetry. Therefore, our definition here is adapted to
anisotropic exotic behaviour.

4.1. Symmetry classes and clips operation. To establish the symmetry classes of a tensor space, symmetry
classes of harmonic tensor spaces Kn will first be considered. Using the clips operator defined in (Auffray
et al., 2017), these results can be combined.

Let I(Kn) denotes the set of all isotropy classes associated to Kn. These classes are given by the following
theorem (cf. Appendix A for notations):

Theorem 4.1. The symmetry classes of Kn are:

I(Kn) =


n ≥ 1, {[Dn] , [O(2)]}
n = −1, {[SO(2)] , [O(2)]}
n = 0, {[O(2)]}

.

with the convention that D1 = Zσx
2 .

From this result, the symmetry classes of Kp ⊕Kq are obtained as

I(Kp ⊕Kq) = I(Kp)} I(Kq).
in which } is the clips product. Clips operations on conjugacy classes [Hi] of closed O(2)-subgroups are
defined as follows:

[H1]} [H2] =
⋃

g∈O(2)

H1 ∩
(
gH2g

−1) .
The result clips operations are given in the following table (Auffray et al., 2017):

} [Id] [Zσx
2 ] [Zn] [Dn] [SO(2)] [O(2)]

[Id] [Id]
[Zσx

2 ] [Id] [Id] , [Zσx
2 ]

[Zm] [Id] [Id]
[
Zd(n,m)

]
[Dm] [Id] [Id] , [Zσx

2 ]
[
Zd(n,m)

] [
Zd(n,m)

]
,
[
Dd(n,m)

]
[SO(2)] [Id] [Id] [Zn] [Zn] [SO(2)]
[O(2)] [Id] [Zσx

2 ] [Zn] [Dn] [SO(2)] [O(2)]

Notations: Z1 := Id, D1 := Zσx
2 , d := gcd(n,m).

4.2. Space of elasticity tensors. The symmetry classes of Ela can be obtained using clips products. This
determination start with the harmonic structure of Ela:

Ela ' 2K0 ⊕K2 ⊕K4.

Since I(K0) = [O(2)] the symmetry classes of Ela are given by

I(Ela) = I(K2)} I(K4).

The symmetry classes of the harmonic components are

I(K2) = {[D2] , [O(2)]} , I(K4) = {[D4] , [O(2)]} .
i.e. either the component associated with Kn is not nil and its symmetry class is [Dn] or it is nil and then it
is isotropic.

The symmetry classes of the harmonic bouquet {h
∼
,H
≈
} are obtained by the different possible clips of these

elementary symmetry classes:

I(K2)} I(K4) [D4] [O(2)]

[D2] [Z2] , [D2] [D2]
[O(2)] [D4] [O(2)]

Several things can be observed:
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(1) the stratification of Ela is retrieved;
(2) non-nil covariants h

∼
and H

≈
generates classes:

• [Z2], which corresponds to a generic orientation of the pair (h
∼
,H
≈

), i.e.

(h
∼
∗ h
∼

)×H 6= 0,

• [D2], which corresponds to the alignment of the pair, i.e.

(h
∼
∗ h
∼

)×H
≈

= 0.

(3) the symmetry class [D2] is obtained in two different manners11

[D2](h
∼
,H
≈
) = {[D2]h

∼
} [D4]H

≈
, [D2]h

∼
} [O(2)]H

≈
},

It results that the stratum Σ[D2] can be divided into two subsets:

Σ[D2] = Σg[D2]
∪ Σe[D2]

.

with the harmonic bouquet being of type

(
[D2]h

∼
, [D4]H

≈

)
for Σg[D2]

while being

(
[D2]h

∼
, [O(2)]H

≈

)
for Σe[D2]

.

The first subset will be said generic12, while the second will be called exotic. Elements in Σe[D2]
, which

corresponds to the polynomial condition J2 = 0, satisfy the following points:

(1) this restriction does not only come from a symmetry requirement but also should satisfy an extra
constraint;

(2) the cancellation of H
≈

results in an orthotropic material for which the deviatoric elasticity is isotropic,

and thus more symmetrical than it should be. This will be clearer in the forthcoming Equation 4.2.

It should be noted that this is the only situation satisfying our definition that emerges through the clips
symmetry analysis. This exotic situation has been identified yet in the literature and is sometimes known as
the R0-orthotropy13.We just demonstrates that it was in fact, and according to the considered definition, the
only possibility for Ela in 2D. For example, the apparently interesting case corresponding to I3 = 0, does not
produce a paradoxical symmetric situation and therefore cannot be considered as an exotic elastic material.
This situation is called semi-exotic.

4.3. R0-orthotropic materials. Exotic materials are represented by the harmonic components:

(4.1) C
≈

= f(α, β, h
∼
, 0).

The set of such elastic materials is located on Figure 3 on the open ray ]OB). It corresponds to a subset of
the stratum Σ[D2]. An important remark is that this property is not stable with respect to inversion. The

harmonic components for S
≈

= C
≈
−1 are denoted by {α−, β−, h

∼
−,H
≈
−}, and their expressions can be found in

Appendix B. It can be observed that, in the case of H
≈

= 0, the expression of H
≈
− reduces to,

H
≈
− =

2

∆
(2h
∼
∗ h
∼

) 6= 0,

Hence,
C
≈
∈ Σe[D2]

⇒ S
≈
6∈ Σe[D2]

.

and conversely. A symmetry class is intrinsic to an elastic material, it is a property that does not depend on
the choice of its description in terms of stiffness or compliance. Specifically, exotic sets of elastic materials
can not be considered as symmetry classes. It results that exotic orthotropic materials can either be defined
with respect to stiffness or with respect to compliance. But these materials are distinct since their respective
inverse are not exotic (Vannucci, 2002). In the polar literature, stiffness exotic orthotropic materials are
referred to as R0-orthotropic, while those in compliance are referred to as r0-orthotropic.

In the end, this gives the following complete structure of transition between the different strata:

11The notation [H]X indicates the symmetry class of X
12It should be noted that Σg

[DD2]
is divided into two separate connected components, the membership of an elastic material

to one or the other component is indicated by the sign of I3.
13This name comes from the polar parameterisation of bi-dimensional elasticity tensors (Vannucci, 2002)
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Σ[Z2]

J2=0
{{

I22J2−2I
2
3=0, J2 6=0

##
Σe[D2]

I2=0

��

Σg[D2]

I2=0

��
Σ[D4]

J2=0{{
Σ[O(2)]

which can be detailed as a coupled elastic law as follows(
H
≈

+ αJ
≈

1
2h
∼
⊗ 1
∼

1
2 1
∼
⊗ h
∼

βK
≈

)

J2=0ww

I22J2−2I
2
3=0, J2 6=0

''(
αJ
≈

1
2h
∼
⊗ 1
∼

1
2 1
∼
⊗ h
∼

βK
≈

)

I2=0

��

(
H
≈

+ αJ
≈

1
2h
∼
⊗ 1
∼

1
2 1
∼
⊗ h
∼

βK
≈

)

I2=0

��(
H
≈

+ αJ
≈

0

0 βK
≈

)

J2=0
ww(

αJ
≈

0

0 βK
≈

)
This gives the following anisotropic elasticity law for a R0-orthotropic material

(4.2)

σ
d

∼
= αε

∼
d + 1

2 tr(ε
∼
s) h
∼

σ
∼
s = 1

2

(
h
∼
.. ε
∼
d
)

1
∼

+ βε
∼
s

.

Finally, it can be shown that the set Σ
e

[D2] is linear, i.e. a vector space. This means that this set is stable by
linear combinations, a property that is not generically fulfilled by orthotropic tensors.

4.4. Cauchy anisotropy. It is a well-known fact that by imposing an extra constrain, the index symmetry of
the elasticity tensor can be increased. As a result, it becomes completely symmetric with respect to index
permutation. The constraint to be imposed is usually known as the Cauchy relation (Poincaré, 1892; Hehl
and Itin, 2002). Does Cauchy relation define an exotic set of materials ? The answer is given in 2D by the
following results:

Lemma 4.2. A 2D elasticity tensor C
≈

with an explicit expression (2.1) is totally index symmetric if and only

if

(4.3) 2α = β.

Proof. Following the definition of harmonic tensors, the anisotropic part of an elasticity tensor denoted by
C
≈

= f(0, 0, h
∼
,H
≈

) is totally symmetric14. As a result, we focus here on the isotropic part. Isotropic elasticity

14It is a very specific case of 2D that the tensor (1
∼
⊗ h

∼
+ h

∼
⊗ 1

∼
) belongs to S4(R2)



MODE = TITLE 13

tensor reads:
C
≈

= αJ
≈

+ βK
≈
.

In the case of 2D, some properties are satisfied:

J
≈

=
1

2
(I2
≈

+ I3
≈
− I1
≈

), K
≈

=
1

2
I1
≈
,

and a totally symmetric tensor C
≈
sym is defined by:

C
≈
sym = λ(I1

≈
+ I2
≈

+ I3
≈

)

with λ any real number, (I1
≈

)ijkl = δijδkl, (I2
≈

)ijkl = δilδjk and (I3
≈

)ijkl = δikδjl.

We get

C
≈

=
β

2
I1
≈

+
α

2
(I2
≈

+ I3
≈
− I1
≈

).

2α = β implies that C
≈

is totally symmetric because the coefficients for I1
≈

, I1
≈

and I1
≈

are identical, and vice

versa. �

This result can also be obtained using the polar formalism (Vannucci and Desmorat, 2016). Obviously,
this constraint can not be only enforced by imposing symmetry requirements and hence resort on a specific
design. But since relying on a constraint upon isotropic components, the resulting behaviour does not produce
a paradoxical increase of symmetry. Hence in 2D, and according to a strict application of our definition, the
set of Cauchy anisotropic materials is not an exotic set but a semi-exotic one15. The Equation B.1 which
provides expressions for the covariants of S

≈
in terms of those of C

≈
shows that the Cauchy relations cannot be

satisfied at the same time by C
≈

and S
≈

. Hence, as for R0-orthotropic materials, this properties is not stable

with respect to inversion.

5. Optimal design of a R0-othotropic unit cell

As topology optimisation algorithms are nowadays very efficient, it is possible to determine the local
geometry producing macroscopic exotic effects. This approach will be used here for the determination of the
geometry of a periodic unit cell producing a R0-orthotropic elastic behaviour16. It should be noted that, in the
case of laminated plates, sequence of laminations producing R0-orthotropic materials are known (Vannucci,
2002). However, the same result for a two-phase unit cell is, up to authors’ best knowledge, new. This result
is interesting for the design of architectured materials. Before dealing with the example at hand, let us briefly
introduce the used numerical method.

5.1. Multiscale topology optimisation. Let Ω be the domain of the periodic unit cell. Once an origin is
chosen, points in Ω are designated by their position vector x. This domain Ω is supposed to be constituted
of two phases, one rigid Ωm for the matrix and the other Ωi soft for the inclusion. These phases satisfy:

Ω = Ωm ∪ Ωi, ∅ = Ωm ∩ Ωi.

In the present approach, the inclusion is made of a very soft material in order to simulate a void. This
approach is sometimes referred to as the ersatz material method, and is known to be convergent in the case
of linear elasticityAllaire, Jouve and Toader (2004). Therefore, the elastic tensor field will have two values,
depending on whether x is in the matrix or in the inclusion.

C
≈

(x) =

C
≈
m, x ∈ Ωm

γC
≈
m, x ∈ Ωi

.

with γ the contrast parameter between the phases. We emphasise the following two points:

• in what follows, C
≈
m will be taken as isotropic, but more general situations can as well be considered;

15The 3D response is different anyway and leads to a truly exotic set of materials.
16It can be noted that the same calculation could also be carried out with respect to the compliance tensor, hence leading

to a r0-orthotropic material.
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Figure 4. Multi-scale based homogenization model

• the periodic homogenisation theory allows defining an effective tensor C
≈
h that describe the ”mean”

behaviour of the heterogeneous unit cell.

The objective function of the optimisation process will be a function17 f of C
≈
h, the effective elasticity

tensor calculated by periodic homogenisation from Ω Bakhvalov and Panasenko (2012). It can directly be the

component of the tensor or more involved functions of it. Here, polynomial functions of C
≈
h will be considered.

The layout of this specific mesostucture is determined by using a multiscale topology optimisation algo-
rithm introduced by S. Amstutz and coworkers. As this is not the purpose of this article, the method will
not be detailed, and we refer the interested reader to the following references (Amstutz and Andrä, 2006;
Amstutz et al., 2010). In broad terms, this is an optimisation code using a level-set description of the phases
(Amstutz et al., 2010) and whose level set evolution is based on the topological derivative technique (Novotny
and Soko lowski, 2012; Amstutz, 2021). It should be mentioned that the minima found using this approach
are only local, and that the method is therefore very sensitive to the geometry used for the initialization.

5.2. A R0-othotropic unit cell. We aim here at providing a geometry of a unit cell that generates an effective
R0-othotropic elastic material. We do not claim that it is the only specific design producing such exotic
behaviour, nor the best one.

For our computation, the rigid matrix phase is constituted of an elastic isotropic material with:

Em = 1, νm = 0.3.

while the soft is considered with Ei = γ, with γ = 10−4 and νi = 0.3.
The initial unit cell contains an ellipsoidal soft inclusion (cf. Figure 5), and is intended to initiate the

algorithm from an effective orthotropic material. The considered level set is

Ψ(x, y) = cos2(0, 55π(x− 0, 5)) cos2(0, 3π(y − 0, 5))− 0, 95.

A structured mesh is considered in order to preserve, at best, the symmetries of the unit cell, and hence of the
effective tensor. The following calculations were performed using a mesh of 57600 standard linear triangular
elements (Tri3).

The matrix form of the initial effective tensor resulting from these choices is18

[C
≈
h

0
] = 10−1

7.33 2.31 0
2.31 9.03 0

0 0 5.32


K

.

17If wanted, the cost function can be supplemented with constraints on the total volume of a phase, or on the perimeter of

the interface between phases.
18The matrix representations are provided here using the Kelvin convention, i.e. C33 = 2C1212.



MODE = TITLE 15

(a) Initial unit cell
(used for computation)

(b) Initial lattice (as-
sembly of unit cells)

Figure 5. Initialisation

with the following set of invariants

(I1, J1, I2, J2, I3) = (5.59 · 10−1, 1.05, 1.44 · 10−2, 1.51 · 10−3, 3.97 · 10−4).

The ratio J2
I2
∼ 10% is not small enough to consider J2 as being negligible with respect to I2. Hence the

initial elastic material should be considered as orthotropic, but not R0-orthotropic.
The cost function to be minimised by the algorithm was chosen to be

h(C
≈
h) = aJ2(C

≈
h) +

b

I2(C
≈
h)
.

and we specifically consider (a, b) = (1000, 1). This condition corresponds to the characterisation of the open
set Σe[D2]

(4.1). Without considering any constraint on the total volume of matter, adding the term b
I2(C≈

h)

prevents the trivial solution of a unit domain without inclusion19. Considering this cost function, the optimal
mesostructure depicted on Figure 6 is obtained.

(a) Initial unit cell (b) Initial lattice

Figure 6. Optimised design

The matrix form of the effective tensor obtained at the end of the optimisation process is

[C
≈
h

f
] = 10−1 ·

0.53 0.60 0
0.60 4.41 0

0 0 1.86


K

.

The invariants of the effective stiffness tensor of the optimal geometry are

(I1, J1, I2, J2, I3) = (1.86 · 10−1, 3.07 · 10−1, 7.53 · 10−2, 5.00 · 10−7, 3.77 · 10−5).

The optimized elastic material is obviously R0-orthotropic since J2 is negligible with respect to I2. To the
contrary, the invariants of the associated compliance tensor are

(I1, J1, I2, J2, I3) = (1.05 · 101, 9.49, 1.94 · 102, 5.23 · 101, 9.95 · 102).

which obviously shows that the resulting material is not r0-orthotropic. This numerical result substantiates
the statement in subsection 4.3 that R0-orthotropic is not inverse stable.

19Such a trivial case is isotropic and hence verify J2 = I2 = 0.
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6. Generalization to other two-dimensional constitutive laws

The aim of this section is twofold. First, it will be a question of deriving a general result concerning linear
constitutive laws in R2. We will then illustrate this result on two non-trivial situations: the piezoelectric law,
and the Cosserat elasticity.

6.1. A general theorem. The approach used for elasticity in section 4 can be generalised to any linear con-
stitutive law in R2 based on the fact that, in R2, harmonic spaces are bi-dimensional. To obtain the number
of exotic sets, one must enumerate all the particular geometric configurations that can occur between the
components of the harmonic decomposition of a given tensor. In practice, one must enumerate:

• the number of possible cancellations of harmonic components;
• for a given configuration, the number of possible alignments between the non-zero harmonic compo-

nents.

and subtract from this the number of symmetry classes. The number of exotic sets is given by the following
result:

Theorem 6.1. Consider T a space of bidimensional constitutive tensors. Let N and M be, respectively, the
number of harmonic spaces of order > 0 and −1 in the harmonic structure of T. The number of exotic
anisotropic sets of T is

]E =

(
N∑
p=0

(
N

p

)
(2p − p)

)
2M − ]C.

with ]C the number of O(2) symmetry classes of T.

Proof. As indicated by Theorem 4.1, the symmetry classes of Kn are:

I(Kn) =


n ≥ 1, {[Dn] , [O(2)]}
n = −1, {[SO(2)] , [O(2)]}
n = 0, {[O(2)]}

.

Thus, the K0 play no role in the counting of classes, the K−1 are on or off but independent of orientation,
while the non-zero Kn≥1 have an orientation. It results that, for p, q ≥ 1,

I (Kp }Kq) = {
[
Zd(p,q)

]
,
[
Dd(p,q)

]
, [Dp] , [Dq] , [O(2)]}.

with d(p, q) := gcd(p, q). Since no relative orientation are involved, the situation is simpler when p = q = −1
and

I
(
K−1 }K−1

)
= {[SO(2)] , [O(2)]}.

Therefore, the presence of M harmonic spaces of type K−1 in the harmonic decomposition of T generate 2M

different combinations.

Let N , the number of harmonic spaces Kn≥1 in the harmonic decomposition of T. Let us first assume
that none of the associated harmonic components is zero. We then have a collection of N non-zero vectors.
Among them, some can be aligned with others. We need to count the different alignments that can occur.
There is a configuration with no alignment,

(
N
2

)
configurations with a pair of aligned vectors,

(
N
3

)
with 3

vectors and so on... At the end, we can count 2N −N configurations going from the generic configuration to
the complete alignment. Suppose now that among those N harmonic components p of them are null. There
are

(
N
p

)
different manner to cancel p components among N , and each of them generated 2p − p alignment

configurations. Hence by combining the vanishing and the alignments of harmonic components we obtain(
N∑
p=0

(
N

p

)
(2p − p)

)
,

different configurations generated by harmonic tensors of order greater than 0. The total number of configu-
rations is then obtained by taking into account the configurations of hemitropic components K−1, hence

]S =

(
N∑
p=0

(
N

p

)
(2p − p)

)
2M .
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To obtain the number of exotic situations, we need to remove those that generate genuine symmetry
classes.Thus, the final formula used to obtain the number of exotic sets showed in Theorem 6.1 is obtained. �

6.2. Application to coupled constitutive laws. This result is applied here to two classical coupled constitutive
laws highlighted in the literature: piezoelectricity and Cosserat elasticity.

6.2.1. Piezoelectricity. This constitutive law couple mechanical state with the electric one. The electrical
state is described by two vector fields: the electric displacement d

∼
and the electric field e

∼
. As in the

mechanical situation, these fields are connected by a constitutive law that describes the behaviour of each
different material. For linear conductivity, this relation can be written

d
∼

= S
∼
· e
∼

in which S
∼

is a second-order tensor, known as the permittivity tensor Landau and Lifshitz (1984). For

non-centro symmetric materials these two phenomena are not independent but coupled Landau and Lifshitz
(1984). In this situation the constitutive law reads

(6.1)

σ∼ = C
∼

: ε
∼
− e
∼
· P
∼

d
∼

= P
∼

: ε
∼

+ S
∼
· e
∼

in which a third-order tensor P
∼

, known as the piezoelectricity tensor, responsible for the coupling appears20.

The different constitutive tensors are summed up in the following table.

Tensor Symmetries T Physical meaning

C
≈

T(ij) (kl) Ela Fourth-order elasticity tensor

P
'

Ti(jk) Piez Piezoelectric tensor

S
∼

T(ij) Con Dielectric susceptibility tensor

The determination of the number of exotic sets requires the knowledge of the harmonic structure of the
constitutive tensors. These structure together with the number of exotic sets are provided in the table below:

T H N M ]S ]C ]E
Ela 2K0 ⊕K2 ⊕K4 2 0 5 4 1
Piez 2K1 ⊕K3 3 0 15 4 11
Con K0 ⊕K2 1 0 2 2 0

We denote the space of the piezoelectric law by Piez, its harmonic structure is obtained from those of the
constitutive tensors which compose it

Piez = 3K0 ⊕ 2K1 ⊕ 2K2 ⊕K3 ⊕K4.

Knowing that this law has 7 regular classes, the number of exotic sets is then determined

N = 6; M = 0; ]C = 7 ⇒ ]E = 530.

We observe that the number of exotic set of the coupled law is not the sum of the exotic set of its constituents.

20Depending on the considered set of primary variables, four different conventions can be used to express the law of piezo-

electricity Meitzler, Tiersten, Warner, Berlincourt, Couqin and Welsh III (1988). The one chosen here is regarded as the most
general according to the IEEE Standard on Piezoelectricity Meitzler et al. (1988). In any case, the results are independent of
the chosen convention
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6.3. Cosserat elasticity. We consider here the classical formulation of Cossrat elasticity in small-strain as
introduced for instance in (Eremeyev, Lebedev and Altenbach, 2012; Forest, 2005), using the linear stretch
strain tensor e

∼
and the linear wryness tensor κ. By duality we define the stress tensors: s

∼
the asymmetric

stress tensor, and m the couple-stress tensor. It should be emphasised that, in contrast to the standard
elasticity, the strain and stress tensors e

∼
and s

∼
are not symmetric. Consequently, the constitutive law of

linear cosserat elasticity is expressed as: s
∼

= A
≈
.. e
∼
− B
'
. κ

m = B
'
T .. e
∼

+ d
∼
. κ

The harmonic structure of this coupled elastic law has been derived in (Auffray, El Ouafa, Rosi and Desmorat,
2021b), associated results are provided in the following table:

Table 2. Number of exotic sets for tensor spaces in linear cosserat elasticity

Tensor Symmetries T H N M ]S ]C ]E
A
≈

Tij kl Cos K−1 ⊕ 3K0 ⊕ 2K2 ⊕K4 3 1 30 6 24

B
'

Tijk Cou 3K1 ⊕K3 4 0 49 4 45

d
∼

T(ij) Rot K0 ⊕K2 1 0 2 2 0

We denote by Cos the space of the Cosserat elasticity law, its harmonic structure is obtained from those
of the constitutive tensors which compose it

Cos ' K−1 ⊕ 4K0 ⊕ 3K1 ⊕ 3K2 ⊕K3 ⊕K4.

Knowing that this law has 10 regular classes (Auffray et al., 2021b), the number of exotic sets is then
determined:

N = 1; M = 1; ]C = 10 ⇒ ]E = 11064.

Following these two examples, we can observe that the number of exotic sets for a given constitutive tensor
space is significantly greater than the sum of the numbers of exotic sets for its constituent subspaces.

7. Conclusion

The main findings of this paper are as follows:

• a mathematical definition of what is an exotic set of materials has been obtained;
• this definition allowed us to verify that the space of 2D elasticity tensors has only one exotic class.

This set had been well identified in the literature and we showed that, with respect to our definition,
there are no others:

• however, our definition allowed us to obtain a general result concerning all 2D constitutive tensor
spaces;

• in the case of R0 − orthotropy, an elementary architectured cell generating such behaviour has been
identified for the first time.

The important question now is what happens for 3D elasticity. This will be the subject of future work, but
the great strength of the approach proposed here is that, via the use of adapted clips product Olive (2019),
it extends to R3. It should be noted, however, that the situation will be extremely more complex.
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Appendix A. Notations

Throughout this paper, the physical space is modeled on the Euclidean space E2 with E2 its associated
vector space. Once an arbitrary reference point chosen, those spaces can be associated and P = {e1, e2} will

denote an orthonotmal basis of E2. For forthcoming needs, let also define K = {ê1, ê2, ê3} the orthonormal

canonical basis of R3, K will be referred to as the Kelvin basis.

• Tn(R2): = ⊗nR2, the vector space of 2D tensors of order n;
• Sn(R2): the subspace of Tn(R2) of totally symmetric tensor space with respect to the permutation

of its indices;
• I
≈

: fourth-order identity tensor of S2(R2) , Iijkl = 1
2 (δikδjl + δilδjk);

• K
≈

: spherical projector for R2 , Kijkl = ( 1
2 1
∼
⊗ 1
∼

)ijkl = 1
2δijδkl;

• J
≈

: deviatoric projector for R2, Jijkl = Iijkl −Kijkl = 1
2 (δikδjl + δilδjk − δijδkl);

• Dk: the dihedral group with 2k elements generated by R(2π/k) and σx, in which R(θ) is a rotation
by an angle θ and σx is the reflection across the line normal to x;

• Zk: the cyclic group with k elements generated by R(2π/k);
• Zσx

2 : the cyclic group with 2 elements generated by σx
• ': the isomorphism relation;
• ⊗: standard tensor product and ⊗n indicates its n power;
• ⊕: the direct sum of vector spaces;

•
(r)
· : the r-contraction of two tensors T1 ∈ Tn1(R2) and T2 ∈ Tn2(R2) in any orthonormal basis,

(T1

(r)
· T2)i1···in1−rjr+1···jn2

:= T 1
i1···in1−rk1···krT

2
k1···krjr+1···jn2

, which is a tensor of order n1 + n2 − 2r;

• (·)s: complete symmetrisation of a tensor;
• �: symmetric tensor product between two tensors S1 ∈ Sn1(R2) and S2 ∈ Sn2(R2), S1 � S2 :=

(S1 ⊗ S2)s ∈ Sn1+n2(R2);
• ∗: the harmonic product between two harmonic tensors K1 ∈ Kn1 and K2 ∈ Kn2 , it is defined as

K1 ∗K2 the projection of the classical tensor product on Kn1+n2 . This product is computed as follows

(K1 ∗K2) = K1 �K2 −
1

2
(1
∼
⊗ (K1 ·K2))s

• ×: the skew-symmetric contraction between two totally symmetric tensors S1 ∈ Sn1(R2) and S2 ∈
Sn2(R2), it is defined as:

(S1 × S2) := −(S1 · ε∼ · S2)s ∈ Sn1+n2−2(R2),

where ε
∼

is the 2D Levi–Civita tensor. In any orthonormal basis (eee1, eee2), we get εij = det(eeei, eeej) and

(S1 × S2)i1...in1+n2−2
= −

(
εjkS

1
ji1...in1

S2
kin1+1...in1+n2−2

)s
.

Appendix B. Symmetry classes of the compliance tensor

From a physical point of view, and for a given material, the stiffness tensor and the compliance tensor are
two equivalent ways of describing the macroscopic behaviour resulting from an identical micro-structure. It
therefore seems natural that their symmetry groups, and thus their symmetry classes, coincide. This seems
so natural that, up to authors best knowledge, no mathematical proof of this point has been given. A simple
proof of that point is provided here.

Theorem B.1. If C
≈

and S
≈

are two elasticity tensors satisfying S
≈
.. C
≈

= C
≈
.. S
≈

= I
≈

then GC
≈

= GS
≈

.

Proof. Let consider C
≈

as a symmetric second-order tensor on S2(R3), and denote by [C
≈

] its matrix represen-

tation with respect to a basis of R3. Let pC
≈

(X) be the characteristic polynomial of [C
≈

],

p(X) = X3 − σ1X2 + σ2X − σ3
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in which σk are elementary symmetric polynomials:
σ1 = λ1 + λ2 + λ3 = tr(C

≈
),

σ2 = λ1λ2 + λ2λ3 + λ1λ3,

σ3 = λ1λ2λ3 = det(C
≈

),

It should be noted that symmetric polynomial are O(3)-invariant polynomial of C
≈

, i.e.

∀g ∈ O(3), σk(g ? C
≈

) = σk(C
≈

)

Hence since σk are O(3)-invariant, they are also O(2)-invariant for any O(2) subgroups of O(3).
From Cayley-Hamilton theorem, it is known that p(C

≈
) = 0, i.e.

p(C
≈

) = C
≈
3 − σ1C

≈
2 + σ2C

≈
− σ3 I

≈
= 0

Multiplying this relation on the left by S
≈

, and since σ3 6= 0, we obtain that

S
≈

=
1

σ3

(
σ2 I
≈
− σ1C

≈
+ C
≈
2
)

Hence S
≈

is polynomial in C
≈

, S
≈

= P(C
≈

). Let g ∈ G(C
≈
≈

),

g ? S
≈

= g ? P(C
≈

) = P(g ? C
≈

) = P(C
≈

) = S
≈

hence, G(C
≈

) ⊂ G(S
≈

). Since C
≈

can be expressed in the same way as a polynomial function in S
≈

, the same

reasoning leads to the reverse inclusion and to the final conclusion that

G(C
≈

) = G(S
≈

)

�

The explicit decomposition of S
≈

= C
≈
−1 has the same structure as that of C

≈

C
≈
−1 = S

≈
= f(α−, β−, h

∼
−,H
≈
−),

in which {α−, β−, h
∼
−,H
≈
−} denotes the harmonic components of C

≈
−1. These components can be expressed

in terms of those of C
≈

(B.1) α− =
1

44
(4αβ− h

∼
: h
∼

), β− =
1

24
(2α2−H

≈
:: H
≈

), h
∼
− =

1

∆
(H
≈

: h
∼
−αh
∼

), H
≈
− =

1

2∆
(h
∼
∗ h
∼
−2βH

≈
),

with ∆ defined as:

∆ = α2β − 1

2
βH
≈

:: H
≈
− 1

2
αh
∼

: h
∼
− 1

2
h
∼

: H
≈

: h
∼
,

The invariants of S
≈

= C
≈
−1 are denoted

(
I−1 , J

−
1 , I

−
2 , J

−
2 , I

−
3

)
. They are rational functions of those of C

≈
:

I−1 =
1

4∆
(4I1J1 − I2) , J−1 =

1

2∆

(
2I21 − J2

)
,

I−2 =
1

∆2

(
1

2
J2I2 − 2I1I3 + I21I2

)
, J−2 =

1

4∆2

(
1

2
I22 − 4J1I3 + 4J2

1J2

)
,

and

I−3 =
1

2∆3

(
I23 −

1

4
I22J2 − J1J2I3 − I1I2I3 + 2I1J1I2J2 +

1

2
I21I

2
2 − 2I21J1I3

)
,

with ∆ the determinant of C
≈

:

∆ =
1

2
(I3 − I1I2 − J1J2 + 2I21J1).

It is obvious that for C
≈

to be invertible ∆ 6= 0.
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