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Highlights:  
 

- Planktonic assemblages and marine/terrestrial biomarker comparison. 
- Late deglaciation, Heinrich Stadial 1 and Bølling-Allerød in the South Adriatic Sea. 
- Two-step division of Heinrich Stadial 1, following changes in humidity on land. 
- Melting water during the deglaciation inferred by planktonic assemblage proxies. 
- Heinrich Stadial 1 partition well correlated with other paleoclimatic records.  
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Abstract 22 
A multiproxy study combining calcareous plankton assemblages (coccolithophore and planktonic 23 
foraminifera), and terrestrial (n-alkanes) and marine (alkenones) biomarkers was carried out in a sediment core 24 

(ND14Q-AR2) from the South Adriatic Sea. The focus of the study is to investigate millennial-to-centennial 25 
scale climate variability in the Eastern Mediterranean during the last deglaciation, between 20 and 11 ka BP. 26 

The high-resolution reconstruction allows for the characterization of the impact of the Heinrich Stadial 1 (HS1, 27 

here identified between 17.1 and 14.9 ka BP) at a centennial/multi-decadal time scale resolution. Based on 28 

terrestrial proxies, the HS1 interval has a two-fold partition: HS1a (17.1-15.9 ka BP), characterized by 29 

decreasing temperatures and relative high humidity, and HS1b (15.9-14.9 ka BP), characterized by the coldest 30 

temperatures and drier conditions on land. Terrestrial proxies suggest changes in moisture availability on land 31 
and ice melting delivery from the Alps during HS1. This period is followed by the Bølling-Allerød record (B-32 

A, 14.9-12.3 ka BP) indicating ameliorated climate conditions and distinct local hydrological signals, related 33 

to global melt event similar to the Melt Water Pulse-1A. Finally, the comparison of our results with other 34 

Northern Hemisphere climatic records shows a good correspondence between the temperature variations in 35 
the South Adriatic Sea and the Greenland ice core oxygen isotope record, highlighting the climatic response 36 

of the South Adriatic to global climate variations. Comparison with other Mediterranean paleoclimatic records 37 

suggests a two-steps reorganization of the ocean/atmospheric circulation during the HS1 in the mid- and low-38 
latitudes during the HS1 interval, but also a connection with the tropical Northern Hemisphere climate. 39 
 40 

 41 
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1. Introduction 42 

 43 
The last deglaciation was punctuated by a series of large amplitude oscillations that left a distinct imprint in 44 
the North Atlantic and Greenland records (Bond et al., 1992; Broecker et al., 1992; Dansgaard et al., 1993; 45 

Bard et al., 2000; Rasmussen et al., 2006; Stanford et al., 2011; Clark et al., 2012; Schwab et al., 2012; 46 
Toucanne et al., 2015; Repschläger et al., 2015; Hodell et al., 2017). Across this transition, the most severe 47 

climatic period known as the Heinrich Stadial 1 (HS1) is well documented in the western Mediterranean (e.g. 48 

Martrat et al., 2004, 2014; Sierro et al., 2005; Combourieu Nebout et al., 2009; Rogerson et al., 2010; Ausín 49 
et al., 2015; Naughton et al., 2016; Bazzicalupo et al., 2018). Cold and fresher water inflow from iceberg 50 

melting through Strait of Gibraltar most likely caused significant modification of the water column (Cacho et 51 

al., 1999; Pérez-Folgado et al., 2003; Colmenero-Hidalgo et al., 2004; Martrat et al., 2004, 2014; Sierro et al., 52 

2005; Jiménez-Amat and Zahn, 2015; Toucanne et al., 2015) and notable changes on land in southern Europe 53 

(Allen et al., 1999; Sanchez Goñi et al., 2002; Combourieu Nebout et al., 2009; Naughton et al., 2016). Several 54 
records of HS1 (ca. 17.5±14.5 ka BP) in the western Mediterranean pointed out the complexity of this interval 55 

involving changes in the atmospheric circulation and inflow of cold Atlantic waters (Moreno et al., 2005; 56 

Fletcher and Sánchez Goñi, 2008; Frigola et al., 2008; Melki et al., 2009; Rodrigo-Gámiz et al., 2011; 57 
Martinez-Ruiz et al., 2015; Bazzicalupo et al., 2018). Other studies in the central and eastern Mediterranean 58 

revealed that the impact of HS1 was not confined to the western Mediterranean and Atlantic region and that 59 
the eastern basin experienced marked cold and arid climate conditions during this period (Kwiecien et al., 60 
2009; Kotthoff et al., 2011; Desprat et al., 2013; Sicre et al., 2013; Castañeda et al., 2016). In fact, in the 61 

Adriatic Sea, HS1 was characterized by increased aridity and extremely cold conditions (Asioli et al., 2001) 62 
and some other records highlight distinct change in surface water temperatures, such as a two-step HS1 cooling 63 
(Sicre et al., 2013).  64 

The present study provides the first centennial/multi-decadal time scale reconstruction of paleoenvironmental 65 

conditions across the last deglaciation, between 20 and 11 ka BP, in the South Adriatic Sea (SAS), combining 66 
terrestrial and marine biomarkers with calcareous plankton assemblages (coccolithophores and planktonic 67 

foraminifera). The sediment core ND14Q-AR2 used for this study was retrieved from the deepest part of the 68 
South Adriatic basin. This area provides an ideal location for high resolution paleoclimatic reconstructions 69 
because of thick deglaciation and Holocene sedimentary sequences and recurrent tephra layers for 70 

geochronological constraints (Siani et al., 2004, 2013; Lowe et al., 2007; Jalali et al., 2018; Cascella et al., 71 

2019; Totaro et al., 2022). Terrestrial and marine biomarkers were used to infer environmental changes such 72 
as Sea Surface Temperatures (SSTs), in tandem with terrestrial input associated with humidity changes on 73 

adjacent lands (Jalali et al., 2018; Ternois et al., 2000). Recent studies have proven the value of cross-analysis 74 

of marine and terrestrial biomarkers to interpret multidecadal climatic variations contained in paleoclimate 75 
signals (Jalali et al., 2016, 2017, 2018; Schirrmacher et al., 2019). In fact, paired high-resolution marine and 76 
terrestrial biomarker records in the SAS over the last three millennia have shown the impact of North Atlantic 77 

Oscillation (NAO) and East Atlantic (EA) on SSTs centennial-scale variability (Jalali et al., 2018). On the 78 
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other hand, detailed calcareous plankton description from SAS are either scarce or mostly focused on 79 

planktonic foraminifera across the latest part of the deglaciation (Younger Dryas) to Holocene interval (Asioli 80 

et al., 1999, 2001; Capotondi et al., 1999; Sangiorgi et al., 2003; Favaretto et al., 2008; Piva et al., 2008; 81 
Narciso et al., 2012; Siani et al., 2013). In the same interval very few data exist on the coccolithophore 82 

assemblages (Giunta et al., 2003; Sangiorgi et al., 2003; Narciso et al., 2012; Cascella et al., 2019) and do not 83 
focus on the detail changes that occurred during the deglaciation. The study of core ND14Q-AR2 provides the 84 

first paleoenvironmental reconstruction of the deglaciation in the SAS that comprehends coccolith, planktonic 85 

foraminifera and biomarker analysis at high-temporal resolution to explore multidecadal changes at a regional 86 
scale during the deglaciation.  87 

 88 
Fig. 1: a) Modern oceanographic circulation in the Adriatic Sea, bathymetry of the area and location of the 89 

core ND14Q-AR2 (yellow dot). Black lines, surface circulation: EAC (East Adriatic Current), WAC (West 90 

Adriatic Current). Purple lines, middle water circulation: LIW (Levantine Intermediate Water). Red lines, 91 

deep water circulation: NAdDW (North Adriatic Deep Water), SADW (South Adriatic Deep Water). b) 92 
Lithological log of core ND14Q-AR2 from Totaro et al. (2022). The black line represents the portion of the 93 

core studied here.  94 

 95 

2. Study area 96 
2.1.  Oceanographic and climate setting 97 

The Adriatic Sea is a semi-closed elongated basin located between the Balkans and the east coast of the Italian 98 

Peninsula, connected to the Mediterranean Sea through the Strait of Otranto (Fig.1a). The Adriatic bathymetry 99 



 4 

is characterized by a shallow northern basin, with an average depth of ca. 35 m, which increases in the southern 100 

sector to an average depth of ca. 800 m (Ridente and Trincardi, 2002, 2006; Trincardi et al., 2007) and to about 101 

1200 m in the deepest portion of the basin, the South Adriatic Pit (Artegiani et al., 1997). Surface water 102 
circulation in the Adriatic Sea is characterized by the cyclonic circulation conditions of the South Adriatic 103 

Gyre (SAG, *DþLü� HW� DO��� �����, involving the East Adriatic Current (EAC) flowing northwards from the 104 
eastern margin of the Strait of Otranto, along the Balkan coast, and descending as West Adriatic Current 105 

(WAC), alongside the east Italian peninsula (Fig. 1a). The WAC, through freshwater discharges mostly from 106 

the Po River and subordinately by small rivers along the Italian coast, delivers low-salinity water southwards, 107 
together with suspended and dissolved substances enriching the basin with continental-derived nutrients 108 

(Lipizer et al., 2014). Intermediate waters, flowing between 200 and 600 m, are composed by the Levantine 109 

Intermediate Water (LIW) that flows in the Strait of Otranto from the Levantine Basin (Artegiani et al., 1997) 110 

(Fig. 1a). The deepest water mass is represented by a dense water mass flowing southward from the northern 111 

sector (Northern Adriatic Dense Water, NAdDW) sustained by Bora wind, blowing from the northwest during 112 
winter �*DþLü�HW�DO���������7XUFKHWWR�HW�DO��������. The NAdDW combines with the Southern Adriatic Dense 113 

Water (SADW) in the SAS (Fig. 1a), leading to one of the main source of the Mediterranean deep waters 114 

(Lascaratos, 1993; Pinardi and Masetti, 2000; Manca et al., 2002).  115 
With regard to the atmospheric circulation, the Adriatic Sea is situated between the subtropical high-pressure 116 

zone and the mid-latitude westerlies belt �2UOLü�HW�DO��������. Westerlies dominate most of the year, although 117 
during summer, the subtropical high-pressure zone step over and the cyclonic and anticyclonic disturbances 118 
of the westerlies belt almost disappear from the Adriatic �2UOLü�HW�DO��������. These atmospheric influences, 119 

together with winter Bora winds, result in a typically Mediterranean climate characterized by stormy and 120 
relatively cold winter and hot and dry summer. 121 
 122 

3. Materials and Methods 123 
3.1. Core ND14Q-AR2 124 
Core ND14Q-AR2��ORFDWHG�LQ�WKH�VRXWKHUQ�$GULDWLF�6HD�������¶�1��������¶�(�, about 40 km from the Apulian 125 

coast (Fig.1a), was retrieved at 1013 m below sea level during the Next-Data 2014 expedition on board of the 126 
Italian R/V Urania. The coring was possible thanks to the NextData project, a scientific collaboration among 127 
several national research agencies, with the goal to acquire knowledge and know-how from climate archives 128 

in the Italian territory (http://www.nextdataproject.it/). The entire core is 540 cm long (Fig.1b), while the 129 

investigated section here extends from cm 285 to cm 505. Main lithology consists of gray/brown silty-clays, 130 
with ten interbedded cryptotephra layers and one tephra (Fig.1b). The adopted age model (Totaro et al., 2022) 131 

relies on 10 radiocarbon (14C) AMS measurements and 6 tephra (cryptotephra  and tephra) layers and was 132 

constructed using the Bayesian model with the Bayesian statistic software Bacon with the statistical package 133 
R (Blaauw and Christen, 2011).  134 
 135 

3.2. Coccolith assemblage analysis  136 

http://www.nextdataproject.it/
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A total of 99 samples were prepared and analysed for quantification of coccolithophore assemblages at a 137 

sampling step of 2 cm over an interval ca. 220 cm long, with an average temporal resolution of ca. 80 138 

yrs/sample. Samples were prepared following Flores and Sierro (1997) in order to estimate both the relative 139 
and absolute coccolith abundances. Quantitative analyses were performed using a polarized light microscope 140 

at 1000× magnification. At least 500 specimens were counted per sample. Reworked calcareous nannofossils 141 
were counted separately in the investigated fields of view and their relative % abundances determined against 142 

the 500 non-reworked coccoliths. The absolute abundances of taxa (Total N) expressed as the number of 143 

coccoliths per gram of dry sediment (Ngí�) were calculated with the following equation: 144 

ۼ ൌ ܖ ൈ ܀ ൈ ܄ ൈ ିܚ ൈ ି ൈ   145ିܞ

where N is the absolute number of nannofossils per gram of dry sediment, n is the counted number of 146 

nannofossils in a random scanned area, R is the radius of the Petri dish, V is the volume of buffered water 147 

added to the weighted dry sediment, r is the radius of the visual field used in the counting, g is the gram of dry 148 
sediment, v is the volume of the pipetted sample (water and sediment) in the Petri dish.  149 

Coccolith taxonomy mostly uses Young et al. (2003) and Jordan et al. (2004). In addition, the taxon Emiliania 150 
huxleyi was separated into two main morphotypes following size criteria: small Emiliania (SE) < 4µm and 151 
large Emiliania (LE) > 4µm (Colmenero-Hidalgo et al., 2002). Taxonomic subdivisions among 152 

gephyrocapsids follow Flores et al. (2000). The algebraic sum of Calciosolenia spp., Discosphaera tubifera, 153 
Rhabdosphaera clavigera, Umbilicosphaera foliosa, Umbilicosphaera sibogae, Umbellosphaera spp. and 154 
Oolithotus spp., i.e. taxa having preference for oligotrophic, tropical and sub-tropical waters (Winter and 155 
Siesser, 1994; Baumann et al., 2004; Boeckel and Baumann, 2004), is plotted as warm-water coccolith taxa 156 

(WWCT) and used as warm surface water proxy. 157 
 158 

3.3. Biomarker analysis 159 
Ninety-three samples were analysed for biomarkers at a sampling step of about 2 cm, with the exception of 160 
the bottom 10 cm where sampling step was increased to 4 cm. This resolution provides a temporal resolution 161 

of 1 sample every ca. 80 years, and 1 sample every ca. 160 years for the bottom 10 cm. A few grams of 162 
sediment were freeze-dried to extract lipids following Ternois et al. (2000). Both alkenones and n-alkanes 163 
were isolated from the total lipid extract by silica gel chromatography. A Varian CX 3400 gaschromatograph 164 

was used to quantify n-alkanes and alkenones after addition of 5 D-cholestane prior injection. Long-chain 165 

alkenones in open sea waters are known to be mainly produced by the coccolith taxon Emiliania huxleyi, the 166 

most abundant coccolithophore in the modern ocean (Paasche, 2002). The unsaturation index of C37 alkenones 167 

ሺ�ଷ
୩ᇲ ሻ and calibration of Conte et al. (2006) were used to derive SSTs using the following equation: 168 

�ሾ�ιሿ ൌ �െͲǤͻͷ  ͷͶǤʹͻ͵�ሾ�ଷ
୩ᇲ ሿ െ ͷʹǤͺͻͶ�ሾ�ଷ

୩ᇲ ሿଶ  �ʹͺǤ͵ʹͳ�ሾ�ଷ
୩ᇲ ሿଷ 169 

High-molecular weight n-alkanes with an odd number of carbon atoms (Ȉ>&��@�>&��@�>&��@�>&��@��170 

hereafter named TERR-alkanes) produced by higher plants were used to estimate terrestrial inputs from the 171 

vegetation. These compounds are constituents of epicuticular wax of higher plants used by the vegetation to 172 

reduce water loss by evapotranspiration (Gagosian and Peltzer, 1986). The Average Chain Length (ACL) of 173 
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n-alkanes was calculated between C27 to C33 to assess past moisture conditions on land, based on the 174 

assumption that longer chains are synthetized by plants in response to limited water availability (Gagosian and 175 

Peltzer, 1986; Eglinton and Eglinton, 2008; Jalali et al., 2018) 176 
 177 

3.4. Planktonic foraminiferal analysis  178 
Planktonic foraminifera were identified in 101 samples at sampling step of 1 cm focused on the interval 179 

between 19.6 and 13.7 ka BP the average temporal resolution is of ca. 50 yrs/sample.  The samples were dried 180 

in an oven at 50°C and washed with deionized water using a 63 µm mesh sieve. Quantitative analyses on 181 
planktonic foraminifera assemblage were carried out on 125 µm mesh sieved fractions. About 200-300 182 

specimens of planktonic foraminifera were counted and identified in each sample to have a significant statistic. 183 

The taxonomic concepts and ecological inferences are based on Hemleben et al. (1989) and Pujol and 184 

Vergnaud-Grazzini (1995). Fifteen species of planktonic foraminifera were identified. Some planktonic 185 

species were grouped as follows: Orbulina spp. includes both O. universa and O. suturalis; Globigerinoides 186 
quadrilobatus includes G. trilobus and G. sacculifer; Globigerinoides ruber includes G. gomitulus; 187 

Globigerina bulloides includes G. falconensis; Globigerinatella siphonifera includes G. calida. Analyses 188 

discriminated between left and right coiling of Globorotalia WUXQFDWXOLQRLGHV�� *�� LQÀDWD�� *�� VFLWXOD and 189 
Neogloboquadrina pachyderma. The data obtained were expressed in relative abundances (%).  190 

A planktonic foraminiferal paleoclimate curve was constructed (Cita et al., 1977; Sanvoisin et al., 1993; 191 
Capotondi et al., 2016) from the algebraic sum of warm-water species percentages (expressed as positive 192 
values) and cold-water species percentages (expressed as negative values), featuring ecological preferences 193 

and modern habitat characteristics as reported in Hemleben et al. (1989), Rohling et al. (1993), and Pujol and 194 
Vergnaud-Grazzini (1995). Warm-water species include G. ruber (white and pink varieties), G. quadrilobatus, 195 
G. siphonifera and O. universa. Cold-water species encompass G. bulloides, Globigerinita glutinata, 196 

Turborotalita TXLQTXHORED��*�� LQÀDWD��G. scitula, G. truncatulinoides left coiled and N. pachyderma right 197 

coiled. Here, we only show the abundance profile of G. truncatulinoides left coiled. Negative and positive 198 
values of the curve correspond to the cold and warm surface waters, respectively. 199 

 200 
3.5. X-ray Fluorescence (XRF) 201 
Bulk elemental geochemical composition of core ND14Q-AR2 was measured at the CORELAB laboratory of 202 

the University of Barcelona with an Avaatech XRF core scanner. The sediment core was measured at 1 cm 203 

resolution with excitation conditions of 10 kV, 0.5 mA and 10 s for major elements. For the scope of this paper 204 
only the log-ratio of K and Al is shown. Log-ratio of element intensities has demonstrated to provide the most 205 

easily interpretable signal of relative changes in chemical composition (Weltje and Tjallingii, 2008). 206 

 207 

4. Results 208 
4.1. Coccolithophore assemblage 209 
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Total N values range between 2 x 108 coccoliths/g and 2.7 x 109 coccoliths/g, with an average of 1 x 109 210 

coccoliths/g (Fig. 2a). In the lower part of the record the coccolith abundance is extremely low, while it 211 

gradually increases at ca. 17 ka BP and has highest values from 15 ka BP till the top of the record, with a brief 212 
decrease at 12 ka BP (Fig. 2a). SE represents the most abundant taxon, with percentages lying between 60 and 213 

80 % (Fig. 2b). The relative abundance of LE is generally not higher than 10% although pronounced increases 214 
occur at 16.8 ka BP, 15.9 ka BP, and between 14.4 and 13.6 ka BP (Fig. 2c). Coccolithus pelagicus ssp. 215 

pelagicus, generally representing <10% of the assemblage, shows relative abundances of about 15% during 216 

the 18-16 ka BP interval (Fig. 2d). Reworked coccolith taxa show a similar relative abundance pattern, with 217 
high values in the older part of the interval and declining at 18-16 ka BP (Fig. 2e). Although not a dominant 218 

component of the assemblages (never > 15 %), Florisphaera profunda exhibits very low percentages 219 

(generally < 3%) along the whole record, while rising with fluctuating abundances, between 14.8 and 13 ka 220 

BP (Fig. 2f). Among the less abundant taxa, Syracosphaera spp. (Syracosphaera histrica and Syracosphaera 221 

pulchra) and Helicosphaera carteri show a similar pattern of distinct decrease from higher relative abundances 222 
in the oldest part of the record (ca. 20-15.7 ka BP) to a decrease onward, with an isolated peaking values at ca. 223 

14.8 ka BP (Fig. 2g, h). The WWCT indicate very low abundances throughout the core, generally < 4 %, with 224 

increasing values between 14.8 and 12.3 ka BP, and from 11.5 ka BP up to the top of the studied interval (Fig. 225 
2i). Other taxa of minor abundances, not exceeding 3% of the assemblage, are not shown. They include 226 

Coccolithus pelagicus ssp. braarudii, Coccolithus pelagicus ssp. azorinus, Braarudosphaera bigelowii, 227 
Calcidiscus leptoporus ssp. small (3±�� ȝP�� C. leptoporus ssp. leptoporus (5±�� ȝP�� C. leptoporus ssp. 228 
quadriperforatus (8±��� ȝP��� Ceratolithus spp., Helicosphaera hyalina, Gephyrocapsa spp., Gladiolithus 229 

flabellatus, Umbilicosphaera hulburtiana, Pontosphaera spp., Scyphosphaera spp.  230 

 231 
Fig. 2: Coccolithophore assemblage variations from core ND14Q-AR2 (thick lines relative abundances, %; 232 

filled area absolute abundance, Coccolith/g). Reworked coccolith taxa are plotted as relative abundance (%). 233 
Total N: total coccolithophore abundance variations. Black arrows indicate significant increases/decreases in 234 

abundances as signalled in the text.  235 
 236 

4.2. Biomarker data 237 
The SST reconstruction reveals multidecadal variability over the 11-20 ka BP interval featuring rapid surface 238 

hydrological changes (Fig. 3a). Values between 20 and 17 ka BP, where temporal resolution is lower, range 239 
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between 19 and 12°C. Values decrease from 16 to 10 °C between 17 to 15.5 ka BP, to reach a minimum value 240 

of 10°C at 16 - 15 ka BP (Fig. 3a). A second cold interval (ca. 11°C) is also recorded between 12 and 11 ka 241 

BP (Fig. 3a). Between these cold periods (15 to 12.5 ka BP) SST gradually rises to nearly 16°C (Fig. 3a).  242 
TERR-alkane concentrations along the core ND14Q-AR2 do not show a clear trend but rapid shifts 243 

highlighting short-term terrestrial inputs to the site (Fig. 3b). ACL values show relatively high values during 244 
the entire interval (nearly 30). Lower ALC appeared to coincide with high TERR-alkanes (Fig. 3c).  245 

 246 
Fig. 3: Variations through time of marine (a) and terrestrial (b, c) biomarkers from core ND14Q-AR2. Thick 247 
lines 3-points average. Black arrows indicate significant increases/decreases in abundances as signalled in the 248 
text.  249 

 250 

4.3. Planktonic foraminiferal assemblage 251 
Planktonic foraminifera are well preserved and diversified. Assemblages are mainly represented by N. 252 

pachyderma right coiled (rc) and characterized by three intervals of lower values between 19.01-18.6, 17.7-253 

17.1 and 14.7-14.07 ka BP (Fig. 4a). Globigerinita glutinata, G. scitula and T. quinqueloba were identified till 254 
ca. 14.5 ka BP (Fig. 4b, c, d). G. glutinata abundance profile is characterized by two stepwise decreases at 255 
17.1 and 14.5 ka BP (Fig. 4b); G. scitula abundances fluctuate between 5 and 20% and reach maximum values 256 

between 15.42 and 14.8 ka BP before an important decrease (Fig. 4c). Turborotalita quinqueloba shows a 257 
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prominent peak at 17.2 ka BP and a progressive decrease with time opposed to the G. scitula abundances (Fig. 258 

4d). Globigerina bulloides is present throughout the studied section and shows two major peaks (ca. 30%) at 259 

14.1 ka and 16.2 ka BP (Fig. 4e). Globigerinoides ruber white shows a characteristic increase in abundance 260 
from ca. 3% to ca. 45% at 14.9 ka BP (Fig. 4f). Globorotalia inflata is only present in the uppermost part of 261 

the study section between 13.6 and 15.3 ka BP with abundance lying between 2 and 18% (Fig. 4g). 262 
Neogloboquadrina dutertrei, Orbulina spp., G. siphonifera, G. rubescens, G. quadrilobatus, G. ruber pink and 263 

G. truncatulinoides left coiled occasionally reach values between 3 to 6 %. The planktonic foraminiferal 264 

paleoclimatic curve shows a main shift from cold to warm conditions at ca. 15 ka while the older part shows 265 
relatively constant values except for two warmer intervals at 18.7-19.1 and 17.2-17.8 ka BP (Fig. 4i). 266 

 267 
Fig. 4: Foraminifera assemblage relative abundance from core ND14Q-AR2 (%; thick line 3-points average), 268 
and foram-based paleoclimate curve (thick line 3 points average). Black arrows indicate significant 269 
increases/decreases in abundances as signalled in the text.  270 
 271 

5. Discussion 272 
5.1. Surface water conditions in the SAS 273 

5.1.1. Last Glacial Maximum (LGM) 274 

Comparison between alkenone-derived SSTs and WWCT relative abundances through the record reveals 275 
several millennial-scale climate phases (Fig. 5b, c). Within the uncertainty of age models, well-known climate 276 

period from the Last Glacial Maximum to the Early Holocene period that are reflected in the Stadial and 277 
Interstadials of the Greenland ice core oxygen isotope record (Rasmussen et al., 2014) (Fig. 5a), match with 278 

SST changes as expected from ocean and atmospheric linkages with the North Atlantic region. They include 279 
the latest part of the Last Glacial Maximum (LGM, 20-17.1 ka), the Heinrich Stadial 1 (HS1, 17.1-14.9 ka), 280 

the Bølling-Allerød period (BA, 14.9-12.3 ka) and the Younger Dryas (YD 12.3-11 ka). 281 

SSTs during the LGM indicate a marked cooling (Fig. 5b). The low temporal resolution of the SST signal 282 
during this time interval, due to insufficient amount of alkenones, is consistent with the low absolute 283 

abundances of E. huxleyi (Fig. 2b, c) pointing out non-favourable growth conditions. The WWCT signal and 284 
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planktonic forams paleoclimate curve provide a more detailed picture of the surface water conditions in the 285 

SAS during the LGM and notably the extremely low and negative values respectively, witnessing cold surface 286 

water conditions (Fig. 5c, e). A warm interval starts at ca. 17.6 ka BP according to the SSTs, WWCT and the 287 
planktonic forams paleoclimate curve, and reaches 16°C between 17.5-17.1 ka BP (Fig. 5b c, e). This episode 288 

seems to be coeval with lighter į18O in Greenland ice cores indicating warmer temperature in the earlier GS-289 
2.1a (Fig. 5a). During the LGM, the high but decreasing abundances of reworked coccoliths (Fig. 6i) suggests 290 

enhanced erosion in the borderland area and continental detrital inputs to the core location (Flores et al., 1997; 291 

Bonomo et al., 2014, 2016; Maiorano et al., 2016). At that time of lower sea level, the northern Adriatic basin 292 
was almost completely subaerially exposed and the Po river mouth likely located closer to the ND14Q-AR2 293 

site (Correggiari et al., 1996; Vai and Cantelli, 2004). Synchronous low total coccolith abundances indicate 294 

that cold and turbid surface waters were not favourable to coccolith growth (Fig. 5i). Coeval increased G. 295 

glutinata and T. quinqueloba (Fig. 6h) seems to support the occurrence of land-derived nutrient in surface 296 

waters (Cita et al., 1977; Corselli et al., 2002; Geraga et al., 2008; Jonkers et al., 2010; Margaritelli et al., 297 
2018).  298 

 299 
Fig. 5: Core ND14Q-AR2 records: a) Greenland G18O (Rasmussen et al., 2014); b) alkenone base SST (red 300 

line represents a 3-points running average); c) warm coccolith taxa (WWCT) distribution pattern (black line, 301 

relative abundances, %; colored area, absolute abundances, Coccolith/g); d) summer insolation curve (Laskar 302 
et al., 2004); e) foram-based paleoclimatic curve (thick line, 3 points average); f) N. pachyderma rc relative 303 

abundances (%; dark lines, 3-points average); g) F. profunda distribution pattern (black line, relative 304 

abundances, %; colored area, absolute abundances, Coccolith/g); h) E. huxleyi > 4 Pm distribution pattern 305 

(black line, relative abundances, %; colored area, absolute abundances, Coccolith/g); i) total coccolithophore 306 

abundance variations. LGM (Last Glacial Maximum); HS1 (Heinrich Stadial 1, grey bar); B-A (Bølling-307 
Allerød); YD (Younger Dryas, grey bar); GS (Greenland Stadial and sub events 2.1a, b); GI (Greenland 308 

Interstadial and sub events: a, c, e); MWP-1A (Melt Water Pulse).  309 
 310 
 311 

5.1.2. Heinrich Stadial 1 (HS1) 312 
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The SST decline at 17.1 ka (Fig. 5b) reflects the climate response of the Adriatic Sea to the onset of the HS1 313 

event, in agreement with earlier studies in the Mediterranean (Cacho et al., 1999; Sierro et al., 2005; Kotthoff 314 

et al., 2011). SST cooling during Heinrich events in the Mediterranean has been linked to cold water inflow 315 
from the Atlantic Ocean (Cacho et al., 1999, 2001) combined with intensified cold winds in winter (Rohling 316 

et al., 1998; Cacho et al., 2000). The HS1 is identified in our core between 17.1 and 14.9 ka by a 6°C SST 317 

drop to the lowest values of the record (10°C) at 16-15 ka (Fig. 5b). The WWCT and foraminiferal paleoclimate 318 

curves do not show remarkable changes at the onset of HS1 (Fig. 5b) while conversely, HS1 cooling is clearly 319 

manifested by an abrupt increase of % N. pachyderma rc (Fig. 5f), a progressive increase of polar-subpolar 320 

taxon G. scitula (Ortiz et al., 1996; Schiebel et al., 2002) (Fig. 6b). The occurrence of N. pachyderma rc is 321 
indicative of cold and eutrophic conditions (Hemleben, et al., 1989; Pujol and Vergnaud-Grazzini, 1995; 322 

Rigual-Hernández et al., 2012). Increase abundances of opportunistic species G. bulloides, during this interval 323 

(Fig. 6c), further support enhanced nutrient availability in the upper surface ocean, most likely promoted by 324 

seasonal winter mixing and/or continental runoff (Cita et al., 1977; Schiebel et al., 2001; Corselli et al., 2002; 325 
Geraga et al., 2008; Jonkers et al., 2010; Margaritelli et al., 2018, 2020). In the Adriatic Sea, several studies 326 

reported the occurrence of N. pachyderma rc during the cold events of the last deglaciation (Asioli et al., 2001; 327 

Trincardi et al., 2007; Favaretto et al., 2008; Piva et al., 2008; Siani et al., 2010; Narciso et al., 2012). This 328 
taxon has also been found during HS1 in the Ionian Sea (Geraga et al., 2008), in the Sicily Channel (Sprovieri 329 
et al., 2003) and in the North Aegean Sea (Kotthoff et al., 2011). Finally, cold-water species G. inflata (De 330 
Castro Coppa et al., 1980; Pujol and Vergnaud-Grazzini, 1995) combined to highest values of G. scitula (Ortiz 331 

et al., 1996; Schiebel et al., 2002) between 15.3 and 14.9 ka (Fig. 6f, b) points to the coldest phase of HS1 332 

(Fig. 6a). 333 

During HS1, coccolith assemblages are also characterized by increased LE abundances (Fig. 5h). This 334 
morphotype is absent in present day assemblages with the exception of cold ocean waters in the Arctic and 335 

Subarctic regions (Hagino et al., 2005; Flores et al., 2010). Its presence in the western Mediterranean basin 336 

during the late Pleistocene and Holocene has been used to capture cold/fresher surface water masses during 337 

HS events (Colmenero-Hidalgo et al., 2002, 2004; Flores et al., 2010; Ausín et al., 2015; Di Stefano et al., 338 

2015; Bazzicalupo et al., 2018). The LE morphotype has never been documented before in the central 339 
Mediterranean nor in the Adriatic Sea, where its ecological behaviour and its potential value as 340 

ecostratigraphical pattern is unknown. Its occurrence during HS1 in our core supports the signature of cold-341 

fresher surface water most probably linked to meltwater from local continental ice and their delivery by the Po 342 

River. Highest relative abundances of this taxon are also recorded in younger sediment layers of the core and 343 
will be discussed in the following sections.  344 

The HS1, as identified at ND14Q-AR2, matches well with the cold portion of Greenland Ice counterpart GS-345 

2.1a (Fig. 5a). The SST decrease in the later phase of the HS1 is in good agreement with the extreme cooling 346 
in the eastern Mediterranean and Red Sea (Arz et al., 2003; Castañeda et al., 2010, 2016). 347 
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 348 
Fig. 6: Core ND14Q-AR2 records: a) alkenone base SST (red line represents a 3-points running average); b, 349 

c, f, g, h) foraminifera taxon distribution patterns (%; dark lines, 3-points average); e) E. huxleyi > 4 Pm 350 

distribution pattern (black line, relative abundances, %; colored area, absolute abundances, Coccolith/g); i) 351 
reworked coccolith taxa distribution pattern (black line, relative abundances, %; orange line, 3-points average). 352 

LGM (Last Glacial Maximum); HS1 (Heinrich Stadial 1, grey bar); B-A (Bølling-Allerød); YD (Younger 353 
Dryas, grey bar). 354 

 355 
5.1.3. The Bølling-Allerød (B-A)  356 

The B-A interstadial spans between 14.9 and 12.3 ka BP, as revealed by the general increase of WWCT and 357 
the gradual alkenone-SST rise from 11 to 15.5 °C (Fig. 5b), as well as by a positive shift of the foraminifera 358 

paleclimatic curve (Fig. 5e). During the B-A event, the WWCT exhibit three centennial-scale oscillations that 359 
are partially registered by planktonic foraminiferal curve as well (Fig. 5c, e). These three warmings are nearly 360 
contemporaneous to the succession of warm intervals known as GI-1e, c1-3, a (Fig. 5a) (Rasmussen et al., 361 

2014). These high frequency fluctuations were also previously observed in other planktonic foraminiferal 362 
assemblage records from the SAS (Asioli et al., 2001; Siani et al., 2010). 363 

During the B-A we observe an increase in the abundance of the deep dwelling taxon F. profunda (Fig. 5g), 364 

pointing to seasonal stratification and deep nutricline/thermocline conditions (Molfino and Mcintyre, 1990; 365 
Beaufort et al., 1997; Di Stefano and Incarbona, 2004; Balestra et al., 2008) likely related to gradual increase 366 

of insolation and related surface water warming (Fig. 5d) (Beaufort et al., 1997, 2001). Indeed, the increase of 367 

Total N (Fig. 5i) suggests ameliorated surface water conditions for the coccolithophore assemblage i.e., 368 

warmer surface waters and seasonal nutrients availability, likely related to seasonal mixing. The strong 369 
increase of G. bulloides (Fig. 6c) together with the peaks in abundance of G. truncatulinoides and of G. inflata 370 

(Fig. 6f, g), suggest a deep vertical mixing during the winter season in the study sites at the onset of the B-A, 371 

with a strong advection of nutrients from the deeper layers to the surface (Schiebel et al., 2001; Margaritelli et 372 
al., 2020).  373 

LE occurrences rising between 14.7 and 13.4 ka BP is also observed. As mentioned before the distribution of 374 
this taxon is not known in the central Mediterranean but well documented in the western Mediterranean 375 

throughout this interval and has been related to the inflow of colder and fresher Atlantic water in the Alboran 376 
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Sea, likely deriving from iceberg melting (Colmenero-Hidalgo et al., 2002, 2004; Flores et al., 2010; Ausín et 377 

al., 2015; Bazzicalupo et al., 2018). Given its ecological preference, the LE increase in our record seems to 378 

point out to cold freshwater outburst in the SAS through the Po River due to Alpine and Apennine ice sheets 379 
melting resulted from ameliorated climate in the North Atlantic (as revealed by Greenland ice). Indeed 380 

previous data provide evidence of ice melting in the Alps mountains surrounding the Adriatic basin and 381 
subsequent increased run off of the Po River (Combourieu-Nebout et al., 1998; Asioli et al., 2001). This 382 

hydrological episode recorded in the SAS would reflect the more global ice melt event known as the MWP-383 

1A (Bard et al., 1996; Fairbanks et al., 2005) (Fig. 5h), occurring around 14 ka BP (Liu and Milliman, 2004; 384 
Stanford et al., 2006). Altogether, our results suggest that the LE may be a valuable indicator of meltwater 385 

episodes into the SAS. 386 

A closer look of the centennial scale variability shows that the major peak of G. bulloides and G. inflata 387 

occurring between 14.5 and 14.0 ka BP coincides with low relative abundances of LE (Fig. 6e, f). This opposite 388 

behaviour between taxa might feature decadal-scale shifts from freshwater driven stratified conditions 389 
(increase of LE) to cold and strong winds allowing for strong water column mixing and higher surface water 390 

nutrients (increase of G. inflata and G. bulloides). 391 

 392 
5.1.4. Younger Dryas (YD) 393 

Between 12.3 and 11.6 ka BP, alkenone SSTs show an abrupt cooling from 15.5 °C to values oscillating 394 
between 11-13°C (Fig. 5b) evidencing the return to cold water conditions of the YD period in the 395 
Mediterranean Sea (Cacho et al., 1999; Asioli et al., 2001; Di Stefano and Incarbona, 2004; Siani et al., 2010; 396 

Kotthoff et al., 2011; Sicre et al., 2013; Martrat et al., 2014). The coeval low relative abundances of WWCT 397 
are consistent with surface water cooling at the time of the GS-1 in Greenland ice (Fig. 5a).  398 
 399 

5.2. Terrestrial inputs to the SAS 400 

5.2.1. Terrestrial inputs during the HS1  401 
Climate variability on land can be derived from ACL and TERR-alkanes content of the sediment. These 402 

biomarker proxies produced by higher plants allow to diagnose moisture conditions (Gagosian and Peltzer, 403 
1986; Sicre and Peltzer, 2004) and have been successfully used for paleoclimate reconstructions in the 404 
Mediterranean (Jalali et al., 2016, 2017, 2018). K/Al ratio provides a complementary information on detrital 405 

riverine discharge (Frigola et al., 2008; Nieto-Moreno et al., 2011; Rodrigo-Gámiz et al., 2011; Martinez-Ruiz 406 

et al., 2015) Indeed, the northern Mediterranean regions are a major source of illite. River-derived increase of 407 
illite supply leads to higher K/Al ratios in the sediments during humid intervals (Martinez-Ruiz et al., 2015). 408 

The relatively high ACL values (Fig. 7b) suggest prevalent arid conditions on adjacent land and catchment 409 

basins, in agreement with the dominance of desert and semidesert vegetation type during the deglaciation in 410 
the central Mediterranean (Combourieu-Nebout et al., 1998; Magri and Sadori, 1999; Desprat et al., 2013). 411 
This general trend is interrupted by short humid phases as indicated by rapid ACL decrease (Fig. 7b). These 412 
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brief periods are generally accompanied by peaking TERR-alkanes, that might suggest a link with increased 413 

river run-off (Fig. 7a).  414 

Of particular interest is a two-phase structure of HS1 portrayed by HS1a (17.1-15.9 ka BP) and HS1b (15.9-415 
14.9 ka BP) (Fig. 7) not previously identified in the SAS. Low ACL values during HS1a suggest relatively 416 

humid conditions, while concurrent low TERR-alkanes are indicative of reduced higher plant material export 417 
to the SAS (Fig. 7d). Concomitant high values of K/Al ratio in the sediment point out to enhanced riverine 418 

discharge under relatively wet conditions (Fig. 7c). Abundance peak of reworked coccolith taxa during HS1a 419 

seems to support enhanced detrital inputs in the SAS (Fig. 7d). Altogether these data suggest enhanced delivery 420 
of detrital inputs with a lower contribution of higher plant with lower ACL, likely from an Alpine source. In 421 

addition, the herbivorous opportunistic planktonic foraminifera G. bulloides, often associated with high 422 

continental runoff (Pujol and Vergnaud-Grazzini, 1995; Rohling et al., 1997; Schiebel et al., 1997; Thiede et 423 

al., 1997; Capotondi et al., 2004; Schmidt et al., 2004; Principato et al., 2006) is also abundant (Fig. 7e) 424 

confirming enhanced continental input during HS1a. In contrast, during HS1b, ACL pattern shifts to higher 425 
values suggesting reduction in moisture availability on land (Fig. 7b). The low K/Al ratio during HS1b well 426 

supports reduced river input (Fig. 7c) as well as low TERR-alkanes (Fig. 7a).  427 

Between HS1a and HS1b, peaking TERR-alkanes and low ACL (15.8 ka BP, Fig. 7a) suggests enhanced 428 
transport of higher plant derived material to the SAS, grown under humid conditions. The concomitant increase 429 

of LE abundances suggests a link with the supply of cold fresher waters (Fig. 7f). An almost identical event in 430 
the calcareous nannofossil assemblage has been identified in the western Mediterranean (Bazzicalupo et al., 431 
2018) in the middle of the HS1, during a phase of increased melt water in the North Atlantic and/or in the 432 

Mediterranean via the Rhone River caused by Eurasian/Alps Ice Sheet complex melting (Cacho et al., 1999; 433 
Sierro et al., 2005; Frigola et al., 2008; Melki, 2011). The brief fresh water supply seen at our core location 434 
between HS1a and HS1b can thus reasonably be assigned to Alpine and Apennine melting ice (Asioli et al., 435 

2001; Storms et al., 2008). The imprint of the short-lived episode in the middle of HS1 is also seen in the 436 

western Mediterranean (Martrat et al., 2014; Hodell et al., 2017) and in the Gulf of Cadiz (Sierro et al., 2020) 437 
showing lighter VHDZDWHU�į18O and warmer SST. 438 

 439 
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Fig. 7: Core ND14Q-AR2 records: a, b) terrestrial biomarker (TERR-alkanes and ACL27-33; thick lines 3-points 440 

average); c) K/Al log ratio (thick line 3-point average, azure areas represents tephra layers levels removed 441 

from the figure to facilitate the observation); d) reworked coccolith taxa distribution pattern (black line, relative 442 
abundances, %; orange line, 3-points average); e) G. bulloides distribution pattern (%; dark lines, 3-points 443 

average); f) E. huxleyi > 4 Pm distribution pattern (black line, relative abundances, %; colored area, absolute 444 

abundances, Coccolith/g). LGM (Last Glacial Maximum); HS1 (Heinrich Stadial 1, grey bar); B-A (Bølling-445 

Allerød); YD (Younger Dryas, grey bar); MWP-1A (Melt Water Pulse).  446 

 447 
5.2.2. Terrestrial inputs during the B-A and YD. 448 

During the earlier phase of B-A (14.9-13.4 ka BP), ACL values were generally lower (Fig. 7b) whereas TERR-449 

alkanes show fluctuating values, indicating drier conditions on land. This finding is in apparent disagreement 450 

with the general indication of wetter climate conditions on land during the B-A, in contrast to HS1 and YD, 451 

based on central Mediterranean pollen records (Combourieu-Nebout et al., 1998; Magri and Sadori, 1999; 452 

Asioli et al., 2001; Desprat et al., 2013). However, it seems consistent with evidence of relatively warm climate 453 
and limited water availability, as suggested by dominant semi-desert plant remains in the central Mediterranean 454 

(Pollen Zone PZ2 between 13.7 and 13.1 ka BP, Desprat et al., 2013). Relatively high concentrations of the 455 
steppe taxon Artemisia (up to 30%) during the early stage of the B-A are also reported in the SAS (labelled as 456 
GI-1 e-d in Asioli et al., 2001).  457 
The most recent part of B-A (13.4-12.3 ka BP) is characterized by two TERR-alkane increases concomitant 458 

with low ACL-values suggesting increased moisture availability (Fig. 7b). This increased humid local 459 

condition is well known throughout the Mediterranean as a major attribute of climate ameliorating in the basin 460 

(Combourieu-Nebout et al., 1998; Magri and Sadori, 1999; Combourieu Nebout et al., 2009; Fletcher et al., 461 
2010; Desprat et al., 2013). The B-A interval ends with an increase of ACL indicating drier conditions again 462 
supported by evidence of prevailing dry conditions in the Mediterranean during the YD (Combourieu-Nebout 463 

et al., 1998; Fletcher and Sánchez Goñi, 2008; Combourieu Nebout et al., 2009; Fletcher et al., 2010; Desprat 464 

et al., 2013).  465 
 466 

5.3. The Two-phase structure of the HS1 467 

Our results in the Adriatic Sea reinforce the two-fold structure of HS1 found in many records around the world 468 

(Huang et al., 2019 and references therein), yet the forcing and physical mechanisms at play are still debated. 469 

Currently, in the central Mediterranean the detailed structure of HS1 is poorly documented and few records 470 

reported on prolonged aridity in the region across the interval embracing HS1 (Combourieu-Nebout et al., 471 

1998; Asioli et al., 2001; Desprat et al., 2013), although some authors did not detail different phases within 472 
the HS1.  473 

The distinct two-phase structure in our core, however, are mainly fingerprinted by terrestrial proxies that 474 
appear to reflect freshwater delivery in the SAS due to ice melting from the Alps mountains. A similar pattern, 475 

within the limit of comparing different age models, was also observed in the Alboran Sea (Fig. 8b) 476 
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(Bazzicalupo et al., 2018) and in the north-western Iberia margin (Fig. 8a) (Naughton et al., 2009, 2016; 477 

Voelker et al., 2009) during the HS1a, although well recorded in the marine proxies as well, similarly related 478 

to freshwater arrival. A shift in the European moisture source distribution was also inferred during HS1 based 479 
on evidences in the Black Sea (Kwiecien et al., 2009) and in the Aegean Sea (Kotthoff et al., 2011).  480 

The SAS is under the influence of both mid-latitude westerlies wind belt and the subtropical high-pressure 481 
zone �2UOLü et al., 1992). Moister conditions during the HS1a are likely related to the strength and latitudinal 482 

position of the westerly winds, with their southern position leading to relatively wetter conditions in southern 483 

Europe and in the Mediterranean region.  484 
At the onset HS1 cold and fresh water from ice sheet melting was released in the North Atlantic, affecting the 485 

surface ocean circulation (Bond et al., 1992; Stanford et al., 2011). Subsequent collapse of the AMOC, 486 

diminished transport of warm and moist from low to high latitudes (Rahmstorf, 1994). This alteration of the 487 

AMOC resulted in North Atlantic/western Europe cooling (e.g. Seidov and Maslin, 1999; McManus et al., 488 

2004). The associated southward displacement of the ITCZ and moisture transport to mid-latitudes resembles 489 
the negative NAO state (Trigo et al., 2004). Variability in precipitation and flood activity in the Alpine region 490 

and the northern catchment basin of the SAS have been related to the NAO variability (Bartolini et al.,  2009; 491 

Wirth et al., 2013). In the eastern Mediterranean, Castañeda et al. (2016) (Fig. 8f) describes a two-phase HS1 492 
nearly synchronous with core ND14Q-AR2: HS1a (c.a. 17.5-16 ka BP) characterized by relatively warmer 493 

SSTs and HS1b (16-14.5 ka BP) corresponding to colder and driest conditions on land, which is in good 494 
agreement with the HS1 interval in our core (Fig 8e, f). Huang et al. (2019) hypothesized a southward migration 495 
of the ITCZ reaching its southernmost position during the HS1b in agreement with climate modelling 496 

highlighting the southward shift of the ITCZ as the AMOC weakened (Kageyama et al., 2009). During HS1b, 497 
colder conditions in the Adriatic Sea are consistent with those of the easternmost Mediterranean (Fig. 8f) 498 
(Essallami et al., 2007; Castañeda et al., 2010, 2016) and with the weakest Asian monsoon (Fig. 8g) (Cheng 499 

et al., 2016; Huang et al., 2019) pointing to a linkage with the tropical Northern Hemisphere climate. Colder 500 

SSTs likely caused a further weakening of the AMOC (Huang et al., 2019) leading a southernmost position of 501 
the ITCZ (Deplazes et al., 2013; Zhang et al., 2014) explaining drier conditions in the northern-low to middle 502 

latitudes during the HS1b (Huang et al., 2019). The comparison between the Adriatic Sea, eastern 503 
Mediterranean and Southern-central Asian domain (Fig. 8) provides evidence of a mid- and low-latitudes 504 
reorganization of the atmospheric circulation during HS1 associated with the AMOC weakening. 505 
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 506 
Fig. 8: Comparison of climate records across the Last Deglaciation in the Northern Hemisphere. a) Forams-507 
based MAT winter SST curve from Core MD99-2339, Iberian Margin, North Atlantic (NA) (Voelker et al., 508 

2009); b) Alkenone SST curve from ODP Core 976, Alboran Sea, Western Mediterranean (WM) (Martrat et 509 

al., 2014); c) Terrestrial TERR-alkanes curve, d) Alkenone SST curve and e) ACL27-33 curve, from Core 510 
ND14Q-AR2, South Adriatic Sea (This study); f) TEX86 SST curve from Core GeoB 7702-3, Eastern 511 

Mediterranean (Castañeda et al., 2010); g) Composite G18O Asian Monsoon record, Central China (Cheng et 512 

al., 2016). Yellow shaded areas indicate HS1 interval as indicated by the various cited authors: a) H1 (Voelker 513 

et al., 2009); b) HS1a, b, c (as indicated in Bazzicalupo et al., 2018); f) HS1a, b (Castaneda et al., 2016). Grey 514 

shaded area indicates the HS1 division in the ND14Q-AR2 core (see text). Black Dashed line correlate HS1 515 

divisions among climate records; grey dashed line is a tentative correlation between lowest monsoon activity 516 
registered in Asia (Cheng et al., 2016) and HS1b in our core (as indicated in the text).  517 

 518 

6. Conclusions 519 
In this work we present the first multiproxy record from the SAS that combines terrestrial and marine 520 

biomarkers with calcareous plankton assemblages in order to investigate centennial timescale climate 521 
variability during the last deglaciation. Alkenone SSTs, coccolithophore and planktonic foraminiferal 522 

assemblages along core ND14Q-AR2 evidence the influence of cold and fresher waters from melting 523 

continental alpine ice on the hydrology of the SAS that are consistent with Greenland ice core and SST 524 
reconstruction from other Mediterranean records. Terrestrial biomarkers suggest prevalent arid conditions on 525 

adjacent land and catchment basins interrupted by short humid phases accompanied by enhanced river run-off. 526 

Most importantly, our high-resolution reconstruction provides a detailed description of the HS1 (17-14.9 ka) 527 
that identifies a two-fold structure very similar to other records from the Mediterranean and other locations of 528 
the Northern Hemisphere. This feature is particularly expressed in the terrestrial proxy record highlighting the 529 



 18 

role of atmospheric influence on the SAS, reflecting interactions with the cryosphere, e.g., ice melting from 530 

the Alps and delivery by the Po River. Shifts of the ITCZ associated to changes of the AMOC strength seems 531 

to be driving centennial scale changes during HS1, as further supported by the good correspondence of 532 
Mediterranean records with those of Central Asia indicating decreased monsoon activity. A brief event of 533 

Alpine and Apennine ice melting seems to have interrupted the humid/arid phases of HS1, highlighted by 534 
increased LE abundances. Finally, our results demonstrate that LE might be a valuable indicator of cold and 535 

low salinity waters from Alpine and Apennine glaciers melting and therefore a potential ecostratigraphical 536 

marker in the SAS during the deglaciation. 537 
 538 
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