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Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation

Federated learning has emerged as the predominant framework for distributed machine learning over decentralized data, e.g. in mobile phones. The usual approaches suffer from a distribution shift: the model is trained to fit the average population distribution but is deployed on individual clients, whose data distributions can be quite different. We present a distributionally robust approach to federated learning based on a risk measure known as the superquantile and show how to optimize it by interleaving federated averaging steps with quantile computation. We demonstrate experimentally that our approach is competitive with usual ones in terms of average error and outperforms them in terms of tail statistics of the error.

Introduction

Federated learning is a distributed machine learning framework where many clients (e.g. mobile devices) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data private and local to the client throughout the training process [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF][START_REF] Peter Kairouz | Advances and Open Problems in Federated Learning[END_REF]. It has found widespread adoption across industry [START_REF] Kallista | Towards Federated Learning at Scale: System Design[END_REF][START_REF] Paulik | Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications[END_REF] for applications ranging from smart device apps [START_REF] Yang | Applied Federated Learning: Improving Google Keyboard Query Suggestions[END_REF][START_REF] Hard | Federated Learning for Mobile Keyboard Prediction[END_REF] to healthcare [START_REF] Brisimi | Federated learning of predictive models from federated Electronic Health Records[END_REF][START_REF] Huang | Patient Clustering Improves Efficiency of Federated Machine Learning to Predict Mortality and Hospital stay time using Distributed Electronic Medical Records[END_REF].

A key feature of federated learning is statistical heterogeneity, i.e., client data distributions are not identically distributed [START_REF] Peter Kairouz | Advances and Open Problems in Federated Learning[END_REF][START_REF] Li | Federated Learning: Challenges, Methods, and Future Directions[END_REF]. Each client is a user who generates diverse data depending on their unique personal, cultural, regional, and geographical characteristics. This data heterogeneity in federated learning manifests itself as a train-test distributional shift. Indeed, the usual approach minimizes the prediction error of the model on average over the population of clients available for training [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] while at test time, the same model is deployed on individual clients. This approach can be liable to fail on tail clients whose data distribution is far from most of the population or who may have less data than most of the population. It is highly desirable, therefore, to have a federated learning method that can robustly deliver good predictive performance across a wide variety of natural distribution shifts posed by individual clients.

We present in this paper a robust approach to federated learning that guarantees a minimum level of predictive performance to all clients even in situations where the population is heterogeneous. The approach we develop addresses these issues by minimizing a learning objective based on the notion of a superquantile [START_REF] Tyrrell | Conditional Value-at-Risk for General Loss Distributions[END_REF][START_REF] Tyrrell Rockafellar | Risk tuning with generalized linear regression[END_REF], a risk measure that captures the tail behavior of a random variable. Our algorithm relies on quantile statistics of the losses to filter out clients on which to run federated averaging steps. Experimental results on benchmark datasets shows that our approach yields improved performance on tail clients over a number of state of the art baselines while maintaining competitive performance on the average error.

Suppose we have n clients such as mobile phones. The loss incurred by the model w ∈ R d on this client i is F i (w) := E z∼pi [f (w; z)], where p i is the distinct data distribution on client i and f (w; ξ) is the loss function e.g. cross entropy, on data point z. The usual objective of federated learning [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] is simply the empirical risk minimization (ERM) approach

min w∈R d 1 n n i=1 F i (w) . (1) 
Owing the natural statistical heterogeneity in the data, the data distribution p encountered at test time on an unseen test client might be different from the population training distribution p train = (1/n) n i=1 p i , leading to poor performance on such clients. Our goal is to improve the performance on such tail clients.

To this end, we directly minimize the average loss across tail clients above a certain tail threshold. We formalize this through the notion of a risk measure known as the superquantile, a tail summary statistic of random variables [START_REF] Tyrrell | Conditional Value-at-Risk for General Loss Distributions[END_REF]. The (1 -α)-superquantile is defined for a continuous random variable Z and α ∈ (0, 1) as

S α (Z) = E[Z | Z > Q α (Z)], where Q α (Z) is the (1 -α)-quantile of Z.
A similar interpretation holds for discrete distributions; it is formally defined as

S α (u 1 , • • • , u n ) := max n i=1 π i u i : 0 ≤ π i ≤ 1 αn ∀ i ∈ [n], n i=1 π i = 1 .
This is an instance of the continuous knapsack problem and can be solved optimally by a greedy algorithm [START_REF] George B Dantzig | Discrete-variable extremum problems[END_REF]. Assuming u 1 < • • • < u n and αn is an integer, the optimal solution π ⋆ above satisfies π ⋆ i = 1/(αn) for i ≥ (1 -α)n or that the u i 's larger than their (1 -α) quantile are averaged.

The ∆-FL Objective and Distributional Robustness. Instead of minimizing the average loss as in (1), our proposed framework, called ∆-FL, minimizes the tail loss across clients, as measured by the superquantile. Concretely, at level α ∈ (0, 1), we minimize

F α (w) := S α F 1 (w), • • • , F n (w) . (2) 
If we have a test client whose distribution p π = n i=1 π i p i can be written as a mixture of the training distributions p i , . . . , p n , then the ∆-FL objective minimizes max πi≤1/(αn) E z∼pπ [f (w; z)], the worst-case loss over all mixture distributions with a weight constraint π i ≤ 1/(αn).

Federated Optimization of ∆-FL. In order to design a federated optimization algorithm to optimize the ∆-FL objective, we must overcome two challenges: (i) nonsmoothness, and (ii) biased gradient estimation. The superquantile a → S α (u 1 , • • • , u n ) is a nonsmooth function, leading to potential difficulties in optimization. We overcome this challenge by deriving an expression for the subgradient of the ∆-FL objective. Concretely, when αn is an integer, we have

∂F α (w) ∋ n i=1 π ⋆ i F i (w) , where π * i = I(F i (w) ≥ Q α ) n j=1 I(F j (w) ≥ Q α ) , (3) 
and

Q α = Q α (F 1 (w), • • • , F n (w)) is the (1 -α)-quantile of the losses. See Appendix B for a proof.
The second challenge stems from the lack of unbiased gradient estimators for the superquantile. Given

m i.i.d. copies Z 1 , . . . , Z m of a random variable Z, the empirical mean Zm = (1/m) m i=1 Z i is an unbiased estimate of the population mean, i.e., E[ Zm ] = E[Z]. This is no longer true for the superquantile, i.e., E[S α (Z 1 , • • • , Z m )] ̸ = S α (Z).
As a result, we do not have access to unbiased stochastic gradients (here, m is the batch size). In federated learning, it is not reasonable to assume that we have access to all the clients due to a diurnal availability pattern of clients [START_REF] Peter Kairouz | Advances and Open Problems in Federated Learning[END_REF]. We overcome this issue by actually minimizing the expected minibatch superquantile instead, defined as

Fα,m (w) = E (i1,••• ,im)∼Um S α F i1 (w), . . . , F im (w) ,
where U m is the uniform distribution over all subsets of {1, . . . , n} of batch size m. This is a uniform close surrogate of the original objective [11, Prop. 1]

|F α (w) -Fα,m (w)| ≤ 3 √ αm max i=1,...,n |F i (w)| .
Using this expression, we design a federated optimization algorithm that steps of the usual federated averaging algorithm [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] with quantile estimation steps. Specifically, in each communication round, the local updates w + i from the subsample of m selected clients i ∈ S are aggregated to update the global model with the following two steps:

• estimate the quantile Qα ≈ Q α (F i (w) : i ∈ S) of the per-client losses to the server, and • aggregate the updates from tail clients where F i (w) ≥ Qα to find the new global model w + as

w + = 1 |S α | i∈Sα w + i , where S α = {i : F i (w) ≥ Qα } .
The full algorithm is given in Appendix A. Similar to the standard FedAvg algorithm [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] for ERM objective [START_REF] Kallista | Towards Federated Learning at Scale: System Design[END_REF], this aggregation rule enjoys a simplification in the case of a single local update per-client with a learning rate γ. Specifically, under the assumption of full client participation (i.e., m = n), if the local update w -

w + i = γ∇F i (w) is a single gradient step and Qα = Q α (F 1 (w), • • • , F n (w))
is the exact quantile of the per-client losses, the aggregated update is simply a subgradient step w -w + = γ∇F α (w) where we denote the subgradient as ∇F α (w) ∈ ∂F α (w). Similar to FedAvg, our algorithm reduces the overall communication cost, which is often the bottleneck in bandwidthconstrained edge devices, while incurring a larger computation cost at each client.

Numerical Experiments

In this section, we demonstrate the effectiveness of ∆-FL in handling natural distribution shifts in federated learning.

Setup. We measure the 90 th percentile of the per-client misclassification errors, as a measure of the tail performance. We repeat all experiments 5 times and report the mean and standard deviation. We consider two learning tasks.

(a) Character Recognition: We use the EMNIST dataset [START_REF] Cohen | EMNIST: an extension of MNIST to handwritten letters[END_REF], where the input x is a 28 × 28 grayscale image of a handwritten character and the output y is its label (0-9, a-z, A-Z). Each client is a writer of the character x. We train both a linear model and a LeNet-type convolutional network. (b) Sentiment Analysis: We use the Sent140 dataset [START_REF] Go | Twitter Sentiment Classification using Distant Supervision[END_REF] where the input x is a tweet and the output y = ±1 is its sentiment. Each client is a distinct Twitter user. We train both a logistic regression and a Long-Short Term Memory neural network architecture (LSTM). The LSTM is built on the GloVe embeddings of the words of the tweet [START_REF] Hochreiter | Long Short-Term Memory[END_REF].

Baselines. We compare ∆-FL with the following baselines: We consider two methods which attempt to minimize the usual objective (1): FedAvg [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] and FedProx [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF]. The latter augments FedAvg with a proximal term for more stable optimization. We also consider a few heterogeneity-aware objectives: Tilted-ERM [START_REF] Li | Tilted Empirical Risk Minimization[END_REF], which is the analogue of ∆-FL but using the log-sum-exp function and AFL [START_REF] Mohri | Agnostic Federated Learning[END_REF], whose objective is obtained as the limit lim α→0 F α (w) of the ∆-FL objective. We also consider q-FFL [START_REF] Li | Fair Resource Allocation in Federated Learning[END_REF], which raises the per-client loss F i to the (q + 1) th power, for some q > 0.

We optimize q-FFL and Tilted-ERM with the federated optimization algorithms proposed in their respective papers. We use q-FFL with q = 10 in place of AFL, as it was found to have more stable convergence with similar performance.

Hyperparameters. We fix the number of clients per round to be m = 100 for each dataset-model pair except for Sent140-RNN, for which we use m = 50. We fix an iteration budget and tune a learning rate for FedAvg. The same iteration budget and learning rate schedule were used for all other methods including ∆-FL. All hyperparameters were tuned to find the best tail error (90 th percentile).

Results. The results are in Tables 1 and2. We visualize in Figure 1 the distribution of test errors.

∆-FL consistently achieves the smallest 90 th percentile error. ∆-FL achieves a 3.3% absolute (12% relative) improvement over any ERM objective on EMNIST-ConvNet. Among the heterogeneity aware objectives, ∆-FL achieves 1.8% improvement over the next best objective, which is Tilted- ERM. We note that q-FFL marginally outperforms ∆-FL on Sent140-Linear, but the difference 0.05% is much smaller than the standard deviation across runs. ∆-FL is competitive at multiple values of α. For EMNIST-ConvNet, ∆-FL with α ∈ {0.5, 0.8} is better in 90 th percentile error than all other methods we compare to, and ∆-FL with α = 0.1 is tied with Tilted-ERM, the next best method. We also empirically confirm that ∆-FL interpolates between FedAvg (α → 1) and AFL (α → 0).

Yet, ∆-FL is competitive in terms of average error. Perhaps surprisingly, ∆-FL gets the best test error performance on EMNIST-ConvNet and Sent140-Linear. This suggests that the average test distribution is shifted relative to the average training distribution p α . In the other cases, we find that the reduction in mean error is small relative to the gains in the 90 th percentile error.

Minimizing superquantile loss over all clients performs better than minimizing worst error over all clients. Specifically, AFL which aims to minimize the worst error among all clients, as well as other objectives which approximate it (∆-FL with α → 0, q-FFL with q → ∞) tend to achieve poor performance. ∆-FL offers a more nuanced and more effective approach via the constraint set π i ≤ 1/(nα) than the straight pessimistic approach minimizing the worst error among all clients. ∆-FL yields improved prediction on non-conforming clients. This can be observed from the histogram of ∆-FL in Figure 1, which exhibits thinner tails than FedAvg or Tilted-ERM. We see that the ERM objective of FedAvg sacrifices performance on the nonconforming clients. Tilted-ERM does improve over FedAvg in this regard, but ∆-FL has a thinner right tail than Tilted-ERM, showing better handling of heterogeneity. ∆-FL yields improved prediction on data-poor clients. We observe in Figure 1 that Tilted-ERM and q-FFL mainly improve the performance on data-rich clients, that is clients with lots of data. On the other hand, ∆-FL gives a greater reduction in misclassification error on data-poor clients, that is clients with little data (< 200 examples per client). 

A Pseudocode

The pseudocode of the proposed optimization algorithm is given in Algorithm 1. Estimate the (1 -α)-quantile of F i (w (t) ) for i ∈ S; call this Q (t) 4:

for each selected client i ∈ S in parallel do 

: Set π(t) i = I F i (w (t) ) ≥ Q (t) 6: Initialize w (t) k,0 = w (t)
7:

for k = 0, • • • , τ -1 do 8: w (t) i,k+1 = (1 -γλ)w (t) i,k -γ∇F i (w (t) i,k ) 9:
end for 

B Proofs

Proof of the Subgradient Expression (3). We first give a general expression for the subgradient. Define the notation

P α = π i ∈ R n : 0 ≤ π i ≤ 1 αn ∀ i ∈ [n], n i=1 π i = 1 , so that S α (u 1 , • • • , u n ) = max π∈Pα π ⊤ u. Proposition 1. Fix a w ∈ R d and let π ⋆ ∈ arg max π∈Pα n i=1 π i F i (w). Then, we have, n i=1 π ⋆ i F i (w) ∈ ∂F α (w) ,
where ∂F α (w) denotes the regular subdifferential of F α .

Proof. Let g n (w) = (F 1 (w), 

(S α • g n ) = ∇g n (w)∂S α (u) ,
where ∇g n (w) ∈ R d×n is the transpose of the Jacobian matrix of g n .

Let Z(w) be a discrete random variable which takes the value F i (w) with probability 1/n for i = 1, . . . , n, and let Q α (Z(w)) denote its (1 -α)-quantile. Consider the weights π ∈ ∆ n-1 given by a hard-thresholding based on whether F i (w) is larger than its (1 -α)-quantile: πi = I F i (w) ≥ Q α (Z(w)) , and, πi = πi

n i ′ =1 πi ′ . ( 4 
)
The objective defined by these weights is Fα (w) = n i=1 πi F i (w). The next proposition shows that Fα (w) = F α (w) when αn is an integer, or is a close approximation in general.

Proposition 2. Assume F 1 (w) < • • • < F n (w) and let i ⋆ = ⌈αn⌉. Then, we have, (a) π ⋆ = arg max π∈Pα n i=1 π i F i (w) is unique, (b) Q α (Z(w)) = F i ⋆ (w), (c) if αn is an integer, then π = π ⋆ so that Fα (w) = F α (w), and, (d) if αn is not an integer, then 0 ≤ F α (w) -Fα (w) ≤ max i=1,...,n |F i (w)| αn .

Proof. We apply the property that the superquantile is a tail mean for discrete random variables [START_REF] Tyrrell | Conditional Value-at-Risk for General Loss Distributions[END_REF]Proposition 8] to get

F α (w) = 1 αn n i=i ⋆ +1 F i (w) + 1 - ⌊αn⌋ αn F i ⋆ (w) .
Comparing with the definition F α (w) = n i=1 π ⋆ 1 F i (w), this gives a closed-form expression for π ⋆ , which is unique because F i ⋆ -1 (w) < F i ⋆ (w) < F i ⋆ +1 (w). For (b), note that Q α (Z(w)) = inf{η ∈ R : P(Z(w) > η) ≤ α} equals F i ⋆ (w) by definition of i ⋆ . Therefore, if αn is an integer, π ⋆ coincides exactly with π. When αn is not an integer, we have

Fα (w) = 1 n -i ⋆ + 1 n i=i ⋆ F i (w) .
The bound on Fα (w) -F α (w) follows from elementary manipulations.

Figure 1 :

 1 Figure 1: Per-client test misclassification error on EMNIST. Left: histogram of per-client errors. Right two: Scaltter plot of dataset size versus test error.
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Table 1 :

 1 90 th percentile of the distribution of test misclassification errors (in %). = 0.8 49.10 0.24 26.23 1.15 46.44 0.38 46.46 4.39 ∆-FL, α = 0.5 48.44 0.38 23.69 0.94 46.64 0.41 50.48 8.24 ∆-FL, α = 0.1 50.34 0.95 25.46 2.77 51.39 1.07 86.45 10.95

		EMNIST	Sent140
		Linear	ConvNet	Linear	RNN
	FedAvg	49.66 0.67 28.46 1.07 46.83 0.54 49.67 3.95
	FedProx	49.15 0.74 27.01 1.86 46.83 0.54 49.86 4.07
	q-FFL	49.90 0.58 28.02 0.80 46.39 0.40 48.66 4.68
	Tilted-ERM	48.59 0.62 25.46 1.49 46.69 0.49 46.54 3.27
	AFL	51.62 0.28 45.08 1.00 47.52 0.32 57.78 1.19
	∆-FL, α			

Table 2 :

 2 Mean of the distribution of test misclassification errors (in %). .49 0.26 16.09 0.40 34.41 0.22 30.31 0.33 ∆-FL, α = 0.5 35.02 0.20 15.49 0.30 35.29 0.25 33.59 2.44 ∆-FL, α = 0.1 38.33 0.48 16.37 1.03 37.79 0.89 51.98 11.81

		EMNIST	Sent140
		Linear	ConvNet	Linear	RNN
	FedAvg	34.38 0.38 16.64 0.50 34.75 0.31 30.16 0.44
	FedProx	33.82 0.30 16.02 0.54 34.74 0.31 30.20 0.48
	q-FFL	34.34 0.33 16.59 0.30 34.48 0.06 29.96 0.56
	Tilted-ERM	34.02 0.30 15.68 0.38 34.70 0.31 30.04 0.25
	AFL	39.33 0.27 33.01 0.37 35.98 0.08 37.74 0.65
	α = 0.8 34		

  • • • , F n (w)) denote the concatenation of the losses into a vector. Then, F α (w) = S α • g n (w). Since S α is convex, we get that its (convex) subdifferential [e.g., 7, Cor. 4.4.4] is ∂S Since g n is smooth and S α is convex with full domain, we obtain the regular subdifferential of S α • g n by the chain rule [21, Thm. 10.6] as ∂

α (u) = arg max π∈Pα π ⊤ u .
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