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ABSTRACT 

Laminins (LM) are large extracellular glycoproteins involved in several biological 

processes, including cellular interactions, self-polymerization, and binding with other 

extracellular matrix proteins. LMs influence cell function by inducing various signaling 

pathways via cell membrane receptors and have multiple, often cell type-specific, 

functions in, for example, adhesion, differentiation, migration, and phenotype 

maintenance, and they also provide resistance to apoptosis. They are also important 

components of basement membranes. The basement membrane is partly degraded 

in the course of tumor growth, facilitating the invasion of budding cells and their 

migration to lymphatic or blood vessels. In this context, LMs undergo proteolytic 

cleavage, which disrupts their involvement in maintaining the structural and biological 

properties of the basement membrane. LMs are also involved via their participation in 

cancer cell adhesion and migration processes. These events are either supported by 

their major cell binding domains or triggered by cryptic interaction sites revealed by 

matrix metalloproteinase (MMP) induced proteolytic cleavage. While being ideal 

targets for MMPs, LM can enhance their expression and activity. They appear to be 

key matrix elements in the regulation of MMP activity via the recruitment of the CD44 

receptor, a multiple MMP-interacting and activating platform playing an important role 

in cancer progression. 
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1. The laminin protein family 

Laminins (LMs) are a family of glycoproteins found in basement membranes with 

biological and structural properties that attract a growing interest. As essential 

structural constituents of the extracellular matrix (ECM), LMs also maintain close 

relationships with cells and transmit important morphogenetic information (Miner and 

Yurchenco 2004) (Domogatskaya et al. 2012). All LMs are composed of three 

different gene products, termed α, β, and γ chains, which are assembled into a cross-

shaped heterotrimer αβγ. The three chains assemble within the endoplasmic 

reticulum via their C-terminal regions to form a triple stranded a-helical coiled coil rod 

and are covalently linked by disulfide bonds at both extremities of the coiled coil 

(Beck et al. 1993) (Matsui et al. 1995). The primary structures of five α chains (α1, 

α2, α3, α4, α5), four β chains (β1, β2, β3, b4), and three γ chains (γ1, γ2, g3) were 

identified by cDNA sequencing, leading to at least 18 heterotrimeric isoforms (Table 

1, Figure 1). Some genes encoding LMs may produce more than one subunit 

isoform due to alternative splicing; short-chain and long-chain splice variants are 

annotated with A and B, respectively (Aumailley et al. 2005). All basement 

membranes contain at least one LM isoform, and some may have two or three 

different isoforms. The expression and assembly of the various subunits vary in a 

spatio-temporal manner, which suggests biological and structural roles specific to 

each isoform (Yap et al. 2019). Some isoforms appear very early in embryogenesis 

and are markers for a given ECM, whereas others appear later and in a tissue-

specific manner. In general, expression of the α5 subunit is the most widespread, 

whereas that of the α1 subunit is the most restricted (Miner et al. 1997). The α2 

subunit is particularly abundant in tissues of mesodermal origin (cardiac and skeletal 

muscle), and the α4 subunit is abundant in endothelial and mesenchymal cells. The 
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α3 subunit, similar to β3 and γ2, is concentrated in epithelial basement membranes. 

The β1 and β2 subunits often have mutually exclusive expression, whereas the γ1 

chain is present in all basement membranes (Durbeej 2009). LMs are essential at 

various stages of development. Thus, most LM mutants are fatal to the embryo and 

have made it difficult to study their functions at later stages (Yao 2017). 

Although LMs are differentially recognized by cellular receptors, they all share a 

molecular organization based on the repetition of structural modules, giving them a 

common molecular organizational pattern. LM-111, which was initially extracted from 

the Engelbreth-Holm-Swarm tumor, was the first LM described as an asymmetric 

cross comprising one long arm and three short arms carrying globular domains linked 

by linear segments (Figure 2A). Other LMs do not exhibit all of the short arms, as 

they include "truncated" subunits at the N-terminal ends (α3, α4, β3, and γ2) 

(Figures 1 and 2B). The N-terminus of each full-length LM chain consists of 

cysteine-poor sequences and are named LN domain. The short-arm rod-like portions 

consist of tandem arrays of LE modules, which sequences are related to the 

epidermal growth factor but contain one additional C-terminal disulfide bond. Inner 

globular structures within the short arms are the L4 domains resulting from a long 

insert between cysteines 3 and 4 of the canonical 8-cysteine pattern of an LE 

domain. The LF domains have a distant structural similarity to L4 but are unique with 

respect to their cysteine pattern (Pulido et al. 2017). The LFx domains share similar 

sequences at the N- and C-termini with LF, but have further insertions of two 

internally similar sequence regions. C-terminal regions of the α, β, and γ chains 

assemble into a three-strand α-helical coiled coil forming the long arm (Macdonald et 

al. 2010). The amino acids involved in this structure are organized in a heptad repeat 

in which the first and fourth residue are of hydrophobic, and the fifth and seventh 
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frequently of charged character (Paulsson et al. 1985). Within the β chains, the coiled 

coil region is interrupted by domain Lβ consisting of 30 to 40 residues including six 

cysteines which biological function is not yet known. All LM α chains possess a large 

globule at the C-terminal end that consists of five similar domains (LG1 to LG5), each 

containing approximately 200 residues (Timpl et al. 2000) (Hohenester 2019). LG3 

and LG4 are separated by a flexible hinge providing access for proteolytical attack. 

All LMs are glycosylated, which regulates their biological functions in addition to 

stabilizing them (Morita et al. 1985) (Inamori et al. 2016). 

 

2. Laminins as multifunctional elements within basement membranes 

Early molecular and in vivo studies in Drosophila, C. elegans, and mice support the 

idea that LMs are the basic building block for initiating basement membrane 

formation (McKee et al. 2007) (Jayadev and Sherwood 2017). Most LMs can self-

associate into polymeric sheet-like networks that are tightly associated with the cell 

surface through their LG domains (Yurchenco et al. 1992) (Li et al. 2003). This 

polymerization process is reversible and depends on both the concentration and 

presence of divalent cations. This assembly model involves and absolutely requires 

the N-terminal domain LN of the α, β, and γ subunits (Cheng et al. 1997) (Hohenester 

and Yurchenco 2013) (Figure 2A). LM networks are non-covalent in nature and 

appear more dynamic than the cross-linked collagen IV networks described as being 

responsible for the mechanical strength of basement membranes. Thus, collagen IV 

recruitment and further basement membrane assembly appear to depend on LM self-

assembly and its LG-mediated cell surface anchorage. LMs containing at least one 

truncated subunit, and therefore lacking one LN domain (i.e., the α3A, α4, and γ2 
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chains), are non-polymerizing LMs and form other types of supramolecular arrays to 

integrate the basement membrane (Figure 2B). The epithelial LM heterotrimers 

α3Aβ3γ2, α3Aβ1γ1, and α3Aβ2γ1 establish specific molecular interactions leading to 

the formation of anchoring structures characteristic of epithelial basement 

membranes (Champliaud et al. 1996; Rousselle and Beck 2013). The matrix 

integration of LMs comprising a truncated α chain assembled with the β1 and γ1 

subunits, such as LM-3A11 and LM-411, may involve known interactions between the 

β1 and γ1 chains with agrin, nidogen (entactin), and perlecan. 

LMs provide interaction sites for many other constituents including cell surface 

receptors. Some LM isoforms are modified extracellularly by proteolytic processing at 

the N- or C-terminal ends prior to binding cellular receptors or other matrix molecules 

(Tzu and Marinkovich 2008). Cellular receptors, such as integrins, syndecans, α-

dystroglycan, Lutheran glycoprotein, or sulfated glycolipids, predominantly bind to the 

five LG domains at the C-terminal end of the α chain. The LG1-LG3 region contains 

the integrin binding domains, which often require the context of the LM heterotrimer 

and, most importantly, the C-terminal end of the γ chain to be fully effective 

(Deutzmann et al. 1990; Rousselle et al. 1995; Ido et al. 2004; Ido et al. 2007; Ido et 

al. 2008; Navdaev et al. 2008). The major LM-binding integrins are α3β1, α6β1, 

α7β1, and α6β4 (Nishiuchi et al. 2006). The LG1-LG3 region of the LM α5 chain also 

binds to the Lutheran blood group antigen/basal cell adhesion molecule, a cell 

surface protein consisting of five immunoglobulin-like domains (Udani et al. 1998; 

Vainionpää et al. 2006; Kikkawa et al. 2007). The LG45 region contains binding sites 

for α-dystroglycan, syndecans, and sulfated glycolipids (Gee et al. 1993; Talts et al. 

1999; Smirnov et al. 2002; Wizemann et al. 2003; Yamashita et al. 2004; Utani et al. 

2003; Hozumi et al. 2009; Carulli et al. 2012; Suzuki et al. 2005). The N-terminal 
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globular LN domains of the α1 (Colognato-Pyke et al. 1995) and α2 chains 

(Colognato et al. 1997) as well as LN (Nielsen and Yamada 2001) and L4 (Sasaki 

and Timpl 2001) of the α5 chain can bind to α1β1, α2β1, α3β1, and αVβ3 integrins. 

Deregulated expression and involvement of LMs and their integrin receptors in tumor 

development and aggressiveness have been demonstrated in recent years. They will 

not be the subjects of this review as they have been exhaustively covered recently 

(Maltseva and Rodin 2018; Qin et al. 2017; Ramovs et al. 2017; Rousselle and 

Scoazec 2020). Instead, here we will focus on the link between LMs and matrix 

metalloproteinases (MMPs) and demonstrate how it can become toxic in cancer by 

amplifying the tumor process. We will also examine the current state of 

understanding the status of LMs as ligands for the CD44 receptor and seek for a 

potential link with MMP activity.  

 

3. Laminins are involved in the regulation of MMP expression and activity 

MMPs are a family of secreted and membrane-bound zinc-dependent 

endopeptidases that have the capacity to degrade all components of the ECM. MMPs 

play central roles in morphogenesis, wound healing, tissue repair and remodeling in 

response to injury, and in the progression of diseases, such as inflammatory and 

neoplastic diseases (Nagase et al. 2006). The MMP family comprises 25 related but 

distinct vertebrate gene products, 24 of which are found in mammals and can be 

divided into six groups: collagenases (MMPs 1, 8, 13, 18), gelatinases (MMPs 2, 9), 

stromelysins (MMPs 3, 10, 11, 17), matrilysins (MMPs 7, 26), membrane-type MMPs 

(MT-MMPs; MMPs 14, 15, 16, 17, 24, 25), and other MMPs (MMPs 12, 19, 20). The 

expression of MMP genes is transcriptionally regulated by a variety of extracellular 
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factors including cytokines, growth factors, and ECM proteins (Gaffney et al. 2015). A 

number of studies have revealed that LMs or their proteolytic fragments can be 

involved in the regulation of MMP expression and/or activity. These subtle regulations 

that occur in a physiological context can be amplified in pathological situations such 

as cancer, contributing to tumorigenesis and invasion (Karamanos et al. 2021). 

Early studies revealed that an interaction between LM-111 and the 67-kDa LM 

receptor promotes MDA-MB231 breast carcinoma cell aggressiveness through the 

upregulation of MMP-14 and enhanced gelatinolytic activity of MMP-2 (Berno et al. 

2005). Subsequent studies have shown that LM-111 can increase MMP activity in 

human neural stem cells (Sypecka et al. 2009). Later, activation of MMP-9 

expression was associated with an α2β1 integrin-dependent migration process when 

the human cervical cancer SiHa cell line was cultured on an LM-111-coated surface 

(Maity et al. 2011). A mechanism involving focal adhesion kinase (FAK), integrin 

linked kinase, phosphatidylinositol-3-kinase (PI3K), and extracellular signal regulated 

kinase was followed by increased DNA-binding activity of NF-κB and Ap1 and 

subsequent stimulation of MMP-9 gene expression (Maity et al. 2011). A similar 

signaling pathway was revealed when human breast cancer MCF-7 cells were plated 

on an LM-111-coated surface (Pal et al. 2014). In this study, the concomitant down-

regulation of TIMP1, a negative regulator of MMP-9 activity, led to enhanced MMP-9 

proteolytic activity. Another context in which a link between LM and MMPs was 

established is the kidney. The LM a2 chain was shown to contribute to pathogenesis 

in the Alport glomerular syndrome via activation of FAK on glomerular podocytes 

leading to the downstream activation of MMP-9, MMP-10, and MMP-12 gene 

expression (Delimont et al. 2014). A ß1 chain fragment released through MMP-2 

processing, LN–LE1-LE4, was shown to modulate the behavior of pluripotent stem 
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cells and promote the epithelial-mesenchymal transition (EMT) in an α3β1-integrin–

dependent fashion, whatever the fragment was delivered to the cells as a soluble or 

immobilized factor (Horejs et al. 2014). The β1 chain fragment triggered the down-

regulation of MMP-2 in human and mouse cells, as well as the up-regulation of E-

cadherin and MMP-9 in mouse cells during spontaneous stem cell differentiation.  

The cryptic domains of LMs (i.e., hidden in full-length LMs and exposed upon 

proteolysis) can elicit biological responses and be involved in the regulation of MMPs. 

For example, peptides containing the sequence S2099IKVAV, which is adjacent to the 

N-terminus the C-terminal LG1 domain of the LM α1 chain, have been shown to 

induce the expression of MMP-9 by monocytes/macrophages (Corcoran et al. 1995; 

Khan and Falcone 1997), whereas intact LM-111 does not (Khan and Falcone 2000). 

A mouse α5 LG1 domain-derived peptide was shown to induce macrophage and 

neutrophil chemotaxis both in vitro and in vivo and to enhance MMP-9 and MMP-14 

activities (Adair-Kirk et al. 2003). Furthermore, human γ2 chain fragments and LG4-

derived peptides from the α3, α4, and α5 chains exhibit strong chemotactic activity 

towards leukocytes, neutrophils, and monocytes (Mydel et al. 2008; Kenne et al. 

2010; Senyürek et al. 2014). Whether these activities are associated with activation 

of MMP expression or activity is an interesting question that remains to be answered. 

Another study revealed that LM-332 potentiates human monocyte differentiation to 

tumor-associated macrophage-like cells secreting a high level of MMP-9 (Kamoshida 

et al. 2014). Upregulation of MMP-1 and MMP-9 expression was also reported at 

both the transcriptional and protein levels in epidermal keratinocytes upon treatment 

with recombinant C-terminal LG4 or LG45 domains of the α3 chain, an event that 

relies on an IL-1ß autocrine loop through the mitogen-activated protein kinase 

(MAPK) pathway (Momota et al. 2005; Utani et al. 2003; Michopoulou et al. 2020). 
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Several peptide sequences involved in this mechanism were identified as heparin 

binding sites (HBSs) and characterized as ligands for the proteoglycan-type cell 

surface receptors, the syndecans (Utani et al. 2003; Carulli et al. 2012; Rousselle 

and Beck 2013). However, the role of LM was not limited to this transcriptional 

activation as the α3 LG45 domain participated in establishing the gelatinolytic activity 

of epithelial podosomes in migrating keratinocytes during wound healing 

(Michopoulou et al. 2020). We showed that the α3 LG45 domain triggers the 

proteolytic activity of MMP-9 and MMP-14 in epithelial podosomes via a mechanism 

involving the cellular receptor syndecan-1 (Michopoulou et al. 2020).  

 

4. Laminins are cell adhesion ligands for CD44 

The cell surface glycoprotein CD44, a hyaluronic acid (HA) receptor, plays a role in 

the regulation of cell-cell interactions, cell adhesion, cell growth, migration, and 

invasion (Knudson et al. 1996; Ponta et al. 2003). CD44 is an 85-200 kDa 

transmembrane glycoprotein ubiquitously expressed throughout the body and is 

detected in both normal and tumor cells. CD44 is encoded by a single gene with 20 

exons but has many different isoforms (Figure 3A). It is composed of a distal 

extracellular N-terminal domain, a stem region, a transmembrane domain, and an 

intracellular cytoplasmic C-terminal domain (Figure 3B). The standard form CD44s is 

the shortest and most commonly expressed isoform. It results from expression of the 

constant exons 1 to 10, which are found in all isoforms. A number of splicing variants 

(CD44v) result from the insertion of variable exons in the extracellular region near the 

membrane, called the stem region. There are 10 variant exons expressed in mice 

(designated v1–v10), whereas humans express only variant exons v2–v10 due to the 
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presence of an in-frame stop codon in exon v1 (Screaton et al. 1993). The N-terminal 

portion of the ectodomain is of a compact, ordered structure, stabilized by three 

disulfide bridges, that contains a HA binding region and glycosaminoglycan (GAG) 

chains (Figure 4A). The stem region varies according to the expression of the 

splicing domains in the CD44v isoforms, and the transmembrane and intracellular 

domains both play important roles in CD44 functionality and connection to the actin 

cytoskeleton through ezrin/radixin/moesin (ERM) proteins (Tsukita et al. 1994; Gal et 

al. 2003; Medrano-González et al. 2021). Importantly, upregulation of CD44 is often 

closely associated with abnormal tumor cell behavior (e.g., proliferation, survival, 

migration/invasion, and chemoresistance) (Bourguignon 2019; Medrano-González et 

al. 2021). 

Understanding the various interactions of CD44 on a molecular structural level that 

would allow for reliable predictions of binding sites is difficult. The complex 

posttranslational modifications by N- and O-linked glycosylation greatly depends on 

cell types, developmental and environmental conditions. Large chondroitin and 

dermatan sulfate GAG chains attached to the stem region in CD44s, and heparan 

sulfate chains found within the variable regions are highly flexible making high-

resolution structural analysis challenging. Except for the most N-terminal ca. 160 

amino acids, even the unmodified ectodomain evades exploration by showing a high 

degree of intrinsic disorder with nearly 30% of residues being serine and threonine 

(Figure 4B). In contrast to the classical view of structure-function relation as a lock-

and-key system, the resulting flexibility on the structural level allows the protein to 

adapt various conformations for optimal ligand binding (Habchi et al. 2014). Even the 

various structures solved at high resolution by x-ray crystallography may not be 

regarded as static. Molecular dynamics simulations suggest that Y42 can act as a 
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molecular switch that upon binding to HA changes the overall HA binding domain 

structure from a closed to open conformation that further increases affinity for HA 

(Guvench 2015). 

CD44 is upregulated in a variety of cancers and can be expressed as CD44s or as a 

number of alternatively spliced CD44v isoforms. CD44 mediates its effects on the 

cancer cell by activating signaling pathways, such as protein kinases and 

transcription factors. The functional role of CD44 is pleiotropic, including induction of 

EMT and anti-apoptosis, alterations in the cellular cytoskeleton, and promotion of 

drug resistance. CD44 is a compelling marker of cancer stem cells from many solid 

malignancies (Takaishi et al. 2009; Du et al. 2008; Zöller 2011). In addition, 

interactions between HA and CD44 promote epidermal growth factor receptor-

mediated pathways, consequently leading to tumor cell growth, tumor cell migration, 

and chemotherapy resistance in solid cancers (Thapa and Wilson 2016; Yaghobi et 

al. 2021).  

In addition to its direct signaling function, CD44 forms a platform at the cell 

membrane for the assembly of various MMPs with their substrates, ultimately to 

modulate cell migration (Cauwe et al. 2007) (Figure 3B). CD44 is an important 

partner of MMP-9, playing a role in its anchorage to the cell membrane and 

preservation of its proteolytic activity (Yu and Stamenkovic 1999, 2000). Evidence 

suggests that the association of MMP-9 and CD44 in mouse and human tumor cells 

promotes invasion (Yu and Stamenkovic 1999; Gupta et al. 2013). Clustering of 

CD44 mediates MMP-9 relocation in breast tumor cells promoting its proteolytic 

activity on the membrane (Peng et al. 2007). The interaction of CD44 and the 

proteolytic form of MMP-9 is involved in the invasion activity of prostate cancer PC3 

cells (Desai et al. 2007).  
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CD44 is also a molecular partner of MMP-14, playing a role in its translocation to the 

front of migrating cells (Mori et al. 2002). MMP-14 has been clearly characterized as 

a CD44 shedding enzyme with migration-promoting activity (Kajita et al. 2001). MMP-

14 and CD44 are co-expressed at the lamellopodia of cells undergoing EMT (Cho et 

al. 2012). In normal mouse breast and uterine epithelium, the heparan sulfate (HS) 

chains of CD44v containing the exon v3 derived sequence bind active MMP-7 (Yu et 

al. 2002; Seiki 2002). CD44 also binds MMPs 2, 15, 16, 24, and 25 through their 

hemopexin domains in lamellipodia edges (Mori et al. 2002; Suenaga et al. 2005; 

Samanna et al. 2006) and can act indirectly by activating MMP-2 through MMP-14 

cleavage (Zöller 2015) (Figure 3B). 

CD44 has been identified as a component of podosomes, which are protrusive 

adhesion structures involved in ECM degradation and mechanosensing (Murphy and 

Courtneidge 2011; Linder and Wiesner 2016). It was shown to co-localize with the F-

actin core of podosomes in osteoclasts (Chabadel et al. 2007), human primary 

epidermal keratinocytes (Michopoulou et al. 2020), and in 3D-cultured macrophages 

(Van Goethem et al. 2011). By demonstrating a direct interaction between the LM α3 

LG45 domain pair and the CD44 receptor expressed by human primary 

keratinocytes, we have revealed a determining role for this LM isoform in regulation 

of the proteolytic activity of MMP-14 and -9 in epithelial podosomes (Michopoulou et 

al. 2020). The 200-kDa CD44 isoform identified in our study is the long form v3–10 

expressed by keratinocytes (Bourguignon and Bikle 2015). It is conceivable that the 

LM-332 LG45 domain concentrates active MMP-9 and -14 within epithelial 

podosomes through recruitment of CD44. In addition, the combination of LG45 and 

CD44 could facilitate binding of adaptor molecules to the cytoplasmic region in CD44 

and activate multiple pathways involved in cell adhesion, migration, and proliferation 
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including Ras, MAPK, and PI3K (Xu et al. 2020). Although this mechanism has been 

demonstrated in the physiological context of skin repair, it could undoubtedly be 

implemented in cancer cells in which the expression of LM-332 is frequently 

upregulated (Rousselle and Scoazec 2020). In cancer cells, the α3LG45 domain 

could regulate the expression and concentrate active MMP-9 and MMP-14 in 

invadopodia, the adhesive actin-rich membrane protrusions with high proteolytic 

activity found in cancer cells (Augoff et al. 2020). An argument in favor of this 

hypothesis is based on our study showing that Ras/IκBα-transformed keratinocytes 

lacking the LG45 domain exhibit a deficiency in MMP-9 and MMP-1 expression and a 

decreased invasive capacity (Tran et al. 2008). This deficiency was reversed by 

replacing LG45 through retroviral transduction. Whether the CD44 isoforms 

expressed in cancer cells can bind to α3LG45 is an important question (Chen et al. 

2018). We already know that, in addition to the CD44v3-10 isoform, the 100-kDa 

standard CD44s expressed on melanoma A375 cells also binds the α3LG45 domain 

(Michopoulou et al. 2020; Takahashi et al. 1999), and we may wonder whether the 

various CD44 isoforms will bind to α3LG45 with different affinities. For example, the 

presence of variable exon 3, which encodes an HS chain carrying region, may impact 

the interaction (Bennett et al. 1995). 

A link between LM-332 and the MMP-14/CD44 tandem was already revealed a few 

years earlier in a study showing that interactions between mature human thymocytes 

and LM-332 induces strong up-regulation of active MMP-14 leading to CD44 

cleavage and thymocyte migration (Vivinus-Nebot et al. 2004). As the LG45 domain 

was cleaved off and removed from the LM-332 used in this study, we can evaluate 

the possible participation of the N-terminal end of the γ2 chain, which also comprises 

an HBS, in this mechanism (Sasaki et al. 2001). One study revealed that the LN 
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domain of the LM γ2 chain induces breast cancer MDA-MB-231 cell migration as a 

result of its binding to CD44 and phosphorylation of its cytoplasmic tail (Sato et al. 

2015). Surprisingly, interaction studies uncovered a binding site for CD44 within the 

LEa2-LEa3 region, away from the HBS of the γ2 chain identified within the L4 and 

LEa domains (Sasaki et al. 2001; Ogawa et al. 2007), suggesting the involvement of 

a LM binding domain distinct from the GAGs in the CD44 ectodomain (Sato et al. 

2015). However, the study did not mention any MMP-9 or MMP-14 recruitment, 

though it clearly reported a γ2 chain-dependent pro-migratory activation of CD44 

reinforcing the hypothesis that LM-332 is a multi-site ligand for CD44. Based on 

these data we performed rigid body molecular docking simulations using a model of 

the LM γ2 LEa2-LEa3 pair and the coordinates of the HBS domain of CD44.The best 

result with a good global minimal energy conformation shows a good steric fit of 

CD44 within the groove of the LE2-LE3 connection and suggests four pairs of 

residues that come into hydrogen bonding distance (Figure 4C). Though this model 

is in agreement with the experimental data, as any glycosylation and the stem portion 

of CD44s were not considered, it should be viewed with caution. 

LMs were identified as ligands for CD44 already nearly 30 years ago. The binding of 

CD44 to a commercial LM preparation was detected in an ELISA-based assay using 

CD44 purified from lymphocytes (Jalkanen and Jalkanen 1992). The epithelial 

isoform CD44v8-10 (Brown et al. 1991), which is expressed in carcinoma cells such 

as human colorectal carcinoma KM-12, CCL 188, and MIP-101 cells, was identified 

as an LM-111 receptor (Ishii et al. 1993). These studies already reported that the 

interaction is mediated by the proteoglycan-rich region of the extracellular domain of 

CD44, an interaction site distinct from that of HA, which is located in the disulfide-rich 

N-terminus of the molecule (Ponta et al. 2003). In a study screening the adhesive 
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properties of overlapping short peptides covering the entire LG1 to LG5 domains of 

the α5 chain toward B16-F10 mouse melanoma cells, peptide A5G27 

R2892LVSYNGIIFFLK corresponding to one β strands of the LG2 module with the 

terminal basic residues in the surface exposed loop regions was identified as a ligand 

for CD44 via its GAG moieties (Hibino et al. 2004). In the human sequence, this 

peptide relates to R2971LVSYSGVLFFLK. When visualized within the solved terminal 

structure of LM 511 (Takizawa et al. 2017), it is evident that the basic side chains are 

surface exposed at opposite ends of the LG2 domain (Figure 4D). Further positively 

charged surface areas are generated by K3009, K3010, and K3025. These five 

residues form a track that could further the alignment of a GAG chain. A similar track 

of basic residues crucial for heparin binding has been previously reported for the LM 

LG4 domain (Yamashita et al. 2004). The LM α5 chain interaction with CD44 

stimulates melanoma cell growth, angiogenesis, migration, and metastasis (Hibino et 

al. 2005). CD44 overexpression in neural precursor cells significantly improved their 

spreading over LMs and increased the formation and length of filopodia, suggesting a 

role in migration (Deboux et al. 2013). Using a protein database approach, a role for 

CD44 interactions with LM-111 was predicted to play an important role in the axon 

growth of retinal ganglion cells during nerve regeneration (Ries et al. 2007). As CD44 

is overexpressed on a wide variety of neuronal, epithelial, and hematopoietic 

malignancies, CD44 may be involved in either the malignant transformation of cells or 

the migration of malignant cells from the primary site to sites of metastasis. The 

mode of interaction of CD44 with LMs is very complex and can take place in a 

number of ways. Further work is now required to better understand these interactions 

and apprehend their biological consequences. 
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5. Laminins are targets of MMPs activity 

Like any other ECM protein, LMs are subject to total or partial proteolysis by MMPs, 

leading to the release of protein fragments, which may play a role in tumor 

progression.	Over the years, MMPs have been found to play a remarkable number of 

regulatory roles at the cellular level, including pathways involved in apoptosis, 

immunity, cellular migration, and angiogenesis (Fingleton 2006; Itoh and Nagase 

2002; Shay et al. 2015). Thus, MMPs play a major role in carcinogenesis. MMP 

functionality often complements classical tumor properties, leading to invasion, 

immune system avoidance, and metastasis (Winkler et al. 2020). The specific role of 

each MMP in cancer and their dysregulation in many cancer types have been 

accurately documented recently (Gobin et al. 2019; Piperigkou et al. 2021; 

Karamanos et al. 2021). An exhaustive gene expression study of 15 different types of 

cancers compared to normal tissue confirmed that MMP expression has a large 

degree of heterogeneity across cancers and revealed that the most prevalent gene 

expression changes were upregulation as opposed to downregulation in tumor tissue 

versus control tissue (Gobin et al. 2019). Facilitation of cell migration and invasion is 

thought to be the principal effect of the MMP-mediated breakdown of basement 

membranes surrounding cancer cells (Jayadev and Sherwood 2017; Hanahan and 

Weinberg 2011). All molecular networks, including LM networks, as well as ECM/cell 

adhesion complexes are targets of MMP-mediated proteolysis. Notably, even if cells 

can physically breach basement membrane barriers in the absence of MMPs (Kelley 

et al. 2019), the massive production of MMPs by cancer cells greatly enhances their 

invasive capacity. Another barrier to tumor cell extravasation and invasion is the 

basement membrane underlying the endothelium of the vessel wall, where LM-411 

and LM-511 are expressed (Spessotto et al. 2001). LMs can be cleaved by MMPs 2, 
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3, 7, 9, 10 to 16, 19, and 20 (Okada et al. 1986; Bejarano et al. 1988; Wilson and 

Matrisian 1996; Chandler et al. 1996; Ohuchi et al. 1997; Pirilä et al. 2003; Sadowski 

et al. 2005; Itoh and Seiki 2006; Laronha and Caldeira 2020), but invasive tumor cells 

primarily use MMP-2, MMP-9, and MMP-14 within invadopodia to cleave or degrade 

ECM proteins including LMs (Jacob and Prekeris 2015). Expression of MMP-14 in 

cancer cells correlates with their metastatic potential (Poincloux et al. 2009) and their 

ability to degrade fibrillar collagen and LMs. MMP-14 has the ability to activate MMP-

2, MMP-9, and MMP-13 (Nishida et al. 2008; Knäuper et al. 2002; Li et al. 2017). The 

destruction of LM-111 by MMP-9 is thought to play a detrimental role in the early 

stage of breast cancer as the basement membrane no longer provides the 

appropriate signals to restrain epithelial cell proliferation (Beliveau et al. 2010). 

The effects of LM degradation on cancer cell behavior, however, are more complex in 

the end because proteolytic cleavage leads to the release or exposure of either ECM-

sequestered cytokines or a functional ECM fragment. Some LMs can express cryptic 

biological functions after proteolysis thereby altering cellular behavior and 

phenotypes (Niland and Eble 2020). The combined elastase/MMP-9-mediated 

proteolytic remodeling of LM-111 has been shown to unmask an epitope that triggers 

proliferation of dormant breast cancer cells through an α3β1 integrin signaling 

mechanism leading to aggressive lung metastases (Albrengues et al. 2018). This 

fascinating study demonstrated that the proteases present in neutrophil extracellular 

traps, together with DNA, are delivered to LM-111 through a DNA/LM interaction. LM-

211, LM-411, and LM-511 could be degraded in the same way (Albrengues et al. 

2018). 

LM α1, β1, and γ1 chains are subject to MMP-2 and MMP-9 cleavage, releasing 

proteolytic fragments endowed with integrin- or syndecan-mediated cellular functions 
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(Kikkawa et al. 2013). MMP-2 cleavage of the short arm of the β1 chain is predicted 

to disassemble the LM network, releasing a β1 LN–LE1-4 fragment that mediates 

α3β1-integrin dependent embryonic stem cell adhesion (Horejs et al. 2014). 

Structural changes occur after LM-511 cleavage by MMP-9 (Gu et al. 2005), and 

fragments with activity toward inflammatory or cancer cells were identified within the 

LM α5 chain (Adair-Kirk et al. 2003; Hibino et al. 2004; Kusuma et al. 2011). An 80-

kDa LM α2 C-terminal LG3-LG5 fragment possibly generated by MMP-9 is thought to 

play a role in reshaping the blood–testis barrier and spermatogenic function in a rat 

model (Gao et al. 2017). Analysis of the secretome from MDCK cells undergoing 

Ras-induced EMT resulted in the identification of two LM α5 internal and C-terminal 

fragments generated from MMP-1 cleavage with pro-migratory and pro-angiogenic 

activities (Gopal et al. 2016). LM α5 has also been reported to be cleaved by MMP-

14, leading to prostate cancer cell migration (Bair et al. 2005).  

LM-332 has been the focus of increasing interest over the last few years in the 

cancer research field, particularly the various proteolytic cleavages of its three 

subunits (Rousselle and Beck 2013). Many proteases degrade LM-332 and have 

been exhaustively documented (Rousselle and Scoazec 2020). To fulfill its essential 

function of anchoring proteins in epithelial basement membranes (Rousselle et al. 

1991; Rousselle et al. 1997; Champliaud et al. 1996), LM-332 undergoes several 

physiological post-translational modification events. This maturation process allows 

its supramolecular integration and promotion of cell adhesion (Rousselle and Beck 

2013). In cancers, additional cleavage events occur, compromising both these 

adhesive and connecting functions and additionally delivering pro-migratory signals 

to cells (Rousselle and Scoazec 2020).  Cleavage of the β3 chain by MMP-7 or 

MMP-14 has been reported to enhance colon or prostate carcinoma cell migration 
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and invasion, respectively (Remy et al. 2006) (Udayakumar et al. 2003). MMP-2 or 

MMP-14 cleavage of the γ2 chain is reported to be a pro-tumorigenic signaling event 

(Giannelli et al. 1997; Koshikawa et al. 2000; Gilles et al. 2001). The released N-

terminal LE repeats have been shown to induce EGF signaling and downstream 

MAPK activity in cancer cells (Koshikawa et al. 2004). The involvement of MMPs 3, 

12, 13, 19 and 20 in the cleavage of the γ2 chain (Pirilä et al. 2003; Sadowski et al. 

2005; Väänänen et al. 2001) reinforces the status of LM-332 and its γ2 subunit as an 

ideal target for MMPs in tumorigenesis.  

Studies of the testis have reported that MMP-2 cleavage of the LM γ3 chain, part of 

the α3β3γ3 LM heterotrimer localized at the apical ectoplasmic specialization of 

Sertoli cells (Yan and Cheng 2006), induces dysfunction in the Sertoli cell tight 

junction permeability barrier through a 50-amino-acid residue peptide sequence in 

domain L4 (Siu and Cheng 2004; Yan et al. 2008; Su et al. 2012; Li et al. 2020). This 

process is thought to provide an efficient mechanism for modulating different aspects 

of spermatogenic function in response to changes in the epithelial cycle of 

spermatogenesis (Li et al. 2020). During zebrafish skeletal muscle development, LM 

was shown to act as an MMP-11 mediator and regulator of fibronectin levels at the 

myotendinous junction (Jenkins et al. 2016).  

 

Conclusion 

ECM remodeling is an important contributor to tumor progression and metastasis by 

contributing to the dissemination of cancer cells to distant tissues as well as 

angiogenesis. Among the many extracellular proteases expressed by human cells, 

MMPs are the most prominent enzymes supporting ECM proteolytic degradation and 
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remodeling, as well as the modulation of cellular and ECM interactions. Whether 

MMPs are soluble/secreted in the tumor microenvironment or anchored to the cell 

membrane, their dysregulated expression in tumor cells, cancer-associated 

fibroblasts, and infiltrating immune cells is a hallmark of cancer. Being ideal targets of 

MMPs, the cleavage or degradation of LMs has structural and biological impacts 

favoring tumor development and metastasis. The fragments or peptides that are 

generated can induce the production of more MMPs in various cell types, setting up a 

vicious cascade. The proteolytic activity of MMPs is often localized in adhesion 

structures, such as invadopodia, or occurs in proximity to the cell membrane where 

LMs are expressed. Cellular receptors, such as CD44, play an important role in 

addressing and regulating MMP activity. Their connection to LMs could promote the 

establishment of an active MMP-rich microenvironment prone to efficient degradation 

and remodeling of the ECM. Thus, LMs can be targets of MMPs, bioactive factors 

stimulating their expression, or even interacting platforms capable of recruiting and 

concentrating them. 
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Table 1 

Laminin isoforms 

Name Chain assembly Previous Original name 

Laminin-111 α1β1γ1 1 EHS laminin 

Laminin-211 α2β1γ1 2 merosin 

Laminin-121 α1β2γ1 3 S-laminin 

Laminin-221 α2β2γ1 4 S-merosin 

Laminin-3A32 α3Aβ3γ2 5 or 5A kalinin. epilegrin, nicein, ladsin 

Laminin-3B32 α3Bβ3γ2 5B  

Laminin-3A11 α3Aβ1γ1 6 or 6A K-laminin 

Laminin-3A21 α3Aβ2γ1 7 or 7A KS-laminin 

Laminin-411 α4β1γ1 8  

Laminin-421 α4β2γ1 9  

Laminin-511 α5β1γ1 10 drosophila-like laminin 

Laminin-521 α5β2γ1 11  

Laminin-213 α2β1γ3 12  

Laminin-423 α4β2γ3 14  

Laminin-523 α5β2γ3 15  

Laminin-522a α5β2γ2   

Laminin-212b α2β1γ2   

Laminin-222b α2β2γ2   

Laminin-333c α3β3γ3   

 

a Laminin-522 reported so far solely in bone marrow. 

b The existence of either LM-212 or LM-222 is proposed based on studies of 

peripheral nerves in wild-type and LM α2 chain-deficient mice. 

c Laminin-333 is expressed at the apical specialization of adult rat testes, rather than 

in the testicular basement membrane. 
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Figure legends 

 

Figure 1 

Schematical models of the different laminin chains 

LM chains contain tandem arrays of globular and rod-like regions. Chains with 

identical order of domains are combined (α1/2, β1/2/4, γ1/3). The N-terminal ends of 

all chains contain tandem arrays of a variable number of epidermal growth factor–like 

repeats LE with eight cysteine residues in short rod-like domains (LEa–LEc), as well 

as various globular domains (LN, L4, L4a, L4b, LFa, LFb, LFx), some of which can 

interact with integrins. Truncated LE domains containing less than 8 cysteines are 

depicted by half-circles. LE numbering follows the laminin nomenclature ((Ponta et al. 

2003; Cauwe et al. 2007; Medrano-González et al. 2021) though frequently, including 

in data base entries, they are counted consecutively starting at the N-terminus. The α 

chains have five globular domains (LG1 to LG5) at the C-terminus. LG1–LG3 bind 
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mostly to integrins, with some requiring the presence of the γ chain C-terminal region. 

LG4 and LG5 contain binding sites for dystroglycan (αDG), syndecans, and sulfated 

glycolipids. The LG4–LG5 tandem is thought to be cleaved off extracellularly (arrow) 

in α3, α4, and α5, though this is not the case for the α1 and α2 chains; LG domains 

of α2 stay attached to the molecule after cleavage. A small six cysteine residues 

containing domain Lβ of yet unknown biological function is present in the coiled coil 

regions of the β chains; originally the regions N- and C-terminal of Lβ were denoted 

by roman numerals II and I, respectively, but as this is unique to the β chains, this 

has been abolished. The LAMB4 gene coding for the β4 chain might be a 

pseudogene as no transcripts has yet been found. 

 

Figure 2 

Prototype assembly model of laminins 

The α, β, and γ chains assemble to form a coiled coil in at least 18 combinations 

(Table 1). (A) LM-111 is a prototype heterotrimer able to self-assemble and form a 

network due to the presence of LN domains at the N-terminal ends of its three 

subunits. (B) LM-332 is a prototype heterotrimer unable to self-assemble as its α and 

β subunits are truncated. S-S at the termini of the coiled coil regions denote the 

presence of disulfide bridges. SH indicates the location of free cysteine residues. 

 

Figure 3 

CD44 as a platform for MMP binding 

(A) Structure of the human CD44 gene, which consists of 10 constant exons 

expressed in all CD44 mRNAs and proteins (grey boxes) and 9 variant exons v 

(colored boxes) expressed in CD44 splice variants (CD44v). Other vertebrate genes 
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contain an additional exon v1. The examples shown are the smallest isoform 

(standard CD44s, expressed ubiquitously in vertebrates) and the larger variant 

isoforms expressed in some epithelial cells and cancers. (B) CD44 protein structural 

domains. The CD44 protein is composed of an extracellular link domain (green), a 

stem domain (red), where the variant exon products are inserted, the transmembrane 

region, and the intracellular cytoplasmic domain. The CD44 extracellular domain is a 

platform for MMP-2, MMP-7, MMP-9, and MMP-14 binding and can indirectly activate 

MMP-2 through MMP-14 cleavage. Figure adapted from references (Ponta et al. 

2003; Cauwe et al. 2007; Medrano-González et al. 2021). 

 

Figure 4 

Molecular constraints of CD44 and laminin interactions.  

(A) The protein backbone of the HA binding domain of human CD44 is shown on the 

left with α-helices in red and β-strands in cyan (PDB code: 4PZ4, ref. (Liu and Finzel 

2014)). Terminal residues, disulfide bonds and putative acceptor sites for N-linked 

glycosylation are depicted as ball-and-sticks. Disulfide bonds follow a C1-C6, C2-C5, 

C3-C6 arrangement. Residues involved in HA binding are presented in CPK style as 

based on the similarity with the mouse sequence (R41, R78, Y79, Y105) (Banerji et 

al. 2007) Y42 (green) has been implicated in acting as a molecular switch inducing a 

conformational change upon interaction of R41 with HA to a higher affinity state 

(Guvench 2015). A solvent-accessible surface view of the same orientation is shown 

in the middle, and one obtained by rotation of 180° around the vertical axis on the 

right. The electrostatic potential is represented by red and blue for negative and 

positive charges, respectively. The position of various residues is indicated by 

dashed lines with those involved in HA binding highlighted and connected by blue 
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lines. (B) Prediction of the intrinsic disorder of full-length human CD44 was performed 

using the IUpred3 (black line) (Dosztányi 2018) (https://iupred.elte.hu/) and NetSurfP-

3.0 (red line) (Klausen et al. 2019) (https://biolib.com/dtu/nsp3) algorithms. (C) 

Putative interactions between the CD44 HA binding domain (blue) and LM γ2 LEa2-

LEa3 domains are shown for the protein backbones on the left and the corresponding 

solvent-accessible surfaces on the right. Residues within hydrogen bonding distance 

between proteins are represented in CPK style, where the apostrophe denotes CD44 

residues (R101-G'152, I146-Y'79, C157-S'109, R170-N'110). Simulations were 

performed using PatchDock (Schneidman-Duhovny et al. 2005) 

(https://bioinfo3d.cs.tau.ac.il/PatchDock/) and refined with FireDock (Andrusier et al. 

2007) (https://bioinfo3d.cs.tau.ac.il/FireDock/). LM γ2 LEa2-LEa3 was modelled with 

SWISS-MODEL (Waterhouse et al. 2018)	(https://swissmodel.expasy.org/) using 

PDB structure 4AQS of the mouse LM β1 LEa1-LEa4 as a template (Carafoli et al. 

2012). (D) The protein backbone (left) and the corresponding solvent-accessible 

surface (right) of the C-terminal region of human LM 511 is shown (PDB code 5XAU, 

chains A, B, C) (Takizawa et al. 2017). The LM α5 sequence R2971LVSYSGVLFFLK 

within the LG2 domain corresponding to the mouse peptide A5G27 

(R2892LVSYNGIIFFLK) shown to be involved in CD44 binding (Hibino et al. 2004) 

extends over one β-strand and is depicted in CPK style with the basic terminal 

residues highlighted in blue. The surface view indicates that further lysine residues 

(K3009, K3010, K3025) are arranged along a track that could facilitate interactions 

with GAG chains. Sequence numbering follows UniProtKB/Swiss-Prot data base 

entries P16070.3 (CD44), Q13753.2 (LM γ2) and O15230.8 (LM α5). 
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