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Abstract—We introduce DeepCrypt, a deep-learning based
approach to analyze YouTube adaptive video streaming Quality
of Experience (QoE) from the Internet Service Provider (ISP)
perspective, relying exclusively on the analysis of encrypted
network traffic. Using raw features derived on-line from the
encrypted stream of bytes, DeepCrypt infers six different video
QoE indicators capturing the user-perceived performance of the
service, including the initial playback delay, the number and
frequency of rebuffering events, the video playback quality and
encoding bitrate, and the number of quality changes. DeepCrypt
offers deep visibility into the behavior of the end-user, enabling
the fingerprinting and detection of different user actions on
the video player, such as video pauses and playback scrubbing
(forward, backward, out-of-buffer), offering a complete visibility
on the video streaming process from in-network traffic mea-
surements. Evaluations over a large and heterogeneous dataset
composed of mobile and fixed-line measurements, using the
YouTube HTMLS player, the native YouTube mobile app, as well
as a generic HTMLS5 video player built on top of open source
libraries, and considering measurements collected at different
ISPs, confirm the out-performance of DeepCrypt over previously
used shallow-learning models, and its generalization to different
video players and network setups.

I. INTRODUCTION

Quality of Experience (QoE) monitoring is a daunting yet
critical task for Internet Service Providers (ISPs), who need to
shed light on the performance of their networks as perceived
by their customers, to avoid churn due to quality dissatis-
faction. Among the plethora of applications served through
ISP networks, video streaming has attracted most of the
attention in recent years. Video streaming is the most popular
and most resource-demanding application of the Internet, due
to the high number of users and video requests, high bit
rates of the video content, and strict real-time requirements
of the video playback. While ISPs have traditionally relied
on the usage of Deep Packet Inspection (DPI) techniques
to understand the performance of video applications from
the network side, the wide adoption of end-to-end traffic
encryption has drastically reduced their visibility, offering only
little information about the traffic contents. This has motivated
a surge in the research and conception of machine-learning
based approaches to infer application-level QoE-metrics from
the streams of encrypted bytes [1]-[5]. In these previous work,
standard shallow-learning models have been used in the task.

In this paper we take a step further into this problem, by
conceiving approaches based on novel, deep-learning architec-
tures, which provide further visibility into the video stream-
ing process. We conceive DeepCrypt, a deep-learning based
approach to infer multiple video QoE indicators capturing
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the user-perceived performance of adaptive video streaming
applications, relying exclusively on the analysis of raw fea-
tures, derived from the encrypted network traffic. DeepCrypt
provides deep visibility into the behavior of the end-user, en-
abling the detection of different user playback-related interac-
tions, such as video pauses and playback scrubbing (forward,
backward, out-of-buffer). Recent work in this direction [6]
has shown that video QoE estimation becomes significantly
more challenging when user player interactions are present
in the video playback. To the best of our knowledge, this is
the first paper explicitly addressing the combined inference
of both video QoE metrics and user player interactions.
Through extensive evaluation, we verify the out-performance
of DeepCrypt as compared to previously employed shallow-
learning models. In particular, we evaluate DeepCrypt using
controlled measurements on: (i) multiple YouTube players —
including the standard HTMLS YouTube player, the native
mobile App, and a generic HTMLS5 player built on top of
open libraries (video.js and dash.js) — (ii) multiple network
setups in terms of downlink bandwidth, access technology —
WIF/LTE, and transport protocols (TCP and QUIC) — and
(iii) different emulated player interactions, including pauses,
forward, backward, and out-of-buffer scrubbing. We also eval-
uate DeepCrypt on measurements collected at operational ISP
networks, and verify the generalization of the obtained results.
The remainder of the paper is structured as follows. Sec-
tion II describes related work on video QoE monitoring from
encrypted traffic measurements. Section III presents the prin-
ciples, raw features, and deep architecture behind DeepCrypt,
and describes the different datasets used for model training and
evaluation purposes. Extensive evaluation results are reported
in Section IV, including the estimation of video QoE metrics,
the generalization of results to ISP measurements, and the
detection of user actions. Section V concludes this work.

II. RELATED WORK

The wide adoption of TLS/HTTPS has motivated a vast
literature in the problem of adaptive video streaming QoE
monitoring from network encrypted traffic, mainly relying
on machine learning models. First approaches [2] consid-
ered shallow machine learning-based architectures to estimate
YouTube QoE for full video sessions (i.e., once the video
session has completed) using features derived from packet
sizes, inter-arrival times, and throughput measurements. A
similar approach was presented in [1], where authors rely on
shallow learning models and measurements in cellular net-
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Fig. 1: DeepCrypt video QoE and user actions monitoring workflow. Raw
traffic features are computed on-line for each detected video session.

works to estimate standard QoE indicators for adaptive video
streaming services (e.g., video resolutions, rebuffering events),
based on more elaborated features such as round-trip times,
packet losses, and video chunk sizes — note that this approach
requires explicit chunk-detection mechanisms, which are error
prone and add complexity to the measurement process. Real-
time analysis of YouTube QOoE through shallow learning
was first introduced in [3], where rebuffering detection and
binary low/high video resolution classification are computed
for consecutive time windows of a few seconds duration. Other
papers have tackled the problem by modeling the video player,
in particular by inferring the buffered playtime [7], [8]. Recent
papers also relying on shallow learning for real-time video
QoE inference include Requet [4] and our previous system,
ViCrypt [5]. While both systems provide estimates for multiple
video QoE metrics every few seconds, both require complex
feature extraction from the stream of packets, and in particular
Requet requires chunk-detection. In addition, both systems
neglect the identification of user player interactions, which
might have a direct impact on the estimation and generalization
performance of the learning models, as recently shown [6].

Different from previous work, DeepCrypt avoids complex
feature computations by relying on deep learning models
to automatically construct feature representations from raw
input metrics, derived from packets sizes and timestamps.
DeepCrypt raw features are computed on-line during an on-
going YouTube video session, using constant memory space
to enable traffic monitoring. At the end of the video ses-
sion, DeepCrypt outputs multiple QoE metrics describing the
performance of the video playback. In addition, DeepCrypt
detects the occurrence of different user player interactions,
offering as such an unprecedented visibility on the complete
video playback process.

III. DeepCrypt MODEL AND DATASETS
A. Features and Deep Model

Figure 1 depicts the complete DeepCrypt video QoE mon-
itoring workflow. Raw traffic features are computed on-line
for each independent YouTube video session. In a nutshell,
we identify video flows through DNS-based IP addresses to
domain names dynamic mappings, following our own work on
Web QoE monitoring [10]. While the specific video session
detection over encrypted traffic is in itself a very complex
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Fig. 2: DeepCrypt deep learning architecture.

problem [10], we deem it out of the scope of this paper. When
a video session completes, multiple independent DeepCrypt
models, each one trained for a specific classification task,
are applied on the resulting input features, inferring both
video QoE metrics and user actions occurred during the
video playback. A total of 160 raw features are extracted
from the ongoing encrypted stream of bytes, in an on-line
manner. These include simple metrics such as the duration
of the session, number of packets, number of bytes, average
throughput, and packet inter-arrival times, separately computed
for downlink and uplink. Features are computed for the
complete session, as well as for consecutive time-windows
of 1, 5, and 10 seconds — the rationale here is to capture
different phenomena visible at different time scales. These
time-window metrics are summarized through the observed
minimum, average, maximum, as well as their variance and
standard deviation, across the complete video session. All
computations are done on-line and recursively, in fixed-size
memory space, relying on simple algorithms for one-pass
efficient computation [11].

In terms of learning model, Figure 2 describes the under-
lying deep architecture used by DeepCrypt. A series of three
consecutive 1D-CNN convolutional layers with 16, 32, and
64 filters respectively — using standard ReLLU activation — and
intermediate max pooling layers — to compress the size of the
representations — form the core of the representation learning
stage. The last convolutional layer is connected to a Global
Average (GA) pooling layer, which adds additional robustness
against over-fitting. The classification stage is composed of
a series of standard fully connected layers, using softmax
as activation function on the last fully connected layer. The
architecture additionally considers batch normalization and
dropout layers, to regularize the model.

B. YouTube Adaptive Streaming Datasets’ Collection

To study the performance of DeepCrypt, we rely on an
assorted list of five different datasets we collected back in
2018/2019 for the YouTube HTTP adaptive video streaming
service. Table I summarizes these datasets in terms of number
of video sessions, specific video player, type of emulated
user actions, and measurement environment. While the data
is rather outdated, the total number of videos and the hetero-
geneity of vantage points offers an unparalleled catalog for the
study, and in particular to obtain a highly generalizable model.



2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

» 90 ; w 907 Y, 90 —t-- T Y, 90 —
S 80 1 S 80 S 80 . g & S
270 ] 2 7 2 70 --- 2 7
2 60 ' 2 60 geo—l___ 2 60 - -
g 50 g 50 g 50 g 50
g 40 ' —QoEbot g 40 —QoEbot g 40 —QoEbot g 40 —QoEbot
s %0 -- APP s %0 -- APP s % -- APP s % -- PP
S 20 ) 2 20 ) o 20 _ < 20 ,
= 10 Selenium S 10 Selenium S 10 Selenium < 10 Selenium
0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
initial delay (s) re-buffering ratio (%) number of stalling events number of video quality (resolution) switches

(a) Initial Delay. (b) rebuffering Ratio.

(c) rebuffering Events. (d) Quality Switches.

r |

- :

.
/ .+ [—QoEbot
-

‘___/

50 "

=1
2 A

—QoEbot
- - APP
Selenium

% video sessions
% video sessions

% video sessions

— Pause

] 111

-no user action

-1 event or event occurrence
12 events

3 events

% video sessions

- - APP
Selenium
500 1000 1500 2000
average video bitrate (Kbps)

(f) Avg. Video Bitrate.

0 200 400 600 800 1000 0
average video quality (vertical representation)

(e) Avg. Video Resolution.

250

]
0/1BS 0/1 OBS

0 0 ]
0 5 10 15 s 0/1FS
pause to playback duration ratio (%)

(g) Pause time ratio. (h) Player Scrubbing.
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In addition, even if DeepCrypt’s underlying model might need
re-training for deployment in operational conditions today,
the main properties, approaches, and findings of this study
remain valid, mainly because the core principles behind HTTP
adaptive streaming are still in place.

The total data includes traffic captures for more than 15,000
individual YouTube video sessions. Two of these datasets
(QoEbot and Selenium) correspond to measurements collected
on a standard laptop with two different instrumented video
players — using Chrome as browser: the first one is a custom-
built, fully controllable, and generic HTMLS5 video player built
on top of open source libraries, using in particular video.js
and dash.js libraries; the second one corresponds to the stan-
dard HTMLS YouTube video player, instrumented through
the application of Selenium browser-automation libraries. We
streamed and measured more than 12,000 randomly selected
YouTube video sessions between June 2018 and February
2019, taking heterogeneous network setups to improve gener-
alization. Video sessions were collected at fixed-line networks
(~20% of the videos), WiFi networks (~60%), and LTE mobile
networks (~20%). Both QUIC (~45%) and TCP (~55%) were
considered as transport protocols. To induce QoE degradation,
bandwidth limitations were imposed on some of the sessions.
The QoEbot dataset was collected in a fully controlled environ-
ment (lab), and the Selenium dataset was collected in the field,
using our own instrumented laptops at different geographical
locations. The APP dataset corresponds to an open dataset
we collected in 2018 [9], including measurements from the
native, mobile Android YouTube app. The last two datasets
correspond to measurements collected at operational ISPs in

dataset # samples player user actions | environment
QoEbot 4,000 HTMLS P lab
APP 2,000 APP no lab
Selenium 8,000 YT-HTMLS5 P/S field
ISP-A 1,000 YT-HTMLS no field
ISP-B 800 YT-HTMLS no operational

TABLE I: Heterogeneous datasets for model training and evaluation.

2019 using their own in-network traffic monitoring technology,
relying on instrumented end-points for field trials (ISP-A) and
real user monitoring (ISP-B).

Figure 3 depicts the empirical distributions of the target
video QoE metrics, including (a) initial playback delay (ID),
(b) rebuffering frequency (RF), (c) rebuffering events (R),
(d) number of video quality (resolution) changes (QS), (e)
average video quality or resolution (D), and (f) average
video (encoding) bitrate (BR). The distribution of user ac-
tions introduced in some of the sessions are also reported,
including (g) the Pause (P) time ratio — total pause time
over video duration, and (h) multiple player Scrubbing actions
(S): Forward-scrubbing (FS), Backward-scrubbing (BS), and
out-of-buffer-scrubbing (OBS), the later referring to a player
scrubbing action which results in additional video requests.
All values are discretized into classes (labels), treating the
analysis as multiple independent classification tasks. Classes
include (a) high/low initial delay (HID/LID) — threshold 7},
= 3.5 seconds, (b/c) no/low/high rebuffering (NR/LR/HR) —
T, = 10% (for RF) or 2 rebuffering events (for number of R
events), (d) no/low/high quality changes (NQS/LQS/HQS) —
T, = 2 changes, (e) low/standard/high definition (LD/SD/HD)
— T, = 480p and 720p, (f) low/standard/high video bitrate
(LBR/SBR/HBR) — T;, = 700 and 1100 kbps, (g) no/low/high
pause ratio (NP/LPR/HPR) — T}, = 5% and (h) number and
detection of scrubbing events (NS) — 0 to 3 events.

IV. DeepCrypt EVALUATION
A. Video QoE Estimation

We firstly evaluate the video QoE estimation performance
of DeepCrypt. We build a combined dataset D3 = {QoEbot



2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

100 w 100 = — 100 —— ——
e 80 I HD 9 I NRF < 80 EINR
5 60 LD by L RF S 60 LR
& 40 [CwAve a CHRF | ] 5 40 COHR |
8 20 8 CIwAvG] | 8 20 [ IwAvG] |
0 0
R (a) initiaFI,deIa (b) re-buff ine fi R buff i t
re-purrering frequenc C) re-butrering events
100 y 100 ) § TeduenTy 100 __(©) 9 &Y
& 80 [ NS 9 [ i) 3 80 Il BR
S 60 BlLas > [ sD S 60 [ sBR
& 40 [Has & [IHD i & 40 HBR | |
8 2 [ IwAvG g CIWAVG| | 8 20 CIwWAVG| |
0 0

P
(d) quality switches

P
(e) video quality

P
(f) video bitrate

Fig. 5: DeepCrypt video QoE analysis. Recall and precision for cross-validation on semi-controlled dataset D3 = {QoEbot U APP U Selenium}.

100 — , ‘
20 | B ﬂ |
—~ 80 ! ! .H ]
I
R 70 i WMlinitial delay N
> gg i Ml rebuffering frequency| |
g 20 ! [Crebufferings events ||
8 30 : Il quality switches L
® 50 ! [ average video qualityl |
10 :

all-but-ISP-B APP QoEbot

[laverage video bitrate -
I T

Selenium ISP-A ISP-B

Fig. 6: DeepCrypt generalization. Classification accuracy for all-but-ISP-B D, dataset, and application to individual datasets, including out-of-training ISP-B.

U APP U Selenium}, using the three controlled-measurement
datasets (cf. Figure 3). Unless said otherwise, evaluation
results correspond to 5-fold cross validation. Figure 5 reports
the obtained results in terms of recall and precision per class,
including a weighted-average (WAVG) for each of the metrics
as indicative overall performance. Recall and precision are
high, above 85% for all classes and all six metrics, and close
to 95% for WAVG results in all video QoE metrics. These
results suggest that class differences are properly reflected
at the input features, and that DeepCrypt is able to properly
track those differences. To showcase the different fingerprints
in the input features, Figure 4 displays the average feature
vector values (normalized) for the three video bitrate classes
LBR/SBR/HBR, taking all samples in D3. Similar differences
are observed for the other video QoE metrics, partially ex-
plaining DeepCrypt’s excellent performance.

B. Generalization to ISP Measurements

We now take a look at the generalization of results, ex-
ploiting the heterogeneity of the measurements. We consider
a combined dataset including all-but-ISP-B measurements,
referred to as Dy = {QoEbot U APP U Selenium U ISP-
A}. We take 80% of D, for training and (cross)validation
purposes, and the remaining 20% for testing. Figure 6 reports
the obtained results per video QoE metric, taking the overall
model accuracy as aggregated performance metric. On the
left side (all-but-ISP-B), results correspond to 5-fold cross
validation on the training dataset. Results are similar to those
obtained in D3 (cf. Figure 5); however, note how accuracy
drops to about 80% for both rebuffering frequency and number
of events, suggesting that ISP-A measurements add significant
complexity to the estimation problem. Moving to the right-

side, we take the DeepCrypt models trained on the 80% of Dy
and apply them to the remaining 20% of the data, reporting
results for each dataset individually (APP, QoEbot, Sele-
nium, and ISP-A). Performance generalizes properly across
all different datasets, showing in general higher accuracy for
video quality related metrics and playback delay, and lower
performance for rebuffering related metrics, above 80% for
all the different scenarios. Finally, on the right-side end we
show the performance of these models on the ISP-B dataset,
which was not part of the training. We refer to this as an out-
of-distribution evaluation. Note that we only have rebuffering
metrics as ground truth data for ISP-B measurements. Again
on this scenario, DeepCrypt evidences proper model and
performance generalization.

C. Deep vs. Shallow Learning Benchmarking

The next question we investigate is whether the usage of
a deep learning architecture results in better performance, as
compared to standard shallow learning models. To the best
of our knowledge, previous work has relied exclusively on
shallow learning models for the estimation tasks. In particular,
Random Forest (RF) models are the most popular ones used in
the state of the art [1]-[6]. We therefore compare DeepCrypt
against five shallow-learning models, using the same 160
input features. These models include a standard Naive Bayes
classifier (NB), a 3-layers feed-forward Neural Network (NN),
a Support Vector Machines (SVM) classifier, a CART Decision
Tree (DT), and a Random Forest model (RF). Figure 7
shows the benchmark results on Dy, for each individual video
QoE metric — results correspond to 5-fold cross validation.
DeepCrypt systematically outperforms the shallow learning
models for all six video QoE metrics. As reported in the
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state of the art, the RF model provides the best performance
among the shallow learning models; nevertheless, DeepCrypt
improves over the RF model with about 10% higher accuracy
in all metrics.

D. Identification of User Actions

The last evaluation considers the estimation of user player
actions. We take a combined D, = {QoEbot U Selenium}
dataset, as these are the only datasets containing user player
interactions — cf. Table I. The QoEbot dataset contains only
pause events (P), located at random positions within the video
playback, whereas the Selenium dataset contains both pauses
and three kinds of player scrubbing events FS/BS/OBS, also
occurring at random positions. Figure 8 presents the results
obtained by 5-fold cross validation on D;. Classification
performance is outstanding, with values around or above 80%
for all classes and player actions. We use the term outstanding
due to the complexity of the classification task, as already dis-
cussed in previous work [6]; one of the major challenges faced
in this classification task is to properly discriminate between
user-induced player interactions and video streaming events,
such as rebufferings, as both generate similar outcomes in the
playback stream. Note that both QoEbot and Selenium datasets
contain user actions and QoE degradation events. Interestingly,
performance is higher for detection and classification of player
scrubbing actions and lower for pause events, pointing to the
aforementioned observations.

V. CONCLUDING REMARKS

Using a deep learning architecture, DeepCrypt is a novel
approach to analyze YouTube adaptive video streaming QoE,

P
(e) backward-scrub detection

P
(f) out-of-buffer-scrub detection
= {QoEbot U Selenium} dataset.

from the analysis of encrypted network traffic. Through ex-
tensive empirical evaluation on five heterogeneous HTTP
video streaming datasets we have shown that: (i) DeepCrypt
can infer six different video QoE indicators and detect four
different user player actions with high precision and recall,
providing as such an unprecedented level of visibility on the
video streaming process from the analysis of encrypted traffic;
(ii) the underlying deep learning model outperforms shallow
learning models previously used in the literature for similar
classification tasks; and (iii) DeepCrypt results properly gen-
eralize to multiple different video players, devices, network
setups, and operational networks. DeepCrypt results offer a
promising venue for deep learning models applied to video
QoE monitoring and analysis.

REFERENCES

[1] G. Dimopoulos et al., “Measuring Video QoE from Encrypted Traffic,” in ACM
Internet Measurement Conference (IMC), 2016.

[2] I Orsolic et al., “YouTube QoE Estimation Based on the Analysis of Encrypted
Network Traffic Using Machine Learning,” in IEEE QoEMC Workshop, 2016.

[3] M. H. Mazhar et al., “Real-time Video Quality of Experience Monitoring for
HTTPS and QUIC,” in IEEE INFOCOM Conference, 2018.

[4] C. Gutterman et al., “Requet: Real-time QoE Detection for Encrypted YouTube
Traffic,” in ACM Multimedia Systems Conference (MMSys), 2019.

[S5] S. Wassermann et al., “ViCrypt to the Rescue: Real-time, Machine-Learning-driven
Video-QoE Monitoring for Encrypted Streaming Traffic,” TNSM, vol. 17 (4), 2020.

[6] I. Bartolec et al., “Inclusion of End User Playback-Related Interactions in YouTube
Video Data Collection and ML-Based Performance Model Training,” in Interna-
tional Conference on Quality of Multimedia Experience (QoMEX), 2020.

[7] V. Krishnamoorthi et al., “BUFFEST: Predicting Buffer Conditions and Real-time
Requirements of HTTP(S) Adaptive Streaming Clients,” in MMSys, 2017.

[8] T. Mangla et al., “eMIMIC: Estimating HTTP-based Video QoE Metrics from
Encrypted Network Traffic,” in TMA Conference, 2018.

[9] T. Karagkioules et al., “A Public Dataset for YouTube’s Mobile Streaming Client,”

in Workshop on Mobile Network Measurement (MNM), 2018.

P. Casas et al., “X-Ray Goggles for the ISP: Improving in-Network Web and App

QoE Monitoring with Deep Learning,” in TMA Conference, 2022.

P. Pébay, “Formulas for Robust, One-Pass Parallel Computation of Covariances and

Arbitrary-Order Statistical Moments,” Sandia National Labs, Tech. Rep., 2008.

[10]

[11]



