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∗AIT Austrian Institute of Technology, †University of Würzburg

Abstract—Web Quality of Experience (QoE) monitoring is
a critical task for Internet Service Providers (ISPs), especially
due to the key role played by customer experience in churn
management. Previously, we have tackled the problem of Web
QoE inference from the ISP perspective, relying on passive
measurement of encrypted network traffic and machine learning
models. In this paper, we exploit the broad heterogeneity of
contents embedded in web pages to improve the state of the
art performance in Web QoE inference, relying on web-content
learning model tailoring. By analyzing the top-500 most popular
web pages of the Internet through unsupervised learning, we
discover different web page content classes which realize sig-
nificantly different Web QoE inference performance. We train
supervised learning inference models separately for each of these
classes, using the well-known Speed Index (SI) metric as proxy
to Web QoE. Empirical evaluations on a large corpus of Web
QoE measurements for top popular websites demonstrate that
our combined content-tailored approach improves the inference
performance of the SI by almost 30% with respect to previous
single-model approaches, reducing the QoE inference error in
terms of mean opinion scores by more than 40%.

I. INTRODUCTION

Web browsing Quality of Experience (QoE) has attracted

significant attention in recent years. While Internet Service

Providers (ISPs) have traditionally relied on the usage of

Deep Packet Inspection (DPI) techniques to understand the

performance of web services from the network side, the

wide adoption of end-to-end traffic encryption has drastically

reduced their visibility. This has motivated a surge in the

research and conception of Machine-Learning (ML) based

approaches to infer application-level Web QoE metrics from

the streams of encrypted bytes [4], [6]. In these previous

work, single learning models were trained to address the full

spectrum of web pages in the Internet. Given the huge number

of Internet web pages – more than 1.7 billion websites (https:

//httparchive.org/), and the diversity of contents embedded on

them, we hypothesize that a single model cannot efficiently

capture this rich heterogeneity. While it is unfeasible to build

per-web page specific models, we investigate to which extent

we can identify groups of web pages sharing similarities

in their underlying structure (e.g., image-dominant vs text-

dominant pages, number of external embedded contents, small

vs large page size, etc.), to train per-group inference models

which realize better overall performance. Previous studies [9],

[10] have suggested this is the case, but no actual research

agenda was followed-up on this problem. In a more general

perspective, this problem is related to the personalization of

machine learning models [13]: in machine learning, person-

alization addresses the goal of training a model to target

a particular individual or homogenous group, significantly

enhancing the realized performance.

In this paper we build on our previous work [4], [5] to

address this personalization approach, firstly by discovering

classes of web pages sharing similar content-related properties

through clustering techniques, and then by training per-class

supervised learning models to infer the SI of individual web

page loading sessions. We take the well-known SI metric as a

proxy to Web QoE, based on the rich literature on Web QoE

analysis [4]–[9]. To do so, we analyze a rich dataset of active

Web QoE measurements, targeting the most popular websites

in today’s Internet. The dataset includes both application-

layer Web QoE metrics – such as SI, as well as network

traffic traces, for 15,000 web page loading sessions (i.e., the

loading of a single browser web page). Finally, while we

have recently worked on the problem of clustering web pages

based on content characteristics [3], this paper goes beyond

our previous work and the state of the art, by enhancing

Web QoE inference through content-tailored machine learning.

In particular, we show that our combined, content-tailored

approach improves the inference performance of the SI by

almost 30% with respect to previous one-fit-all single model

approach, additionally reducing the QoE inference error in

terms of Mean Opinion Scores (MOS) by more than 40%.

The remainder of the paper is organized as follows. Sec. II

overviews the related work on Web QoE monitoring and

analysis. Sec. III presents the overall modeling and inference

approaches as well as the data generation, including a descrip-

tion of the different features used in the unsupervised and

supervised tasks. In Sec. IV we apply clustering algorithms to

automatically discover different classes of web pages based on

their contents, and present a characterization of the obtained

results. Using these classes as basis, in Sec. V we benchmark

and explain the performance of per-class supervised learning

models for SI inference against the previously followed one-

fit-all model. Finally, Sec. VI concludes this paper.

II. RELATED WORK

There is a vast literature in the problem of measurements for

Web QoE monitoring and analysis [2], [7]–[9], [11]; however,

most of previous work have focused on measurements at the

application layer or assuming access to end devices, which

is not applicable for ISPs to perform network-wide QoE
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(a) Webpage size (MB). (b) Number of domains, connections, and relevant resources. (c) Share of content types.

Fig. 1: Heterogeneity of Internet web pages, for the top 10.000 Alexa websites in 2021.
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Fig. 2: Measurement platform for data collection.

monitoring in practice. ISPs require approaches which can

operate directly at the network traffic level, where massive

data is available to their already deployed monitoring systems,

yet with the additional complexity introduced by the wide

adoption of TLS/HTTPS for end-to-end traffic encryption.

Previous work [1], [2] have developed Web QoE-related

metrics highly correlated to the SI metric, including the Byte

and Object-Index [2] and the Pain-Index [1], which can be

computed directly from packet and flow level measurements,

thus seamlessly operating with encrypted traffic. Still, such

metrics are mostly informative, as they do not provide an

absolute estimation of the actual user QoE. The SI metric

is today widely accepted as one of the best metrics serving

as proxy to Web QoE [7], as it takes into account the whole

visual progress of the page loading. As a consequence, and

considering the monitoring limitations introduced by network

traffic encryption, in recent work [4]–[6] we have tackled the

problem by conceiving ML models to directly infer the SI

of web loading sessions, using inputs directly derived from

the encrypted streams of traffic. In this paper we take a step

forward in this direction, by conceiving models for classes of

web pages sharing similar content characteristics, which even-

tually results in an enhanced performance of the SI inference

task. Explainability analysis through well-known approaches

such as SHAP [12] show that simple multi-flow-level metrics

such as session duration and flow index (reflecting download

throughput) provide the most descriptive information behind

such an improved performance.

III. WEB QOE DATA & MODELING APPROACHES

To show evidence on the broad heterogeneity and content

richness of Internet web pages today, Fig. 1 depicts the (a)

size, (b) number of domains and relevant resources, and (c)

share of content types, for the top 10.000 Alexa websites in

2021, extracted from the HTTP Archive public dataset (https:

//httparchive.org/) in Google BigQuery.
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SI Inference
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Clustering
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Fig. 3: Web page classes discovery and SI inference.

The proposed solution to the Web QoE inference problem

consists of training supervised ML models to map network

traffic features, extracted from the encrypted network web-

page traffic, into the SI metric. The approach is data-driven,

and thus needs datasets containing both the collected network

traffic – the input, and the targeted Web QoE metric – the

ground truth. To fully control the generation of such datasets,

we have conceived a measurement platform based on multiple

private instances of WepPageTest (WPT) [14], a well-known

and widely used open-source web performance analysis tool.

The measurement testbed (Fig. 2) consists of three different,

non-emulated types of devices, including smartphones, tablets,

and desktop (Chrome is used as browser), using WPT agents

for Android and Linux. To keep the focus on the web page

content aspect solely, we use only measurements collected for

Desktop browsing in this study. Using WPT measurements, the

platform extracts about 90 different KPIs and Web QoE met-

rics from independent web page loading sessions – including

the SI metric, as well as content characteristics of the visited

web pages. Network traffic is captured at an intermediate

monitoring vantage point, from where different traffic features

are subsequently derived as input to the models. A desktop

device is connected to the open Internet through a network

emulator; we use different configurations including downlink

bandwidth up to 10 Mbps, packet loss up to 10%, and RTTs

up to 100ms. Web measurements target the top 500 most

popular websites according to Alexa top sites list. The same

web pages are visited multiple times, under the same access

network setups. For this study, we use a dataset composed of

15,000 individual web page loading sessions.

Using these measurements, the proposed modeling ap-

proach is two-fold (Fig. 3): the first step (top) consists of

the identification of web page content classes Ci, which is
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Fig. 5: Obtained web page clusters with K = 3-means.

portrayed as an unsupervised learning task, more precisely

relying on clustering techniques. To tackle this problem, we

define a set of content-level features FC = {fi} describing

the characteristics of each web page in terms of page size,

number of embedded contents, root domains, and share of

bytes for different MIME content types (e.g., images, video,

javascript, etc.). Tab. I presents the set of 16 different content

features used for web pages clustering. This clustering step

is independent of the SI inference problem, and relies on

content-related features which are not necessarily visible at

the network traffic level.

The second step (down) consists of the training of super-

vised learning models (cf. module C in Fig. 3) which can

infer the SI of individual web page loading sessions from

features derived out of the (encrypted) network traffic flows

(cf. module B in Fig. 3). To compute these features, we assume

that all the traffic flows belonging to an individual web page

loading session are already isolated from the rest of the traffic,

which in the practice would be done by a monitoring system in

module A. While this traffic monitoring module is out of the

scope of the paper, we acknowledge that we have conceived a

fingerprinting solution to identify all the traffic flows belonging

to a specific web page, relying on DNS information. For the

SI inference problem, we take the set of 21 flow-level features

previously used in [4], including: (i) the total number of flows

(all, downlink, uplink), (ii) the min/mean/median/max flow

duration in downlink, (iii) the min/mean/median/max flow size

in downlink, (iv) the min/mean/median/max flow Byte Index

[2] in downlink, (v) the mean/median in-flow, average intra-

packets time (MDT) in downlink, (vi) the mean/median/max

flow throughput in downlink, and (vii) the Flow Index (FI).

The FI metric [4] is the equivalent to the Byte Index, counting

downloaded flows instead of bytes. These flow-level features

are complemented by a set of 11 session-level features (com-

putable at the flow-level), which include: (i) session duration

ID feature ID feature

f1 # packetsdown f9 # requests HTML

f2 # packetsup f10 % byteshtml

f3 # packets f11 % bytesjs

f4 # bytesdown f12 % bytescss

f5 # bytesup f13 % bytesimg

f6 # bytes f14 % bytesflash

f7 # root domains f15 % bytesfont

f8 # resources f16 % bytesvideo

TABLE I: Features FC for web pages clustering.

(total, downlink, uplink), (ii) total number of packets and bytes

(all, downlink, uplink), and (iii) mean session throughput

in downlink and uplink. We refer to this set of 32 network

traffic features as FN . Finally, the content-tailored modeling

is realized by training a separate SI inference model i for all

the measurements corresponding to the web pages in Ci.

IV. CLUSTERING WEB PAGES

To split the set of n = 500 web pages into meaningful

clusters, we firstly compute the set of 16 FC features, out

of the 15,000 web page loading sessions available in the

dataset. For each web page WPi, i = 1..n, features fj(i),
j = 1..9 are computed as the mean value observed over the

multiple loading sessions of this web page, and features fj(i),
j = 10..16 are computed as the shares of MIME content

types for the average web page WPi. The effective number

of analyzed web pages is n = 472 and not n = 500, which

is due to repeatedly timed-out measurements for web pages

located mostly in China.

The next step is to decide on the specific clustering approach

to apply. The two most well-known and standard clustering

algorithms are K-means and DBSCAN. The former identifies

a pre-defined number of clusters K, with hyper-spherical

shape when considering a dimension-independent distance

metric such as the Euclidean distance; the latter works with the

concepts of density and outliers, and identifies any shape of

cluster containing at least minpts samples, using the distance

ǫ as basis for density-search. In our particular problem, a

practical advantage of K-means over DBSCAN is that each

instance is always assigned to a cluster, which is not the

case for DBSCAN, which labels instances as outliers (noise)

when located in low-density regions with less than minpts

samples in an ǫ-vicinity. We therefore consider K-means as

the clustering algorithm to use. To find the optimal number of

clusters K we take a combined grid-search approach, using

both K-means and DBSCAN as search algorithms, and using

a set of structural performance metrics to assess the obtained

clustering results when changing either K or ǫ. In particular,

we use the well known variance ratio criterion – Calinski-

Harabasz (CH) index, the DaviesBouldin (DB) index, and the

Silhouette (S) index. We refer the reader to [15] for a detailed

definition of these cluster validity metrics, but in a nutshell,

the higher the CH and S indexes, and the lower the DB index,

the better the clustering results.

Fig. 4 depicts the obtained results using (a) K-means with a

growing number of clusters, and (b) DBSCAN with a growing



0 5 10 15 20 25

page size (MB)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

0 50 100 150 200 250

# resources

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

0 10 20 30 40 50

# root domains

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

0 10 20 30 40 50 60 70 80 90

# HTML requests

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

(a) Mean web page size. (b) Mean num resources. (c) Mean domains. (d) Mean # HTML requests.

0 10 20 30 40 50 60 70 80 90 100

bytes image content (%)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

0 10 20 30 40 50 60 70 80 90 100

bytes video content (%)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

0 10 20 30 40 50 60 70 80 90 100

bytes HTML content (%)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

0 10 20 30 40 50 60 70 80 90 100

bytes JS content (%)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b

 p
a

g
e

s

C1

C2

C3

(e) % IMG bytes. (f) % video bytes. (g) % HTML bytes. (h) % JS bytes.
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Fig. 7: Web page loading performance and complexity.

search distance ǫ, fixing minpts = 5; note that the influence

of minpts is generally much lower [15]. According to (a),

K = 3 or K = 4 provides the best clustering performance in

terms of the validity metrics; to take a more informed decision,

we rely on the results obtained with DBSCAN, not only in

terms of the same validity metrics, but also considering the

number of identified clusters and the corresponding percentage

of outliers. The number of clusters identified by DBSCAN

significantly fluctuates between two and four, but a certain

stability is observed for 0.055 ≤ ǫ ≤ 0.08, resulting in

three identified clusters with high performance and a very low

share of outliers. Therefore, the final number of clusters to

consider is set to K = 3. Fig. 5 shows (a) the number of

web pages identified within each cluster Ci, as well as (b)

the similarity among web pages, through a multidimensional

scaling approach. The size of each cluster is |C1| = 171,

|C2| = 204, and |C3| = 97, and their split has limited

overlapping; as we show next, the web page size is a highly

accurate feature to differentiate web pages.

A. Characterization of Web page Classes

Fig. 6 depicts different characteristics of the web pages, split

by cluster. The most relevant observation relates to the influ-

ence of the web page size: according to Fig. 6(a), C2 contains

smaller-size web pages of up to 2MB, C1 contains web pages

with sizes between 2MB and 4MB, and C3 contains a broader

spectrum of web pages, with size ranging from about 4.2MB

up to 30MB. This ordering is maintained when considering the

number of embedded resources and external domains, as well

as the number of required HTML requests to load the page. In

terms of MIME content types, while similar observations apply

– e.g., C3 web pages are characterized by a higher prevalence

of image and video contents, C2 web pages have more HTML

and javascript content, suggesting a more interactive nature

of these web pages. In terms of loading performance, Fig. 7

shows that C1 and C3 web pages take significantly higher time

to fully download all required contents as compared to C2 web

pages, which is expected based on the aforementioned content

observations. Interestingly, the SI to page loading time (PLT)

ratio as depicted in Fig. 7(b) evidences that the higher the

size and complexity of a web page, the bigger the difference

between the visually perceived loading time – i.e., the SI, and

the total loading time.

We investigate the correlation of some of the considered

content features to the SI, as well as the relevance of the

different features in terms of defining the clustering member-

ship of a web page. Fig. 8(a) depicts rank correlation values

between web page contents and SI, for all web pages and

in a per-cluster basis. While correlation values are rather low

in most cases, C2 web pages loading performance is more

correlated to the underlying contents. Page size, number of

resources, and share of image bytes are among the most

relevant features to infer the SI for web pages in C2. Fig. 8(b)

ranks the set of 16 features according to the information

gain provided by each feature, when using the features as

input for per-cluster content classification. In simple terms, the

higher the information gain, the more relevant the feature is to

discriminate among clusters. We also flag subsets of features

providing the highest correlation values to the cluster mem-

bership, through correlation feature selection techniques. As

expected, page-size related features are ranked first, including

page size (f6) and downloaded bytes (f4) and packets (f1);

image (f13) and JS (f11) contents are also relevant for web

page discrimination, as well as the number of external root

domains (f7) and embedded resources (f8). Finally, as an

additional verification of the goodness of clustering results,

Fig. 8(c) reports the cross-validated web-page-to-cluster iden-

tification performance, assuming here a random forest (RF)

model as supervised classifier, and the clustering membership

as ground-truth. In simple terms, this model could accurately

associate a web page to its corresponding category, if the

corresponding content-related features FC would be exposed.
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model (content) MAE-mAE (ms) MRE-mRE (%) PLCC

full 660 – 303 35 – 18 0.847

C1 540 – 285 28 – 15 0.906

C2 308 – 141 24 – 11 0.942

C3 712 – 382 33 – 17 0.890

C 474 – 223 27 – 13 0.916

TABLE II: SI inference by content-tailored ML.

V. CONTENT-TAILORED WEB QOE INFERENCE

A. Web QoE Inference through Tailored Models

We now take the three identified clusters of web pages to

train independent SI inference models in a per-cluster basis.

For each cluster Ci, we take a subset of the 15,000 web page

loading sessions, corresponding to all the loading sessions of

the member web pages. In practice, the association of a web

page to its corresponding cluster class can be simply done by

inspection of the underlying DNS request.

Following our previous studies on ML for Web QoE [4],

we take a simple RF model to tackle the inference task. We

consider an expressive model composed of 100 decision trees,

which is trained and evaluated through cross-validation. More

specifically, all results presented next correspond to 5-fold

cross validation. Recall that in the SI inference problem, we

take as input the set of 32 features FN computed at the flow

level, directly from the encrypted stream of traffic.

To assess the relevance of the identified web page clusters

regarding the improvement of the inference models, we com-

pare the SI inference performance realized by a single model

cross-validated over the full set of web page measurements –

we refer to this model as Mfull, against three independent MCi

models, cross validated over member web page measurements.

We assess performance using three standard performance met-

rics for regression problems, including the absolute error (AE),

the relative error (RE), and the linear correlation (PLCC).

We take both mean (M) and median (m) values for the error

metrics, to filter out significantly large errors.

Fig. 9(a) depicts the distribution of the inference errors for

the aforementioned models. A first observation is that the MC2

model largely outperforms the others, providing significantly

lower errors. This is coherent with previous observations on

the correlation of content-related metrics and SI for C2 web

pages, and in particular to page size related metrics, which are

easily capture also at the flow-level measurements. Inference

performance for MC1
is also better than for Mfull, and MC3

realizes worse results. Tab. II summarizes the obtained results.

In particular, the last row indicated by C corresponds to all

clustering prediction results realized by the three models MCi
,

each applied to the corresponding loading sessions for the

web pages within Ci. In terms of absolute inference errors,

the content-tailored inference approach improves the single

Mfull model by almost 30%, reducing the mean absolute error

from 660ms to 474ms. A similar improvement is observed for

the median absolute error, reducing from 303ms to 223ms. A

natural question here is how relevant are these improvements

in terms of end-user experience? To answer this question, we

map SI values into well-known MOS scores, using waiting-

time models calibrated in [7]. For the sake of easier analysis,

we map SI values into low and high QoE categories, being

low/high QoE a MOS score below/above 3.5. This threshold

also results in a balanced split (44/56) in terms of number of

sessions in each category. Fig. 9(b) depicts the corresponding

QoE MOS inference errors obtained when mapping actual

and inferred SI values, for MC aggregated per-cluster models,

and for Mfull. Mfull inference errors result in about 10%/11%

of the sessions being wrongly classified as low/high QoE.

Aggregated MC results reduce these errors by more than 40%,

improving low/high QoE classification by 45%/40%.

B. Model Explainability with SHAP

To shed light on the underlying functioning of the RF

models, we resort to explainable AI techniques describing

which input features have a stronger influence in the pre-

dictions, and in which sense. We apply SHAP [12], a game

theoretic approach to explain the output of any machine

learning model, by calculating the contribution of each feature

to the corresponding predictions. Fig. 10 depicts the top-5-

sorted most relevant input features and their corresponding

impact on the model output according to SHAP, per cluster

model. For each feature and for each input sample, each plot

shows how much it pushes the model output from the base

value to the actual output for this sample. The base value

corresponds to the average model output over the training

dataset. Higher feature values are shown in red, and lower



(a) SHAP top-5 features for MC1
and C1 web pages.

(b) SHAP top-5 features for MC2
and C2 web pages.

(c) SHAP top-5 features for MC3
and C3 web pages.

Fig. 10: Explainability of per-cluster SI inference models.

in blue. Multi-flow-level features such as flow index and

mean/median flow byte index (for both metrics, the smaller

the value, the faster the page loading and the smaller the SI),

and session duration have a clearer stronger impact, positively

correlated with the SI. Interestingly, the uplink throughput

is highly relevant for the MC3
model; web pages in cluster

C3 are in general more complex (cf. Fig. 6), with a higher

number of resources and images, and requiring more HTML

requests for content-fetching, which means more round-trip-

times, and therefore a higher dependence on bi-directional link

performance. A deeper analysis on the impact of the uplink

performance is part of ongoing work.

C. Classification of Web Pages

The last part of the study is devoted to the problem of

automatically assigning web page loading sessions to the

corresponding web page class when no DNS information

is available. This could happen for multiple reasons, and

thus it is relevant to understand how feasible it would be

to predict the class membership of a web page using flow-

level traffic features only, to apply the corresponding content-

tailored inference model. Fig. 11 shows that web pages can be
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Fig. 11: Classification of web pages from flow-metrics.

properly assigned to their underlying classes with high preci-

sion and recall – above 90% for all three classes, exclusively

from network traffic measurements and even when no DNS

information is available.

VI. CONCLUDING REMARKS

The broad heterogeneity of contents embedded in modern

web pages can be exploited to provide more accurate models

for Web QoE inference, through personalization and tailoring

of machine learning models. We have shown that content-

tailored models can significantly enhance the performance of

previous machine learning driven solutions for in-network Web

QoE monitoring, providing the first tangible evidence of this

potential, for a yet not answered question. We discovered that

the top-500 most popular web pages of the Internet can be

grouped under three different content-based classes, and that

the size of a page alone provides already relevant enough infor-

mation for a raw split of web pages into meaningful content

classes. In future work, we plan to extend the clustering of

web pages and tailoring of machine learning models to a much

larger set of Internet web pages, evaluating the benefits and

limits of content-tailored learning for Web QoE monitoring

and assessment at large.
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