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Fingerprinting Web Pages and Smartphone Apps

from Encrypted Network Traffic with WebScanner

Pedro Casas∗, Nikolas Wehner†, Sarah Wassermann∗, Michael Seufert†

∗AIT Austrian Institute of Technology, †University of Würzburg

Abstract—Traffic encryption reduces the visibility of Internet
Service Providers (ISPs) on the services consumed by their
customers. This is particularly challenging for monitoring and
analysis of web and apps traffic, which is highly complex
and heterogeneous. Loading a web-page or app today requires
tens of flows to download the various resources located in
distributed cloud servers from different content providers. We
introduce WebScanner, a web-page and app fingerprinting ap-
proach capable to identify all the traffic flows corresponding to
individual web-page and app loading sessions within concurrent
web pages traffic, enabling highly detailed, per web-page analysis
in practical deployments. Different from the state of the art in
web and app traffic fingerprinting, WebScanner automatically
performs the parsing of all the (encrypted) traffic generated by
a web visit and its isolation from concurrent traffic, instead of
assuming that an external oracle system does so. WebScanner also
implements a deep fingerprinting approach to detect user action-
dependent traffic from apps, relying on simple machine learning
models and strong input features as fingerprints. Extensive
evaluation across a large measurement dataset of popular web
pages and mobile apps confirms the outstanding performance of
WebScanner, identifying the top-500 Alexa websites with precision
and recall (P/R) above 95%, isolating their full contents with P/R
above 80% for up to 15 concurrent web pages visited by the same
device, and detecting specific action-dependent apps traffic with
average P/R above 92%.

Index Terms—Web traffic; smartphone Apps; fingerprinting;
traffic classification; machine learning

I. INTRODUCTION

Network traffic monitoring is paramount for Internet Ser-

vice Providers (ISPs), to improve their visibility, to quickly

detect and resolve performance issues, as well as to optimize

resources. Approaches like Deep Packet Inspection (DPI) have

been traditionally used to obtain application-layer information

regarding the health of applications and web services from the

network side; however, traffic encryption is limiting the appli-

cability of DPI. To make matters more challenging, modern

web and app traffic is served from highly distributed cloud

infrastructures through complex content delivery networks,

and a single web-page visit or loading of an app can result in

tens or even hundreds of end-to-end encrypted traffic flows,

generating a difficult to interpret tangle. Network manage-

ment applications such as performance monitoring, dynamic

resource allocation, traffic classification, or even proactive

web security (e.g., traffic honypotting) require identifying and

isolating all the flows corresponding to each single web-page

visit or app loading session.

The need for increased visibility on encrypted web traffic

has motivated a surge in the conception of Machine-Learning

(ML) based approaches to fingerprint and detect the traf-

fic generated by specific web pages and web applications.

Naturally, there is a very broad literature in the problem of

encrypted traffic classification for web pages and apps, but

for the majority of these previous work, they assume that all

the traffic flows generated by the web-page/app instance to

classify are disentangled and isolated from concurrent web

pages traffic and background traffic by some external means,

not evaluated as part of their classification pipeline.

This is a major limitation on the applicability of the state

of the art in web pages and apps fingerprinting in practice.

We therefore introduce WebScanner, a web-page and app

fingerprinting approach capable to identify all the traffic flows

corresponding to individual web-page and app loading sessions

within concurrent web pages traffic, enabling highly detailed,

per web-page analysis in practical deployments. Different from

the state of the art in web and app traffic fingerprinting,

WebScanner automatically performs the parsing of all the

(encrypted) traffic generated by a web visit and its isolation

from concurrent traffic, instead of assuming an external oracle

system doing it. WebScanner can fully disentangle 15 different

web pages visited by the same device (or multiple devices

sharing the same IP address, e.g., NATing) at the same

time (e.g., multi-tab browsing, or background traffic). In the

context of this study, a session corresponds to all the flows

exchanged between the end-user’s device IP and the IPs of

the servers hosting the web-page embedded contents, for one

specific web-page loading instance. Besides detecting spe-

cific web pages/apps and filtering/disentangling their contents

(flows), WebScanner employs ML techniques to fingerprint

and identify different user action-dependent sessions generated

by popular apps, such as product search in the Amazon e-

commerce app, or Amazon video, app scrolling, etc.

Through extensive evaluation on a broad dataset composed

of desktop and smartphone web browsing measurements for

the top-500 Alexa websites, as well as instrumented measure-

ments for four popular apps and 11 different user actions,

we demonstrate the fine-granularity monitoring capabilities

enabled by WebScanner, being able to detect single web

pages and to isolate all the traffic flows belonging to these

with (P)recision and (R)ecall above 95% (detection) and 80%

(disentangling), for up to 15 concurrent web pages visited by

the same IP address at the same time, and detecting specific

action-dependent apps traffic with average P/R above 92%.

The remainder of the paper is organized as follows. Sec. II

presents some background on the complexity of current Inter-
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(a) Web-page size (MB). (b) Number of domains, connections, and relevant resources. (c) Share of content types.

Fig. 1: Heterogeneity of Internet web pages, for the top 10.000 Alexa websites in 2021.

net web pages, and briefly overviews related work. Sec. III

presents the techniques employed by WebScanner for web

traffic identification and filtering, as well as the fingerprinting,

ML-based approach for app user-action classification. Exten-

sive evaluation results are reported in Sec. IV – for web traffic,

and in Sec. V – for apps, including the characterization of the

traffic measurements, an analysis of the fingerprints, and the

assessment on the detection and disentangling of web pages,

as well as the evaluation of the app classification approach.

Finally, Sec. VI presents concluding remarks.

II. BACKGROUND & RELATED WORK

To show evidence on the broad heterogeneity and content

richness of Internet web pages today, Fig. 1 depicts the (a)

size, (b) number of domains and relevant resources, and (c)

share of content types, for the top 10.000 Alexa websites

in 2021, extracted from the HTTP Archive public dataset

(https://httparchive.org/) in Google BigQuery. web pages size

and content significantly varies, and a single web-page loading

today might require to download contents from up to 200

different domains; half of the pages have more than 20

javascript resources and embed more than 40 images.

There is a vast literature in the problem of web [3]–[6], [9]

and app [10], [11] traffic fingerprinting and classification, for

end-to-end encrypted traffic. A complete survey is presented in

[7]. Most of these approaches are based on the application of

supervised or semi-supervised ML models to a set of features

derived from the encrypted traffic. Their target is not exactly

the same as ours, as their main application is to identify a

certain web-page or app instance, whereas we are interested

in identifying and isolating all the traffic belonging to each

session; nevertheless, their main limitation is assuming a non-

realistic application setup, where all the traffic flows belonging

to a single instance are already perfectly isolated from what-

ever background or concurrent web traffic. In fact, these papers

explicitly mention that those cases where background traffic

may be present, for example from multi-tab browsing, is out

of their scope and left fir future work. This is a clear limitation

in the practice, as fingerprint computation becomes noisy and

prone to impactful errors. Two papers [6], [8] are mentioned

as potential solutions to this disentangling problem, but the

proposed solutions are rather limited to the full identification

goal of WebScanner: the solution presented in [8] is only tested

with up to two concurrent web pages, explicitly mentioning

that accuracy would be lower for more than two pages;

the solution in [6] uses Server Name Indication (SNI), an

extension to TLS which directly refers to the specific HTTPS

service being accessed, and while this approach is useful to

identify different services hosted by the same server, it does

not help in isolating the traffic from all the flows coming from

completely different servers.

Previous work [12] has taken a similar direction for web

traffic disentangling, introducing PAIN; while WebScanner

has multiple similarities with PAIN, it also has important

differences: WebScanner traffic identification and disentan-

gling are fully-supervised approaches, based on off-line active

measurements and fingerprinting, whereas PAIN is meant for

unsupervised operation, and requires passive measurements for

web pages accessed by a large number of users. As stated

in [12], PAIN cannot monitor a single visit to a specific web-

page, whereas that is exactly the target of WebScanner. In

addition, WebScanner uses a double fingerprinting approach

to identify web pages directly requested by the user, instead

of simply tracking pre-defined web-page names defined by the

operator. To conclude, we have recently applied WebScanner

to the problem of Web QoE inference and analysis [1],

fingerprinting and isolating the traffic from independent web

pages to extract relevant traffic features for ML-driven QoE

inference and analysis. Different from [1], the focus of this

paper is on the fingerprinting techniques, both for web pages

and apps.

III. WEB DISENTANGLING AND APP FINGERPRINTING

In practice, and depending on the specific vantage point

where the monitoring system is deployed, sessions are concur-

rent, originating either at individual (e.g., multi-tab browsing)

or multiple users, which might even share the same origin IP

address if located behind a NAT gateway. Once a user visits a

certain website, the browser opens multiple connections to the

different servers, fetching all the contents which compose the

corresponding web-page, including both local web contents as

well as third-party embedded contents, such as advertisements

and more, see Fig. 2. We refer to the domain associated with

the web-page requested by the user as the core domain �,

and the subsequently contacted domains as support domains

( 9 . From now on, let us assume we have a total of F core

domains or web pages, and 3 unique support domains.

Next, we introduce an approach to detect and isolate all

the flows corresponding to an individual session. WebScanner

tackles two specific challenges: (i) firstly, it is able to identify
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Fig. 2: WebScanner fingerprinting concept and definitions for web traffic.

all the core domains �8 present in a group of mixed web

traffic flows, and (ii) secondly, given a core domain �8 , it can

identify all the support domains (8, 9 associated with it. We

refer to the first problem as the click-stream identification –

i.e., identifying web pages directly requested by the user – and

to the second problem as session disentangling – i.e., splitting

flows into their associated sessions. An additional complexity

in these two problems is that a certain domain could be support

for multiple different core domains, and that a core domain

itself could actually be a support domain for a different web-

page. Note that WebScanner assumes traffic flows are tagged

with their associated domain names, as observed in the DNS

queries. In such a scenario, correctly identifying core and

support domains of a web session directly translates into a

matching reconstruction of the network traffic flows. In this

paper we do not address the usage of DNS encryption.

Besides solving the click-stream identification and session

disentangling problems, WebScanner implements a simple

traffic fingerprinting approach to classify app traffic into differ-

ent user action related classes; the main idea and assumption

is that apps (and eventually web pages) can be distinguished

by the sequence of the packets’ direction, either uplink or

downlink.

A. Click-stream Identification

We tackle the click-stream identification problem through

a fully supervised, fingerprints-based approach, where fin-

gerprints are derived from the sequence of core and associ-

ated support domains observed in multiple web-page loading

sessions. Given a collection of F web pages – accessible

through their core domains �8 , 8 = 1, . . . , F – each visited

(i.e., measured) : times during a fingerprint-training period,

we construct two types of fingerprints: (i) a core domain

fingerprint for each �8 , and (ii) a support domain fingerprint

time
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Fig. 3: Application of WebScanner fingerprints for core and support domain
detection and association.

for each (8, 9 . A �8 fingerprint corresponds to a list of all

the associated (8, 9 domains observed during the : web-

page loading sessions, along with an associated frequency of

occurrence, reflecting the percentage of loading sessions where

each (8, 9 is associated to the corresponding �8 . Each of these

frequency values ranges from 0+ to 1, where 1 means that

this (8, 9 is always present in loading sessions for web-page

�8 , and 0+ that it appears occasionally. On the other hand,

a fingerprint for (8, 9 corresponds to a list of all �8 which

this support domain is associated to through the complete

set of F × : measurements, along with the corresponding

frequency of occurrence of each �8; in this case, frequency

values represent the percentage of loading sessions each core

domain is associated to this support domain, within all the

loading sessions where (8, 9 appears as a support domain. Each

frequency value ranges from 0+ to 1, but the sum of all values

is always equal to one this time. Fig. 2 explains this concept.

Let us consider web-page � = instagram.com as example.

A potential fingerprint for � could be the tuple {�� , �},

where �� = {connect.facebook.net, scontent.xx.fbcdn.net,

s.10.facebook.com, static.facebook.com, www.facebook.com,

www.instagram.com} and � = {1, 0.014, 0.014, 1, 1, 1}. For

( = outlook.live.com we could have the tuple {�( , %}, with

�( = {live.com} and % = {1}. We generalize the fingerprinting

notation to the full list of F web pages and 3 support domains

as follows: C = {�8}, DC =

{

��8

}

, F = {�8} , 8 = 1, . . . , F,

and S =

{

( 9

}

, DS =

{

�( 9

}

, P =

{

% 9

}

, 9 = 1, . . . , 3. For the

sake of completeness, we specify �8 =
{

58, 9
}

, 9 = 1, . . . , 38 ,

where 38 corresponds to the number of support domains

associated to �8 , and % = {? 9 } – we keep a flat notation

for %, as �( fingerprints can be a mix of any core domain.

We implement different click-stream identification methods,

relying on core and support domain fingerprints. The main

approach is straightforward – see Fig. 3, and consists of inter-

secting core and support domain fingerprints with the sequence

of temporally observed domains in the traffic, ranking domains

based on the corresponding frequencies � and %. In a nutshell,

given a core domain �8 , we expect a higher overlap with the

list of support domains associated to its fingerprint ��8
; in

addition, if more support domains are associated to the same

�, it has a higher chance of being an actual core domain and

not a support one. The corresponding identification approaches

are described in algorithm 1:



Algorithm 1: Click-stream Identification

Inputs: D, {C,DC , F }, {S,DS ,P}, W� ;

Output: Co ∈ D;

1 Co ← D ∩ C;

2 Co
=

{

�o
8

}

, 8 = 1 . . . =;

3 _� ← zeros(=);

4 _( ← zeros(=);

5 for (8 = 1; 8 6 =; 8++) {

6 _� (8) ← �8

(

DC>�o
8
∩ ��o

8

)

;

7 _( (8) ← %8

(

DC>�o
8
∩ S�o

8
∈DS

)

;

8 }

9 W( ← _(;

10 CSF: Co ← Co (_� > W� ) ∩ C
o (_( > W();

11 SF: Co ← Co (_( > W();

12 CF: Co ← Co (_� > W� );

13 CN: Co ← Co; /* all �o

8
are selected */

Core and Support Frequency (CSF) – this is the central

and most complete approach implemented in WebScanner,

relying on fingerprints from borh core domains � and support

domains (. In the first step, all potential core domains � are

pre-selected, based on the list of already fingerprinted core

domains – e.g., the top-500 Alexa web pages in this study. For

each potential core domain �, a score _� is computed, using

the frequencies associated to the overlapping support domains

( between the sequence of analyzed domains and the domains

in the corresponding fingerprint �� . In addition, using the (

fingerprints, potential � are also ranked by their association

to the list of analyzed (, computing a second score _( . The

final selection of � consists of the intersection between the

set of � which have a score _� higher than a certain threshold

W� (in the solution we take W� = 0.5), and the top ranked �

according to the _( score. Fig. 3 briefly describes this concept.

For the sake of evaluation and benchmarking, we also im-

plement three other approaches, which are simpler variations

of CSF, including (i) Support Frequency (SF) – selects

top ranked core domains � according to ( fingerprints only,

using W( = mean(_() as threshold on the _( score; (ii)

Core Frequency (CF) – selects top ranked core domains �

according to � fingerprints only, using score _� and W� = 0.5;

and (iii) Core Näive (CN) – selects code domains � based

exclusively on the list of known � for which fingerprints are

available.

B. Session Disentangling

Once the core domains requested by the user have been

detected, the next step consists of identifying the components

(i.e., traffic flows) of each of the websites present in the

mix of traffic. This corresponds to the identification of the

corresponding support domains, for each of the previously

detected �. We implemented two different approaches to

realize this web session disentangling task – see algorithm 2:

(1) Domains in � fingerprints (DC) – this is the most basic

Algorithm 2: Web-page Disentangling

Inputs: D, {�, �� , �}, {S,DS ,P};

Output: So ∈ D;

1 So ← DC>� ∩ �� ;

2 So
=

{

(o
9

}

, 9 = 1 . . . <;

3 _� ← zeros(<);

4 _( ← zeros(<);

5 for ( 9 = 1; 9 6 <; 9++) {

6 _� ( 9) ← � ((o
9
);

7 _( ( 9) ← %o
9

(

�(o
9
∩ �

)

;

8 }

9 W� ← _� ;

10 W( ← _(;

11 DC: So ← So; /* all (o
9
∈ �� are selected */

12 DCF: So ← So (_� > W� ) ∩ S
o (_( > W();

approach, and consists of identifying all the corresponding

(, using � fingerprints. In a nutshell, this is achieved by

intersecting the set of ( in the corresponding fingerprint �� ,

with the list of domains which are observed temporally after

the specific � we are trying to reconstruct; (2) Domains in

� Fingerprints with Frequencies (DCF) – this is a more

robust approach and the one implemented in the solution, using

the same approach as DC, but additionally using � and (

fingerprint frequencies � and % to only keep the ( with higher

probability of belonging to the corresponding �. Note that the

web traffic disentangling additionally filters all the background

traffic which is not associated to the reconstructed web pages.

C. App Fingerprinting and Classification

Based on the idea that the packet direction sequences

generated by an app (or web-page) generates a specific and

unique fingerprint – and specifically for the very first packets,

we train ML models on top of very simple traffic features as

classifiers to discriminate among different apps and multiple

user actions. In particular, we use a standard binary encoding

on the uplink/downlink sequence of the first @ packets as

input features, using +1/-1 for uplink/downlink directions. We

complement these @ features with the total number of packets

in uplink and downlink directions, the total number of flows,

and the total size of the first @ packets in uplink, and the first @

packets in downlink. We trained and tested multiple classifiers,

but given that our study is limited to a small number of apps

and user actions (4 apps and 11 user actions), we decided

to take the simplest model, which already provides highly

accurate results. For the sake of simplicity, WebScanner uses

a linear classifier for the identification task, applying softmax

regression to address the multi-class nature of the task.

IV. WebScanner EVALUATION

A. Datasets Characterization

To construct labeled datasets for both web browsing and

apps, we use a measurement testbed developed in [2], based
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Fig. 4: Web pages characterization, per device type, including CDN hosted contents, number of root domains, and specific image and java-script contents.

dataset # samples browser/OS # pages/app-actions

Web-Desk 25,000 chrome alexa top-500

Web-Smart 25,000 chrome+android alexa top-500

APP 13,500
android apps

4 apps/11 actions
native/web/hybrid

Total 63,500

TABLE I: Heterogeneous datasets for fingerprinting and evaluation.

on WebPageTest (WPT) [14] and Appium libraries [15].

This testbed offers network emulation capabilities to simulate

different access technologies in terms of network performance

(e.g., latency, throughput, packet-loss), which adds variability

and heterogeneity to the datasets. For example, the list and

order of support domains may vary under different end-to-end

delay conditions, due to the application itself, the transport

protocols, or the content delivery technology. Laptops and

smartphones are used as the instrumented devices, running

WPT agents for Linux amd Android, and Chrome is the web

browsing application. Tab. I describes the datasets conceived

for web and app fingerprinting and validation purposes. Two

datasets correspond to web browsing in desktop (Web-Desk)

and smartphone (Web-Smart) devices, in both cases targeting

the top-500 most popular websites using Alexa top-sites list

(updated to Nov. 2020). The APP dataset corresponds to

measurements for instrumented apps. These measurements

require per-app instrumentation [13], which makes it difficult

to scale to a large number of apps. In this study, we instru-

mented four popular apps covering different app-technologies,

including YouTube (YT) and Facebook (FB) – native apps,

Amazon (AMZN) – hybrid app, and BBC News (BBC) –

web app. The Appium measurement framework allows for the

instrumentation of independent User Actions (UA) within each

app; we therefore tested different types of UA, including app-

startup (i.e., loading of main page on app opening), scrolling,

tab-search, and menu items/links clicking. The complete joint

dataset consists of traffic captures for 63,500 individual web-

page loading sessions and app UA.

Fig. 4 describes the 500 tested pages in terms of (CDN

hosted) contents, per device type. The complexity of the pages

is reflected by the (a) fraction of hosted contents and (b) their

location at different root domains, with about 30% of the

pages embedding resources located at 15 or more different root

domains, and with more than 80% of the pages having 30% or

more of its contents hosted in distributed CDNs. The biggest

share of content bytes in modern web pages corresponds to
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Fig. 5: Downloaded bytes for web pages and app user-actions.

(c) images and (d) java-script contents, with 60% of the pages

having more than 20 embedded image resources and more

than 10 java-script resources. Fig. 5 shows the downloaded

bytes for (a) web pages and (b) app UA. Desktop-browsed web

pages are bigger than those browsed on smartphones, which

are optimized for smaller screen sizes. The average page size

is 2.7MB in desktop and 2.1MB in smartphone.

B. Analysis of fingerprints

We study web-page fingerprints for desktop and smart-

phone, separately. The first observation is that � fingerprints

can be quite big, and that more support domains are ob-

served for desktop web pages. According to Fig. 6(a), while

fingerprints consist of less than 25 support domains ( for

about 40% of the top-500 websites, this number grows to

more than 80 and 100 for about 20% of the websites in

smartphone and desktop, respectively. For better interpretation

of the characteristics of the fingerprints, Fig. 8 depicts a

graph representation of core and support domains, for the-

500 Alexa websites in desktop. In general, and as we see

next, fingerprints are markedly different, as noted by the

“broccoli”-like shape of the graph. To measure the degree

of similarity between fingerprints, we use the well-known

Jaccard-Index (JI). A JI = 1 indicates complete similarity,

whereas a JI = 0 reflects total difference. Fig. 6(b) depicts

fingerprints’ similarity between the same web pages accessed

in desktop and smarthpone devices. Interestingly, differences

are significant between desktop and smartphone, with roughly

half of the web pages having a JI below 0.5. This justifies

the construction of fingerprints for desktop and smartphone

separately.

Regarding the identification of web pages and their contents

using the produced fingerprints, the less overlapping the finger-

prints – i.e., the smaller the JI, the better for the targeted task.

Fig. 6(c) reports the JI values for all couples of � fingerprints,
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Fig. 6: Fingerprints for desktop and mobile web browsing. High discriminative power is obtained through � and ( fingerprints.
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Fig. 7: Analysis of App fingerprints. (a) Similarity within {UA fingerprints + 4 Web fingerprints}. (b-d) Similarity within {per-app UA fingerprints + top-500
Alexa Web fingerprints}. App UA fingerprints have a small overlap with the top-500 Alexa web pages’ fingerprints, providing high discriminative power.
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Fig. 8: Graph representation of core/support domains for top-500 Alexa.

for desktop and smartphone. The small JI values confirm a

strong discrimination power of � fingerprints, with more than

90% and 80% of the web-page comparisons having a JI below

0.1, for desktop and smartphone, respectively.

In terms of ( fingerprints, Fig. 6(d) reports the number of

core domains associated to each of the support domains (

observed in the studied web pages, for both smartphone and

desktop. In total, we identify 12,384 unique support domains

for desktop web pages, and 9,601 for smartphone web pages.

Roughly 80% of these support domains are associated to only

one core domain, enhancing the identification task through a

reverse association. About 10% of the support domains are

associated to exactly two core domains, and the rest has three

or more associated domains. For example, support domains

such as www.google.com or www.facebook.com are present

in more than 50% of the web pages. We noted that support

domains associated to Google services are in fact the most

present in the measurements, most probably linked to both

the usage of Chrome and Android as browser and OS, as well

as the omnipresence of Google in the web space.

For the sake of completeness, we conclude with an analysis

of the fingerprints corresponding to mobile apps, for the

different tested UA. We particularly focus on the comparison

of these fingerprints to their corresponding web versions,

accessed through web browsing in smartphone. Fig. 7(a)

shows the JI values for fingerprints corresponding to the

four instrumented apps and their smartphone web browsing

versions. Fingerprints are generated for each app and for each

UA. The overlap between the FB and YT native apps and

their corresponding webpages is minimal, resulting in a JI

below 0.05. The overlap is significantly higher for the AMZN

and BBC apps, which include a much broader set of UA;

nevertheless, JI values are below 0.35 for more than 60% of

the fingerprint comparisons. Fig. 7(b-d) show the JI values

related to the overlap of UA with the complete set of web-

pages, accessed in smartphone. JI values are small, below 0.15

for more than 95% of the comparisons, evidencing that app UA

fingerprints do not overlap with web-page fingerprints, and can

therefore also be used for app clickstream identification and

disentangling. In this paper we only use � and ( fingerprints

for evaluation of the identification and filtering of web pages,

and apply the ML-driven approaches for identification of apps.

C. Web Pages Identification and Filtering

We evaluate the different clickstream identification ap-

proaches on top of synthetically generated multi-concurrent

web pages sessions, considering a different number of con-

current web pages, from two to 15 concurrent web pages.

For each number of concurrent web pages, the evaluation

corresponds to a set of 10.000 samples synthetically generated.

These synthetic concurrent sessions are generated by randomly

selecting traffic captures (pcap files) of individual loading

sessions, and mixing them together, after properly aligning

time references to actually make them concurrent. Fig. 9

reports the obtained results in terms or F1 scores, for desktop

and smartphone devices, whereas Tab. II reports precision

and recall (P/R) results. F1, P, and R values are high for



CSF SF CF CN CSF SF CF CN

# pages P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R

2 97.5 96.5 61.5 90.0 90.5 98.0 84.4 100 94.7 98.5 35.7 99.0 89.8 99.5 83.9 100

3 96.4 95.0 73.8 81.2 89.7 98.2 83.6 100 98.3 97.3 50.3 98.5 92.6 98.2 88.1 100

5 99.0 92.3 84.9 63.1 89.1 97.7 84.7 100 97.2 97.7 67.9 95.9 92.7 98.7 88.0 100

8 97.1 96.4 70.9 80.9 89.9 98.4 85.4 100 97.8 96.5 80.2 89.1 92.2 97.9 87.4 100

10 96.4 93.9 77.9 74.1 90.3 97.0 86.7 100 98.5 96.5 86.7 83.1 93.4 97.6 89.1 100

15 99.5 91.6 84.8 59.5 91.4 96.2 88.0 100 98.6 95.6 93.0 68.6 92.8 97.4 88.7 100

TABLE II: Clickstream identification performance.
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Fig. 9: Clickstream identification performance.

both device types, pointing to the good discrimination power

of the fingerprints. The approach performing the worst is

SF, which is expected, as it only relies on ( fingerprints.

Due to the nature of the approach and the evaluation, CN

achieves 100% recall in all tests. As expected, precision drops

for this approach, as some ( are classified as �. As the

number of concurrent pages grows, precision also increases,

as the relative number of false positives decreases. CSF (the

solution used by WebScanner) and CF perform similarly, but

additionally using ( fingerprints helps to increase precision of

the identification approach. We follow a similar approach to

evaluate the different web traffic disentangling approaches. In

this evaluation, the list of � to reconstruct is given as input,

and the task consists of identifying and correctly associating

all the ( to the correct �. Fig. 10 and Tab. III report the

obtained results in terms of F1, P, and R, again for desktop

and smartphone mixed web loading sessions, respectively. The

basic approach DC achieves 100% recall for all the traffic

mixes, based on the fingerprints intersection. However, the

approach is not precise, resulting in a significant fraction of

misclassifications for ( in the traffic mix. Precision drops as

we add more concurrent pages, as overlapping ( occur more

often. Using both � and ( fingerprints (SCF, the approach

used by WebScanner) significantly improves the precision

of the disentangling approach, but naturally, sacrificing part

of the identification performance in terms of recall. Still,

disentangling and filtering performance is very high, even

when dealing with 15 concurrent pages, both for smartphone

and desktop devices.

V. APP FINGERPRINTING EVALUATION

To better explain the fingerprinting concept used by Web-

Scanner, Fig. 11 depicts the obtained binary encodings for
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Fig. 10: Web-page disentangling performance.

DC DCF DC DCF

# pages P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

2 92.1 100 95.9 97.1 87.4 100 93.1 97.2

3 84.9 100 92.5 95.3 81.2 100 90.3 92.7

5 73.8 100 88.7 89.6 67.7 100 85.1 88.4

8 61.2 100 84.4 87.2 55.3 100 81.3 84.8

10 55.5 100 81.3 84.1 46.9 100 77.9 80.7

15 44.3 100 77.5 80.3 38.1 100 74.2 78.1

TABLE III: Web-page disentangling performance.

the different apps and user actions, in this case taking @ = 50

packets, and for multiple different measurement runs of the

apps with varying network performance. Fig 11(1) depicts the

startup action for the four apps, Fig 11(2) considers four UA

for AMZN – which is the most complex of the instrumented

apps, and Fig 11(3) considers the fingerprints obtained for the

web versions of the apps, which are conceptually equivalent

to the app startup. Each app and action show a unique traffic

pattern, supporting the concept for app and web fingerprinting.

For example, Facebook shows the most upload packets relative

to the first few packets, while BBC and Amazon show the most

download packets at the beginning. BBC and Amazon show

a quite similar behavior for the first 20 to 30 packets, before

BBC starts generating a more regular consecutive upload and

download pattern.

A. Detection of Apps

We start by evaluating the performance of WebScanner for

detecting the startup of each single app. The data is split into

80%/20% training/test data, and 5-fold cross validation is used

for training. Fig. 12(a) and Tab. IV report the obtained results

in terms of F1 scores, P, and R. The classification accuracy

is very high, above 95%, even if using a simple ML model.
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Fig. 12: App classification performance.

Apps Startup App actions (AMZN) web pages vs Apps Startup

YT BBC FB AMZN Startup Scroll Click Search YTw BBCw FBw AMZNw YTa BBCa FBa AMZNa

P (%) 94.9 85.7 96.1 90.8 98.2 88.6 91.1 91.3 86.6 99.6 76.5 77.6 91.9 85.9 78.8 92.0

R (%) 99.6 85.3 98.8 83.8 99.1 91.1 81.7 98.1 75.3 98.4 86.7 75.3 98.8 64.8 94.7 92.8

TABLE IV: App classification performance.

Most misclassifications occurred for the Amazon and BBC

apps, resulting in a F1 score of 85% for Amazon and 88%

for BBC. In contrast, almost all instances of the Facebook

app and the YouTube app are classified correctly. While these

results are encouraging, we acknowledge that for large scale

app monitoring, this simple approach will probably not suffice.

B. Detection of User Actions

The same scheme is now applied for the user actions.

Fig. 12(b) depicts the obtained results for four of the Ama-

zon user actions, including startup, scrolling, clicking, and

searching. The identification of the startup action and the

search action hereby result in a F1 score of 96% and 94%,

respectively, while most misclassifications happen for the click

action – F1 score of 90%. These instances are mistaken for

scrolling or searching, which can be explained by the highly

variant traffic pattern of the click actions observed before.

C. Detection of Services and corresponding Apps

To conclude, we evaluate the discrimination between app

and website requests, considering a mix of both app startup

and web-page loading sessions, cf. Fig 11(3). Traffic patterns

for websites are noisier, resulting in less visible differences

among websites. However, when considering a bigger number

of @ first packets, again differences between websites can

be observed. This reveals that app and web services differ

in the way they setup their network connections. We apply

WebScanner to classify the mix of apps and web pages

fingerprints. Fig. 12(c) and Tab. IV report the obtained results.

The evaluation resulted in an overall accuracy of 86%, where

most misclassifications happen for the BBC app, with a recall

of 65%. In contrast, the BBC website is correctly identified

in almost all cases. All in all, all web pages and apps can be

identified with a F1 score above 70%.

VI. CONCLUDING REMARKS

We have presented WebScanner, a web and app finger-

printing approach for monitoring of encrypted network traffic,

offering web traffic identification and disentangling without

assuming a pre-identification and parsing of the encrypted

traffic flows. Through extensive evaluation across a large

measurement dataset of popular web pages and mobile apps,

we have shown that WebScanner can identify the top-500

Alexa websites with precision and recall (P/R) above 95%,

isolating their full contents with P/R above 80% for up to 15

concurrent web pages visited by the same device, and detecting

specific action-dependent apps traffic with average P/R above

92%. Naturally, there are some caveats and limitations in

WebScanner, for example the need of DNS flow tagging

– the approach would not work in case DNS queries are

encrypted, the need for re-training of the fingerprints for

new deployments – linked to geographically dependencies of

content distribution, as well as re-training on a temporal basis.

Finally, in terms of scalability, note that WebScanner is meant

to operate at vantage points closer to the end-users and not at

the core of the network.
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