
HAL Id: hal-03834364
https://hal.science/hal-03834364

Submitted on 29 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

X-Ray Goggles for the ISP: Improving in-Network Web
and App QoE Monitoring with Deep Learning

Pedro Casas, Sarah Wassermann, Michael Seufert, Nikolas Wehner, Olivia
Dinica, Tobias Hossfeld

To cite this version:
Pedro Casas, Sarah Wassermann, Michael Seufert, Nikolas Wehner, Olivia Dinica, et al.. X-Ray
Goggles for the ISP: Improving in-Network Web and App QoE Monitoring with Deep Learning. 6th
IFIP Network Traffic Measurement and Analysis Conference (TMA), Jun 2022, Enschede, Netherlands.
�hal-03834364�

https://hal.science/hal-03834364
https://hal.archives-ouvertes.fr

X-Ray Goggles for the ISP: Improving in-Network

Web and App QoE Monitoring with Deep Learning

Pedro Casas∗, Sarah Wassermann∗, Michael Seufert†, Nikolas Wehner†, Olivia Dinica∗, Tobias Hoßfeld†

∗AIT Austrian Institute of Technology, †University of Würzburg

Abstract—The wide adoption of end-to-end encryption is
drastically limiting the visibility Internet Service Providers (ISPs)
have on the performance of the services consumed by their
customers. We present DeepQoE, a deep-learning based approach
to infer the Quality of Experience (QoE) of web services and
mobile applications from the ISP perspective, relying exclusively
on the analysis of encrypted network traffic. Using raw features
derived from the encrypted stream of bytes as input to deep
Convolutional Neural Networks (CNNs), DeepQoE infers the
Speed Index of web browsing sessions and general mobile apps
with unprecedented accuracy, improving the state of the art
absolute inference error by more than 25%, and reducing
the QoE inference error in terms of mean opinion scores by
nearly 40%. DeepQoE implements a web fingerprinting solution
to identify individual web browsing sessions within concurrent
web pages traffic, enabling highly detailed, per webpage QoE
inference in practical deployments. Extensive evaluation across a
large measurement dataset of popular webpages and mobile apps
confirms the out-performance and generalization of DeepQoE to
different devices, web pages, apps, and network setups.

Index Terms—Deep Learning, Quality of Experience, Web
Browsing, Mobile Apps, Network Monitoring, Traffic Encryption.

I. INTRODUCTION

Quality of Experience (QoE) monitoring is a daunting

yet critical task for Internet Service Providers (ISPs), who

need to shed light on the performance of their networks as

perceived by their customers, to avoid churn due to quality

dissatisfaction. Web browsing QoE has attracted signification

attention in recent years. While ISPs have traditionally relied

on the usage of Deep Packet Inspection (DPI) techniques to

understand the performance of web services from the network

side, the wide adoption of end-to-end traffic encryption has

drastically reduced their visibility. This has motivated a surge

in the research and conception of Machine-Learning (ML)

based approaches to infer application-level Web QoE metrics

from the streams of encrypted bytes [3], [4], [6]. In these

previous work, standard shallow-learning models have been

used in the task. We take a step further into this direction, by

conceiving approaches based on novel, Deep-Learning (DL)

architectures, which provide better and deeper visibility into

the QoE of web services. We conceive DeepQoE, a deep-

learning based approach to infer QoE metrics capturing the

user-perceived performance of web browsing and general web

services accessed through apps, relying exclusively on the

analysis of raw features, derived from the encrypted network

traffic. DeepQoE targets the well known Speed Index (SI)

metric as QoE proxy, and integrates novel approaches address-

ing the automatic identification and filtering of individual web

pages and apps traffic flows, further improving the granularity

of the monitoring, at the level of individual webpage load

sessions. In the context of this study, a session corresponds to

all the packets exchanged between the end-user’s device IP and

the IPs of the servers hosting the webpage embedded contents,

for one specific webpage loading instance. Fig.1 depicts the

end-to-end workflow of DeepQoE. It consists of three specific

modules covering (A) the traffic identification and filtering step

– which isolates the traffic belonging to each web browsing

and app session, (B) the feature extraction from the isolated

(encrypted) traffic, and (C) the DL-based SI inference. Deep-

QoE tackles important challenges partially addressed before in

the state of the art, including: (i) the automatic identification

of web pages and apps in the (encrypted) traffic streams,

(ii) the disentangling of concurrent web browsing and app

sessions, and (iii) the conception of multi-device and multi-

service DL-based models for Web and App QoE inference.

Previous work has also taken a similar direction for web traffic

disentangling and Web QoE monitoring, introducing the PAIN

indicator and Web performance monitoring system [1]. While

DeepQoE has multiple similarities with PAIN, it also has

important differences: to start with, Deep-QoE can directly

infer the SI of a browser session – which is a direct proxy

to Web QoE [7], whereas PAIN only approximates the SI;

Deep-QoE traffic identification and disentangling are fully-

supervised approaches, based on off-line active measurements

and fingerprinting, whereas PAIN is meant for unsupervised

operation, and requires passive measurements for webpages

accessed by a large number of users. As stated in [1], PAIN

cannot monitor the performance of a single visit to a specific

webpage, whereas that is exactly the target of Deep-QoE.

Finally, DeepQoE uses a double fingerprinting approach to

identify webpages directly requested by the user, instead of

simply tracking pre-defined webpage names defined by the

operator. In this paper we separately evaluate the identifica-

tion of websites, the disentangling of webpages, and the SI

inference, which provides a more comprehensive overview on

the functioning and performance of Deep-QoE as compared

to PAIN. Finally, we also apply Deep-QoE to mobile web

browsing and mobile apps, which is not done for PAIN.

Through extensive evaluation, we verify the out-

performance of DeepQoE as compared to shallow-learning-

based solutions. In particular, we evaluate DeepQoE using

controlled measurements on: (i) mobile and desktop web978-3-903176-47-8 ©2022 IFIP

t

filtered network

traffic (web sessions)

DeepQoE

model

Web and App QoE

(RUM) Speed Index

A

B C

online feature

computation

Fig. 1: DeepQoE monitoring workflow.

browsing, targeting the top-500 most popular websites in

today’s Internet, (ii) web services on popular native and

web-based apps, and (iii) multiple network setups in terms of

latency, packet-loss, and bandwidth. DeepQoE improves the

state of the art by more than 25% with respect to SI inference,

additionally reducing the QoE inference error in terms of

Mean Opinion Scores (MOS) by nearly 40%. Evaluations

also show the fine-granularity monitoring capabilities enabled

by the conceived traffic identification approaches, being able

to detect single web pages and to isolate all the traffic flows

belonging to these with precision and recall above 95%

(detection) and 80% (disentangling), for up to ten concurrent

web pages visited by the same IP address at the same time.

The remainder of the paper is organized as follows. Sec. II

briefly overviews related work. Sec. III presents the principles,

raw features, and deep architecture behind DeepQoE, and

describes the different datasets used for model training and

evaluation. Sec. IV presents the techniques employed by

DeepQoE for web traffic identification and filtering, analyzing

their relevance in the corresponding web datasets. Extensive

evaluation results are reported in Sec. V, including the infer-

ence of web and app SI and MOS scores, the detection and

disentangling of web pages, and the evaluation of the end-to-

end monitoring solution. Finally, Sec. VI concludes this work.

II. RELATED WORK

There is a vast literature in Web QoE measurement and

analysis [2], [7]–[10]; however, previous work have mostly

focused on measurements at the application layer or assuming

access to end devices, which is not applicable for ISPs to per-

form network-wide QoE monitoring. ISPs require approaches

which can operate directly at the network traffic level, where

massive data is available to their already deployed monitoring

systems, yet with the additional complexity introduced by the

wide adoption of TLS/HTTPS for end-to-end traffic encryp-

tion. Previous work [1], [2] have developed Web QoE-related

metrics highly correlated to the SI metric, including the Byte

and Object-Index [2] and the PAIN index [1], which can be

computed directly from packet and flow level measurements,

seamlessly operating with encrypted traffic. Still, such metrics

are mostly informative, as they do not provide an absolute

estimation of the actual user QoE. The SI metric is today

widely accepted as one of the best metrics serving as proxy

to Web QoE [7], as it takes into account the visual progress

of the page loading. Recent work [3], [4], [6] have tackled the

problem by conceiving (shallow) ML-driven models to directly

infer the SI of web loading sessions, using inputs directly

input 1D-CNN + ReLU max pooling GA pooling output

16 filters

FC

32 filters

64 filters

in
p

u
t

fe
a

tu
re

s

normalized values

Fig. 2: DeepQoE deep learning architecture.

derived from the encrypted streams of traffic. These papers

are the closest to our work, but have limited applicability in

practice, as they only consider the idealized case of single web

session analysis. As we confirm in our results, the application

of deep learning models to the SI inference problem can better

track the loading page phenomenon, significantly improving

the inference accuracy, and therefore highly improving the

visibility for the ISP. While the application of DL to the same

inference task has been recently studied [5], results obtained

with the proposed input features and network architecture

(VGG16 [18]) provide limited improvements of just a few

tens of milliseconds as compared to shallow learning models.

DeepQoE reduces absolute inference errors by more than 25%,

resulting in significant QoE performance gains. Explainability

analysis through SHAP [15] suggests that session metrics

such as total duration provide the most descriptive information

behind such an improved accuracy, not used in [5].

III. DeepQoE MODEL AND DATASETS

A. Features and Deep Model

The first step in the DeepQoE workflow corresponds to the

traffic identification and filtering (cf. Fig. 1). In a nutshell, we

identify a session and its corresponding flows through DNS-

based IP-addresses-to-domain-names mappings and static fin-

gerprinting. In Sec. IV we present the specific solution to

this problem. Once a session has been identified, different

raw traffic features are computed on the corresponding traffic

flows. DeepQoE considers two types of raw features: global

session features, capturing the duration and volume of the

identified set of flows (duration of the session, number of

packets and number of bytes, separately computed for down-

link and uplink), and temporal progressive features, capturing

the progressive webpage download process, basically counting

the fraction of downloaded bytes per a pre-defined unit of time

(e.g., every 100 ms). The specific feature extraction process

is out of the scope of this paper, but these features can be

easily computed in an on-line manner; regarding scalability

of the extraction process, DeepQoE is meant to be deployed

in vantage points closer to the end-users (e.g., home routers

or aggregation gateways) and not at core links. A total of

109 raw features are extracted from the ongoing encrypted

stream of bytes, including nine global session features, and 100

temporal progressive features. These progressive features are

defined as the Cumulative Downloaded Bytes CDB(i)∆T , and

correspond to the (normalized) cumulative number of bytes

0 50 100 150 200 250

number of resources

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 p
a

g
e

s

Desktop

Smartphone

Tablet

0 5 10 15 20 25 30 35 40 45

number of different root domains

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 p
a

g
e

s

Desktop

Smartphone

Tablet

0 50 100 150 200 250

number of img resources

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 p
a

g
e

s

Desktop

Smartphone

Tablet

0 10 20 30 40 50 60 70 80 90 100

number of js resources

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 p
a

g
e

s

Desktop

Smartphone

Tablet

(a) Resources. (b) Root domains. (c) Images. (d) Java-script.

Fig. 3: Web pages characterization, per device type, including number of resources, number of root domains, and specific image and java-script contents.

dataset # samples browser/OS # pages/app-actions

Web-Desk 25,000 chrome alexa top-500

Web-Smart 25,000 chrome+android alexa top-500

Web-Tab 25,000 chrome+android alexa top-500

APP 13,500
android apps

4 apps/11 actions
native/web/hybrid

Total 88,500

TABLE I: Heterogeneous datasets for model training and evaluation.

downloaded from the first collected byte at time t0 up to time

t = t0 + i ×∆T , with i = 1, . . . ,m, where m represents the total

number of slots (measurements). The CDB features track the

download progress of the page bytes, using a time resolution

∆T . We take ∆T = 100 ms and m = 100 for DeepQoE.

Fig. 2 describes the underlying deep architecture used by

DeepQoE. While we want to make use of a sufficiently

expressive architecture to learn useful representations out of

the input data, we do not have a sufficiently large dataset

(about 90,000 samples) to train very deep models with lots

of parameters, and therefore decided for a simpler version of

traditional deep models based on CNNs [16]–[18]. DeepQoE’s

representation learning architecture is composed of a series

of three consecutive 1D-CNN convolutional layers with 16,

32, and 64 filters respectively – using ReLU activation [19]

– and intermediate max pooling layers – to compress the

size of the representations. The last convolutional layer is

connected to a Global Average (GA) pooling layer, which adds

additional robustness against over-fitting. The regression stage

is composed of a series of standard fully connected layers. The

architecture additionally considers batch normalization and

dropout layers, to regularize the model. We have tried deeper

architectures without significant enhancement. The number

and size of the filters were decided by standard grid search.

B. Datasets Characterization

We use a measurement testbed to generate fully-labeled

datasets, relying on multiple private instances of WebPageTest

(WPT) [20] – the default web-performance-analysis tool – and

Appium-based controllers [21] for app testing – see [6] for

further details on the platform. Network emulation (EMU) and

monitoring capabilities enable the realization of performance

and QoE degradation in the monitored traffic. Three different,

non-emulated (i.e., real) types of devices are used in the

testbed, including smartphones, tablets, and desktop laptops

(Chrome is used as browser), using WPT agents for Android

and Linux. Tab. I summarizes the four different datasets for

QoS feature EMU setup QoS feature EMU setup

– no shaping latency (RTT) 10, 100, 200, 400 ms

bandwidth 2, 5, 10 Mbps packet loss 0.1, 0.5, 1, 2, 10 %

TABLE II: Network EMU QoS configurations.

web and app DeepQoE model training and validation purposes.

The three web browsing datasets correspond to individual web-

page loading sessions targeting the top 500 websites according

to the well-known Alexa top-sites list (updated to Nov. 2020),

and using desktop (Web-Desk), smartphone (Web-Smart), and

tablet devices (Web-Tab). In the case of web browsing, we

collect the so-called RUM Speed Index (RUMSI) metric [22],

which is a passive approximation to the SI, computed from

the analysis of webpage resource timings.

The Appium-based framework enables the analysis of in-

dependent user interactions with a particular app, generating

for each a separate traffic capture and a screen capture from

which the SI is computed [23]. Given that app measurement

requires instrumentation for each specific app [11], we selected

four popular apps for the study, including Amazon, YouTube,

Facebook, and BBC News. The idea is to test different app

technologies – e.g., Facebook and YouTube are both native

apps, BBC News is a web app, and Amazon is a hybrid app,

with different levels of interactivity in terms of user actions.

We tested different kinds of interaction, including app startup

(i.e., start the app, and wait for the main page to load), page

scrolling, search, and menu items/links clicking. Note that no

user accounts were used in the app tests. From these four apps,

the only one requiring a user login is Facebook, so the only

tested user-action for this app was the app start-up. The total

data includes traffic captures for close to 90,000 individual

webpage loading sessions and app interactions. Tab. II details

the different network QoS configurations set at the EMU to

induce Web QoE heterogeneity in the datasets.

Fig. 3 characterizes the 500 web pages in terms of contents,

per device type. Their richness and complexity is reflected by

the (a) number of embedded contents and (b) their location

at different root domains, with more than 30% of the web

pages consisting of more than 100 resources, and about 40% of

the web pages fetching resources from more than 10 different

root domains. (c) Images and (d) java-script contents make

the most of the bytes in modern web pages, with 30% of the

pages having more than 50 embedded image resources and

more than 20 java-script ones. Fig. 4 depicts the distribution of

downloaded bytes for (a) web pages and (b) app user-actions.

Desktop-browsed web pages are bigger than those browsed

0 2.5 5 7.5 10 12.5 15

Downloaded Bytes (MB)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b
 s

e
s
s
io

n
s

Desktop

Smartphone

Tablet

0 1 2 3 4 5 6 7

Downloaded Bytes (MB)

0
10
20
30
40
50
60
70
80
90

100

%
 a

p
p
 t
e
s
ts

Smartphone

Tablet

(a) Web Pages. (b) Apps.

Fig. 4: Downloaded bytes for web pages and app user-actions.

on smartphones or tablets, which are optimized for smaller

screen sizes. The average page size is 2.7MB in desktop,

2.4MB in tablet, and 2.1MB in smartphone. Downloaded

bytes for apps are significantly less for the instrumented

user-actions as compared to the tested web pages; however,

contents here are different, so a direct comparison is out of

scope. Regarding performance, Fig. 5 depicts the distribution

of (RUM)SI values for web sessions and app actions. (RUM)SI

values are significantly higher for both smartphone and tablet

devices as compared to desktop, pointing to a more complex

rendering process in mobile devices, as well as to the specific

hardware limitations of smartphones and tablets [12]. SI values

for the specific instrumented apps are much lower, but again,

they are not comparable to the values observed in web pages,

as contents significantly differ.

IV. WEBPAGE IDENTIFICATION AND FILTERING

In Sec. III we assumed that the monitoring system takes

as input network traffic from single webpage or app loading

sessions for subsequent feature computation. However, in prac-

tice, sessions are concurrent, originating either at individual

(e.g., multi-tab browsing) or multiple users, which might even

share the same origin IP address if located behind a NAT

gateway. Once a user visits a certain website, the browser

opens multiple connections to the different servers, fetching

all the contents which compose the corresponding webpage,

including both local web contents as well as third-party

embedded contents, such as advertisements and more. We

refer to the domain associated with the webpage requested

by the user as the core domain Cd , and the subsequently

contacted domains as support domains Sd j
. Next, we introduce

an approach to detect and isolate all the flows corresponding

to an individual session. The solution tackles two specific

challenges: (i) firstly, it is able to identify all the core domains

Ci

d
present in a group of mixed web traffic flows, and (ii)

secondly, given a core domain Ci

d
, it can identify all the

support domains Si

d j
associated with it. We refer to the first

problem as the click-stream identification – i.e., identifying

web pages directly requested by the user – and to the second

problem as session disentangling – i.e., splitting flows into

their associated sessions. An additional complexity in these

two problems is that a certain domain could be support for

multiple different core domains, and that a core domain itself

could actually be a support domain for a different webpage.

Note that DeepQoE assumes traffic flows are tagged with their

associated domain names, as observed in the DNS queries,

0 2 4 6 8 10 12 14

RUM Speed Index (s)

0
10
20
30
40
50
60
70
80
90

100

%
 w

e
b
 s

e
s
s
io

n
s

Desktop

Smartphone

Tablet

0 1 2 3 4 5 6

Speed Index (s)

0
10
20
30
40
50
60
70
80
90

100

%
 a

p
p
 t
e
s
ts

Smartphone

Tablet

(a) (RUM)SI for web sessions. (b) SI for app actions.

Fig. 5: (RUM)SI for web sessions and app actions.

which can additionally be used to build dynamic domain-to-

flow mappings [14]. In such a scenario, correctly identifying

core and support domains of a web session directly translates

into a matching reconstruction of the network traffic flows. In

this paper we do not address the usage of DNS encryption.

A. Click-stream Identification

We tackle the click-stream identification problem through a

fully supervised, signatures-based approach, where signatures

are derived from the sequence of core and associated support

domains observed in multiple webpage loading sessions. Given

a collection of m web pages – accessible through their core

domains Ci

d
, i = 1..m – each visited (i.e., measured) n

times during a signature-training period, we construct two

types of signatures: (i) a core domain signature for each

Ci

d
, and (ii) a support domain signature for each Si

d j
. A

Ci

d
signature corresponds to a list of all the associated Si

d j

domains observed during the n webpage loading sessions,

along with an associated frequency of occurrence, reflecting

the percentage of loading sessions where each Si

d j
is associated

to the corresponding Ci

d
. Each of these frequency values

ranges from 0+ to 1, where 1 means that this Si

d j
is always

present in loading sessions for webpage Ci

d
, and 0+ that it

appears occasionally. On the other hand, a signature for Si

d j

corresponds to a list of all Ci

d
which this support domain is

associated to through the complete set of m×n measurements,

along with the corresponding frequency of occurrence of each

Ci

d
; in this case, frequency values represent the percentage of

loading sessions each core domain is associated to this support

domain, within all the loading sessions where Si

d j
appears as

a support domain. Each frequency value ranges from 0+ to 1,

but the sum of all values is always equal to one this time.

Let us consider webpage Cd = instagram.com as example.

A potential signature for Cd could be the tuple {DCd, FCd},

where DCd = {connect.facebook.net, scontent.xx.fbcdn.net,

s.10.facebook.com, static.facebook.com, www.facebook.com,

www.instagram.com} and FCd = {1, 0.014, 0.014, 1, 1, 1}.

For Sd = outlook.live.com we could have the tuple

{DSd, FSd}, with DSd = {live.com} and FSd = {1}.

Using signatures for both core and support domains,

we conceived four different click-stream identification ap-

proaches. In a nutshell, signatures are intersected with the

sequence of observed domains in the traffic, and the asso-

ciated frequencies are taken into account to rank potential

core domains. The rationale is straightforward: regarding Cd

0 50 100 150 200 250 300 350 400

support domains in the Cd fingerprints

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 p
a

g
e

s

Desktop

Smartphone

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jaccard Index (F
desktop

 vs F
smartphone

)

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 p
a

g
e

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jaccard Index (F
desktop

 and F
smartphone

)

0

10

20

30

40

50

60

70

80

90

100

%
 C

o
re

 D
o

m
a

in
 C

o
u

p
le

s

Desktop

Smartphone

0 1 2 3 4 6 8 10 12 14 16 18 20

associated Core Domains

0

10

20

30

40

50

60

70

80

90

100

%
 s

u
p

p
o

rt
 d

o
m

a
in

s

Desktop

Smartphone

(a) Cd signatures. (b) Signatures overlap wrt device type. (c) Cd signatures overlap. (d) Sd signatures.

Fig. 6: Analysis of Web signatures in desktop and mobile browsing. High discriminative power is obtained through Cd and Sd signatures.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Jaccard Index

0

10

20

30

40

50

60

70

80

90

100

%
 f

in
g

e
rp

ri
n

ts

amazon

bbc

facebook

youtube

0 0.05 0.1 0.15 0.2 0.25

Jaccard Index

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 s
it
e

s
/f

in
g

e
rp

ri
n

ts

startup (BBC)

click news

click home

click popular

click news category

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Jaccard Index

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 s
it
e

s
/f

in
g

e
rp

ri
n

ts

facebook startup

youtube startup

0 0.05 0.1 0.15 0.2 0.25

Jaccard Index

0

10

20

30

40

50

60

70

80

90

100

%
 w

e
b

 s
it
e

s
/f

in
g

e
rp

ri
n

ts

startup (Amazon)

amazon video

click home

scroll

search

(a) Actions signatures vs. Web Pages. (b) BBC. (c) YT/FB. (d) Amazon.

Fig. 7: Analysis of App signatures. App user-action signatures have a small overlap with the top-500 Alexa web pages’ signatures.

signatures, given a certain webpage with core domain Ci

d
,

we expect a higher overlap with the list of support domains

associated to its signature DCi

d
; regarding Sd signatures, if

a higher number of support domains have a common Cd

associated, then this Cd is likely a real core domain. Core and

Support Frequency (CSF) is the most complete approach

and represents the selected solution, considering both Cd and

Sd signatures. Firstly, all potential Cd are selected, based on

the list of known core domains for which signatures were

constructed; in our study, this corresponds to the top 500

Alexa websites core domains. A score sCd
is computed for

each of these potential Cd , based on the frequencies associated

to the overlapping Sd between the analyzed domains and the

domains in the corresponding fingerprint for Cd , DCd . In

addition, using the Sd signatures, potential Cd are also ranked

by their association to the list of analyzed Sd , computing a

second score sSd
. The final selection of Cd consists of the

intersection between the set of Cd which have a score sCd

higher than a certain threshold T hCd
(in the solution we take

T hCd
= 0.5), and the top ranked Cd according to the sSd

score. The other three approaches are simpler variations of

CSF, including (i) Support Frequency (SF) – selects top

ranked Cd according to Sd signatures, limiting the sSd
score to

a threshold T hSd
= mean(sSd

); (ii) Core Frequency (CF) –

selects top ranked Cd according to Cd signatures, using score

sCd
and T hCd

= 0.5; and (iii) Core Näive (CN) – selects Cd

based exclusively on the list of known core domains.

B. Session Disentangling

Once the core domains requested by the user have been

detected, the next step consists of identifying the components

(i.e., traffic flows) of each of the websites present in the

mix of traffic. This corresponds to the identification of the

corresponding support domains, for each of the previously

detected Cd . We implemented two different approaches to

realize this web session disentangling task: (1) Domains in

Cd Signatures (DC) – this is the most basic approach, and

consists of identifying all the corresponding Sd , using Cd

signatures. In a nutshell, this is achieved by intersecting the

set of Sd in the corresponding signature DCd , with the list of

domains which are observed temporally after the specific Cd

we are trying to reconstruct; (2) Domains in Cd Signatures

with Frequencies (SCF) – this is a more robust approach

and the one implemented in the solution, using the same

approach as DC, but additionally using Cd and Sd signature

frequencies FCd and FSd to only keep the Sd with higher

probability of belonging to the corresponding Cd . Note that the

web traffic disentangling additionally filters all the background

traffic which is not associated to the reconstructed web pages.

C. Analysis of Signatures

Given the differences between web browsing in desktop

and mobile devices, we construct the corresponding Cd and

Sd signatures separately for desktop and smartphone webpage

loading sessions – results for tablet are basically the same

as for smartphone. Fig. 6(a) shows how big can be the Cd

fingerprints for both desktop and smartphone devices. More

than 60% of the top 500 Alexa websites have signatures

with less than 50 Sd , but for about 20% of the pages, a Cd

signature consists of more than 100 Sd . In general, smartphone

signatures are smaller than those for desktop web pages, and as

we show next, signatures are markedly different and provide

good discrimination power. Fig. 6(b) shows the similarities

between signatures of the same webpage from smartphone

and desktop devices, using the well-know Jaccard-index as

similarity metric. The Jaccard-index represents the similarity

between finite sample sets, and it is defined as the size of the

intersection divided by the size of the union of the sample sets.

A Jaccard-index equals to 1 means that both signatures are

exactly the same, whereas a Jaccard-index equals to 0 means

that both signatures are totally different. Signatures are rather

different between smartphone and desktop, with about 50% of

-3 -2 -1 0 1 2 3

(RUM)SI actual - (RUM)SI inferred [s]

0

10

20

30

40

50

60

70

80

90

100

%
 l
o

a
d

in
g

 s
e

s
s
io

n
s
 (

te
s
ts

)

all

desktop

smartphone

tablet

apps

low
QoE

 (MOS<3.5) high
QoE

 (MOS>3.5)
0

2

4

6

8

10

12

14

Q
o
E

 i
n
fe

re
n
c
e
 e

rr
o
r

(%
)

DeepQoE

SML

- 44%

- 34%

(a) Inference performance. (b) MOS prediction error.

Fig. 8: DeepQoE (RUM)SI and MOS inference performance.

the pages showing a Jaccard-index below 0.5. For about 20%

of the pages, signatures significantly overlap, with a Jaccard-

index above 0.75. We now focus on the discriminative power

of the signatures. For the specific identification task we are

targeting, good signatures are those which do not overlap, and

therefore can be mapped to exclusive web pages. Fig. 6(c)

depicts the distribution of Jaccard-index values among all

couples of Cd signatures, both for smartphone and desktop. In

both cases values are small, with more than 97% of the couples

with a Jaccard-index below 0.2. This confirms the a-priori

good discriminative power provided by the Cd signatures.

Regarding Sd signatures, Fig. 6(d) shows the number of Cd

associated to each of the Sd in the top 500 Alexa websites,

for both smartphone and desktop. Within the top 500 Alexa

websites, there is a total of 9.601 unique support domains in

the case of smartphone, and 12.384 in the case of desktop.

About 80% of the Sd have only one Cd associated to, which

is highly beneficial to also associate a Sd to the corresponding

Cd . For 10% of the Sd , there are two associated Cd , and for

the remaining 10%, there are three or more associated Cd .

Within this category of Sd , we find support domains such as

www.google.com or www.facebook.com with a strong presence

on all visited web pages, in about 60% and 40% respectively.

We also analyzed the signatures generated for mobile apps;

in particular, we analyzed the signatures generated for each

different app action, for the four instrumented apps, and

compare them to the signatures observed for web pages,

thinking on a potential discrimination between app actions and

general web browsing traffic. Fig. 7(a) reports de distribution

of Jaccard-index values for signatures corresponding to app ac-

tions and smartphone web browsing, considering the webpage

versions of the apps for intersection. Two main observations

can be derived: firstly, there is a strong separation between

the app startup signatures and the corresponding webpage

loading signatures for Facebook and YouTube, with a Jaccard-

index below 0.1. Secondly, for the case of BBC and Amazon,

where there are multiple similar actions, there is a stronger

overlap among signatures, but for about 60% of the couples,

the values are below 0.4, which is still promising to identify

individual app actions. Fig. 7(b-d) show the distribution of

Jaccard-index values when considering, for each app and for

each specific app action, the overlap with the full set of top-

500 Alexa webpage signatures, in smartphone. Values are

small, at most 0.25, and below 0.15 for more than 95% of the

couples, suggesting that app-action signatures do not overlap

with web-browsing signatures, and can therefore be properly

SML DeepQoE

dataset content MAE-mAE (ms) MAE-mAE (ms) gain (%)

all web/app 605 – 247 501 – 182 17.2 – 26.3

web − desk web 591 – 287 489 – 203 17.3 – 29.3

web − smart web 757 – 351 607 – 250 19.8 – 28.8

web − tab web 767 – 333 615 – 252 19.8 – 24.3

APP app 309 – 110 238 – 82 23.0 – 25.5

TABLE III: Performance of multi-device/multi-app Web QoE Inference.

used for clickstream identification and disentangling. We have

only focused on the case of desktop and mobile web browsing

fingerprinting, and leave apps identification for future work.

V. DeepQoE EVALUATION

Next, we thoroughly evaluate DeepQoE modules for (i) SI

inference and (ii) traffic filtering, both independently, as well

(iii) as an end-to-end system. In Sec. V-A we evaluate the

DL model inference performance for web browsing and apps,

assuming an ideal scenario where single sessions are already

isolated from each other. Sec. V-B evaluates the identifica-

tion and disentangling of webpages for (a) desktop and (b)

smartphone devices, without considering mobile apps – we did

not construct app fingerprints in this study. Finally, Sec. V-C

considers the end-to-end inference performance results for web

browsing in (a) desktop and (b) smartphone.

A. (RUM)SI Inference and QoE Impact

Using the generated data and network traffic features, we

train DeepQoE for (RUM)SI inference. We train a single

model for all web and app measurements, and then evaluate its

performance for each independent dataset – web browsing per

device and apps. Unless otherwise stated, results presented

next correspond to 5-fold cross validation. To show evidence

of the outperformance introduced by DeepQoE, we compare

results against those obtained through a Shallow Machine

Learning model (SML), following the state of the art [3], [4],

[6]. In particular, we take the model used in [4], corresponding

to LightGBM – a gradient boosting approach that uses tree

based learning algorithms.

Tab. III reports the (RUM)SI inference performance of

DeepQoE and the SML shallow model, for all data, and tested

on each individual dataset. Fig. 8(a) additionally depicts the

distribution of the inference errors obtained by DeepQoE. We

assess performance using absolute errors (AE), taking both

mean (M) and median (m) values, to filter out significantly

large errors. The last column shows the performance gain of

DeepQoE over SML – in MAE and mAE. The first observation

is the consistency of generalization of both DeepQoE and SML

models along the different datasets. Regarding web browsing,

errors tend to be higher for web browsing in mobile devices

(web− smart and web− tab) as compared to desktop, flagging

the additional complexity introduced by the combination of

OS (Android) and mobile hardware in the mapping between

network traffic and visual display. Inference errors are signif-

icantly lower for the instrumented app user-interactions, but

recall that the heterogeneity of contents is much smaller for

this dataset – 11 different user actions as compared to 500

(a) SHAP-value distributions. (b) Mean absolute SHAP-values.

Fig. 9: Explainability of DeepQoE, for web browsing and apps.

different web pages. Regarding the performance improvement

achieved by DeepQoE, we see a significant gain above 25%

(in the median) in all datasets, evidencing that a deep model

can better track the underlying phenomenon and statistics.

A natural question which poses based on the presented

results, is how relevant are the (RUM)SI inference errors and

the performance gain achieved by DeepQoE in terms of end-

user experience? To answer this question, we rely on well-

known models for QoE prediction (MOS scores) based on

waiting times, which assume that the relationship between

waiting time and its QoE perception on a linear MOS scale

is logarithmic. This model has been recently applied to SI

in [7], using subjective lab studies for calibration. Using the

models in [7], we are able to translate SI values into a MOS

score between 1 (bad QoE) and 5 (excellent QoE). For the

sake of simplified analysis, we map SI values into low (MOS

= 1, 2, or 3) and high QoE (MOS = 4 or 5) categories.

This is a standard cut used in the QoE community for binary

user-experience analysis [3]. This threshold also results in

a balanced split (53/47) in terms of number of sessions in

each category. Fig. 8(b) depicts the corresponding QoE MOS

inference errors obtained when mapping actual and inferred

(RUM)SI values, for both DeepQoE and SML models. SML

inference errors result in about 10% of the sessions being

wrongly classified as low QoE, and above 13% wrongly

classified as high QoE. DeepQoE is able to reduce these errors

by about 40%, improving the classification of low and high

QoE sessions by 44% and 34% respectively.

Another aspect we evaluated is the generalization of the

trained model to websites that are not used in the training

process. As we have recently shown, training inference mod-

els for specific content-based groups of webpages results in

significant performance improvement as compared to training

a single model for a broad set of webpages [13]. This directly

suggests that a model trained on a set of webpages would

underperform in a different, randomly selected set of unseen

pages. To test this hypothesis, we randomly split the full

dataset in a 80/20 proportion webpage-wise, training the model

in the first 80% of the webpages, and testing in the remaining,

non-overlapping 20% of webpages. As expected, inference

performance degrades when testing on measurements coming

from unseen webpages, but this degradation is rather limited,

around 10% when considering the median absolute error as

performance metric. Training a model capable to properly

perform on the full span of webpages in the open Internet

P 2 R P 3 R P 5 R P 8 R P 10 R P 15 R

number of concurrent webpages (P/R)

0

10

20

30

40

50

60

70

80

90

100

%
 t

e
s
ts

CSF

SF
CF
CN

(a) Number of concurrent web pages – Smartphone.

P 2 R P 3 R P 5 R P 8 R P 10 R P 15 R

number of concurrent webpages (P/R)

0

10

20

30

40

50

60

70

80

90

100

%
 t
e

s
ts

CSF

SF
CF
CN

(b) Number of concurrent web pages – Desktop.

Fig. 10: Clickstream identification performance. DeepQoE uses CSF.

is certainly challenging, but focusing on the most popular

websites already provides very good and useful results.

Finally, to shed some light on the underlying functioning of

DeepQoE, we resort to explainable AI techniques describing

which input features have a stronger influence in the pre-

dictions, and in which sense. We apply SHAP [15], a game

theoretic approach to explain the output of any machine learn-

ing model, by calculating the contribution of each feature to

the corresponding predictions. In a nutshell, SHAP shows the

relative impact of each independent input feature on the model

output, by comparing the relative effect of the inputs against

the average model output. Fig. 9 depicts the top-10-sorted

most relevant input features and their corresponding impact

on the model output according to SHAP, for all web browsing

measurements and all app user-actions. For each feature and

for each individual input sample, the plot shows how much it

pushes the model output from the base value to the actual

output for this sample. The base value corresponds to the

average model output over the training dataset. Higher feature

values are shown in red, and lower in blue. Session-related

features have a clearer stronger impact, as they are among the

top-ranked. For example, session_duration (in downlink and

overall) has the strongest impact in DeepQoE, with shorter

sessions pushing the inferred SI values lower. Interestingly,

and as expected, the most relevant progressive traffic download

features are the ones corresponding to the end of the loading

progress, e.g., bytes_down at the middle or end of the 100

time slots (100, 90, 88, etc.). Both observations suggest that the

loading progress itself is less relevant than the overall duration.

The high relevance of session-related features might be one of

the reasons for the outperformance of DeepQoE as compared

to previous CNN-based architectures taken in the state of the

art for this inference task [5].

B. Web Pages Identification and Filtering

We evaluate the different clickstream identification ap-

proaches on top of synthetically generated multi-concurrent

web pages sessions, considering a different number of con-

current web pages, from two to 15 concurrent web pages.

For each number of concurrent web pages, the evaluation

corresponds to a set of 10.000 samples synthetically gener-

P 2 R P 3 R P 5 R P 8 R P 10 R P 15 R
number of concurrent webpages (P/R) - Smartphone

0

10

20

30

40

50

60

70

80

90

100
%

 t
e

s
ts

DC

SCF

P 2 R P 3 R P 5 R P 8 R P 10 R P 15 R
number of concurrent webpages (P/R) - Desktop

0

10

20

30

40

50

60

70

80

90

100

%
 t

e
s
ts

DC

SCF

Fig. 11: Webpage disentangling performance. DeepQoE uses SCF.

ated. These synthetic concurrent sessions are generated by

randomly selecting traffic captures (pcap files) of individual

loading sessions, and mixing them together, after properly

aligning time references to actually make them concurrent.

In a nutshell, this is achieved by setting the beginning of the

mixed captures at the same start time (i.e., the time-stamp

of the first packet in each capture), adding a random delay

to each capture to emulate time precedence in the multi-

session browsing. Fig. 10 reports the obtained results in terms

or precision and recall, for desktop and smartphone devices,

respectively. Recall and precision values are high for both

device types, pointing to the good discrimination power of the

signatures. The approach performing the worst is SF, which is

expected, as it only relies on Sd signatures. Due to the nature

of the approach and the evaluation, CN achieves 100% recall

in all tests. As expected, precision drops for this approach, as

some Sd are classified as Cd . As the number of concurrent

pages grows, precision also increases, as the relative number

of false positives decreases. CSF (the one used by DeepQoE)

and CF perform similarly, but additionally using Sd signatures

helps to increase precision of the identification approach. We

follow a similar approach to evaluate the different web traffic

disentangling approaches. In this evaluation, the list of Cd

to reconstruct is given as input, and the task consists of

identifying and correctly associating all the Sd to the correct

Cd . Fig. 11 reports the obtained results in terms of precision

and recall, again for desktop and smartphone mixed web

loading sessions, respectively. The basic approach DC achieves

100% recall for all the traffic mixes, based on the signatures

intersection. However, the approach is not precise, resulting

in a significant fraction of misclassifications for Sd in the

traffic mix. Precision drops as we add more concurrent pages,

as overlapping Sd occur more often. Using both Cd and Sd
signatures (SCF, the approach used by DeepQoE) significantly

improves the precision of the disentangling approach, but

naturally, sacrificing part of the identification performance in

terms of recall. Still, disentangling and filtering performance

is very high, even when dealing with 15 concurrent pages,

both for smartphone and desktop devices.

C. End-to-End Inference Evaluation

The last evaluation targets the performance of the complete

end-to-end monitoring solution, which uses the clickstream

identification and the traffic disentangling steps to reconstruct

isolated web pages for subsequent (RUM)SI inference. As

before, we generate synthetic mixes of individual webpage

loading sessions. We randomly generate two sets of 100

-3 -2 -1 0 1 2 3

RUMSI actual - RUMSI inferred [s]

0

10

20

30

40

50

60

70

80

90

100

%
 i
d

e
n

ti
fi
e

d
 w

e
b

p
a

g
e

s

desktop

smartphone

2 3 4 5 6 7 8 9 10

concurrent webpages

0

10

20

30

40

50

60

70

80

90

100

%
 t

e
s
ts

desktop

smartphone

(a) Inference performance. (b) Concurrent web pages.

Fig. 12: DeepQoE end-to-end performance.

concurrent individual (all sessions, cf. Tab. III)

device MAE-mAE (ms) MAE-mAE (ms)

desktop 580 – 263 489 – 203

smartphone 733 – 330 607 – 250

TABLE IV: Performance of end-to-end Web QoE Inference.

mixed traffic sessions each, one for smartphone and one for

desktop. Within a set, the number of concurrent web pages

is randomly selected for each new test, following a uniform

distribution between two and ten consecutive web pages.

Fig. 12(b) depicts the distribution of the number of concurrent

web pages randomly selected. For about 70% of the tests,

the mix of traffic consists of five or more concurrent web

pages, resulting in a challenging test case. A total of 613 and

612 individual webpage loading sessions are selected by the

random algorithm to generate the 100 tests, for desktop and

smartphone, respectively. Clickstream detection performance

is highly accurate, with a Precision/Recall = 97.2%/95.6% for

desktop, and Precision/Recall = 93.1%/97.3% for smartphone.

Fig. 12(a) and Tab. IV report the (RUM)SI inference results,

obtained by the end-to-end pipeline, after the identification and

filtering of web pages traffic. Inference results are accurate,

achieving results comparable to the application of the model

on top of single, isolated web-traffic loading sessions. In

particular, median absolute errors are in the order of 250 ms

to 300 ms, very close to the inference results obtained from

individual sessions – cf. Tab. III.

VI. CONCLUDING REMARKS

DeepQoE is a deep-learning based approach to infer the

QoE of web services and mobile applications from the ISP

perspective, relying exclusively on the analysis of encrypted

network traffic. It implements a web fingerprinting solution to

identify individual web browsing sessions within concurrent

web pages traffic, enabling highly detailed, per webpage QoE

inference in practical deployments. Through extensive eval-

uations over a large and heterogeneous dataset composed of

web and app measurements, we have shown that DeepQoE can

infer the Speed Index of web browsing sessions and general

mobile apps with 25% of gain when compared to the state

of the art – based on shallow learning models, and reducing

the QoE inference error in terms of mean opinion scores by

nearly 40%. In addition, we have demonstrated the feasibility

of the proposed web traffic identification and disentangling

approaches, showing that the low error rates incurred in the

traffic filtering process have limited impact on the final SI

estimations.

REFERENCES

[1] Martino Trevisan, Idilio Drago, Marco Mellia, “PAIN: A Passive Web
Performance Indicator for ISPs,” Computer Networks, vol. 149, pp. 115-
126, 2019.

[2] Enrico Bocchi, Luca De Cicco, Dario Rossi, “Measuring the Quality of
Experience of Web Users,” ACM SIGCOMM Computer Communication

Review, vol. 46(4), 2016.
[3] Sarah Wassermann, Pedro Casas, Zied Ben Houidi, Alexis Huet, Michael

Seufert, Nikolas Wehner, Joshua Schuler, Shengming Cai, Hao Shi,
Jinchun Xu, Tobias Hoßfeld, Dario Rossi, “Are you on Mobile or
Desktop? On the Impact of End-user Device on Web QoE Inference from
Encrypted Traffic,” in 16th IEEE International Conference on Network

and Service Management (CNSM), 2020.
[4] Alexis Huet, Antoine Saverimoutou, Zied Ben Houidi, Hao Shi, Sheng-

ming Cai, Jinchun Xu, Bertrand Mathieu, Dario Rossi, “Revealing QoE
of Web Users from Encrypted Network Traffic,” in IFIP Networking

Conference, 2020.
[5] Alexis Huet, Antoine Saverimoutou, Zied Ben Houidi, Hao Shi, Sheng-

ming Cai, Jinchun Xu, Bertrand Mathieu, Dario Rossi, “Deployable
Models for Approximating Web QoE Metrics From Encrypted Traffic,”
in IEEE Transactions on Network and Service Management, vol. 18(3),
2021.

[6] Pedro Casas, Sarah Wassermann, Nikolas Wehner, Michael Seufert,
Joshua Schüler, Tobias Hoßfeld, “Mobile Web and App QoE Monitoring
for ISPs - from Encrypted Traffic to Speed Index through Machine
Learning,” in 13th IFIP Wireless and Mobile Networking Conference

(WMNC), 2021.
[7] Tobias Hoßfeld, Florian Metzger, Dario Rossi, “Speed Index: Relating

the Industrial Standard for User Perceived Web Performance to Web
QoE,” in 10th International Conference on Quality of Multimedia

Experience (QoMEX), 2018.
[8] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis

Christophides, Renata Teixeira, Dario Rossi, “Narrowing the Gap
between QoS Metrics and Web QoE using Above-the-Fold Metrics,” in
Passive and Active Measurement Conference (PAM), 2018.

[9] Ravi Netravali, Vikram Nathan, James Mickens, Hari Balakrishnan,
“Vesper: Measuring Time-to-Interactivity for Web Pages,” in 15th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2018.
[10] Qingzhu Gao, Prasenjit Dey, Parvez Ahammad, “Perceived Performance

of Top Retail Webpages in the Wild: Insights from Large-scale Crowd-
sourcing of Above-the-fold QoE,” in Workshop on QoE-based Analysis

and Management of Data Communication Networks (Internet-QoE),
2017.

[11] Ashkan Nikravesh, Qi Alfred Chen, Scott Haseley, Xiao Zhu, Geoffrey
Challen, Z. Morley Mao, “QoE Inference and Improvement without End-
host Control,” in IEEE/ACM Symposium on Edge Computing (SEC),
2018.

[12] Javad Nejati, Meng Luo, Nick Nikiforakis, Aruna Balasubramanian,
“Need for Mobile Speed: A Historical Study of Mobile Web Perfor-
mance,” in 4th Network Traffic Measurement and Analysis Conference

(TMA), 2020.
[13] Pedro Casas, Sarah Wassermann, Nikolas Wehner, Michael Seufert,

Tobias Hoßfeld, “Not all Web Pages are Born the Same. Content Tailored
Learning for Web QoE Inference,” in 6th IEEE International Symposium

on Measurements & Networking (M&N), 2022.
[14] Ignacio N. Bermudez, Marco Mellia, Maurizio M. Munafo, Ram Ker-

alapura, “DNS to the Rescue: Discerning Content and Services in a
Tangled Web,” in ACM Internet Measurement Conference (IMC), 2012.

[15] Scott Lundberg, Su-In Lee, “A Unified Approach to Interpreting Model
Predictions,” in 31st International Conference on Neural Information

Processing Systems (NIPS), 2017.
[16] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, “ImageNet Clas-

sification with Deep Convolutional Neural Networks,” in 26th Interna-

tional Conference on Neural Information Processing Systems (NIPS),
2012.

[17] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich, “Going Deeper with Convolutions,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.
[18] Karen Simonyan, Andrew Zisserman, “Very Deep Convolutional Net-

works for Large-Scale Image Recognition,” in 3rd International Con-

ference on Learning Representations (ICLR), 2015.
[19] Abien Fred Agarap, “Deep Learning using Rectified Linear Units

(ReLU),” arXiv preprint arXiv:1803.08375, 2018.
[20] Patrick Meenan, “Webpage Performance Testing,” online available at

https://github.com/WPO-Foundation/webpagetest, 2021.
[21] Dan Cuellar, “Appium, an Open-source, Cross-platform Test Automation

Tool for Native, Hybrid, and Mobile Web and Desktop Apps,” online
available at https://github.com/appium/appium, 2022.

[22] Patrick Meenan, “RUM SpeedIndex – SpeedIndex Measurements from
the Field using Resource Timings,” online available at https://github.
com/WPO-Foundation/RUM-SpeedIndex, 2020.

[23] Patrick Meenan, “Command-line Port of the WebPagetest Mobile Video
Processing and Metrics Code,” online available at https://github.com/
WPO-Foundation/visualmetrics, 2021.

