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Janus, the only cosmological model that explains the acceleration of cosmic expansion

Jean-Pierre Petit∗ and Gilles D’Agostini†

(Dated: November 22, 2022)

We show that it is possible to integrate negative masses into the Janus cosmological model by
describing the universe as a manifold equipped with two metrics, one referring to positive masses and
the other to negative masses, as solutions of a system of two coupled field equations. The acceleration
of the cosmic expansion then results from the dominance of the negative energy content, showing a
good agreement with observational data.

I. INTRODUCTION

At the end of the 2000s, observational data began to
accumulate, tending to show the movement of expansion,
far from slowing down as previously expected, was on the
contrary accelerating. The collected data were consid-
ered sufficiently reliable for this discovery to be rewarded
with a Nobel Prize in 2011 [1–3]. However the cause
of this acceleration remained unknown. The only ap-
proach proposed by specialists consisted in reintroducing
the cosmological constant in the equation serving as the
basis for general relativity, the famous Einstein’s equa-
tion:

Rµν −
1

2
R gµν + Λ gµν = χ Tµν (1)

In the past, before the Italian Torricelli discovered at-
mospheric pressure, it was considered that the cause of
mercury rising in the barometers was “the horror of the
vacuum”, which we applied to quantify. But it did not
constitute a real explanation, relying on clear physical
foundations. Later on, it was evidently established that
what caused the column of mercury to rise in the tube
was nothing but than the impact of the very numerous
collisions of air molecules on the free surface of the liquid
metal, resulting which was called pressure. In the same
way, that “the introduction of this cosmological constant
in the equation, translates a repulsive power of the vac-
uum” cannot be considered as a satisfactory explanation.

The scientific community then gave it the qualifier
“dark energy”, which then has a negative value. On the
dynamic level, this new unknown component is of con-
siderable, majority importance. The specialists are since
looking for a component of the cosmic soup which makes
it possible to clarify this problem.

We present an explanation which introduces negative
masses in the cosmological model. This has been at-
tempted for a long time by the cosmologist Hermann
Bondi [4]. This one concludes that the laws governing
the interactions between positive and negative masses,
within the framework of general relativity, do not lead to
a true model, valid on the physical plan. They especially
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violate the fundamental principles of action-reaction and
equivalence. Let’s come back to this point.

General relativity is based on:

• The universe, the space-time, is a M4 manifold, a
four-dimensional hypersurface, defined at any point
and at any time by its metric field gµν .

• From this metric we can calculate two sets of
geodesics. Those of non-zero length are followed
by particles of matter, those of zero length by pho-
tons.

• If we know the source of the field, so the values at
any point of the components of the tensor of the
second member Tµν , we can calculate the metric
solution gµν .

• If we concentrate on those of non-zero length
geodesics, the ones referring to the masses, for a
given field Tµν , there is only one family of geodesics,
along which the control particles will circulate,
whether their masses are positive or negative.

To tackle this problem with precision, we resort to
the two metric solutions constructed by Schwarzschild
in 1916 [5, 6]. There is first the interior metric solution
describing a mass M , likened to a sphere filled with an
incompressible fluid of constant density ρ0:

ds2 =

ñ
3

2

…
1− 8πGρ0 r0

2

3 c2
− 1

2

…
1− 8πGρ0 r2

3 c2

ô2

c2dt2

− dr2

1− 8πGρ0 r
2

3 c2

− r2dθ2 − r2 sin2 θdϕ2 (2)

which links to the solution referring to the vacuum sur-
rounding this mass:

ds2 =

Å
1− 2GM

c2 r

ã
c2 dt2

− dr2

1− 2GM

c2 r

− r2(dθ2 + sin2 θdϕ2) (3)

The non-zero length geodesics are given by:

ϕ = ϕ0 +

∫ r

r0

dr 
c2λ2 − 1

h2
r4 +

2GM r3

c2
− r2 +

2GM r

c2

(4)
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When this mass M is positive, the geodesics are of the
ellipse, parabola, hyperbola type, all reflecting an attrac-
tion. We deduce, according to the model of general rela-
tivity that:

• The positive masses attract their fellow beings as
well as the negative masses.

If this field is created by a negative mass, then to ob-
tain the geodesics it suffices to change the sign in this
Schwarzschild metric solution, the quantities M and ρ0

being only simple constants of integration:

ds2 =[
3

2

 
1 +

8πG|ρ0|r0
2

3 c2
− 1

2

 
1 +

8πG|ρ0|r2

3 c2

]2

c2dt2

− dr2

1 +
8πG|ρ0|r2

3 c2

− r2dθ2 − r2 sin2 θdϕ2 (5)

ds2 =

Å
1 +

2G |M |
c2 r

ã
c2 dt2

− dr2

1 +
2G |M |
c2 r

− r2(dθ2 + sin2 θ dϕ2) (6)

The geodesics are then deduced from the expression:

ϕ = ϕ0 +

∫ r

r0

dr 
c2λ2 − 1

h2
r4 − 2G|M |r3

c2
− r2 − 2G|M |r

c2

(7)
Curves of the parabola and ellipse type disappear. Only
geodesics of the hyperbole type remain, evoking a repul-
sion (see Fig. 1).

As a conclusion:

• Negative masses repel their fellow beings as well as
positive masses.

Thus, if two masses of opposite signs are brought to-
gether, the positive mass flees, pursued by the negative
mass. Both undergo a uniform acceleration without any
input of energy, since that of the negative mass is neg-
ative. We have given the name runaway to this phe-
nomenon, which violates both the principle of action-
reaction and the principle of equivalence (Fig. 2).

II. AN ATTEMPT TO INTRODUCE NEGATIVE
MASSES SATISFYING TO THE PRINCIPLES OF

ACTION-REACTION AND EQUIVALENCE

In a purely heuristic approach, we could consider in-
teraction laws corresponding to:

• Masses with same sign mutually attract by New-
ton’s law.

FIG. 1. Geodesics in a repelling field

FIG. 2. The introduction of negative masses in general rela-
tivity results in the runaway phenomenon.

• Masses with opposite signs mutually repel by anti-
Newton’s law.

This was envisaged as early as 1995 [7, 8], with some
profit, with respect to an attempt to explain the large-
scale structure of the universe and the spiral structure of
galaxies [8]. But we then ran into a serious pitfall: these
laws do not match with general relativity. Indeed they
implied that the witness masses, positive and negative,
behave differently when they were immersed in the same
gravitational field. To do this they had to follow different

geodesic curves, from two different metrics g
(+)
µν and g

(−)
µν

These cannot emerge from a single field equation. In
the general relativity equation, Einstein’s equation, the
Ricci tensor Rµν and the Ricci scalar R follow from the

solution metric gµν . However, two distinct metrics g
(+)
µν

and g
(−)
µν generate different tensors R

(+)
µν and R

(−)
µν as well

as scalars R(+) and R(−). Hence, we have a kind of bi-
geometry, bimetric configuration.
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III. FIRST BIMETRIC GEOMETRIES

In 2004 T. Damour and I. Kogan [9, 10] consider the
interaction between two geometric entities, qualified as
“right” and “left” “branes”. A construction using a La-
grangian, inspired by the classical construction, leads
them to propose the system of the following two coupled
field equations:

2M 2
R (Rµν(gR)− 1

2
gRµν R(gR)) + ΛR g

R
µν= TRµν + tRµν

(8)

2M 2
L (Rµν(gL)− 1

2
gLµν R(gL)) + ΛL g

L
µν= TLµν + tLµν

In these equations the tensors TRµν and TLµν have the clas-
sical form, inspired by general relativity. The interaction
relies entirely on the “interaction tensors” tRµν and tLµν .
Over the course of an article reaching forty pages, the
two authors try different approaches, based on different
models, without success. Moreover, the model is com-
plicated by the assumption that the interactions involve
gravitons with a mass spectrum.

The German Sabine Hossenfelder produces the second
attempt in 2008 [11]:

(g)Rκν − 1
2 gκν

(g)R= Tκν − V
 
h

g
aνν a

κ
κ Tκ ν

(9)

(h)Rνκ − 1
2 gνκ

(h)R= Tνκ −W
…
g

h
aκκ a

ν
ν Tν κ

The two interacting geometric entities are then identified
by the Greek letters κ and ν. The construction of the
interaction terms is then based on the introduction of a
functional, covariant relation:

δhκλ = −
[
a−1

]µ
κ

[
a−1

]ν
λ
δgµν (10)

The author therefore limits herself to a systematic and
binding hypothesis of symmetry between the two entities.
This leads him to build an evolution scheme based on two
FRLW metrics, simple copies of each other. The inter-
action laws are deduced from the two equations, through
the Newtonian approximation. Under these conditions,
the scheme once again leads to a violation of the princi-
ple of equivalence, and the author concludes that this is
a property of all bimetric systems.

IV. ADAPTATION OF THE SYSTEM FOR A
SATISFACTION OF THE PRINCIPLES

ACTION-REACTION AND EQUIVALENCE

The Janus system of equations [12–19] can at this stage
be considered as a variant of the model d’Hossenfelder,
at the cost of a simple sign change (modulo the mode of

writing the interaction tensors):

(g)Rκν −
1

2
gκν

(g)R = Tκν − V
 
h

g
aνν a

κ
κ Tκ ν

(11)

(h)Rνκ −
1

2
gνκ

(h)R = −
ï
Tνκ −W

…
g

h
aκκ a

ν
ν Tν κ

ò
Going back to the presentation in Eq. (11), with our

sign conventions, this system is written:

R(+)ν
µ −

1

2
R(+)δνµ = χ

[
T (+)ν

µ +

 
g(−)

g(+)
ÛT (−)ν

µ

]
(12)

R(−)ν
µ −

1

2
R(−)δνµ = −χ

[ 
g(+)

g(−)
ÛT (+)ν

µ + T (−)ν
µ

]

Such a system must satisfy the Bianchi conditions. These
are satisfied identically for the first members. The tensors

T
(+)ν
µ and T

(−)ν
µ are:

T (+)ν
µ =



ρ(+) 0 0 0

0 − p(+)

c(+)2 0 0

0 0 − p(+)

c(+)2 0

0 0 0 − p(+)

c(+)2


(13)

T (−)ν
µ =



ρ(−) 0 0 0

0 − p(−)

c(−)2 0 0

0 0 − p(−)

c(−)2 0

0 0 0 − p(−)

c(−)2



By applying the Bianchi condition to them, we obtain
the relations reflecting, inside the masses, the balance
between the force of pressure and the force of gravity. At
this stage, the only constraint to which the interaction

tensors ÛT (+)ν
µ and ÛT (−)ν

µ must obey is this Bianchi con-
dition, which precisely determines their shape (see the
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detail of the calculations in the Appendix A).

ÛT (+)ν
µ =



ρ(+) 0 0 0

0
p(+)

c(+)2 0 0

0 0
p(+)

c(+)2 0

0 0 0
p(+)

c(+)2


(14)

ÛT (−)ν
µ =



ρ(−) 0 0 0

0
p(−)

c(−)2 0 0

0 0
p(−)

c(−)2 0

0 0 0
p(−)

c(−)2


The system of coupled field equations [Eq. (12)] is valid

only if it produces solutions consistent with observations.
This had been outlined in [12]. While Hossenfelder has
always placed herself in a perspective of symmetry be-
tween the two entities, the Janus model is based on the
contrary on a fundamental asymmetry, the cosmic dy-
namics being under the control of the majority negative
mass population. This asymmetry will be explained in a
future article.

It had been exploited in [7] through numerical simula-
tions. Under these conditions the negative masses, whose
accretion time is then lower:

t
(−)
J =

1√
4πG|ρ(−)|

� t
(+)
J =

1√
4πGρ(+)

(15)

Thus, the negative masses form a regular system of
spheroidal clusters, confining the positive mass in the
remnant place, giving it a lacunar structure. This will be
taken up and developed in a future article.

V. FIRST APPLICATION OF THE JANUS
MODEL: EXPLANATION OF THE

ACCELERATION OF COSMIC EXPANSION

Before bringing this asymmetry hypothesis into play,
let’s start by examining the compatibility of Eq. (12)
when we assign them solutions, homogeneous and
isotropic, of the FRLW type:

g(+)
µν = c(+)2dt2 − a(+)2

1− k(+)

[
dr2 + dΩ2

]
(16)

g(−)
µν = c(−)2dt2 − a(−)2

1− k(−)

[
dr2 + dΩ2

]

These equations become:

R(+)ν
µ −

1

2
R(+)δνµ = χ

ñ
T (+)ν

µ +
c(−)2a(−)3

c(+)2a(+)3
ÛT (−)ν

µ

ô
(17)

R(−)ν
µ −

1

2
R(−)δνµ = −χ

ñ
c(+)2a(+)3

c(−)2a(−)3
ÛT (+)ν

µ + T (−)ν
µ

ô
In the classical treatment of the FRLW solution of Ein-
stein’s equation, we ended up with the conservation of
energy:

E = ρ c2 a3 = Cst (18)

A similar treatment (compatibility between the two equa-
tions) leads to the condition:

E = ρ(+) c(+)2a(+)3 + ρ(−)c(−)2a(−)3 = Cst (19)

which translates a conservation of global energy.
By focusing on the phase where these are universes

of dust, where we can neglect the pressure, we can thus
write the equations:

R(+)ν
µ −

1

2
R(+)δνµ =

χE

c(+)2a(+)3
(20a)

R(−)ν
µ −

1

2
R(−)δνµ = − χE

c(−)2a(−)3
(20b)

In this system is the Einstein constant, which we take, in
accordance with the form retained for the field tensors,
equal to:

χ = − 8πG

c(+)2
(21)

It is negative. The signs of the second members of the
equations of the system shown in Eq. (20) will therefore
be opposite. If the overall energy, dominated by the neg-
ative mass content, is negative, then Eq. (20b) will give
an evolution of the Friedman model type, with an accel-
eration of this expansion. The solution of the Eq. (20a),
then showing an acceleration of the expansion was stud-
ied by W.Bonnor [20]. This solution can be written in
the following parametric form:

a(+)(u) = α2ch2u (22)

t(+)(u) =
α2

c(+)
(1 +

1

2
sh(2u) + u) (23)

To simplify the notations, we put: a(+) = a, c(+) = c.
The “deceleration parameter” q becomes:

q = −aä
ȧ2

= − 1

2sh2u
< 0 (24)
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figure3-eps-converted-to.pdf

FIG. 3. Hubble diagram of the combined sample (log redshift
scale)

The construction of the relationship between the bolo-
metric magnitude and the redshift is given in the ap-
pendix. It comes:

mbol = 5 log10

ï
z +

z2(1− q0)

1 + q0z +
√

1 + 2q0z

ò
+ cst (25)

where q0 < 0 and 1 + 2q0z > 0. Sizing the values of q0

and of the constant in order to fit available observational
data [1], we get:

q0 = −0.087± 0.015 (26)

Results presented below, show the standardized distance
modulus µ = 5 log10(dL/10pc), linked to experimental
parameters through the relation:

µ = m∗B −MB + αX1 − βC (27)

where m∗B is the observed peak magnitude in rest frame
B band, X1 is the time stretching of the light curve and
C the supernova color at maximum brightness.

Both MB , α and β are nuisance parameters in the
distance estimate.

We took the values given in [1] corresponding to the
best fit of the whole set of combined data (740 super-
novae) with ΛCDM model.

With the best fit we get χ2/d.o.f. = 657/738 (740
points and 2 parameters). The corresponding curves are
shown in Fig. 3, 4, 5, 6, in excellent agreement with the
experimental data. The comparison with both model
best fits are shown in Fig. 7.

We can derive the age of the universe (see Appendix B)
with respect to q0 and H0 and some numerical values,

figure4-eps-converted-to.pdf

FIG. 4. Hubble diagram of the combined sample (linear red-
shift scale)

figure5-eps-converted-to.pdf

FIG. 5. Residuals of the combined sample (log redshift scale)

for different (q0, H0) values, are given in Table I. For our
best fit, we get:

T0 =
1.07

H0
= 15.0Gyr (28)

The content of the universe can then be revised. In this
Cosmological Janus model, dark matter and dark energy
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figure6-eps-converted-to.pdf

FIG. 6. Standard deviations of the combined sample (log
redshift scale)

FIG. 7. Hubble diagram compared with the 2 models (linear
redshift scale)

T0

(Gyr)
q0

0.000 -0.045 -0.087 -0.102 -0.117 -0.132

H0
70 14.0 15.0 15.0 14.9 14.9 14.8
73 13.4 14.4 14.4 14.3 14.3 14.2

TABLE I. T 0 values with respect to q 0 and H 0

are replaced by one component, a negative mass content,
which will then be perfectly identified and which will be
seen to account for all the phenomena for which these
two components, of an unspecified nature to date, were
created. Hence, the composition of the universe is:

• 96 % (invisible) negative mass,

• 4 % positive mass.

When we try to interpret the phenomenon of accel-
eration of the expansion by invoking the cosmological
constant Λ, this then evokes the presence of a negative
energy independent of time, therefore independent of the
expansion. Dynamically, it predicts an exponential ex-
pansion as a function of time. In the Janus model, the
curvature indices k+ and k− are equal to -1. The geome-
tries are therefore hyperbolic and the scale factors a(+)

and a(−) tend asymptotically towards linear functions of
the common chronological marker xo = c(+)t(+) = c t.

VI. CONCLUSION

The model presented represents a profound change in
the cosmological paradigm in the sense that we move
from a description of the universe as a variety equipped
with a single metric gµν , solution of a single field equa-
tion, Einstein’s equation, to a manifold equipped with

two metrics g
(+)
µν and g

(−)
µν , referring respectively to pos-

itive masses and negative masses, solutions of a system
of two coupled field equations. The Newtonian approxi-
mation then provides interaction laws which, unlike what
emerges from the attempt to introduce negative masses
into the Einsteinian model (runaway phenomenon), sat-
isfy the principles of action-reaction and equivalence.
Masses of the same sign then attract each other accord-
ing to Newton’s law, while masses of opposite signs repel
each other according to “anti-Newton”. As will be de-
veloped in the following articles, gravitational instabil-
ity tends to separate these two populations. Under these
conditions, when one population dominates in one region
of the universe, the other is mainly excluded.

Then the first equation of the proposed system is iden-
tified with Einstein’s equation, which then appears as a
limiting description, in the regions where the negative
mass content can be neglected. The model thus agrees
with the classic verifications of general relativity, of a
local nature. As will be shown in subsequent articles,
these negative mass particles are simply negative mass
anti-hydrogen and anti-helium. We will show that the
result of the interaction with the positive masses and the
photons of positive energy accounts for all the phenom-
ena that we attributed until now to the dark matter,
which is then no longer necessary. The energy of this
negative mass population being itself negative then iden-
tifies with what was called “dark energy”. Thus, the
two components of the model are thus replaced by a sin-
gle component, ensuring these two functions, perfectly
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identified. As negative mass particles emit negative en-
ergy photons, they escape our observations in the field
of optics. Incidentally, and this will also be the subject
of another article, this negative mass antimatter is then
identified with this great absentee: primordial antimat-
ter, another problem for which the Janus cosmological

model is the only one to provide a precise and consistent
answer.

That said, we show that this new Janus cosmological
model perfectly accounts for the acceleration of cosmic
expansion, being the only one to provide a real explana-
tion of this phenomenon.
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Appendix A:

The proposed Janus equations are:

G(+)
µν = R(+)

µν −
1

2
R(+)g(+)

µν = χ

[
T (+)
µν +

 
g(−)

g(+)
ÛT (−)
µν

]
(A1)

G(−)
µν = R(−)

µν −
1

2
R(−)g(−)

µν = −χ

[ 
g(+)

g(−)
ÛT (+)
µν + T (−)

µν

]
(A2)

By construction:

∇ν(+)G
(+)
µν = ∇ν(−)G

(−)
µν = 0 (A3)

Conservation laws give:

∇ν(+)T
(+)
µν = ∇ν(−)T

(−)
µν = 0 (A4)

It is therefore necessary, in order to ensure the math-
ematical and physical coherence of this system, that the
interaction terms also satisfy these relations. Remember
that Einstein’s equation, the backbone of general relativ-
ity, provides only two types of solutions:

• Uniform and isotropic time dependent, solutions:
Friedman models.

• Time independent solutions referring either to
empty regions or to masses assimilated to volumes
filled with an incompressible fluid of constant den-
sity.

The Bianchi conditions identify, in the first case, to the
conservation of energy and mass. In the second case, we
see emerging, within the masses, the relationship reflect-
ing the balance between the force of gravity and the force
of pressure. So this is analyzed by considering the inner
Schwarzschild metric. The problem had thus been com-
pletely dealt with by Karl Schwarzschild in his second
article of 1916 [6] where he even went so far as to explain
the law r. This analysis was subsequently taken up by
Tolman [21], Oppenheimer and Volkoff [22] and special-
ists then know this relationship in its differential form, as
the so called “Tolman-Oppenheimer-Volkoff equation of
state” or “TOV equation”. For example, all the details
of such a calculation can be found in [23], Chapter 14.

If we now shift to the system of the two coupled field
equations, when we consider the unsteady “dust phases”
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where the pressures p(+) and p(−) can be neglected, a
very simple case, in all respects analogous to what is done
with a single species, in general relativity, leads to the
following compatibility relation, reflecting a generalized
conservation of energy:

ρ(+) c(+)2a(+)3 + ρ(−)c(−)2a(−)3 = Cst (A5)

In time independent conditions, the Bianchi condition
is obviously satisfied in a trivial way in vacuum. The
problem arises when we consider a region of space where
there is matter. Let us consider for example a part of
space corresponding to a sphere filled with a positive
mass, assimilated to an incompressible fluid, of constant
density. The system is written:

G(+)
µν = R

(+)
µν −

1

2
R(+)g(+)

µν = χ T (+)
µν (A6)

G(−)
µν = R

(−)
µν −

1

2
R(−)g(−)

µν = −χ
 
g(+)

g(−)
ÛT (+)
µν (A7)

By taking the approach of Chapter 14 from [23], the
metrics are given the forms:

ds(+)2 = eνdxo 2 − eλdr2 − r2(dθ2 + sin2 θϕ2) (A8)

ds(−)2 = eνdxo 2 − eλdr2 − r2(dθ2 + sin2 θϕ2) (A9)

From which we can calculate the components of the

Ricci tensors R
(+)ν
µ and R

(−)ν
µ as in [23], Chapter 14.

The positive mass tensor is:

T (+)ν
µ =



ρ(+) 0 0 0

0 − p(+)

c(+)2
0 0

0 0 − p(+)

c(+)2
0

0 0 0 − p(+)

c(+)2

 (A10)

To simplify the writing, we will put c(+) = c ; p(+) =
p ; ρ(+) = ρ. Equation (A6) leads to the system of
equations:

e−λ
Å

1

r2
− λ′

r

ã
− 1

r2
= χρ (A11)

e−λ
Å

1

r2
+
ν′

r

ã
− 1

r2
= −χ p

c2
(A12)

e−λ
ï
ν′′

2
− ν′λ′

4
+
ν′ 2

4
+
ν′ − λ′

2r

ò
= −χ p

c2
(A13)

We know that by setting:

e−λ ≡ 1−
2m(r)

r
(A14)

We obtain the so-called Tolman-Oppenheimer-Volkoff
equation:

p′

c2
= −m+ 4πG p r3/c4

r(r − 2m)

(
ρ+

p

c2

)
(A15)

Consider the Newtonian approximation:

p� ρ c2 ; r � 2m (A16)

This relation then identifies to Euler’s:

p′ = −
ρm(r)c

2

r2
= −

GM(r)ρ

r2
(A17)

M(r) being the mass contained in a sphere of radius r.
This relationship expresses the balance between the force
of pressure and the force of gravity.

Passing to Eq. (A7) and placing ourselves again in the
Newtonian approximation, for there to be compatibility
between the two field equations we must find the same

relationship. Let us give the interaction tensor ÛT (+)ν
µ the

form:

ÛT (+)ν
µ =

â
ρ 0 0 0

0
p

c2
0 0

0 0
p

c2
0

0 0 0
p

c2

ì
(A18)

It is the tensor T
(+)ν
µ , with inversion of the sign of the

pressure terms. At this stage, let us specify that the
choice of this tensor is completely free, its only virtue be-
ing to ensure that Equations A6 and A7 are compatible,
under the conditions of the Newtonian approximation.

We get:√
−g(+)√
−g(−)

=

√
eνeλr4 sin2 θ√
eν̄ ēλr4 sin2 θ

= e
ν
2 e

λ
2 e−

ν̄
2 e−

λ̄
2 = K(r)

(A19)
By calculating the components of the Ricci tensor

R
(−)ν
µ , we then get the following system of equations.

e−λ̄
Å

1

r2
+
ν̄′

r

ã
− 1

r2
= −χK p

c2
(A20)

e−λ̄
ï
ν̄′′

2
− ν̄′λ̄′

4
+
ν̄′ 2

4
+
ν̄′ − λ̄′

2r

ò
= −χK p

c2
(A21)

− ν̄
′ + λ̄′

r
e−λ̄ = −χK

(
ρ+

p

c2

)
(A22)

Applying the Newtonian approximation upstream of
this calculation, we can do K ≈ 1. As in the above we
will ask:

e−λ ≡ 1− 2m̄

r
(A23)
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We continue the calculation in a similar way to what
was done above and we obtain the result:

p′

c2
= −m− 4πG p r3/c4

r(r + 2m)

(
ρ− p

c2

)
(A24)

This differs from Eq. (A15). But these two equations
come together when applying the Newtonian approxi-
mation. There is therefore compatibility, modulo this
condition. We will conclude that the system of Equa-
tions A1 + A2 must be limited to the description of the
universe under the conditions corresponding to the New-
tonian approximation.

1. Remark

Building the interaction tensors ÛT (+)ν
µ and ÛT (−)ν

µ is not

done in a day. The presence of the term

√
−g(+)√
−g(−)

comes

from the Lagrangian construction ([11, 13]) of the system
of coupled field equations, which involves hypervolumes:»

−g(+) d 4 x et
»
−g(−) d 4 x (A25)

In a first, heuristic approach, we opted for the choice:ÛT (+)ν
µ = T (+)ν

µ et ÛT (−)ν
µ = T (−)ν

µ (A26)

This did not pose a problem in the construction of the
time-dependent solution, where the question of the bal-
ance between the forces of pressure and the force of grav-
ity disappeared in a trivial way, because of the assump-
tion of homogeneity and isotropic, which allowed a first
construction of the exact unsteady solution (Eq. A26).
In this case the system of field equations was reduced to:

R(+)
µν −

1

2
R(+)g(+)

µν = χ

ñ
T (+)
µν +

c(−)2a(−)3

c(+)2a(+)3
T (−)
µν

ô
(A27)

R(−)
µν −

1

2
R(−)g(−)

µν = −χ
ñ
c(+)2a(+)3

c(−)2a(−)3
T (+)
µν + T (−)

µν

ô
(A28)

The application of the Newtonian approximation pro-
vided in passing the laws of interaction, initially intro-
duced heuristically, in order to satisfy the principles of
action-reaction and equivalence. It remained to modify
the shape of the interaction tensors so that they satisfy,
under non-homogeneous conditions, the Bianchi condi-
tions, so that the bigeometry, inside the masses, does
not lead to a contradiction. Indeed, in hypothesis given
in Eq. (A26), the analysis presented above leads to:

• From the metric of the positive masses to the equa-
tion:

p′

c2
= −m+ 4πG p r3/c4

r(r − 2m)

(
ρ+

p

c2

)
(A29)

• From the metric of the negative masses to the equa-
tion:

p′

c2
= +

m− 4πG p r3/c4

r(r + 2m)

(
ρ− p

c2

)
(A30)

In this case, the Newtonian approximation leads to the
contradictory equations:

p′ = −
GM(r)ρ

r2
p′ = +

GM(r)ρ

r2
(A31)

As shown in this article, this problem disappears when
the interaction tensors are given adequate form like in
Eq. (A18).

Appendix B: Bolometric magnitude derivation

Starting from the cosmological equations correspond-
ing to positive species and neglectible pressure (dust uni-
verse):

a(+)2 ä(+) +
8πG

3
E = 0 (B1)

with E ≡ a(+)3ρ(+) +a(−)3ρ(−) = constant < 0. For sake
of simplicity we will write a ≡ a(+) in the following. A
parametric solution of Eq. (B1) can be written as:

a(u) = α2ch2(u) t(u) =
α2

c

Å
1 +

sh(2u)

2
+ u

ã
(B2)

with

α2 = −8πG

3c2
E (B3)

This solution imposes k = −1. Writing the definitions

q ≡ −aä
ȧ2

and H ≡ − ȧ
a

, we can write:

q = − 1

2sh2(u)
= −4πG

3

|E|
a3H2

(B4)

and also

(1− 2q) =
c2

a2H2
(B5)

In terms of the time t used in the FRLW metric, the
light emitted by Ge at time te is observed on G0 at a
time t0(te > t0) and the distance l travelled by photons
(ds2 = 0) is related to the time difference t and then to
the u parameter through the relation:

l =

∫ t0

te

c dt

a(t)
=

∫ u0

ue

(1 + ch(2u))

ch2(u)
du = 2u0 − 2ue (B6)

Using Friedman’s metric with k = −1, we can also
relate the distance l to the distance marker r by:

l =

∫ t0

te

c dt

a(t)
=

∫ r

0

dr′√
1 + r′2

= argsh(r) (B7)
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So we can write:

r = sh(2u0 − 2ue) = 2sh(u0 − ue)ch(u0 − ue) (B8)

We need now to link ue and u0 to observable quantities
q0, H0, z. From Eq. (B7), we get:

u = argch

Å…
a

α2

ã
(B9)

We get the usual redshift expression:

ae =
a0

1 + z
(B10)

We get:

u0 = argch

 
2q0 − 1

2q0
= argsh

 
− 1

2q0
(B11)

and

ue = argch

 
2q0 − 1

2q0(1 + z)
= argsh

 
− 1 + 2q0z

2q0(1 + z)
(B12)

After a few technical manipulations, and considering
the constraint that 1 + 2q0z > 0, we get:

r =
c

a0H0

q0z + (1− q0)
Ä
1−

√
1 + 2q0z

ä
q2
0(1 + z)

(B13)

Which is similar to Mattig’s work with usual Fried-
man’s solutions where q0 > 0, here we have always q0 < 0.
The total energy received per unit area and unit time
interval measured by bolometers is related to the lumi-
nosity:

Ebol =
L

4πa2
0 r

2(1 + z)
2 (B14)

The bolometric magnitude can therefore be written as:

mbol = 5 log10

q0z + (1− q0)
Ä
1−

√
1 + 2q0z

ä
q2
0

+ cst

(B15)

This relation rewrites as:

mbol = 5 log10

ñ
z +

z2(1− q0)

1 + q0z +
√

1 + 2q0z

ô
+ cst (B16)

1. Age of the universe

Below we will establish the relation between the age of
the universe T0 with q0 and H0 (see Fig. 8). This age is
defined by:

T0 =
α2

c

Å
sh(2u0)

2
+ u0

ã
(B17)

figure1_AppB-eps-converted-to.pdf

FIG. 8. Age of the Universe

Then we get:

α2

c
= −2q

H
(1− 2q)

− 3
2 = −2q0

H
(1− 2q0)

− 3
2 (B18)

and so:

T0 = −2q0(1− 2q0)
− 3

2

Å
sh(2u0)

2
+ u0

ã
1

H0
(B19)

We finally get:

T0.H0 = −2q0(1− 2q0)
− 3

2

Ç
argsh

 
−1

2q0
−
√

1− 2q0

2q0

å
(B20)


