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ABSTRACT

In recent years, major advances in cryo-electron microscopy (cryo-EM) have enabled the
routine determination of complex biomolecular structures at atomic resolution. An open
challenge for this approach, however, concerns large systems that exhibit continuous dynamics.
To address this problem, we developed the metadynamic electron-microscopy metainference
(MEMMI) method, which incorporates metadynamics, an enhanced conformational sampling
approach, into the metainference method of integrative structural biology. MEMMI enables
the simultaneous determination of the structure and dynamics of large heterogeneous systems
by combining cryo-EM density maps with prior information through molecular dynamics,
while at the same time modelling the different sources of error. To illustrate the method, we
apply it to elucidate the dynamics of an amyloid fibril of the islet amyloid polypeptide (IAPP).
The resulting conformational ensemble provides an accurate description of the structural
variability of the disordered region of the amyloid fibril, known as fuzzy coat. The
conformational ensemble also reveals that in nearly half of the structural core of this amyloid
fibril the side-chains exhibit liquid-like dynamics despite the presence of the highly ordered
network backbone of hydrogen bonds characteristic of the cross-f structure of amyloid fibrils.
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Introduction

In the last several years, cryo-electron microscopy (cryo-EM) has been pushing the boundaries
of structural biology in terms of structure resolution, system complexity, and macromolecular
size'2. Imaging single particles by rapid cryo-cooling and vitrification®* enables structural
studies under near-native environmental conditions while offering sample protection from
beam radiation. Technical advances in electron detectors, computational algorithms accounting
for beam-induced motion, and automation of data collection and image analysis® have paved
the way to a spectacular increase of high-resolution cryo-EM density maps. The Electron
Microscopy Data Bank (EMDB) currently holds 15,800 single-particle cryo-EM density maps,
which offer exquisitely detailed structural information about macromolecular systems of
central importance in cell biology.

In standard cryo-EM structure determination, two-dimensional (2D) images of single particles
are first classified in conformationally homogenous classes and then averaged in a
computational image processing step, thereby leading to a substantial increase in the signal-to-
noise ratio, and thus in structure resolution®’. However, the continuous dynamics of flexible
regions are difficult to detect, therefore complicating the generation of homogenous classes of
structures. The resulting low densities cannot be readily used to determine atomistic structures,
and are thus often excluded from the final structural model. While methods such as the
manifold embedding approach® can determine multiple structures from cryo-EM density maps,
to account for the conformational dynamics one should quantitatively and atomistically
interpret the cryo-EM density maps as an envelope that corresponds to an averaged
conformational ensemble of states with certain populations that interconvert with a
characteristic timescale®. Such a viewpoint moves away from a single structure interpretation
of the data and links the data to the statistical mechanics concept of free energy landscapes of
conformational ensembles!'®!!. Integrative structural ensemble-modelling methods incorporate
experimental information into molecular simulations and enable the determination of structural
ensembles that maximally conform to the experimental data with atomistic resolution!'?-23, This
technique has been applied using nuclear magnetic resonance (NMR) spectroscopy!”:19-20-24-28
fluorescence resonance energy transfer (FRET) microscopy?’, small-angle scattering
techniques (SAXS/SANS)3%-34, transition rate constants???* and cryo-EM data®.

One of such methods, cryo-EM metainference (EMMI)*, can accurately model a
thermodynamic ensemble by combining prior information on the system, such as physico-
chemical knowledge (e.g. a force field), with noisy (i.e. subject to systematic and random
errors) and heterogeneous (i.e. encoding a conformational ensemble) experimental data, using
cryo-EM density maps. EMMI has already been used in a series of complex macromolecular
systems, including a CLP protease’®, microtubules®’, microtubule-tau complexes®®, ASCT2
transporter’®, and SARS-CoV-2 membrane receptor proteins®’, allowing access to the
continuous dynamics of biomolecules with atomistic resolution. The quality of the EMMI
structural ensembles, however, is closely related to the exhaustiveness of the conformational
sampling, which requires a computational time that scales exponentially with the barriers
delimiting individual structural states’.
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To tackle this rare event problem, several enhanced sampling methods have been developed.
Enhanced sampling molecular simulation methods can be classified as trajectory based*!-*¢ and
collective-variable (CV) based*’>!. For detailed reviews, readers can refer to the recent
literature>2>3, A particularly powerful CV-based enhanced sampling method, which is very
efficient once appropriate CVs are chosen, is metadynamics®'>4. Metadynamics adds a history-
dependent bias to the system as a function of microscopic degrees of freedom of the system
known as collective variables. With this bias, the simulations can escape deep free energy
minima and sample transitions between different states. The choice of the CVs is critical to
achieve the desired speed-up of convergence®’. Recent developments in identifying and
automating the search for appropriate CVs have increased the efficiency of this method, thus
providing a remedy to the conformational sampling problem®->°, While metainference has
been combined already with metadynamics®, this was not the case for EMMI (Figure 1A).
Combining EMMI with enhanced sampling methods can lead to accurate and efficient
determination of structural ensembles using the vast dataset of cryo-EM database, which can
in turn provide atomistic insight to a range of biomolecular systems and processes.

In this work, we present the MEMMI method, which incorporates metadynamics in EMMI in
order to accelerate the ability of EMMI to sample structural ensembles with slowly
interconverting states. We illustrate the application of this approach to determine the structural
ensemble of an amyloid fibril formed by the full-length (residues 1-37) islet amyloid
polypeptide (IAPP), an aberrant assembly associated with the degeneration of pancreatic j3-
cells in type-2 diabetes (T2D). When functioning correctly, IAPP, together with insulin,
contributes to glycaemic control. IAPP and insulin are synthesized and stored together in
pancreatic P-cells, but when IAPP aggregates in the extracellular space of the islets of
Langerhans, amyloid-induced apoptosis of B-cells may occur®!. In 95% of T2D patients, IAPP
is found as extracellular amyloid deposits®**4, which form through surface-catalysed secondary
nucleation®. TAPP fibrils represent a challenging system for structural biology studies, since
no unique structure can be resolved in the low-density regions of the 12-residue long N-
terminal tails, due to conformational heterogeneity and associated errors in the measurement.
For this reason, although recent cryo-EM experiments determined various amyloid fibril
structures of IAPP%6-%8, the structural heterogeneity in the disordered flanking regions, known
as fuzzy coat, has so far proved impossible to resolve accurately. It would be desirable to
acquire a better understanding of the conformational properties of the fuzzy coat, since this
region is thought to play a central role in the interactions of amyloid fibrils with other cellular
components such as RNA molecules and molecular chaperones®-’’. Moreover, the fuzzy coat
is likely to be involved in cell membrane binding, potentially promoting the catalysis of
aggregation and capturing amyloid precursors®®-’?. Recent studies on the tau protein, which is
implicated in numerous neurodegenerative diseases known as tauopathies, show that
depending on pH conditions, the thick fuzzy coat changes the fibril properties, including
mechanically stiffness, and repulsive and adhesive behaviours®-’°. Here, we detail the
continuous dynamics of the fuzzy coat of an IAPP fibril and utilise a thermodynamical theory
of melting to characterize the different regions of the fibril to gain insight into its mechanical
properties.


https://doi.org/10.1101/2022.05.29.493873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.29.493873; this version posted May 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The MEMMI method

The cryo-EM forward model. A cryo-EM density map resulting from class-averaging and 3D
reconstruction is typically encoded as voxels on a grid, and the map is generally distributed in
this form. For computational efficiency, and to enable differentiability and analysis of
correlations between data points, the map can be converted to a Gaussian mixture
model ¢p(x) (GMM) consisting of N, Gaussian components

Pp(x) = 202 b pi () = T2 w6 (xlx s, 2 ) (1)

where x is a vector in Cartesian space, wp ; is the scaling factor of the i-th component of the
data GMM and G is a normalized Gaussian function centered at x,; with covariance
matrix X p;. The agreement between models generated by molecular dynamics (MD) and the
data GMM is calculated by the following overlap function ovyp ;

0Vypi = f du(x)pp;i(x) dx 2

where ¢, (x) corresponds to the model GMM obtained from molecular dynamics. To deal
with the heterogeneity of the system, EMMI simulates many replicas, 7, of the system. The
overlap between model GMM and data GMM is estimated over the ensemble of replicas as an
average overlap per GMM component 0v ;. This forward model overlap can then be
compared to the data GMM self-overlap ovpp; = [ ¢ p(X)dp;(x) dx

Metainference. Metainference is a Bayesian approach for modelling statistical ensembles by
combining prior information on a system with experimental data subject to noise or systematic
errors!’. This framework is particularly well suited to structural ensemble determination
through molecular dynamics simulations, in which the prior (i.e. the force field) is updated
with information from experimental methods, such as NMR spectroscopy, SAXS, or cryo-EM
data. Metainference is designed to handle systematic errors (such as biases in the force field or
forward model), random errors (due to noise in experimental data), and errors due to the limited
sample size of the ensemble!”. The model generation is governed by the metainference energy
function, defined as Ey; = —kgT log(py), in which kg is the Boltzmann constant, 7 is the
temperature, and pyy is the metainference posterior probability

puiX, 0,67 | D) = T2, p(X) T2 p(di | X, 07, 0 ) p(o07) (3)

Here, X is a vector representing the atomic coordinates of the full ensemble, consisting of

EM

individual replicas X,; oM is the error incurred by the limited number of replicas in the
p T y P

ensemble; o®

encodes the random and systematic errors in the prior, forward model, and
experiment; and D = [d;] is the experimental data. Note o**" is calculated per data point
(0EM), while o? is computed per datapoint i and replica  as GEr. In the present case, the

likelihood p( d; | X, oM, afl- ) takes the form of a Gaussian function
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p(di|X, o™, 65) = 4)

where ov,p; is the ensemble average of the overlap. The metainference energy function for
multiple replicas then becomes

k TNR,ND [ov ov ]2
B DD,i — OVMD;i
Ewi(X,0) = Eyp(0) + 5= ) 0L g (5)

i (O-r,i) + (Gi )
where E represents the energy associated with the error o = (a5, 0°F)

NgpNp
B 1 B2 SEM\?
By, =k ) —log(ch) +3log[(65)" + (°)’] 6).
T,i

Eyp represents the molecular dynamics force field. While the space of conformations X, is
sampled by multi-replica molecular dynamics simulations, the error parameters for each

datapoint afi are sampled by a Monte Carlo sampling scheme at each time step. The error

parameter related to the limited number of replicas used to estimate the forward model (oY)

can be chosen as a constant or estimated on the fly by using a windowed average32.

Metadynamic cryo-EM metainference (MEMMI). To accelerate the sampling of the
metainference ensemble, one can utilise an enhanced-sampling scheme such as
metadynamics®"%°. In this case, we use parallel-bias metadynamics (PBMetaD)*> with the
multiple walkers scheme’!. Here, Vpp is a time-dependent biasing potential acting on a set of
Ny collective variables s(X), which in turn are functions of the system coordinates

o

Ves(si(X),t) = —k,T log {Z?’flyexp [ o
In contrast to conventional metadynamics, in PBMetaD multiple one-dimensional bias
potentials V;; are deposited rather than a single high-dimensional one. This alleviates the curse
of dimensionality while still allowing an efficient exploration of phase space®®. Additionally,
the use of multiple replicas through the multiple walkers scheme’! allows the sharing of the
bias potential to drastically improve the sampling performance, while at the same time being a
natural fit for the replica averaging approach of EMMI. Analogously to well-tempered
metadynamics, these bias potentials Vg (sj X), t) eventually converge to the free energy

F (sj X )). The MEMMI energy function then becomes
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Nr

Evpmmi (X, 0,t) = Egnmi(X, 0) + ) Vppls(X;), t] (8)

r=1

While the PBMetaD bias potential is shared among replicas, each replica may still experience
a varying potential depending on its location in phase space. Thus, the arithmetic average over
the forward models (i.e., the overlap) no longer presents an unbiased estimate of the ensemble
average. It therefore needs to be replaced with a weighted average, utilising the bias potential
of each replica r to unbias the ensemble at time ¢

fiXt) =8 wX,, )fi(X,, ) )

where the unbiasing weight w(X,, t) is defined as

w(X,,t) = exp {—VPB[S(Xr)'t]} [Z?’L exp {—VPB[S(Xj)'t]}]_l (10).

kpT kpT

The unbiasing procedure used here is analogous to the standard umbrella-sampling technique
by Torrie and Valleau*’. Now the ensemble average ovyp; (X) is given by

0Vyp,; (X) = Zyi w(Xy,t) ovyp,; (Xr) (12)
The MEMMI energy Eyemui 1s thus equal to Eq. 5.

Initial fibril structure. We build the initial structure of the full fibril by starting from a
deposited fibril structure (PDB:6Y 1 A), which only contains the core of the fibril, and extending
each of the 16 peptide chains by adding the missing 12-residue N-terminal sequence with
guidance from the cryo-EM density map EMD-10669. We use the macromolecular model-
building program coot’2,

Molecular dynamics setup and equilibration. We continue by creating a 12.34 x 12.34 x 12.34
nm cubic simulation box, solvating with 58291 water molecules and neutralizing the net charge
by adding 48 CI- ions. We use the CHARMM?22*7? force field and TIP3P7* water models. We
continue with an energy minimization followed by a 500 ps NPT equilibration at a temperature
of 310 K and pressure of 1 atm, followed by an additional 2 ns NVT equilibration at 310 K.
The molecular dynamics parameters are the same used previously*.

MEMMI simulations. We first express the experimental voxel map data as a data GMM
containing 10,000 Gaussians in total, resulting in a 0.975 correlation to the original voxel map
EMD-10669%!, using the gmmconvert utility’>. We continue by extracting 32 configurations
from the previous NVT equilibration and initiate a MEMMI simulation, consisting of 32
replicas, resulting in an aggregate runtime of 5.49 ps, using PLUMED.2.6.0-dev’® and
gromacs-2020.67". The simulation is performed in the NVT ensemble at 310 K using the same
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MD parameters as in the equilibration step. Configurations are saved every 10 ps for post-
processing. The cryo-EM restraint is updated every 2 MD steps, using neighbour lists to
compute the overlaps between model and data GMMs, with a neighbour list cut-off of 0.01 and
update frequency stride of 100 steps. The biasing collective variables s = [s;] in the simulation
are shown in Figure S1A and the biasing scheme is PBMetaD> with the well-tempered’® and
multiple-walkers’! protocols. The hill height is set to 0.3 kJ/mol, with a deposition frequency
of 200 steps and an adaptive Gaussians diffusion scheme’. The biasing collective variables
correspond to degrees of freedom of the left hand-side N-terminal. The respective degrees of
freedom of the right hand-side N-terminal do not feel a metadynamics potential and therefore
in the remaining text will be referred to as EMMI degrees of freedom and are also listed in
Figure S1. As a post-processing step, we generate the final structural ensemble by resampling
the generated configurations based on the converged unbiasing weights for each structure after
an equilibration of 7 ns shown in Figure. 1A. To establish convergence, we perform a
clustering analysis on the structural ensemble based separately on the first and second half of
each replica (taking into accounts the weights) using the GROMOS method®, and with metric
the root mean square deviation (RMSD) calculated on the Ca. (CA) atoms (Figure S1B). Time-
traces of CVs as well as their time-dependent free energy profile are shown in Figs. S2-S4. For
molecular visualizations and calculating the local correlation of the final structural-ensemble-
generated cryo-EM map with the experimental cryo-EM map, we use Chimera and
gmconvert®!”>, Except otherwise mentioned, all the structural analysis is performed on degrees
of freedom of left side tail N-tail and chains 3 and 4. We do so in order to avoid the finite size
effects on the outermost N-tails.

Structure and dynamics of IAPP amyloid fibrils

Acceleration of the conformational sampling. MEMMI accelerates the conformational
sampling by biasing a set of microscopic degrees of freedom of the system, also known as
collective variables (CVs, Figure S1). To demonstrate the performance of this approach, we
visualize the time-trace of the collective variable y3* which corresponds to the disulfide bond
dihedral of the 4" peptide in the eight-layer stack of the fibril. This peptide is thus
representative of a buried monomer with little interaction with the fibril ends. Note that, due to
C2 helical symmetry, there are two of these dihedrals, one corresponding to the one side and
one to the other sides N-terminal tail (Figure 1B). The sampling of one side is accelerated by
a biasing potential of Eq. 7 (MEMMI), while the other is not (EMMI). Compared to the
dihedral, the biased disulfide y3* (MEMMI) shows an increased transition rate, and thus more
efficient conformational sampling (Figure 1C). While both methods characterise the wells of
the stable states (L, R), MEMMI is able to provide access to higher free energy transition state
(TS) regions (Figure 1D). Monitoring a non-periodic CV, such as the number of contacts
between N-tail three and four, shows diffusion along high-low contact regions in both MEMMI
and EMMI cases but somewhat more frequent in the MEMMI case. The combination of
diffusion shown in the traces of CVs and the free energy profiles as a function of simulation
time of all collective variables biased by EMMI and MEMMI are shown in Figures S2-S4, and
indicate that our simulations are well converged. Taken together, these results show that both
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the MEMMI and EMMI simulations are converged in the low free energy regions, while
MEMMI enables visiting high free energy regions.

Conformational heterogeneity of the fuzzy coat. A structure of the IAPP fibril core (residues
13-37) has been previously published (PDB:6Y1A) using the cryo-EM data used also in the
present work (EMD-10669). Here, we determine a structural ensemble of the whole IAPP fibril
(residues 1-37). We model the system as a stack of eight peptides per side (Figure 2A). While
the core of the fibril maintains a parallel B-sheet structure, the flanking region (residues 1-12)
exhibits a large conformational heterogeneity (Figure 2B). While we find the cores residues
12-37 to be largely in a B-sheet conformation, we also note significant heterogeneity for
residues 23-24, 32-34 and 37. As shown in Figure 2B, residues 23-24 interact with TYR37
and maintain mostly a coil structure, while residues 32-34 interact with the fuzzy coat and
maintain mostly a coiled structure. We also detected a small population of a-helical
conformations in the region of residues 5-9.

Correlation between experimental and calculated cryo-EM maps. We estimate the
correlation of the MEMMI structural ensemble with the experimental cryo-EM map (Figure
3). We find that using a structural ensemble IAPP (residues 1-37) correlates better with the
experimental cryo-EM map than a single structure (PDB:6Y1A) (Figure 3A,B). The
coefficient of correlation of the structural ensemble to the experimental electron density map
is on average 0.92. Furthermore, an important feature of MEMMI is its ability to estimate the
error in the experimental electron density map (Figures 3C and S5). We find that the relative
error per Gaussian data point is on average 0.09, where the relative error is the error of each
Gaussian data point with respect to the total overlap between all data GMM and the i
component of the data GMM?*. The low-density, high-error volume around residues S34, N335,
and T36 can likely be attributed to the lack of MES/NaOH buffer in our MEMMI simulations,
which is present in the experimental setup. Both MEMMI and EMMI exhibit good corelation
(about 0.83) in the respective N-tail region with the cryo-EM map (Figure 3D).

Comparison of the dynamical properties of the fibril core and fuzzy coat. The
conformational properties of the fuzzy coat and core region have been shown to be relevant
modulating the properties of amyloid fibrils, including their ability to interact with various
cellular components®-’?. To investigate this phenomenon in the case of the present TAPP
amyloid fibril, we take inspiration from a thermodynamic theory of melting and characterize
the residue-dependent Lindemann parameter Ap (Figure 4), which encodes information on
solid-like and liquid-like behaviour®?. At the backbone-level, we find that the fibril core (23-
30) is solid-like (AL < 0.15), while the flanking region (1-12) is on the verge of a liquid-like
behaviour (AL > 0.15). The Lindemann parameters of the side-chains indicate more mobility
and are liquid-like outside the region of residues 20-32. These results reveal that about half of
the structural core of this amyloid fibril remains rather disordered at the side-chain level, a
phenomenon observed also for folded native states®?. This is in contrast to monomeric
disordered proteins such as amyloid-B, which generally exhibit Lindemann parameters Ar >
1.0 (Figure S7).
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Residue-specific solubility of the amyloid fibril. To investigate whether or not the surface of
the amyloid fibril is soluble, we calculate the solubility per residue, using the structure-
corrected CamSol solubility score®® (Figure 5A,B). We find three insoluble regions: (i)
residues 5-7 (ATC) in the fuzzy coat, (i1) residues 26-29 (ILSS) at the ends of the fibril
fragment, and (iii) residues 14-18 (NFLVH) on the fibril surface, stretched along the helical
axis. The latter result is consistent with experimental evidence of residues N14, H18, and S20
being implicated in IAPP aggregation®*-* via secondary nucleation. We note that the solvent-
exposed and aggregation-related residues 5-7 and 18-20 might present attractive targets for
structure-based drug discovery.

Conclusions

We have presented the MEMMI method for the simultaneous determination of the structure
and dynamics of large and conformationally heterogeneous biomolecular structures from cryo-
EM measurements. To illustrate the type of information that can be extracted from this type of
approach, we have reported a structural ensemble of an amyloid fibril formed by IAPP. The
analysis of the structural ensembles has revealed the conformational and the aggregation-
related solubility properties of the fuzzy coat of the amyloid fibril, and that many of the side-
chains in the structural core of the amyloid fibril exhibit liquid-like behaviour. Since this
phenomenon has also been observed for native states of proteins, these results reveal a
similarity in the structural behaviour of proteins upon folding in their native and amyloid states.

Data availability. Input files for the simulations can be found at PLUMED-NEST
(plumID:22.023) The ensemble can be found at
https://zenodo.org/record/6518554#.YnL wby8Rghw
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Figure 1. Acceleration of the conformational sampling using MEMMI. (A) Summary of
the capability of the different approaches discussed in this work (molecular dynamics,
metadynamics, EMMI and MEMMI) to include continuous dynamics, enhanced sampling and
cryo-EM restraints. (B) A representative configuration of an IAPP amyloid fibril with a biased
disulfide bond (red) and an unbiased one (blue). (C) Time trace of the y3* and N3.4 CVs with
EMMI and MEMMI. (D) Free energy profile as a function of y3* with the corresponding
structural states of the disulfide bond: MEMMI (red) EMMI (blue).
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Figure 2. A structural ensemble of a IAPP amyloid fibril. (A) Core fibril residues (13-37)
are shown in cyan, while the N-terminal tail residues (1-12) are shown in grey (fuzzy coat).
This representation of the structural ensemble was generated by extracting 50 conformations
from the final structural ensemble. Close-ups of interfaces are shown from 10 conformations.
Examples of individual conformations are shown in Figure S6. (B) Structural analysis
reporting on the fraction of coil, B-sheet and a-helix formed per residue in the ensemble
obtained from MEMMI. Error bars are calculated as standard deviation between the first and
second simulation half.
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Figure 3. Local correlation and error in the data from MEMMLI. (A, B) Assessment of the
local correlation between the cryo-EM map (EMD-EM-10669) with cryo-EM maps generated
by a previously determined single structure (PDB:6Y1A) (A), and the MEMMI structural
ensemble (B). (C) Histogram of the error in the GMM data as obtained by the structural
ensemble (left). Error in the data, projected in the EMD-EM-10669 (right). (D) Time-
dependent correlation of the left/right side N-tail structural ensemble (MEMMI/EMMI) with
the corresponding region in the cryo-EM map.
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Figure 4. Analysis of the liquid-like and solid-like behaviours of the backbone and side-
chains. (A,B) Per-residue Lindemann parameter (Ar) for backbone (A) and side-chain (B)
atoms. The dashed line at AL = 0.15 marks the threshold value of the Lindemann parameter that
distinguishes the solid-like and liquid-like behaviours. The behaviour of the side-chains is
solid-like only in the region of residues 20-32, which is about half of the fibril core (residue
13-37). Error bars are calculated as standard deviation between the first and second simulation

half.
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Figure 5. Analysis of the solubility of the fibril surface from the MEMMI ensemble. (A)
Representative structure with CamSol solubility scores indicated on the surface (right). (B)
Per-residue CamSol solubility score. (C) Per-residue solvent-accessible surface area. Error
bars are calculated as standard deviation between the first and second simulation half.
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Supplementary Information
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Torsion dihedral of disulfide bond CyS2- Torsion dihedral of disulfide bond CyS2- §
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Torsion dihedral of disulfide bond CyS2- Torsion diedral of disulfide bond CyS2- &P
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Torsion dihedral of disuffide bond CyS2- Torsion dihedral of disuffide bond CyS2- X 4(7; 400
peptide 3 disuld X (MEMM)  Yes 4.of peptide 3 disulf11 x:° (EMMI) No @
Torsion dihedral of disulfide bond CyS2- Torsion dihedral of disulfide bond CyS2- S
4 of peptide 4 disulf4 Xa* (MEMMI) Yes __ 4of peptide 4 disulf12 Xa* (EMMI) No (@)
Torsion dihedral of disulfide bond CyS2- Torsion dihedral of disulfide bond CyS2-
40f peptide 5 disulfs Xs® (MEMMI) Yes _ 4of peptide 5 disulf13 Xs® (EMMI) No 3 200
Torsion dihedral of disulfide bond CyS2- Torsion dihedral of disulfide bond CyS2-
4 of peptide 6 disulfe Xa8 (MEMMI) Yes . 4 of peptide 6 disulf14 X3 (EMMI) No
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Cluster

Figure S1. Metadynamics and clustering information. (A) Summary of all biased collective
variables of the left side N-terminal tail and the respective unbiased ones on the right side N-
terminal tail used in the analysis. (B) Dependence of number of clusters on the cut-off value
used in the GROMOS clustering algorithm, using root-mean-square deviations of Ca atoms in
tails 3 and 4 of the left (biased) side. (C) Populations of the top 10 clusters for the two last 40
% chunks of the simulation. Error bars for (B) and (C) show the 95th percentiles over 20
separate clustering runs using 5000 frames sampled based on metadynamics weights from each
part of the simulation.
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Figure S2. Assessment of the convergence of the simulations MEMMI-EMMI. Time
evolution profiles for all unbiased (blue) and respective biased CVs (red).
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Figure S3. Assessment of the convergence of the MEMMI simulation. Free energy profiles
for all biased collective variables for subsequent 1 ps increments of simulated time.
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Figure S4. Assessment of the convergence of the EMMI simulation. Free energy profiles
for all unbiased collective variables for subsequent 1 us increments of simulated time.
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0.5

Figure S5. Assessment of the local correlation between experimental and calculated cryo-
EM map. Local correlation of the cryo-EM map (EMD-EM-10669) with a map generated from
the MEMMI ensemble of an IAPP amyloid fibril as a function of increasing strength of density
(decreasing electron density thresholds): 16 (A), 26 (B), 36 (C), and 46 (D).
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Figure S6. Individual conformations of the final structural ensemble. Sample of 16
structures from the ensemble shown in Figure 2.

27


https://doi.org/10.1101/2022.05.29.493873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.29.493873; this version posted May 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A B
as monomeric amyloid-B 42 (backbone) as monomeric amyloid-B 42 (sidechains)
2.01 — 2.01 —
A, =1.078+0.243 A =1.265%+0.277
1.5 1.5
g I
1.04 1.04
0.54 0.5 1
oo L ANRRNARNARN AN 0.0 L MNRNNNNN NUNNNNNANNNNANN N [ NRN RN
0 10 20 30 40 0 10 20 30 40
Residue Residue

Figure S7. Lindemann parameters for the disordered monomeric amyloid-p 42 peptide
computed from a previously published ensemble?’. Lindemann parameters calculated for
the backbone (A) and side chains (B) with the liquid-solid transition and residue-mean
indicated. Error bars indicate the 95th percentile of the mean of a bootstrap sample over all
5119 trajectories in the ensemble.
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