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ABSTRACT 
 

In recent years, major advances in cryo-electron microscopy (cryo-EM) have enabled the 
routine determination of complex biomolecular structures at atomic resolution. An open 
challenge for this approach, however, concerns large systems that exhibit continuous dynamics. 
To address this problem, we developed the metadynamic electron-microscopy metainference 
(MEMMI) method, which incorporates metadynamics, an enhanced conformational sampling 
approach, into the metainference method of integrative structural biology. MEMMI enables 
the simultaneous determination of the structure and dynamics of large heterogeneous systems 
by combining cryo-EM density maps with prior information through molecular dynamics, 
while at the same time modelling the different sources of error. To illustrate the method, we 
apply it to elucidate the dynamics of an amyloid fibril of the islet amyloid polypeptide (IAPP). 
The resulting conformational ensemble provides an accurate description of the structural 
variability of the disordered region of the amyloid fibril, known as fuzzy coat. The 
conformational ensemble also reveals that in nearly half of the structural core of this amyloid 
fibril the side-chains exhibit liquid-like dynamics despite the presence of the highly ordered 
network backbone of hydrogen bonds characteristic of the cross-b structure of amyloid fibrils. 
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Introduction 
In the last several years, cryo-electron microscopy (cryo-EM) has been pushing the boundaries 
of structural biology in terms of structure resolution, system complexity, and macromolecular 
size1,2. Imaging single particles by rapid cryo-cooling and vitrification3,4 enables structural 
studies under near-native environmental conditions while offering sample protection from 
beam radiation. Technical advances in electron detectors, computational algorithms accounting 
for beam-induced motion, and automation of data collection and image analysis5 have paved 
the way to a spectacular increase of high-resolution cryo-EM density maps. The Electron 
Microscopy Data Bank (EMDB) currently holds 15,800 single-particle cryo-EM density maps, 
which offer exquisitely detailed structural information about macromolecular systems of 
central importance in cell biology.  
 
In standard cryo-EM structure determination, two-dimensional (2D) images of single particles 
are first classified in conformationally homogenous classes and then averaged in a 
computational image processing step, thereby leading to a substantial increase in the signal-to-
noise ratio, and thus in structure resolution6,7. However, the continuous dynamics of flexible 
regions are difficult to detect, therefore complicating the generation of homogenous classes of 
structures. The resulting low densities cannot be readily used to determine atomistic structures, 
and are thus often excluded from the final structural model. While methods such as the 
manifold embedding approach8 can determine multiple structures from cryo-EM density maps, 
to account for the conformational dynamics one should quantitatively and atomistically 
interpret the cryo-EM density maps as an envelope that corresponds to an averaged 
conformational ensemble of states with certain populations that interconvert with a 
characteristic timescale9. Such a viewpoint moves away from a single structure interpretation 
of the data and links the data to the statistical mechanics concept of free energy landscapes of 
conformational ensembles10,11. Integrative structural ensemble-modelling methods incorporate 
experimental information into molecular simulations and enable the determination of structural 
ensembles that maximally conform to the experimental data with atomistic resolution12-23. This 
technique has been applied using nuclear magnetic resonance (NMR) spectroscopy17,19,20,24-28, 
fluorescence resonance energy transfer (FRET) microscopy29, small-angle scattering 
techniques (SAXS/SANS)30-34, transition rate constants22,23 and cryo-EM data35. 
 
One of such methods, cryo-EM metainference (EMMI)35, can accurately model a 
thermodynamic ensemble by combining prior information on the system, such as physico-
chemical knowledge (e.g. a force field), with noisy (i.e. subject to systematic and random 
errors) and heterogeneous (i.e. encoding a conformational ensemble) experimental data, using 
cryo-EM density maps. EMMI has already been used in a series of complex macromolecular 
systems, including a CLP protease36, microtubules37, microtubule-tau complexes38, ASCT2 
transporter39, and SARS-CoV-2 membrane receptor proteins40, allowing access to the 
continuous dynamics of biomolecules with atomistic resolution. The quality of the EMMI 
structural ensembles, however, is closely related to the exhaustiveness of the conformational 
sampling, which requires a computational time that scales exponentially with the barriers 
delimiting individual structural states9.  
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To tackle this rare event problem, several enhanced sampling methods have been developed. 
Enhanced sampling molecular simulation methods can be classified as trajectory based41-46 and 
collective-variable (CV) based47-51. For detailed reviews, readers can refer to the recent 
literature52,53. A particularly powerful CV-based enhanced sampling method, which is very 
efficient once appropriate CVs are chosen, is metadynamics51,54. Metadynamics adds a history-
dependent bias to the system as a function of microscopic degrees of freedom of the system 
known as collective variables. With this bias, the simulations can escape deep free energy 
minima and sample transitions between different states. The choice of the CVs is critical to 
achieve the desired speed-up of convergence52. Recent developments in identifying and 
automating the search for appropriate CVs have increased the efficiency of this method, thus 
providing a remedy to the conformational sampling problem55-59. While metainference has 
been combined already with metadynamics60, this was not the case for EMMI (Figure 1A). 
Combining EMMI with enhanced sampling methods can lead to accurate and efficient 
determination of structural ensembles using the vast dataset of cryo-EM database, which can 
in turn provide atomistic insight to a range of biomolecular systems and processes.  
 
In this work, we present the MEMMI method, which incorporates metadynamics in EMMI in 
order to accelerate the ability of EMMI to sample structural ensembles with slowly 
interconverting states. We illustrate the application of this approach to determine the structural 
ensemble of an amyloid fibril formed by the full-length (residues 1-37) islet amyloid 
polypeptide (IAPP), an aberrant assembly associated with the degeneration of pancreatic b-
cells in type-2 diabetes (T2D). When functioning correctly, IAPP, together with insulin, 
contributes to glycaemic control. IAPP and insulin are synthesized and stored together in 
pancreatic b-cells, but when IAPP aggregates in the extracellular space of the islets of 
Langerhans, amyloid-induced apoptosis of b-cells may occur61. In 95% of T2D patients, IAPP 
is found as extracellular amyloid deposits62-64, which form through surface-catalysed secondary 
nucleation65. IAPP fibrils represent a challenging system for structural biology studies, since 
no unique structure can be resolved in the low-density regions of the 12-residue long N-
terminal tails, due to conformational heterogeneity and associated errors in the measurement. 
For this reason, although recent cryo-EM experiments determined various amyloid fibril 
structures of IAPP66-68, the structural heterogeneity in the disordered flanking regions, known 
as fuzzy coat, has so far proved impossible to resolve accurately. It would be desirable to 
acquire a better understanding of the conformational properties of the fuzzy coat, since this 
region is thought to play a central role in the interactions of amyloid fibrils with other cellular 
components such as RNA molecules and molecular chaperones69,70. Moreover, the fuzzy coat 
is likely to be involved in cell membrane binding, potentially promoting the catalysis of 
aggregation and capturing amyloid precursors69,70. Recent studies on the tau protein, which is 
implicated in numerous neurodegenerative diseases known as tauopathies, show that 
depending on pH conditions, the thick fuzzy coat changes the fibril properties, including 
mechanically stiffness, and repulsive and adhesive behaviours69,70. Here, we detail the 
continuous dynamics of the fuzzy coat of an IAPP fibril and utilise a thermodynamical theory 
of melting to characterize the different regions of the fibril to gain insight into its mechanical 
properties.  
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The MEMMI method 
 
The cryo-EM forward model. A cryo-EM density map resulting from class-averaging and 3D 
reconstruction is typically encoded as voxels on a grid, and the map is generally distributed in 
this form. For computational efficiency, and to enable differentiability and analysis of 
correlations between data points, the map can be converted to a Gaussian mixture 
model 𝜙!(𝒙) (GMM) consisting of 𝑁D Gaussian components 
 

𝜙D(𝒙) = ∑ 𝜙D,$(𝒙)
%D
$&' = ∑ 𝜔D,$𝐺(𝒙|𝒙D,$ , 𝜮D,$)	

%D
$&'                              (1) 

 
where 𝒙 is a vector in Cartesian space, 𝜔!,$ is the scaling factor of the i-th component of the 
data GMM and 𝐺 is a normalized Gaussian function centered at 𝒙D,$ with covariance 
matrix	𝜮D,𝒊. The agreement between models generated by molecular dynamics (MD) and the 
data GMM is calculated by the following overlap function 𝑜𝑣MD,$ 
 

𝑜𝑣MD,$ = ∫𝜙M(𝒙)𝜙D,$(𝒙) d𝒙                              (2) 
 
where 𝜙M	(𝒙) corresponds to the model GMM obtained from molecular dynamics. To deal 
with the heterogeneity of the system, EMMI simulates many replicas, r, of the system. The 
overlap between model GMM and data GMM is estimated over the ensemble of replicas as an 
average overlap per GMM component 𝑜𝑣MD,$. This forward model overlap can then be 
compared to the data GMM self-overlap 𝑜𝑣DD,$ = ∫𝜙D(𝒙)𝜙D,$(𝒙) d𝒙 
 
Metainference. Metainference is a Bayesian approach for modelling statistical ensembles by 
combining prior information on a system with experimental data subject to noise or systematic 
errors17. This framework is particularly well suited to structural ensemble determination 
through molecular dynamics simulations, in which the prior (i.e. the force field) is updated 
with information from experimental methods, such as NMR spectroscopy, SAXS, or cryo-EM 
data. Metainference is designed to handle systematic errors (such as biases in the force field or 
forward model), random errors (due to noise in experimental data), and errors due to the limited 
sample size of the ensemble17. The model generation is governed by the metainference energy 
function, defined as 𝐸MI = −𝑘B𝑇 log(𝑝MI), in which 𝑘B is the Boltzmann constant, T is the 
temperature, and 𝑝MI is the metainference posterior probability 
 

𝑝MI(𝑿, 𝜎SEM, 𝜎B	<	𝑫) = 	∏ 𝑝(𝑋.)∏ 𝑝@ 𝑑$ ∣∣ 𝑿, 𝜎$SEM, 𝜎.,$B C	𝑝@𝜎.,$C
%D
$&'

%R
.&'                 (3) 

 
Here, X is a vector representing the atomic coordinates of the full ensemble, consisting of 
individual replicas 𝑋.; σSEM is the error incurred by the limited number of replicas in the 
ensemble; σB encodes the random and systematic errors in the prior, forward model, and 
experiment; and 𝑫 = [𝑑$] is the experimental data. Note 𝜎SEM is calculated per data point 
(𝜎$SEM), while 𝜎B is computed per datapoint i and replica r as σ$,.B . In the present case, the 
likelihood 𝑝@𝑑$ ∣∣ 𝑋, 𝜎$SEM, 𝜎.,$B C takes the form of a Gaussian function 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.29.493873doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 

𝑝@𝑑$<𝑿, 𝜎$SEM, 𝜎.,$B C =
1

√2𝜋	K@𝜎.,$B C
/
+ @𝜎$SEMC

/
exp P−

1
2
Q𝑜𝑣DD,$ − 𝑜𝑣MD,$R

/

@𝜎.,$B C
/ + @𝜎$SEMC

/S						(4) 

 
where 𝑜𝑣MD,$ is the ensemble average of the overlap. The metainference energy function for 
multiple replicas then becomes 
 

𝐸MI(𝑿, σ) = 𝐸MD(𝑿) +
𝑘B𝑇
2 U

Q𝑜𝑣DD,$ − 𝑜𝑣MD,$R
/

@𝜎.,$B C
/ + @𝜎$SEMC

/

%R,%D

.,$

+ 𝐸0 									(5) 

 
where 𝐸0  represents the energy associated with the error 𝜎 = (𝜎B, 𝜎SEM) 
 

𝐸0 = 𝑘B𝑇 U −log@𝜎.,$B C +
1
2 log W@𝜎.,$

B C/ + @𝜎$SEMC
/X

%R,%D

.,$

																(6). 

𝐸MD represents the molecular dynamics force field. While the space of conformations 𝑋. is 
sampled by multi-replica molecular dynamics simulations, the error parameters for each 
datapoint 𝜎.,$B  are sampled by a Monte Carlo sampling scheme at each time step. The error 
parameter related to the limited number of replicas used to estimate the forward model (𝜎SEM) 
can be chosen as a constant or estimated on the fly by using a windowed average32. 
 
 
Metadynamic cryo-EM metainference (MEMMI). To accelerate the sampling of the 
metainference ensemble, one can utilise an enhanced-sampling scheme such as 
metadynamics51,60. In this case, we use parallel-bias metadynamics (PBMetaD)55 with the 
multiple walkers scheme71. Here, 𝑉PB is a time-dependent biasing potential acting on a set of 
𝑁CV collective variables 𝑠(𝑿), which in turn are functions of the system coordinates 
 

𝑉PB@𝑠4(𝑿), 𝑡C = −𝑘B𝑇 log ^∑ 𝑒𝑥𝑝 a5G67$(𝑿),;<
=B>

b%CV
4&' c                       (7) 

 
In contrast to conventional metadynamics, in PBMetaD multiple one-dimensional bias 
potentials 𝑉G are deposited rather than a single high-dimensional one. This alleviates the curse 
of dimensionality while still allowing an efficient exploration of phase space55. Additionally, 
the use of multiple replicas through the multiple walkers scheme71 allows the sharing of the 
bias potential to drastically improve the sampling performance, while at the same time being a 
natural fit for the replica averaging approach of EMMI. Analogously to well-tempered 
metadynamics, these bias potentials 𝑉G@𝑠4(𝑿), 𝑡C eventually converge to the free energy 
𝐹@𝑠4(𝑿)C. The MEMMI energy function then becomes 
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𝐸MEMMI(𝑿, 𝜎, 𝑡) = 𝐸EMMI(𝑿, 𝜎) +U𝑉PB[𝒔(𝑿.), 𝑡]
%R

.&'

																											(8) 

 
While the PBMetaD bias potential is shared among replicas, each replica may still experience 
a varying potential depending on its location in phase space. Thus, the arithmetic average over 
the forward models (i.e., the overlap) no longer presents an unbiased estimate of the ensemble 
average. It therefore needs to be replaced with a weighted average, utilising the bias potential 
of each replica r to unbias the ensemble at time t  
 

𝑓$(𝑿, 𝑡) = ∑ 𝑤(𝑿. , 𝑡)𝑓$(𝑿. , 𝑡)
%R
.&'                                      (9) 

 
where the unbiasing weight 𝑤(𝑿. , 𝑡) is defined as 
 

𝑤(𝑿. , 𝑡) = exp i5PB[𝒔(𝑿)),;]
=B>

j a∑ exp ^5PBC𝒔6𝑿$<,;D
=B>

c%R
4&' b

E'
                             (10). 

 
The unbiasing procedure used here is analogous to the standard umbrella-sampling technique 
by Torrie and Valleau47. Now the ensemble average 𝑜𝑣F!,$ 	(𝑿) is given by  
 

𝑜𝑣F!,$ 	(𝑿) = ∑ 𝑤(𝑿. , 𝑡)	𝑜𝑣F!,$ 	(𝑿.)
%*
.&'                                      (12) 

 
The MEMMI energy 𝐸MEMMI is thus equal to Eq. 5. 
 
Initial fibril structure. We build the initial structure of the full fibril by starting from a 
deposited fibril structure (PDB:6Y1A), which only contains the core of the fibril, and extending 
each of the 16 peptide chains by adding the missing 12-residue N-terminal sequence with 
guidance from the cryo-EM density map EMD-10669. We use the macromolecular model-
building program coot72.  
 
Molecular dynamics setup and equilibration. We continue by creating a 12.34 ́  12.34 ́  12.34 
nm cubic simulation box, solvating with 58291 water molecules and neutralizing the net charge 
by adding 48 Cl- ions. We use the CHARMM22*73 force field and TIP3P74 water models. We 
continue with an energy minimization followed by a 500 ps NPT equilibration at a temperature 
of 310 K and pressure of 1 atm, followed by an additional 2 ns NVT equilibration at 310 K. 
The molecular dynamics parameters are the same used previously40. 
 
MEMMI simulations. We first express the experimental voxel map data as a data GMM 
containing 10,000 Gaussians in total, resulting in a 0.975 correlation to the original voxel map 
EMD-1066961, using the gmmconvert utility75. We continue by extracting 32 configurations 
from the previous NVT equilibration and initiate a MEMMI simulation, consisting of 32 
replicas, resulting in an aggregate runtime of 5.49 μs, using PLUMED.2.6.0-dev76 and 
gromacs-2020.677. The simulation is performed in the NVT ensemble at 310 K using the same 
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MD parameters as in the equilibration step. Configurations are saved every 10 ps for post-
processing. The cryo-EM restraint is updated every 2 MD steps, using neighbour lists to 
compute the overlaps between model and data GMMs, with a neighbour list cut-off of 0.01 and 
update frequency stride of 100 steps. The biasing collective variables 𝑠 = [𝑠$] in the simulation 
are shown in Figure S1A and the biasing scheme is PBMetaD55 with the well-tempered78 and 
multiple-walkers71 protocols. The hill height is set to 0.3 kJ/mol, with a deposition frequency 
of 200 steps and an adaptive Gaussians diffusion scheme79. The biasing collective variables 
correspond to degrees of freedom of the left hand-side N-terminal. The respective degrees of 
freedom of the right hand-side N-terminal do not feel a metadynamics potential and therefore 
in the remaining text will be referred to as EMMI degrees of freedom and are also listed in 
Figure S1. As a post-processing step, we generate the final structural ensemble by resampling 
the generated configurations based on the converged unbiasing weights for each structure after 
an equilibration of 7 ns shown in Figure. 1A. To establish convergence, we perform a 
clustering analysis on the structural ensemble based separately on the first and second half of 
each replica (taking into accounts the weights) using the GROMOS method80, and with metric 
the root mean square deviation (RMSD) calculated on the Ca (CA) atoms (Figure S1B). Time-
traces of CVs as well as their time-dependent free energy profile are shown in Figs. S2-S4. For 
molecular visualizations and calculating the local correlation of the final structural-ensemble-
generated cryo-EM map with the experimental cryo-EM map, we use Chimera and 
gmconvert81,75. Except otherwise mentioned, all the structural analysis is performed on degrees 
of freedom of left side tail N-tail and chains 3 and 4. We do so in order to avoid the finite size 
effects on the outermost N-tails. 
 
 
Structure and dynamics of IAPP amyloid fibrils 
 
Acceleration of the conformational sampling. MEMMI accelerates the conformational 
sampling by biasing a set of microscopic degrees of freedom of the system, also known as 
collective variables (CVs, Figure S1). To demonstrate the performance of this approach, we 
visualize the time-trace of the collective variable χ34 which corresponds to the disulfide bond 
dihedral of the 4th peptide in the eight-layer stack of the fibril. This peptide is thus 
representative of a buried monomer with little interaction with the fibril ends. Note that, due to 
C2 helical symmetry, there are two of these dihedrals, one corresponding to the one side and 
one to the other sides N-terminal tail (Figure 1B). The sampling of one side is accelerated by 
a biasing potential of Eq. 7 (MEMMI), while the other is not (EMMI). Compared to the 
dihedral, the biased disulfide χ34 (MEMMI) shows an increased transition rate, and thus more 
efficient conformational sampling (Figure 1C). While both methods characterise the wells of 
the stable states (L, R), MEMMI is able to provide access to higher free energy transition state 
(TS) regions (Figure 1D). Monitoring a non-periodic CV, such as the number of contacts 
between N-tail three and four, shows diffusion along high-low contact regions in both MEMMI 
and EMMI cases but somewhat more frequent in the MEMMI case. The combination of 
diffusion shown in the traces of CVs and the free energy profiles as a function of simulation 
time of all collective variables biased by EMMI and MEMMI are shown in Figures S2-S4, and 
indicate that our simulations are well converged. Taken together, these results show that both 
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the MEMMI and EMMI simulations are converged in the low free energy regions, while 
MEMMI enables visiting high free energy regions. 
 
Conformational heterogeneity of the fuzzy coat. A structure of the IAPP fibril core (residues 
13-37) has been previously published (PDB:6Y1A) using the cryo-EM data used also in the 
present work (EMD-10669). Here, we determine a structural ensemble of the whole IAPP fibril 
(residues 1-37). We model the system as a stack of eight peptides per side (Figure 2A). While 
the core of the fibril maintains a parallel b-sheet structure, the flanking region (residues 1-12) 
exhibits a large conformational heterogeneity (Figure 2B). While we find the cores residues 
12-37 to be largely in a b-sheet conformation, we also note significant heterogeneity for 
residues 23-24, 32-34 and 37. As shown in Figure 2B, residues 23-24 interact with TYR37 
and maintain mostly a coil structure, while residues 32-34 interact with the fuzzy coat and 
maintain mostly a coiled structure. We also detected a small population of a-helical 
conformations in the region of residues 5-9. 
 
Correlation between experimental and calculated cryo-EM maps. We estimate the 
correlation of the MEMMI structural ensemble with the experimental cryo-EM map (Figure 
3). We find that using a structural ensemble IAPP (residues 1-37) correlates better with the 
experimental cryo-EM map than a single structure (PDB:6Y1A) (Figure 3A,B). The 
coefficient of correlation of the structural ensemble to the experimental electron density map 
is on average 0.92. Furthermore, an important feature of MEMMI is its ability to estimate the 
error in the experimental electron density map (Figures 3C and S5). We find that the relative 
error per Gaussian data point is on average 0.09, where the relative error is the error of each 
Gaussian data point with respect to the total overlap between all data GMM and the ith 
component of the data GMM35. The low-density, high-error volume around residues S34, N35, 
and T36 can likely be attributed to the lack of MES/NaOH buffer in our MEMMI simulations, 
which is present in the experimental setup. Both MEMMI and EMMI exhibit good corelation 
(about 0.83) in the respective N-tail region with the cryo-EM map (Figure 3D). 
 
Comparison of the dynamical properties of the fibril core and fuzzy coat. The 
conformational properties of the fuzzy coat and core region have been shown to be relevant 
modulating the properties of amyloid fibrils, including their ability to interact with various 
cellular components69,70. To investigate this phenomenon in the case of the present IAPP 
amyloid fibril, we take inspiration from a thermodynamic theory of melting and characterize 
the residue-dependent Lindemann parameter DL (Figure 4), which encodes information on 
solid-like and liquid-like behaviour82. At the backbone-level, we find that the fibril core (23-
30) is solid-like (DL < 0.15), while the flanking region (1-12) is on the verge of a liquid-like 
behaviour (DL ³ 0.15). The Lindemann parameters of the side-chains indicate more mobility 
and are liquid-like outside the region of residues 20-32. These results reveal that about half of 
the structural core of this amyloid fibril remains rather disordered at the side-chain level, a 
phenomenon observed also for folded native states82. This is in contrast to monomeric 
disordered proteins such as amyloid-β, which generally exhibit Lindemann parameters DL ³ 
1.0 (Figure S7). 
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Residue-specific solubility of the amyloid fibril. To investigate whether or not the surface of 
the amyloid fibril is soluble, we calculate the solubility per residue, using the structure-
corrected CamSol solubility score83 (Figure 5A,B). We find three insoluble regions: (i) 
residues 5-7 (ATC) in the fuzzy coat, (ii) residues 26-29 (ILSS) at the ends of the fibril 
fragment, and (iii) residues 14-18 (NFLVH) on the fibril surface, stretched along the helical 
axis. The latter result is consistent with experimental evidence of residues N14, H18, and S20 
being implicated in IAPP aggregation63,84 via secondary nucleation. We note that the solvent-
exposed and aggregation-related residues 5-7 and 18-20 might present attractive targets for 
structure-based drug discovery. 
 
 
Conclusions 
 
We have presented the MEMMI method for the simultaneous determination of the structure 
and dynamics of large and conformationally heterogeneous biomolecular structures from cryo-
EM measurements. To illustrate the type of information that can be extracted from this type of 
approach, we have reported a structural ensemble of an amyloid fibril formed by IAPP. The 
analysis of the structural ensembles has revealed the conformational and the aggregation-
related solubility properties of the fuzzy coat of the amyloid fibril, and that many of the side-
chains in the structural core of the amyloid fibril exhibit liquid-like behaviour. Since this 
phenomenon has also been observed for native states of proteins, these results reveal a 
similarity in the structural behaviour of proteins upon folding in their native and amyloid states.  
 
 
Data availability. Input files for the simulations can be found at  PLUMED-NEST 
(plumID:22.023) The ensemble can be found at 
https://zenodo.org/record/6518554#.YnLwby8Rqhw 
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Figure 1. Acceleration of the conformational sampling using MEMMI. (A) Summary of 
the capability of the different approaches discussed in this work (molecular dynamics, 
metadynamics, EMMI and MEMMI) to include continuous dynamics, enhanced sampling and 
cryo-EM restraints. (B) A representative configuration of an IAPP amyloid fibril with a biased 
disulfide bond (red) and an unbiased one (blue). (C) Time trace of the χ34 and N3-4 CVs with 
EMMI and MEMMI. (D) Free energy profile as a function of χ34 with the corresponding 
structural states of the disulfide bond: MEMMI (red) EMMI (blue). 
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Figure 2. A structural ensemble of a IAPP amyloid fibril. (A) Core fibril residues (13-37) 
are shown in cyan, while the N-terminal tail residues (1-12) are shown in grey (fuzzy coat). 
This representation of the structural ensemble was generated by extracting 50 conformations 
from the final structural ensemble. Close-ups of interfaces are shown from 10 conformations. 
Examples of individual conformations are shown in Figure S6. (B) Structural analysis 
reporting on the fraction of coil, β-sheet and a-helix formed per residue in the ensemble 
obtained from MEMMI. Error bars are calculated as standard deviation between the first and 
second simulation half. 
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Figure 3. Local correlation and error in the data from MEMMI. (A, B) Assessment of the 
local correlation between the cryo-EM map (EMD-EM-10669) with cryo-EM maps generated 
by a previously determined single structure (PDB:6Y1A) (A), and the MEMMI structural 
ensemble (B). (C) Histogram of the error in the GMM data as obtained by the structural 
ensemble (left). Error in the data, projected in the EMD-EM-10669 (right). (D) Time-
dependent correlation of the left/right side N-tail structural ensemble (MEMMI/EMMI) with 
the corresponding region in the cryo-EM map. 
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Figure 4. Analysis of the liquid-like and solid-like behaviours of the backbone and side-
chains. (A,B) Per-residue Lindemann parameter (DL) for backbone (A) and side-chain (B) 
atoms. The dashed line at DL = 0.15 marks the threshold value of the Lindemann parameter that 
distinguishes the solid-like and liquid-like behaviours. The behaviour of the side-chains is 
solid-like only in the region of residues 20-32, which is about half of the fibril core (residue 
13-37). Error bars are calculated as standard deviation between the first and second simulation 
half. 
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Figure 5. Analysis of the solubility of the fibril surface from the MEMMI ensemble. (A) 
Representative structure with CamSol solubility scores indicated on the surface (right). (B) 
Per-residue CamSol solubility score. (C) Per-residue solvent-accessible surface area. Error 
bars are calculated as standard deviation between the first and second simulation half. 
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Supplementary Information 
 
 

 
 
Figure S1. Metadynamics and clustering information. (A) Summary of all biased collective 
variables of the left side N-terminal tail and the respective unbiased ones on the right side N-
terminal tail used in the analysis. (B) Dependence of number of clusters on the cut-off value 
used in the GROMOS clustering algorithm, using root-mean-square deviations of Cα atoms in 
tails 3 and 4 of the left (biased) side. (C) Populations of the top 10 clusters for the two last 40 
% chunks of the simulation. Error bars for (B) and (C) show the 95th percentiles over 20 
separate clustering runs using 5000 frames sampled based on metadynamics weights from each 
part of the simulation.  
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Figure S2. Assessment of the convergence of the simulations MEMMI-EMMI. Time 
evolution profiles for all unbiased (blue) and respective biased CVs (red).  
 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.29.493873doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.29.493873
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 
 
Figure S3. Assessment of the convergence of the MEMMI simulation. Free energy profiles 
for all biased collective variables for subsequent 1 µs increments of simulated time. 
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Figure S4. Assessment of the convergence of the EMMI simulation. Free energy profiles 
for all unbiased collective variables for subsequent 1 µs increments of simulated time. 
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Figure S5.  Assessment of the local correlation between experimental and calculated cryo-
EM map. Local correlation of the cryo-EM map (EMD-EM-10669) with a map generated from 
the MEMMI ensemble of an IAPP amyloid fibril as a function of increasing strength of density 
(decreasing electron density thresholds): 1σ (A), 2σ (B), 3σ (C), and 4σ (D).  
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Figure S6. Individual conformations of the final structural ensemble. Sample of 16 
structures from the ensemble shown in Figure 2. 
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Figure S7. Lindemann parameters for the disordered monomeric amyloid-β 42 peptide 
computed from a previously published ensemble27. Lindemann parameters calculated for 
the backbone (A) and side chains (B) with the liquid-solid transition and residue-mean 
indicated. Error bars indicate the 95th percentile of the mean of a bootstrap sample over all 
5119 trajectories in the ensemble. 
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