
HAL Id: hal-03834177
https://hal.science/hal-03834177

Submitted on 14 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contention-free scheduling of PREM tasks on
partitioned multicore platforms

Ikram Senoussaoui, Houssam-Eddine Zahaf, Giuseppe Lipari, Kamel
Benhaoua

To cite this version:
Ikram Senoussaoui, Houssam-Eddine Zahaf, Giuseppe Lipari, Kamel Benhaoua. Contention-free
scheduling of PREM tasks on partitioned multicore platforms. 2022 IEEE 27th International Con-
ference on Emerging Technologies and Factory Automation (ETFA), Sep 2022, Stuttgart, Germany.
�hal-03834177�

https://hal.science/hal-03834177
https://hal.archives-ouvertes.fr

Contention-free scheduling of PREM tasks on
partitioned multicore platforms

1st Ikram Senoussaoui
Univ-Lille, CRIStAL
Univ-Oran1, LAPECI

Lille, France

2nd Houssam-Eddine ZAHAF
Nantes Université, École Centrale Nantes

CNRS, LS2N, UMR 6004,
F-44000 Nantes, France

3rd Giuseppe Lipari
Univ-Lille, CRIStAL

Lille, France

4th Kamel Mohamed Benhaoua
Univ-Mascara

Mascara, Algeria

Abstract—Commercial-off-the-shelf (COTS) platforms feature
several cores that share and contend for memory resources. In
real-time system applications, it is of paramount importance
to correctly estimate tight upper bounds to the delays due to
memory contention. However, without proper support from the
hardware (e.g. a real-time bus scheduler), it is difficult to estimate
such upper bounds.

This work aims at avoiding contention for a set of tasks
modeled using the Predictable Execution Model (PREM), i.e.
each task execution is divided into a memory phase and a
computation phase, on a hardware multicore architecture where
each core has its private scratchpad memory and all cores share
the main memory. We consider non-preemptive scheduling for
memory phases, whereas computation phases are scheduled using
partitioned preemptive EDF. In this work, we propose three
novel approaches to avoid contention in memory phases: (i) a
task-level time-triggered approach, (ii) job-level time-triggered
approach, and (iii) on-line scheduling approach. We compare
the proposed approaches against the state of the art using a set
of synthetic experiments in terms of schedulability and analysis
time. Furthermore, we implemented the different approaches
on an Infineon AURIX TC397 multicore microcontroller and
validated the proposed approaches using a set of tasks extracted
from well-known benchmarks from the literature.

I. INTRODUCTION

Modern commercial-off-the-shelf (COTS)-based embedded
systems include multiple active components (such as CPU
cores and I/O peripherals) that share and contend for memory
resources. They are likely subject to contention and require a
particular attention when supporting hard real-time constraints.

Contention on memory resources has received much atten-
tion in the real-time community [1], [15], [20], [23], [24].
Two approaches are popular: (i) estimating the worst-case
interference profiles and deriving safe execution time bounds;
(ii) avoiding interference at the system design level. In the
first approach, the hardware platform and the task execution
must be modeled accurately: the memory access profiles of all
tasks are extracted and combined with each other to estimate
the worst-case profile. In general, it is difficult to precisely
compute the worst-case interference profile, which likely leads
to include scenarios that might never occur, therefore over-
estimating the worst-case interference. The second approach
tends to prevent interference by enforcing time isolation (e.g.
time partitioning schemes like MemGuard [25]).

An intermediate approach is to use appropriate application
models such as the Acquisition-Execution-Restitution model

(AER) [7], or the PRedictable Execution Model (PREM) [17].
In the latter, a task is modeled by two distinct phases: a
memory phase and computation phase. In the memory phase,
data is exchanged between main memory and local memory.
This includes write-back of the computed data from the local
memory to main memory of the previous job, and fetching new
data for the activated job from the main memory to the local
memory. In a computation phase, loaded data is processed and
all access to the main memory is forbidden.

Finding the proper way of scheduling memory phases is
not straightforward. One difficulty is the lack of hardware
support for real-time scheduling on the bus. Typical bus con-
trollers available on commercial platforms support very simple
policies like First-In-First-Out or slot-based time-triggered
scheduling. FIFO safe-response time bounds are known to
be very large, whereas fixed slots are not flexible enough
to efficiently support the variety of application requirements.
The problem is even more complex, as the respect of timing
constraints requires to tightly co-schedule and analyze the
memory phases that are achieved on the bus, and compute
phases that are executed on the different cores.

We believe that the use of hardware platforms featuring
private scratchpad memory at core level and a global memory,
with software modeling techniques like PREM is essential to
build efficient and predictable real-time systems.

Contributions.: In this paper, we explore and compare
different designs for scheduling memory phases: a time-
triggered memory schedules approach and an on-line sched-
uled memory phases approach. In all the proposed approaches,
we always consider preemptive partitioned scheduling at the
core level for computations phases. Therefore, the contribu-
tions of this paper are the following:

(i) Task-level time-triggered approach : an artificial activa-
tion time (offset) is computed for all jobs of a given memory
phase, such that no memory phase will overlap with another
at runtime. We present novel sufficient schedulability tests
to assign task-level offsets to the memory and computation
phases so that all deadlines are met. We propose as well
an integer linear program (ILP) to compute the optimal off-
sets; (ii) job-level time-triggered approach: different artificial
activation times (offsets) can be set to different jobs of the
same memory phase. We assign these offsets by revising ILP
of task-level offsets; (iii) on-line approach: where memory

phases are assigned appropriate intermediate deadlines and
scheduled on the bus using EDF. In this way, we decouple the
problem of scheduling on the bus from the core scheduling.
In particular, we propose a new heuristic to compute the
values of these intermediate deadlines; (iv) we provide a large
set of experimental evaluations showing the effectiveness of
our algorithms, and improving up to 50% the schedulability
compared to equivalent schedules generated with the state-of-
the-art methods [2];(v) we experimentally demonstrate the ap-
plicability of our methodology on the Infineon AURIX TC-397
multicore family of processors using different benchmarks.

II. RELATED WORK

Over the last years, several scheduling methods for COTS-
based multicore systems have been presented to deal with the
problem of memory contention.

Most COTS architectures feature a single port main memory
that is shared among all CPU cores and peripherals. Multiple
cores can run multiple threads, each of which generates
memory requests, hence, estimating memory-contention safe
delays is very difficult because each memory request is likely
to be interfered by other requests. Pellizzoni et al. have shown
in [19] that the worst-case execution time (WCET) of a task in-
creases linearly with the number of suffered cache misses, due
to contention for access to main memory. New task execution
models that make use of pre-fetching techniques have been
proposed in the literature [20]. The authors of [10] show that
pre-fetching techniques improve the cache/scratchpad locality
and reduce average execution times.

PREM (PRedictable Execution Model) was introduced
in [17] to co-schedule both memory requests from CPU and
I/O with computations on uniprocessor platforms with multi-
level caches. In this model, tasks are modeled in two phases:
(i) a memory phase where all data are transferred from/to the
main memory to/from a local memory, and (ii) a pure execu-
tion phase where the loaded data are processed. The model
greatly reduces the variability of memory-contention latency
by explicitly controlling memory accesses during memory
phases. In [24], PREM has been extended to partitioned multi-
core/processor platforms, where isolation is provided through a
coarse-grained TDM memory schedule. The scheduling policy
of each core favors the priority of its pending memory phases
above computation phases in order to ensure better utilization
of the TDMA slots. The Acquisition-Execution-Restitution
model (AER) [7] is an extension of the PREM model where
each task is modeled by 3 phases, two memory phases (reading
and writing) and a computation phase.

In [6], Becker et al. presented an approach to time-
triggered scheduling for automotive runnables on a many-
core platform. Memory bank privatization is used to avoid
contention between memory accesses from different cores.
Each core has a private memory bank, similar to a scratch-
pad, and runnables are assumed to have read-execute-write
phases (AER model). The scheduling algorithm executes each
runnable non-preemptively, and ensures that accesses to the
shared memory bank made in read and write phases do not

overlap, thus avoiding contention on the shared bus. The
task allocation problem is formulated as an Integer Linear
Programming (ILP) problem, whose solution is the optimal
time-triggered schedule for the on-core execution as well as
for the access to shared memory.

Recent research on memory-centric scheduling is presented
in [21]. The authors proposed a fixed-priority memory-centric
scheduler for predictable memory management on COTS
multiprocessor platforms without the need for any hardware
support. The work in [2] focuses on bus contention for the
3-phases task models and assumes First-Come First-Served
(FCFS) bus arbitration. Works in [2], [6], [21] are the closest
to the first part of our work. The main differences are as
follows: 1) we assume that the task to core allocation is given;
2) instead of using a time-triggered schedule for both the core
scheduling of computation phases and the bus scheduling of
memory phases, we schedule the memory requests using a
time-triggered scheduler and the computation phases using an
event-based scheduler, thus simplifying the ILP problem; 3)
we allow preemption between computation phases, whereas
the works in [6], [21] consider a non-preemptive scheduler on
all levels (cores and communication bus); 4) finally, [2] uses
fixed-priority scheduler, whereas we use EDF scheduling for
cores.

In this paper, our second contribution is to use an on-line
scheduler for the bus, by assigning intermediate deadlines
to memory phases. One of the most effective techniques
to schedule dependent tasks on multicore platforms is to
assign intermediate deadlines and offsets in order to enforce
precedence constraints [11]. The advantage of such technique
is that a set of dependent tasks (phases) is converted into a
set of independent tasks with offsets, for which well-known
and efficient schedulability analyses exists. The most popular
heuristic algorithms are fair distribution and proportional
distribution [26]. Baruah et al. [3] suggested an approach
to assign shorter relative deadlines to a set of tasks without
violating the feasibility of the system. We will start from this
idea to develop a complete heuristic technique to search for
sub-optimal set of intermediate deadlines.

III. SYSTEM MODEL

A. Architecture model

In this work, we consider a multicore platform composed
of m cores. Each core has a single local scratchpad mem-
ory. Memory copy operations between main and scratchpad
memories are performed via a shared bus. The tasks explicitly
trigger memory copies between main and scratchpad memories
before starting the computation. In many cases, this separation
of code between memory phase and computation phase can be
performed automatically, for example when compiling code
from high-level programming languages like Prelude [9], or
by modifying existing compilers [22]. We assume that the sep-
aration between the two phases has been done either manually
by the programmer, or by an appropriate code generation tool.

Figure 1 depicts a multicore platform with 4 cores. Each
core is directly connected to its own scratchpad memory and to

Core 1 Core 2 Core 3 Core 4

SPM1 SPM2 SPM3 SPM4

Shared bus

Main memory

Fig. 1: Multicore target platform.

the main memory. We assume that all memory (main memory
and local scratchpads) is directly accessible to all cores via
different address spaces. An example of such architecture is
the Infineon Aurix TC397 [12].

B. Task model

Let T = {τ1, τ2, · · · , τn} be a set of n periodic tasks.
Each task τi has two phases: (i) a memory phase in which all
data required (resp. produced) by τi is loaded (resp. stored) in
memory, and (ii) a computation phase where preloaded data is
processed, without any access to the main memory. The com-
putation phase is not allowed to start before the completion of
the memory phase. Therefore, task τi is characterized by the
tuple τi = (Mi, Ci,Di,Ti), where:

• Mi is the task worst-case memory access time. It rep-
resents an upper bound to the time during which the
task τi perform data transfers from/to memory and/or I/O
devices. Once this phase starts, it cannot be preempted.

• Ci is the task worst-case computation time. In contrast
to the memory phase, the computation phase can be
preempted.

• Di is the task’s relative deadline. Each instance of task
τi must finish its execution no later than Di time units
after its activation.

• Ti is the task period, it represents the exact time interval
between two consecutive activations of τi. We consider
strictly periodic tasks.

We denote by um
i = Mi

Ti
(resp. uc

i = Ci

Ti
) the memory

phase (resp. computation phase) utilization. Therefore, the task
utilization is given by Ui = um

i + uc
i and the total utilization

of task set T is computed as UT =
n∑
i

Ui.

We denote by H the task set hyperperiod, i.e. the system’s
period. It is defined as the least common multiple between
all periods of tasks H = LCM(T1, T2, · · · , Tn). Each task
τi generates an infinite sequence of jobs, however the pattern
repeats every H intervals. Therefore, we are interested in the
set of released jobs Ji between time instance 0 and H, i.e.

Ji = {j0i , j1i , · · · , j
H
Ti
i }. Each job jli is released exactly at time

instant ali = l·Ti and must complete no later than dli = ali+Di.

IV. OFFSET-BASED PROCESSOR/MEMORY CO-SCHEDULING

In this work, we tackle the bus contention problem by
avoiding conflicting bus access altogether. In this first part, we

assign offsets to memory phases so that they do not overlap
at run time, while all deadlines are met.

The task model with offsets is exemplified in Figure 2.
We denote by ϕ(Mh) the memory offset of job jh. By
design, memory phases will never compete with each other
on the bus, therefore every memory phase starts its execution
exactly at ϕ(Mh) time instant from its activation ah. The
computation phase of job jh becomes ready to execute exactly
at time ϕ(Ch) = ah+ϕ(Mh)+Mh, called computation offset,
regardless of the actual transfer time of the memory phase. In
other words, the computation phases are activated by a timer
programmed to fire an interrupt at ϕ(Ch). In this way, we can
schedule computation phases on the different cores separately
from the memory phase, using classical single core scheduler
and classical single core analysis in the presence of offsets to
assess schedulability (Section IV-A1).

Dh
Th

Mh Ch

ah ϕ(Mh) ϕ(Ch) dh

Fig. 2: Example of task parameters.

In this work, we consider two types of memory phases
offsets : task-level and job-level offsets. In the first, all jobs
of the same task have the same offset, while in the second
approach, different job of the same task might have different
offsets.

A. Task-level offsets : sufficient condition
In the following, we present a technique to assign a fixed

offset to the memory phase of a task, so that all jobs of the
tasks will have the same offset, and all deadlines are met.

Theorem 1 (Jan Korst et al [14]). Let τ1 and τ2 be two
periodic tasks. τ1 and τ2 can be scheduled on the same core,
without any overlap if and only if :

gcd(T1,T2) ≥ C1 + C2 (1)

Where gcd is the greatest common divisor of T1 and T2 .

The schedulability test of Theorem 1 allows to execute two
tasks without any overlap. It is extended in to support tasks
with offsets in [14] as follows :

Lemma 1. Let τ1, τ2 be two periodic tasks having offsets
ϕ(τ1) and ϕ(τ2) respectively, τ1 and τ2 can be scheduled on
the same core, without any overlap if and only if:

C1 ≤ (ϕ(τ2)− ϕ(τ1)) mod gcd(T1,T2) ≤ gcd(T1,T2)− C2

(2)

We use Lemma 1 to compute the offsets of the different
memory phases.

Lemma 2. A set of periodic memory phases M =
{M1,M2, · · · ,Mn} can be scheduled without any overlap if:

gcd(T1,T2, · · · ,Tn) ≥
n∑

i=1

Mi (3)

Proof. Since the minimum time distance between any activa-
tion time of any task τi and the successive activation time of
another task τj is a multiple of the gcd of the task periods,
then, if gcd(T1,T2, · · · ,Tn) ≥

∑n
i=1 Mi all memory phases

can be executed in interval of τi and τj , which proves the
sufficiency of 3.

Theorem 2. Let T be a set of n periodic tasks and let M =
{M1,M2, · · · ,Mn} their memory phases. The time distance
between any activation time of a memory phase Mi and its
release time (the start time of M1 = 0) so that any two memory
phases do not overlap can be computed as follows:

ϕ(Mj) ∈

j−1∑
i=1

Mi, g −
n∑

i=j+1

Mi

 (4)

Where g = gcd(T1,T2, · · ·Tn).

Proof. From Lemma 2, it is sufficient that the sum of all
memory phases to be less or equal to the gcd, so to schedule
memory phases without overlapping. Therefore, it is sufficient
to find any distribution of the bus-time equal to the gcd of task
periods. By choosing the offsets (tasks are in any arbitrary
order): ϕ(Mj) =

∑j−1
i=1 Mi and ϕ(M1) = 0 we can garantee

the non overlapping of all memory phases, having Equation
(4).

According to Theorem 2, to compute the task-level offsets,
it suffices to compute the sum of the length of all memory
phases. If it does not exceed the gcd of the periods of all tasks,
then the offsets can be easily assigned. In this paper, we order
tasks in a non-decreasing order of relative deadline, therefore
they get the smallest memory phase offset, to maximize the
slack time to computation phases. Of course, this may be
very pessimistic, and many schedulable tasks sets cannot be
assigned task-level offsets in this way. A better solution will
be proposed in the following.

1) Scheduling analysis of computation phases: To schedule
computation phases on cores, we use the Earliest Deadline
First algorithm (EDF). Our analysis is based on the processor
demand criterion [4], [18] and considers only computation
phases with offsets. The processor demand function for com-
putation phases with offsets is defined as follows:

df(t1, t2) =

n∑
i=1

∆i(t1, t2) · Ci (5)

Where:

∆i(t1, t2) =

⌊
t2 − ϕ(Ci)− Di

Ti

⌋
−

⌈
t1 − ϕ(Ci)

Ti

⌉
+ 1 (6)

It is the amount of time demanded by the tasks (computation
phases) in interval [t1, t2) that the core must execute to ensure
that no task misses its deadline. Considering a fully preemptive
single core scheduler, a necessary and sufficient condition for
a set of tasks (computation phases) to be schedulable by EDF
consists in checking that the demand never exceeds the length
of the interval.

Lemma 3. (Baruah et al. [5]). The taskset T is feasible on
a single core (UT ≤ 1) if and only if:

∀0 ≤ t1 < t2 ≤ H, df(t1, t2) ≤ t2 − t1 (7)

B. Integer-Linear-Programming-Based offset assignment
In this section, we present a modular ILP design that is able

to compute both task-level and job-level offsets.
The ILP must verify the following properties : (i) a schedule

is found for all memory phases (prop1), (ii) two memory
phases do not overlap on the bus (prop2), (iii) each memory
phase receives sufficient bus-time to complete (prop3), and
(iv) the schedulability of the different computation phases is
granted (prop4).

1) Property prop1 (task-level and job-level offsets): The
output of our ILP is the set of all memory phases offsets,
or fail if no solution can be found. Our ILP is optimal,
therefore if a solution exist, it will not fail. We define decision
variable ϕ(Mj) as the offset of the memory phase for job j.
Our ILP builds

∑
τi∈T

H
Ti

decision variable of type ϕ(Mj),
representing offsets of all jobs, verifying therefore Property
prop1.

Our ILP is able to build both task-level and job-level offsets
by manipulating offsets decision variables as follows:

1) Task-level offsets. To enforce the ILP to select task-
level offset, we set the offset decision variable of all
jobs of the same task to be equal, as in Equation (8).
One may even replace all appearances of ϕ(Mj), for
every job of task τ by a single decision variable ϕ(τ),
avoiding therefore to generate a variable per job per task.
For sake of simplicity, and without loss of optimality for
task-level offsets, we consider the first option, that is:

∀i ∈ n, ∀j ∈ [1 · · · HTi
], ϕ(Mj+1)− ϕ(Mj) = 0 (8)

2) Job-level offsets. To enforce the ILP to select job-level
offset, we relax the constraints of Equation (8), therefore
the ILP is free to select different offsets for different jobs
of the same task.

2) Properties prop2 and prop3 (Non-overlapping and suf-
ficiency constraints): We introduce new constraints to verify
Property prop2. The memory phase of job j starts at ϕ(Mj)
and completes exactly at ϕ(Mj)+Mj . During this interval, we
must ensure that memory phase of any other job h cannot start
or complete within [aj+ϕ(Mj), aj+ϕ(Mj)+Mj). Therefore,
job h memory interval either completes before aj + ϕ(Mj)
(case 1), or starts later to aj+ϕ(Mj)+Mj (case 2). Therefore,
for every couple of jobs of different tasks, we introduce 2 new
binary decision variables xjh, and yjh verifying which case
the ILP solver has selected, as defined in Equations (9), (10).

xjh=

{
1 , if ah + ϕ(Mh) +Mh ≤ aj + ϕ(Mj)
0 , otherwise

(9)
or

yjh=

{
1 , if aj + ϕ(Mj) +Mj ≤ ah + ϕ(Mh)
0 , otherwise

(10)

Due to the mutual exclusion of both cases, the above con-
straints are not linear. Equation (11) shows linearization of
these constraints:

(aj + ϕ(Mj))− (ah + ϕ(Mh) +Mh)−R · xjh ≤ 0

(aj + ϕ(Mj))− (ah + ϕ(Mh) +Mh) +R · (1− xjh) ≥ 0

(ah + ϕ(Mh))− (aj + ϕ(Mj) +Mj)−R · yjh ≤ 0

(ah + ϕ(Mh))− (aj + ϕ(Mj) +Mj) +R · (1− yjh) ≥ 0

xjh + yjh = 1

where R is a large positive integer.
(11)

These constraints do not only allow to verify Property prop2,
but as well Property prop3. It enforces all memory phases
other than the one of job j to start no earlier to the completion
of the memory phase of j.

3) Property prop4 (Feasibility constraints): We guarantee
the respect of timing constraints for the EDF scheduling on
every core, by incorporating the offsets induced by the mem-
ory phases to the classical processor demand schedulability
analysis within our ILP. The exact condition for a set of jobs
to be scheduled by EDF within the interval I = [t1, t1] is that
the cumulative computation time of all jobs with release time
greater than or equal to t1 and deadline less than or equal to
t2 not exceed the length of the interval |I|.

In order to avoid checking the schedulability for all values of
t1 and t2 with a high complexity, we check only the intervals
where the demand function might change. That is, we verify all
intervals where t1 is selected in the set of computation release
offsets i.e. t1 ∈ {∀j, aj+ϕ(Mj)+Mj} and t2 is selected from
the set of absolute deadlines i.e. t2 ∈ {∀j, dj}. We denote t1
as t(j) (referring to the start time of computation phase of job
j) and t2 as d(h) (referring to the absolute deadline of job h).

Therefore, for every couple of t(j) and d(h) and for every
job l, we introduce the decision variable zl,j,h that expresses
if job l is released and has its absolute deadline in the interval
[t(j), d(h)]. As we consider partitioned scheduling, j and l
must be allocated to the same core without loss of optimality:

zl,j,h=

{
1, if t(j) ≤ al + ϕ(Ml) +Ml and d(h) ≥ dl
0, otherwise

(12)
As before, we linearize the evaluation of zl,j,h, and replace
t(j) by its value as follows:

(al + ϕ(Ml) +Ml)− t(j)−R · zl,j,h ≤ 0

(al + ϕ(Ml) +Ml)− t(j) +R · (1− zl,j,h) ≥ 0
(13)

The feasibility can be tested for all the intervals by computing
the cumulative execution time for every couple of t(j) and
d(h) using the following constraints:

∀t(j) ∈ {∀j,aj + ϕ(Mj) +Mj}
∀d(h) ∈ ∀h, dh∑

l

Cl · zl,j,h ≤ (d(h)− t(j)). (14)

Jobs are sorted by deadlines, so that every job is considered in
only a single couple, reducing the number of the constraints
without loss of optimality.

Objective function. A realisable solution allows to respect
all the constraints defined in our ILP. Therefore, it is not
mandatory to our ILP to define an objective function as any
realisable solution can be accepted from real-time perspective.
Therefore, our objective function can be set to 0, so that solvers
will stop at the first solution respecting all constraints making
the ILP faster. We can as well set the objective function to
minimize as much as possible the memory phases offsets, as
follows:

Minimize
∑

i∈n,j∈Ji

ϕ(Mj) (15)

Once the ILP has been formulated, it is submitted to the
CPLEX ILP-solver ([16]).

V. DEADLINE-BASED PROCESSOR MEMORY
CO-SCHEDULING

The ILP-based approaches proposed in the previous section
find the optimal solution when a feasible one exists. Un-
fortunately, they suffer from high computational complexity.
For this reason, we followed a different approach to manage
contention on the memory bus. The basic idea is to have
a centralized yet partitioned scheduler, located on one of
the cores, which performs the data transfers from/to local
scratchpads according to an on-line scheduling algorithm. We
consider data transfers as non-preemptive tasks, each one with
a period and an intermediate deadline, to be scheduled on the
single resource “bus” by a non-preemptive on-line scheduler
(EDF). These assigned intermediate deadlines δi are used as
offsets for scheduling computation phases on the cores.

The main difference with the ILP-based scheduling of
memory phases is that the ILP assigns “slots” to memory
phases, each slot is an interval of size equal to the length of
the data transfer, while the deadline-based approach assigns
interval which may be larger than the length of the data
transfer, and memory phases are scheduled as non-preemptive
tasks with an on-line single core policy. The system is correct,
if all memory phases respect their intermediate deadline, and
that the computation phase respect the task deadline with the
intermediate deadline of memory phase as an offset.

For every phase, the intermediate deadline δi must be
greater than the memory phase duration Mi, considered as a
lower bound, and no greater to Di−Ci, considered as an upper
bound. Setting the intermediate deadline to the lower bound
will enforce every memory phase to start its execution at its
arrival, otherwise it misses its deadlines. Setting the deadline
to the upper bound Di−Ci will enforce the computation phase
to start its execution at its activation. The problem is to find a
compromise between the slack time assigned to both memory
and computation phase for every task.

Algorithm 1 implements a binary search technique to assign
the intermediate deadlines to the memory phases. Therefore,
lower bound lbi and upper bounds ubi are computed for
every task (Line 2). Then, the algorithm sets the intermediate

deadlines to the middle between lbi and ubi (Lines 4-8).
Further, the non-preemptive schedulability test for EDF is
applied [13], to assess the feasibility on the bus (Line 9). If
the set of memory phases is schedulable on the bus using the
computed intermediate deadlines, schedulability is checked on
all cores, using Pellizzoni and Lipari [18] approximate test
with pseudo-polynomial complexity (Line 11). In the case of
success, Algorithm 1 exists on SUCCESS. If the schedulability
on cores fails, it modifies only the intermediate deadlines of
the tasks that are allocated on the cores that were deemed
not schedulable by assigning shorter deadlines to the memory
phases (moving the upper bounds to the computed intermedi-
ate deadlines - Line 14). Further, we iterate until the system is
schedulable on both bus and cores. If the schedulability fails
on the bus, the intermediate deadlines are increased by setting
the lower bounds to the intemediate deadlines (Line 17). When
the upper bounds and the lower bounds are equal, the binary
search fails to find a feasible schedule for both bus and cores
and Algorithm 1 exits on FAIL.

Algorithm 1 Binary search guided by core schedulability

1: Input T : set of tasks
2: ∀τi ∈ T : lbi ←Mi; ubi ← Di − Ci;
3: repeat
4: S ← ∅ {The set of memory phases}
5: for τi ∈ T do
6: δi ← ubi+lbi

2 {Computes the intermediate deadlines}
7: add (Mi, δi) to S
8: end for
9: if dbf analysis np(S) then

10: ∀τi ∈ T : ϕ(Ci)← δi
11: if dbf offset analysis(T) then
12: return S {Returns feasible solution}
13: else
14: ∀τi ∈ UnSchedulable : ubi ← δi
15: end if
16: else
17: ∀τi ∈ T : lbi ← δi
18: end if
19: until ∀τi ∈ T : ubi = lbi
20: return FAIL

VI. RESULTS AND DISCUSSIONS

In this section, we present the performances of the proposed
approaches with respect to the state of the art. First, we
conducted experiments with randomly generated workloads to
evaluate the proposed approaches using different task parti-
tioning heuristic. We study the impact of the task memory
stall (Mi

Ci+Mi
) and the workload size on schedulability and

the required time to complete the analysis. We compared the
proposed approaches with a similar analysis from the state-of-
the-art [2]. Finally, we evaluate the practicality of the proposed
approaches and the overall system performances with a set
of real benchmarks running on the Infineon Aurix TC397
microcontroller.

A. Task set generation

The synthetic task set generation takes as input n the
number of tasks and the target total utilization UT . It starts by
generating the utilizations of the n tasks by using UUniFast-
Discard [8] algorithm. We varied the baseline utilization from
0.4 to P (number of available cores) with a step of 0.2. For
every utilization Ui, the algorithm generates the memory phase
utilization um

i using a random stall value. The random value is
either selected in lev1 = [0.10, 0.20] or in lev2 = [0.20, 0.30]
according to the selected scenario. The generated utilization
comprises computation and memory phases, therefore the total
computation utilization on the cores is smaller than UT . For
each scenario, we generate 100 task sets per utilization and
per memory stall. We generate 10 tasks per taskset for the
offset-based approaches. As their complexity is high, they
are evaluated under limited settings. For heuristic approaches,
we generate 32 tasks per taskset. To avoid intractable hyper-
periods, the period of every task is selected randomly from the
list of periods : {80,100,200,240,400,600,800,1200}. When
memory phase utilization is very low, periods are multiplied
by 10, so that every task have at least Mi greater or equal to
1. The task deadline is set to 70% of the task’s period.

B. Results of synthetic task set experiments

In this section, we evaluate the performance of three offset
based methods against our heuristic (Algorithm 1): the task-
level offset (Theorem 2) denoted as SO; the ILP-based task-
level offset denoted as ILP-SO, and the job-level offset denoted
as ILP-JO. The tasks are allocated on 4 cores by either Worst-
fit (WF) or Best-fit (BF). Therefore, each algorithm is labeled
by a combination of these techniques.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he

du
la

bi
lit

y
ra

tio

WF-ILP-JO
WF-ILP-SO

WF-SO
WF-BS

(a) stall ∈ [0.10, 0.20]

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total Utilization index

(b) stall ∈ [0.20, 0.30]

Fig. 3: Schedulability of ILP vs heuristics approaches

In Figure 3, we report the schedulability ratio as a function
of total utilization for the two classes of memory stalls. Consis-
tently with previous results in the literature, WF outperforms
BF in all simulated scenario, therefore, we only report the
results for WF for clarity of presentation. At low total utiliza-
tion values, all algorithms easily schedule all tasks sets. As
the utilization increases, the ILP-based offset assignment algo-
rithms outperform the task-level offset assignment algorithm.
We remark that, given a task allocation, ILP for job-level
offset is a relaxed version of the ILP at task-level, therefore,
it naturally outperforms the latter. The schedulability falls

sharply for WF-SO algorithm because Condition 3 becomes
quickly not satisfied for large memory phases. Please notice,
that our intermediate deadlines approach performances are still
very acceptable regarding the ILP-based approaches in terms
of schedulability, even with their hugely shorted analysis time
compared to ILP approaches. Indeed, each simulation using
ILP takes around 3 hours to complete on a 40-cores Intel(R)
Xeon(R) CPU E5-2630 v4 at 2.20GHz, with 130 GB of RAM
using CPLEX ILP solver. In the other hand, the analysis
time of WF-ILP-SO is acceptable (i.e. a few seconds). The
difference between the ILP and our heuristic is even reduced
when the stall is larger. Naturally, the schedulability of task-
level offset based sufficient test falls sharply as total utilization
(i.e. memory phases length increase).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he

du
la

bi
lit

y
ra

tio

WF-BS-0.1
BF-BS-0.1
WF-BS-0.2
WF-FP-0.1
WF-FP-0.2

(a) Schedulability rates

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5 · 10−2

0.1

0.15

0.2

0.25

Total Utilization index

R
un

tim
e

(s
ec

) WF-BS
WF-FP

(b) Required analysis time

Fig. 4: Heuristics algorithms performances

Our heuristic (Algorithm 1) is compared to related work on
large settings composed of 32 tasks. The results in terms
of schedulability and required analysis time are reported in
Figure 4. We simulated two different memory stalls [0.1−0.2)
(denoted as 0.1) and stall [0.2 − 0.3) (denoted as 0.2). We
compare our heuristics against the response time analysis for
FIFO-bus scheduler and fixed priority core scheduler found in
[2], (denoted as FP in the algorithm label). As the utilization
increases, the WF algorithms present better performances in
terms of schedulability than BF algorithms, for [2] and our
approaches. Therefore, we kept only the best results of BF
algorithm, which is using our heuristic (BS) at stall [0.1−0.2).
Our heuristic algorithms perform much better than the ap-
proach analyzed in [2], especially when workload is high. Our
algorithm has pseudo-polynomial complexity, however, their
run-time is acceptable even for large task sets as shown in
Figure 4b. Please observe that the memory stall has an impact
on schedulability as it drops sharply, when the latter increases.

VII. PERFORMANCES ON REAL PLATFORM

We demonstrate the applicability of our methodology on the
popular Aurix Tricore platform by Infineon. We use the TC397
TFT board, that features 6 cores indexed from 0 to 5. Each core
has its own data and program scratchpads. Data scratchpads of
cores 0 and 1 are larger than those of the other cores. However,
for simplicity, in this work we consider all scratchpads of the
same size. Therefore, only 96 KB of data scratchpad is used
on each core. All cores share the main memory of size 768
KB. Data are transferred between the different memories using

a single DMA channel on which communications are either
scheduled using task-level offsets, job-level offsets, FIFO
or EDF. Data is transferred in chunks of 32 bits. Once a
memory transfer is started, it cannot be preempted and it is
achieved to completion. Memory phases are triggered using
a single STM-timer managed by the core of index 5. In our
software architecture, this core has been reserved to manage
the scheduling within the platform by using a timer interrupt.
When the timer fires, the memory phases activation handler is
invoked to manage the memory phases, according to one of
two cases: (i) Time-triggered scheduling (task-level or job-
level offsets): the memory transfer is immediately triggered on
the DMA; (ii) FIFO/EDF: the timer fires at each task period.
According to the memory scheduling policy, the scheduler
inserts the memory phase into a priority queue ordered by
FIFO or deadlines. The highest priority memory phase in the
queue is triggered on the DMA. Then, the timer is configured
for the next memory phase activation. At the completion of
every memory phase, the scheduling manager implemented on
core 5 inserts the computation phase into the priority queue
of the core where the task is allocated and sends an intercore
interrupt. The core scheduler then executes the highest priority
active tasks in its run-queue, according to its scheduling policy.

To study the performances of the proposed approaches, we
first measured the data-transfer time and execution times of
several tasks from different benchmarks, with different input
data size: from MIbench , FFTbench and Mälardalen . The
task code (not the functional part) has been modified : first
a memory phase is performed to transfer data from/to the
local scratchpads, then the task code is executed on the local
memory. We slightly modified the different benchmarks to fit
with our hardware limitation, e.g. using 16 bits integers rather
than 32 bits integers, etc. The considered tasks are : qsort,
susan (edge-detection-L), FFT (Fourrier Transofrmation),
MATMUL (Matrix Multiplication), FIR (FIR filter). All FIR
task versions (with different size of input have a high stall
(12%-15%). All the other tasks have a small stall (≤ 8%).

We select for every scenario a subset of tasks from our
benchmark, and we follow the same techniques to generate
our periods and deadlines as those of Section VI-A. We
assign offsets and deadlines by running our methods on the
obtained task set. Experimentally, we did not find any task
set schedulable with WF-FP and that is not by our methods,
therefore, if the task set is not schedulable by our method,
we drop it. Otherwise, we execute the task set on the Aurix
platform. We do not run schedulability analysis for [2], as it
does not propose technique to improve predictability of PREM
tasks but just analysis of existing designs. In Table I, we report
the performances in terms of deadline miss rate.

Every row in Table I corresponds to a different scenario:
we varied the total utilization and tasks profiles.The total
utilization is derived using estimated benchmarks prefetching
and computation times. In the column stall, we report the
category of memory stall for the scenario: when it is set to
L, the task set is composed of tasks in majority having low
stall (≤ 0.05); when it is set to H, the task set is composed

U Stall WF-FP WF-SO WF-ILP-SO WF-BS
0.6 L 0.05 0 0 0
1 L 0 0 0 0
1.4 L/H 0.30 0 0 0
1.8 H 0.75 not tested 0 0
2.2 H 0.96 not tested not tested 0
2.6 H 0.87 not tested not tested not tested
3 L/H 0.93 not tested not tested 0.17
3.4 H 0.84 not tested not tested 0.15

TABLE I: Execution on the Aurix platform: # deadlines misses

in the majority of tasks having high stall (≥ 0.1); when it
is set to L/H, the task set is a mix of both. In each column,
we report the number of deadline misses divided by the total
number of jobs for each different method. Every experiment
has been run for 10 seconds. Untested scenarios are due to the
high complexity of ILP-based approach.

As you can notice, the approach of [2] is very sensitive
to the memory stall. When stall is low, the task set misses
fewer deadlines compared to large stalls. Indeed, the high
priority computation phases might suffer from long blocking
times due to the FIFO scheduler on the bus. While it is
well known that FP scheduling does not suffer from the
domino effect, when using FIFO on the bus an indirect domino
effect might appear as computation phase does not become
ready before the completion of memory phase. In the other
hand, our methods (both the task-level offset method and the
intermediate deadlines method) perform much better: their
behavior adapts to memory phases length as the latter are co-
scheduled according to their urgency, computed based on the
cores schedulability. As the load increases even our methods
present a percentage of deadline misses. These are due to the
unsafe WCETs used in the analysis, and could be avoided by
using a proper WCET analysis tool. Please also notice that our
methods recover faster than WF-FP, as the main problem is the
bus congestion which is completely avoided by our methods.

VIII. CONCLUSION AND FUTURE WORK

For a COTS platform comprising multiple CPU cores, con-
tention for memory accesses can cause a significant decrease
of schedulability. In this paper, we proposed several techniques
for contention avoidance. Our experiments show a significant
improvement in the system performances compared to state-
of-the-art. We demonstrate the applicability of our techniques
with an implementation on a real hardware platform and on
realistic benchmarks. As future work, we plan to extend our
techniques to AER task model, DAG tasks, and to take into
account allocation strategies in the analysis phase.

REFERENCES

[1] Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution
of multithreaded applications on multicore systems. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages 1–6.
IEEE, 2014.

[2] Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and
Eduardo Tovar. Bus-contention aware schedulability analysis for the
3-phase task model with partitioned scheduling. In 29th International
Conference on Real-Time Networks and Systems, pages 123–133, 2021.

[3] Sanjoy Baruah, Giorgio Buttazzo, Sergey Gorinsky, and Giuseppe Li-
pari. Scheduling periodic task systems to minimize output jitter. In
Proceedings Sixth International Conference on Real-Time Computing
Systems and Applications. RTCSA’99, pages 62–69. IEEE, 1999.

[4] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. Algorithms
and complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. Real-Time Systems, 2:63–119, 1990.

[5] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. Algorithms
and complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. Real-time systems, 2(4):301–324, 1990.

[6] Matthias Becker, Dakshina Dasari, et al. Contention-free execution
of automotive applications on a clustered many-core platform. In
Euromicro Conference on Real-Time Systems, pages 14–24, 2016.

[7] Guy Durrieu, Madeleine Faugère, et al. Predictable flight management
system implementation on a multicore processor. In Embedded Real
Time Software (ERTS’14), 2014.

[8] Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the
synthesis of multiprocessor tasksets. In WATERS, 2010.

[9] Frédéric Fort and Julien Forget. Code generation for multi-phase
tasks on a multi-core distributed memory platform. In 2019 IEEE
25th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 1–6. IEEE, 2019.

[10] Johannes Adzer Hoogeveen, Jan Karel Lenstra, and Bart Veltman.
Preemptive scheduling in a two-stage multiprocessor flow shop is np-
hard. European Journal of Operational Research, 89(1):172–175, 1996.

[11] Zahaf Houssam-Eddine, Nicola Capodieci, et al. The hpc-dag task model
for heterogeneous real-time systems. IEEE Transactions on Computers,
70(10):1747–1761, 2021.

[12] AG IT. Aurix 32-bit microcontrollers for automotive and industrial
applications. Infineon Technologies AG, 1.

[13] Kevin Jeffay, Donald F Stanat, et al. On non-preemptive scheduling
of periodic and sporadic tasks. In IEEE real-time systems symposium,
pages 129–139. US: IEEE, 1991.

[14] Jan Korst, Emile Aarts, Jan Karel Lenstra, and Jaap Wessels. Periodic
multiprocessor scheduling. In PARLE’91 Parallel Architectures and
Languages Europe, pages 166–178. Springer, 1991.

[15] Cláudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho,
and Daniel Gracia Pérez. Schedulability analysis for global fixed-priority
scheduling of the 3-phase task model. In 2017 IEEE 23rd International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 1–10. IEEE, 2017.

[16] CPLEX User’s Manual. Ibm cplex optimization studio. Version, 12.
[17] Rodolfo Pellizzoni, Emiliano Betti, et al. A predictable execution model

for cots-based embedded systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 269–279, 2011.

[18] Rodolfo Pellizzoni and Giuseppe Lipari. Feasibility analysis of real-time
periodic tasks with offsets. Real-Time Systems, 30(1-2):105–128, 2005.

[19] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Cac-
camo, and Lothar Thiele. Worst case delay analysis for memory
interference in multicore systems. In Design, Automation & Test in
Europe Conference & Exhibition (DATE 2010), pages 741–746, 2010.

[20] Jakob Rosen, Alexandru Andrei, et al. Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip. In 28th IEEE International Real-Time Systems Sym-
posium (RTSS 2007), pages 49–60. IEEE, 2007.

[21] Gero Schwäricke, Tomasz Kloda, et al. Fixed-priority memory-centric
scheduler for cots-based multiprocessors. In 32nd Euromicro Conference
on Real-Time Systems (ECRTS 2020), 2020.

[22] Muhammad R Soliman and Rodolfo Pellizzoni. Prem-based optimal
task segmentation under fixed priority scheduling. In 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019), 2019.

[23] Rohan Tabish, Renato Mancuso, et al. A real-time scratchpad-centric os
with predictable inter/intra-core communication for multi-core embed-
ded systems. Real-Time Systems, 55(4):850–888, 2019.

[24] Gang Yao, Rodolfo Pellizzoni, et al. Memory-centric scheduling for
multicore hard real-time systems. Real-Time Systems, 48(6):681–715,
2012.

[25] Heechul Yun, Gang Yao, et al. Memory bandwidth management for effi-
cient performance isolation in multi-core platforms. IEEE Transactions
on Computers, 65(2):562–576, 2015.

[26] Houssam-Eddine Zahaf, Giuseppe Lipari, et al. Preemption-aware
allocation, deadline assignment for conditional dags on partitioned edf.
In IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 1–10. IEEE, 2020.

