

The multi-facets of increasing the renewable energy integration in power systems

Presented by Sophie CHLELA

Authors: G. Grazioli, S. Chlela, S. Selosse and N. Maïzi

IEW 2022, 26 May 2022 in Freiburg, Germany

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH & INNOVATION PROGRAM UNDER GRANT AGREEMENT NO 824410

OUTLINE

Introduction **Context and project presentation** \rightarrow → Modelling framework: TIMES-Procida Assumptions Main findings Lessons learned & recommendations

PROJECT GOALS

The main objective of the GIFT (Geographical Islands FlexibiliTy) project is to decarbonise the energy mix of islands.

- 1: Allow a high level of **local renewable energy** sources penetration
- 2: Provide visibility of the energy grid to better manage its **flexibility and plan its evolutions**
- 3: Develop **synergies** between the electricity, heating, cooling, water and, transport networks
- 4: Reduce the use of hydrocarbon-based energies
- 5: Ensure the **sustainability** of the solutions and their **replicability** in other islands

WHY ARE WE INTERESTED IN INTEGRATING RENEWABLE ENERGY IN ISLANDS' ENERGY SYSTEMS?

Challenges

Energy supply, Economic, Vulnerability towards Climate Change

Opportunities

Policy support (EU Clean energy for EU islands), Endowment in RE sources, Cost competitivity of RE, International commitments

→ Developing island specific energy system models

FLEXIBILITY OF THE ENERGY SYSTEM

Grid flexibility

- Operation of the energy system with instantaneous stability and long-term security of supply
- Reliability and cost-effectiveness
- Management of the variability and uncertainty of renewable energies
- Ensure the balance between supply and demand

→ Develop synergies between the sectors constituting the energy system

LONG-TERM PROSPECTIVE MODELLING

Decarbonization of the islands' energy system

Integration of Renewable energy at high shares

Define an energy plan that ensures a reliable system in the long term

- What type of energy technologies to choose?
- How much capacity should be installed?
- When should new capacities be installed and scrapped?
- Where to install new capacities?

Long-term prospective modeling of island systems by considering different evolution scenarios

Advice policy makers and authorities to make knowledge-based decisions in the implementation of their energy planning

TIMES MODELLING

- Partial equilibrium linear programming, bottom-up, technology rich, and demand driven optimization model
- Minimizes the total discounted system cost
- TIMES allows the user to divide the time horizon into years and subdivided into four sub annual segments: annual, seasonal, weekly, daily
- Exogenous inputs related to the projection of service demands in the different sectors, one can use the GDP and population growth as inputs to predict future demands

min(NPV)

$$= min(\sum_{r \in R} \sum_{y \in Y} (1 + d_{r,y})^{T_{0-y}} \cdot ANNCOST(r,y))$$

R. Loulou, G. Goldstein, A. Kanudia, A. Lettila, and U. Remme, 'Documentation for the TIMES Model - Part I'. Jul. 2016

CASE STUDY-PROCIDA

- ✓ Smallest island in the Gulf of Naples, Area = 4.26 km^2
- ✓ Density = 2449 inhabitants/km²
- ✓ Challenges: Grid congestions, High seasonality of demand (tourism)
- ✓ High reliance on imports 99%, local electricity production of 1% in 2018

Modeling Framework

3 seasons: Summer, Winter, Intermediate, 5 daytimes Horizon: 2018-2050

Electricity load by season and time of the day (2018)

Reference Energy System (RES) of TIMES-Procida

ASSUMPTIONS

1. Renewable Energy production 🚝

Techno-economic parameters provided by partners or publications from EU JRC

Rooftop PV \rightarrow maximum capacity constraints: geographical + local policies considerations for increasing renewable energy on the island

✓ New installable PV capacity per year

 \checkmark New installable PV capacity per year and per sector

Roof surface estimation and rated power kWp with PVWatts Calculator tool (NREL)

$$\sum_{i} C_{new,i,t} \leq C_{new,max,t}$$
$$C_{new,i,t} \leq C_{new,max,i,t}$$

 $\forall t \in T$ $i \in (PV_{res}, PV_{ter}, PV_{pub})$ $\forall t \in T$ $\forall i \in (PV_{res}, PV_{ter}, PV_{pub})$

ASSUMPTIONS

2. Energy storage া

 $C_{new,i,t} \leq C_{new,max,i,t} \qquad \forall t \in T \\ \forall i \in (C_{res}, C_{ter}, C_{pub})$

Cost development of Li-ion residential energy storage (C-rate 0.35) (JRC, 2018) Techno-economic parameters provided by partners or publications from EU JRC

Smart Energy Hub*: reversible solid oxide cell (rSOC) +Li-ion battery

 $C_{SEH,2022} = constant$

Seasonal storage

*The Smart Energy Hub is created by Sylfen (<u>www.sylfen.com</u>) and tested in context of the GIFT project

SCENARIOS

IFT

G

Least-cost optimization choice depends on geographical, technical & policy constraints

X

X

 \checkmark

 \checkmark

-0.2%/an

12

Energy Efficiency

X

X

X

 \checkmark

2050

DECARBONIZATION & ENERGY AUTONOMY

The energy system would benefit from policies aiming for local energy production (decarbonization of the end-use sectors) and from flexibility solutions, (with storage, reduced imports at peak hours)

NVESTMENTS IN NEW TECHNOLOGIES

	Sectors	Photovoltaic	Li-Ion Storage	Long-term storage
(%) max. allowed capacities	Residential		1	limited local electricity production
	Public	100	16	
	Residential		0	

Total Battery capacity evolution (HIGH_STG scenario)

14

CONCLUSION

<u>OBJECTIVE</u> : Decarbonization of EU islands with the integration of high shares of RE

PV integration:

- End-use decarbonization
- Important improvements in terms of costs

Also, in the project

Energy autonomy of the users (and thus of the island itself)

Storage:

- Flexibility of the energy system,
- Reduction of imports during the peak hours,
- promotes self-consumption

Part II- Second Demo Site: Hinnøya island cluster in Norway

- Long-term prospective modeling and discussion
 - Flexibility solutions: Electric vehicles charging, flow battery and electric ferry
 - Recommendations
- Part III- Replicability

RECOMMENDATIONS

Key takeaways:

- Assessing the context of the territory as well as the energy system of the island helps in understanding the flexibility needs and identify the suitable solutions
- Flexibility is linked to investment costs and maturity of solutions
- Long term planning supports decision making in new investments in flexibility solutions, but is limited from a grid operation point of view
- Necessity of involvement of the consumers that become "prosumers" thus participating in the energy transition
- Studying these two islands allows us to reflect also on the interconnected systems that will see further integration of RE in the future
- Permissible regulatory framework and the use of properly designed systems for information and communication, monitoring and measurement are needed for the sustainability of the solutions

Thank you !

Sophie Chlela CMA-MINES Paris PSL sophie.chlela@minesparis.psl.eu

REFERENCES

- 1. https://www.gift-h2020.eu/
- 2. GIFT Deliverable 2.4 https://www.gift-h2020.eu/wp-content/uploads/2021/07/GIFT_Deliverable-2_4_v5.pdf
- 3. Terna, 2019. Documento di Descrizione degli Scenari 2019.
- 4. ARERA, 'Relazione annuale sullo stato dei servizi e sull'attività svolta Volume 1', Jul. 2019. [Online]. Available: <u>https://www.arera.it/it/relaz_ann/19/19.htm</u>
- 5. <u>https://ease-storage.eu/energy-storage/technologies/</u>
- 6. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC113360/kjna29440enn.pdf

The project's solutions

- <u>Grid IT platform</u> for KPI visualisation, geographic visualisation, grid observability, prospective modelling and long-term assessment.
- <u>VPS system</u>, a decentralised automatic demand response trading platform
- <u>Prosumers</u> or smart energy consumers that postpone energy demanding tasks or select alternate sources for energy to reduce the load on the power grid, thus providing flexibility.

Annex I: Imports evolution

