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Summary 

In the last two decades it has become increasingly evident that a large number of proteins 
adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are 
ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. 
Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing 
intrinsically disordered proteins or regions to be recognized based on their sequence properties. 
The identification of disordered regions facilitates the functional annotation of proteins and is 
instrumental for delineating boundaries of protein domains amenable to crystallization. This 
chapter focuses on the methods currently employed for predicting protein disorder and identifying 
intrinsically disordered binding sites.  

 

Keywords: intrinsic disorder, intrinsically disordered proteins, intrinsically disordered 
regions, intrinsically disordered binding sites, MoREs, MoRFs, induced folding, prediction 
methods and tools, disorder databases and metaservers. 
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During the last two decades there has been an increasing amount of experimental and 
computational evidence pointing out the abundance of protein disorder within the protein realm[1]. 
Indeed, the frequency and length of disordered regions increase with increasing organism 
complexity, with as much as one third of eukaryotic proteins containing long (i.e. ³ 30 residues) 
intrinsically disordered regions (IDRs) [2] and 12% of them being fully disordered [3]. Intrinsically 
disordered proteins (IDPs) are functional proteins that fulfill essential biological functions while 
lacking constant or highly populated secondary and tertiary structure under physiological 
conditions [4]. Although there are IDPs that carry out their function while remaining disordered all 
the time (e.g. entropic chains), many of them undergo a disorder-to-order transition upon binding 
to their physiological partner(s), a process termed induced folding or folding coupled to binding 
[5]. 

The functional relevance of disorder resides in an increased plasticity that enables the 
binding of numerous, structurally distinct targets. Accordingly, intrinsic disorder is a distinctive 
and common feature of "hub" proteins, with disorder serving as a determinant of protein 
promiscuity [6]. As such, most IDPs/IDRs are involved in functions that imply multiple partner 
interactions, such as molecular recognition, molecular assembly, cell cycle regulation, signal 
transduction and transcription (for reviews on IDPs see [7-9]). Beyond this role in regulation and 
signaling, it has been recently recognized that intrinsic disorder also plays a critical role in “liquid–
liquid phase separation” (LLPS) or condensation phenomena, which drive the formation of 
membrane-less organelles (MLOs) [10-14]. These biological condensates play a critical role in the 
spatio-temporal organization of the cell, where they exert a multitude of key biological functions, 
ranging from transcriptional regulation and silencing to control of signal transduction networks. 
Their dysfunction is tied to a number of pathological states, including age-related neurological 
disorders [10-14].  

The identification of disordered regions has a practical interest as it facilitates the functional 
annotation of proteins [15] and is instrumental for delineating protein domains amenable to 
crystallization [16-18].  

Statistical analyses showed that the amino acid sequences of IDRs are significantly different 
from those of ordered proteins, thus allowing IDRs to be predicted with a rather good accuracy. 
Specifically, IDRs (i) have a biased amino acid composition, being enriched in G, S, P and depleted 
in W, F, I, Y, V, L, (ii) have a low secondary structure content, (iii) tend to have a low sequence 
complexity, (iv) are on average much more variable in orthologous and paralogous proteins than 
ordered ones being more tolerant to substitutions due to the lack of structural constraints.  

Based on these peculiar sequence features, a number of disorder predictors have been 
developed (for reviews see [16,19-22,18,23-26]. As a growing number of disorder predictors have 
started to become available, it has become increasingly clear that predictions benefit from the use 
of different predictors [27]. Moreover it was shown that since different disorder predictors are 
based on different definitions of disorder, the combination of several predictions reinforce the 
reliability of the overall predictions on a specific position or region [28,29]. This is the main reason 
for developing metapredictors that help users to deal with the growing number of available disorder 
predictors and allow combining the results provided by several predictors. Some of these 
metapredictors also include the prediction of structured regions as a way to improve disorder 
predictions (i.e., as a way to alleviate ambiguity for regions with dubious state). Recently, the first 
round of the Critical Assessment of protein Intrinsic Disorder prediction (CAID), which provides 
a systematic benchmarking for disorder predictors, was published. In this first round, the 
performance of the main predictors was tested, considering several aspects as the predictions for 
completely disordered proteins and binding regions [25,30]. The assessment confirmed the 
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usefulness of predictors, and provided a ranking of the various predictors with details of each one 
[25].  

The pivotal importance of disordered regions in proteins (functional interactions, binding, 
protein conformation, molecular switch, phase separations...) led to a growing interest of the 
scientific community for IDRs. Consequently, the number of requests submitted to disorder 
prediction servers shoot up. This exponential increase in the number of requests and the demanding 
resources required for predicting disorder (variety of predictors to be used and compared) has 
forced various research groups to build their own databases dedicated to store annotations and 
predictions related to IDRs. These databases constitute valuable resources of information that have 
to be exploited when seeking data on disordered regions into a protein of interest. They gather 
experimentally assessed information and/or predictions from several disorder predictors thereby 
fastening the identification of disordered regions. These databases allow fast and easy retrieval of 
annotated proteins that exhibit sequence similarity vis-à-vis a query protein. Although in most cases 
additional analyses are necessary to achieve a detailed description of the modular organization of 
a query protein, these databases nevertheless provide useful hints on the possible presence of 
disordered regions in a protein of interest.  

In this chapter, we present a general suggested procedure for disorder prediction based on 
the combination of various tools for protein disorder prediction. 

2. Methods 

2.1. Searching databases dedicated to IDPs 
We recommend as a first step to check whether the protein of interest or a similar protein 

exists in publicly available databases dedicated to IDPs. The most efficient way to do this is to use 
the search engines by sequences that are provided by most of their interfaces. 

Obviously, the higher is the level of similarity between the matching sequences from these 
databases and the query sequence, the more relevant is the information that can be obtained on the 
query protein. 

- A search result with more than 90 % of sequence identity with a sequence from a 
database that contains experimentally assessed information is the ideal case but will 
rarely occurs since these databases have still few entries. 
- A similarly high sequence identity with an entry of a database for which 

annotations are based on predictions will have to be analyzed further: if all the 
disorder predictions stored are convergent with high confidence (i.e., with high 
probability) then the results obtained can be considered of sufficiently good 
quality. 

- In all other cases, it will be necessary to gather from these databases all the 
information that make sense about structured and disordered regions (boundaries) of 
the matching proteins displaying a reasonable level of similarity, and then to proceed 
to the next step (3.2) to complement the analysis by further predictions. 

In case the search returns distant homologs of the sequence query (note that an E-value 
below 1.e-11 can be of interest), it is likely that conserved regions and non-conserved regions can 
be identified, where the former will correspond to structured regions, and the latter have good 
chances to correspond to disordered regions because of the higher selection pressure exerted on 
structured regions [31]. Below we list the databases dedicated to IDPs/IDRs.  
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2.1.1. The Database of Disordered Protein Prediction (D2P2) (http://d2p2.pro) [32] 
contains (as of May 2021) disorder predictions of 10,429,761 protein sequences from 1765 
complete proteomes corresponding to 1,265 species, and their variants generated by nine disorder 
prediction methods (see 2.2.1): VLXT, VSL2b, PrDOS, PV2, ESpritz-D, ESpritz-X, ESpritz-N, 
IUPred-L and IUPred-S. D2P2 is also connected to the DisProt and IDEAL databases, two 
databases that contain experimentally confirmed information about disordered regions (see 2.1.3 
and 2.1.4). Also, it is associated with two other databases: SuperFamily2 [33] and PhosphoSitePlus 
[34]. As by May 2021, D2P2 does not cover all organisms (viral proteomes are not yet included 
for instance). 

D2P2 uses a "Meta" approach by gathering in a single output the data from several 
predictors and databases dedicated to disordered regions in proteins. An example of D2P2 output 
is provided in Figure 1. Using D2P2 as a preliminary tool to search for disordered regions will 
speed up the analysis of the query protein. 

1. Paste the sequence(s) (FASTAformat as default) of interest in the "Sequences" field 
of the "Match Amino Sequence" section of the search page and click on the "Find 
proteins" button. 

2. On the result page are displayed the corresponding entries that match 100% of the 
query sequence(s). On the graphical part of the output, the matching entries from the 
SuperFamily2, IDEAL and DisProt databases, as well as the predictions of disordered 
regions from the panel of predictors are aligned. Moving the mouse pointer over the 
barswill display complementary information such as the positions of the boundaries. 
If IDEAL or DisProt entries are found, clicking on their representation shapes will 
lead the user to the corresponding entries in these databases. The bottom part of the 
graph displays the predicted disorder agreement (corresponding to regions predicted 
to be disordered by more than 75 % of the predictors) and show additional data such 
as phosphorylation sites or ANCHOR (see 2.3) binding sites. 

3. Below the graphical output, click on the tab entitled "Disorder regions" to get a 
summary of the predicted disordered regions in the corresponding matching sequence. 
The left side of the page will display the predicted regions for which at least 75 % of 
the predictors agreed (that could be taken as a consensus), while on the right part of 
the page all predictions per predictor will be listed. 

Alternatively, in the main search page, the user can also use the second form and enter a 
free text in the “Search for any phrase including genomes, superfamilies, Gene Ontology, gene 
names and gene descriptions” of the “Sequence IDs and Free Text” field and click on the “Search” 
button. Results will be given in the result page in the same format as described above. 

2.1.2. MobiDB (http://mobidb.bio.unipd.it/) contains intrinsic disorder annotations for 
more than 189 millions of entries (covering the entire PDB and DisProt) and predictions from 
several disorder predictors (see 2.2.1), including ESpritz, IUPred, DisEMBL, GlobPlot, VSL2B, 
JRONN, among others [35,36].  

Although MobiDB is devoid of a BLAST/sequence search engine, it is fully integrated into 
UniProt thus allowing for each UniProt entry running a MobiDB search. In addition, MobiDB has 
a search engine by keywords that can also use UniProt search syntax to retrieve an entry. 

1. Enter the name of the protein of interest or a more specific UniProt search syntax 
(e.g., name:"Alpha-synuclein" AND organism:"human"). 

2. On the result page click on the protein that corresponds the most to the query (the 
column entitled "Disorder" shows the fraction of residues involved in long disordered 
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regions). 
3. The page displaying the protein annotations shows a summary of the information 

available. Next, the protein sequence and the regions of disorder consensus are 
displayed. Move the mouse pointer over the colored shapes to get the positions of the 
boundaries. In addition, by clicking on “advanced” a list of all predictor results is 
available with the consensus region on the top of this list. Each tracker of the list has 
a characteristic square icon indicating the annotation quality. For each prediction, the 
“sequence viewer” icon enables retrieving the amino acid sequence in which the 
ordered and disordered regions are colored differently, thereby making it easy to 
copy/paste regions of interest. Also, selecting each region displays the visualization 
of the annotations in the PDB structure as well as the contact networks. 

2.1.3. DisProt (https://www.disprot.org/) is historically the first database on disorder and 
the largest publicly available database of disordered proteins whose disorder has been 
experimentally assessed [37,38]. Although it contains only 1746 entries (as of May 2021), the 
information therein stored is highly valuable since experimentally assessed. 

1. In the Browse section, select BLAST option and paste the sequence in the field (raw 
format). 

2. Check the score of the best BLAST hit on the result page (note that an E-value above 
1.e-11 may not hold promise). 

3. If the score is consistent, analyze the alignment of the corresponding matching 
sequence and note the boundaries of matching/mismatching regions. 

4. Click on the reference of the entry of interest on top of the result page to display the 
details of the corresponding entries. 

5. Compare the annotations of the selected entry with the boundaries obtained in step 4. 
2.1.4. IDEAL (http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/blast.html) is the 

second database, in terms of size, dedicated to proteins whose disorder has been experimentally 
assessed [39]. The total number of proteins in IDEAL is 995 (as of July 2020). The IDEAL interface 
provides a BLAST engine enabling efficient retrieval of existing annotations related to potential 
disordered regions in the sequence of interest. 

1. Paste the sequence (raw format) in the "Blast Search" field. 
2. Check the score of the best BLAST hit on the result page (note that an E-value above 

1.e-11 may not hold promise). 
3. If the score is consistent, analyze the alignment of the corresponding matching 

sequence and note the boundaries of matching/mismatching regions. 
4. Click on the reference of the entry of interest on top of the result page to display the 

details of the corresponding entries. The disordered regions of the current entry are 
displayed in red. Detailed information can be accessed by clicking on the colored 
shapes. 

5. Compare the annotations of the selected entry with the boundaries determined in step 
3. 

2.1.5. DescribePROT (http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/) provides 13 
putative structural and functional properties at the amino acid level for 1,365,946 proteins from 83 
complete proteomes (as by May 2021) from model organisms [40]. Among the features provided 
by the sever are sequence conservation, secondary structure, solvent accessibility, intrinsic 
disorder, disordered linkers, signal peptides, disordered binding sites (i.e. MoRFs, see 2.3) and 
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interactions with proteins, DNA and RNAs. The results are made available instantaneously. The 
predictions can be accessed via an interactive graphical interface that enables simultaneous analysis 
of multiple descriptors. Results can also be downloaded in png, csv and json format. An example 
of DescribeProt output is provided in Figure 2. 

1. Enter either the sequence of the protein of interest in FASTA format or the UniProt 
accession number or UniProt entry name.  

2. Click on “search”. 
3. The result page displays on the top a summary of the predicted features. Details of 

each prediction are provided below and can also be accessed by ticking the box 
adjacent to “click here for details” for the desired prediction. Move the mouse pointer 
over the bars and the graphs to get the boundaries and the scores.  

2.1.6. The PED (Protein Ensemble Database) (https://proteinensemble.org/) is a database 
for the deposition of structural ensembles of IDPs and of denatured proteins based on nuclear 
magnetic resonance spectroscopy, small-angle X-ray scattering (SAXS) and other data measured 
in solution [41,42]. Each entry consists of (i) primary experimental data with descriptions of the 
acquisition methods and algorithms used for the ensemble calculations, and (ii) the structural 
ensembles consistent with these data, provided as a set of models in a Protein Data Bank format. 
The total number of entries is 169 as by May 2021. Although PED does not possess a 
BLAST/sequence search engine, one can search it by using various criteria, such as protein name, 
gene name, function, UniProt ID, GenBank ID, DisProt ID, ensemble ID and PDB code. If the 
PED contains data about the protein of interest, this constitutes of course a compelling evidence of 
disorder (unless the structural ensemble has been obtained under denaturing conditions). In case 
the PED stores data for a related protein, this should be taken as a strong indication of disorder.  

1. Enter the name of the protein of interest or a more specific UniProt search syntax and 
then click on "search". 

2. On the result page, experimental data and structural ensemble can be downloaded.   
2.1.7. Although the PDB (Protein Data Bank) is a database dedicated to structured 

proteins and assemblies, it indirectly provides information on disordered regions. Indeed, it allows 
delineating disordered regions and discarding structured regions from the list of regions potentially 
considered as disordered. The PDB also provides some information on disorder under the mention 
“REMARK465”, where regions of missing electron density are listed. It should be noted however 
that these regions are generally short as long regions generally prevent crystallization. 

Go to https://www.rcsb.org/search/advanced/sequence. 
1. Paste the sequence (raw format) in the “Sequence" field and change the “Display 

results as” field from “structure” to “polymer entities” to obtain information about E-
value, sequence identity and coverage. Finally, click on the search icon. 

2. On the result page, check the score of the best blast hit (note that an E-value superior 
to 1.e-11 probably does not hold promise) and note the boundaries of the matching 
regions in the selected alignment. 

3. Look at the PDB entry pages of interest. 
4. Report the boundaries of matching regions in the alignments to the secondary 

structure annotation of the PDB entry page selected by the user. The regions for which 
a secondary structure element has been reported cannot be considered as disordered. 
Regions of missing electron density can be considered as disordered. 
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2.1.8. Other databases: The databases detailed above are examples of the most complete 
databases. There are, however, several databases with useful and specific information that worth 
to be consulted, such as:  

• Disordered Binding Site (DIBS), a database that collects complexes between 
IDRs and ordered protein structures (http://dibs.enzim.ttk.mta.hu/) [43]. 

• Mutual Folding Induced by Binding (MFIB), a database of protein 
complexes involving exclusively IDPs with mutual folding (i.e. complexes made of 
IDPs that fold upon binding to each other) (http://mfib.enzim.ttk.mta.hu/) [44]. 

• FuzDB, a database of fuzzy protein complexes (i.e. complexes in which the 
IDP/IDR retains a considerable amount of residual disorder) (http://protdyn-
database.org/index.php) [45]. 

2.2. Running disorder predictions 

Several disorder predictors have been developed, which exploit the sequence bias of 
disordered proteins. Different types or "flavors" of protein disorder exist [46], differing in the 
extent (i.e. the amount of residual secondary and/or tertiary structure) and in the length of disorder. 
Since different predictors rely on different physico-chemical parameters, a given predictor can be 
more performant in detecting a given feature of a disordered protein. Hence, predictions good 
enough to decipher the modular organization of a protein can only be obtained by combining 
various predictors (for examples see [47,17,48,49,16,19,50]).  

It is useful to distinguish three kinds of predictors: (i) those that have been trained on 
datasets of disordered proteins, (ii) those that have not been trained on any dataset, and (iii) 
metapredictors that blend the results of different predictors. Some predictors use multiple sequence 
alignments in the computation of their predictions and the most advanced ones include structural 
information from the PDB when available. As already mentioned, alignments with homologous 
proteins can provide additional information on potentially disordered regions by themselves since 
the pressure of selection in disordered regions is not as important as in structured regions. 
Accordingly, sequence alignments will tend to show lack of conservation within disordered 
regions. 

While predictors trained on datasets of disordered regions identify disordered regions on 
the basis of the peculiar sequence properties, the others identify disorder as lack of ordered 3D 
structure. The second group of predictors avoid the shortcomings and biases associated to datasets 
of disordered regions. Therefore, they are expected to perform better than the former on disordered 
proteins presently under-represented in training datasets (i.e., fully or mostly disordered proteins). 

As the performance of predictors depends on both the type of disorder they predict and the 
type of disorder against which they were trained, multiple prediction methods need to be combined 
to improve the accuracy and specificity of disorder predictions [16,19,18,22]. 

Metapredictors are particularly well suited to speed up the analysis of disorder since they 
combine the results of several predictors and provide a unified view on the different predictors 
used. However, since disorder-related databases already return (consensus) predictions from 
multiple predictors, the added value of running metapredictors mainly resides in the possibility of 
retrieving additional information from non-redundant predictors (i.e., predictors not already 
included in the above-described databases) so as to complement the information gathered during 
the previous step.  
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2.2.1. Individual disorder predictors  
As metapredictors make use of previously developed individual disorder predictors, we 

have chosen to first provide a short description of the latter along with their philosophy and 
guidelines on how to run them. Whenever predictors can be downloaded and run in local mode, 
which is typically very useful for large-scale analyses, this is explicitly indicated. For those 
predictors that are not endowed with the option of a downloadable stand-alone version, it may be 
useful to directly contact the program developers to inquire about the possibility of being sent such 
a version or a script that can be compiled for any machine and operative system.  

Predictors trained on datasets of disordered proteins 
PreDisorder (http://sysbio.rnet.missouri.edu/predisorder.html) [51] (under group name: 

MULTICOM-CMFR) was ranked among the best predictors in disorder prediction during CASP8 
[52]. The prediction is based on an ab initio neural network method (trained on datasets). A 
PSIPRED profile of the sequence along with the predicted secondary structure and solvent 
accessibility is fed into a 1D Recursive Neural Network (1D-RNN) that makes the disorder 
predictions. 

1. Enter the e-mail address, the protein name and its sequence in the corresponding field 
and click on the "Predict" button. 

2. Results take several hours to be computed and are sent by e-mail. Results are returned 
in the form of three lines: the first line displays the amino acid sequence, the second 
line (dis)order predictions (where residues predicted to be disordered and ordered are 
tagged with a “D” and “O” character, respectively), and the third line displays the 
probability of disorder. Residues are considered to be disordered if their disorder 
probability is above 0.5.  

PONDR (Predictor of Natural Disordered Regions) (http://www.pondr.com/), a neural 
network based on local amino acid composition, flexibility, and other sequence features, was the 
first predictor to be developed [53]. While in the past, access to PONDR was limited, the predictor 
is now publicly available. PONDR is available in various versions, namely VLXT, XL1_XT, 
CAN_XT, VL3-BA and VSL2, plus Cumulative Distribution Function (CDF) (see 2.2.1) and 
charge-hydropathy plot (CHplot) (see 2.2.1). To overcome the poor accuracy of the first PONDR 
predictors for short disordered regions (<30 residues), the group of Dunker has developed the VSL2 
predictor, which was aimed at providing accurate predictions irrespective of the length of the 
disordered region [54]. The VSL2 predictor is based on a support vector machine. VSL2 was 
ranked among the best predictors in CASP7 [55]. VSL2 turned out to behave equally well towards 
regions of >30 and of <30 residues and to be able to identify short disordered regions that were 
miss-predicted by the previous PONDR predictors. Notably, VLXT can highlight potential protein-
binding regions, indicated by sharp drops in the middle of long disordered regions (see 2.3).  

1. Enter the protein name and paste the sequence in raw (or FASTA) format and click 
on "submit". 

2.  The result is provided as a plot. The significance threshold above which residues are 
considered to be disordered is 0.5. Segments composed by more than 40 consecutive 
disordered residues are highlighted by a thick black line. 

DisProt VL2, VL3, VL3H and VL3E. The DisProt server 
(https://www.dabi.temple.edu/external/disprot/predictor.php) provides access to several 
predictors, such as VL2, VL3, VL3H, VL3E. Although the server is presently not available due to 
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a hardware upgrade, we have chosen to describe it in this section with the hope that it will again 
be made available in a close future.  

VL3 uses several features from a previously introduced PONDR VL2 predictor [46], but 
benefits from optimized predictor models and a slightly larger (152 versus 145) set of disordered 
proteins that was corrected for mislabeling errors found in the smaller set. The VL3 predictor is 
based on an ensemble of feed-forward neural networks whose training stage is done using a dataset, 
obtained from both DisProt and PDB. PONDR VL3H uses the same method as VL3 but it uses 
homologues of the disordered proteins in the training stage, while PONDR VL3P uses attributes 
derived from sequence profiles obtained by PSI-BLAST searches [56,54]. Requests are limited to 
100 per IP address per day and the maximum length of a query sequence is limited to 5,000 
residues. For the VL3E predictor, which results from the combination of VL3H and VL3P, up to 
10 queries no longer than 500 residues can be processed per IP address per day. Predictions for 
VL3E are sent by e-mail upon completion. 

1. Chose the predictor to be run among the possible choices. 
2.  Paste the sequence in raw format, enter the e-mail address and click on "submit". 
3. Prediction results are returned online and the plot can be saved (png format) by 

clicking on it with the mouse right button. The output also provides a table with 
disorder probabilities per residue. The significance threshold above which residues 
are considered to be disordered is 0.5.  

Globplot 2 (http://globplot.embl.de) uses the "Russell/Linding" scale that expresses the 
propensity for a given amino acid to be in "random coil" or in "regular secondary structure" [57]. 
It also provides an easy overview of modular organization of large proteins thanks to user-friendly, 
built-in SMART, PFAM and low complexity predictions. Note that in Globplot outputs, changes 
of slope often correspond to domain boundaries.  

1.  Paste the sequence in raw format or enter the SwissProt ID (or AC) in the foreseen 
field, enter Title (optional) and click on "GlobPlot now". 

2.  The result page provides a postscript (ps) file that can be downloaded. Below the 
graph, the amino acid sequence of the protein is given, with disordered residues 
colored in blue.  

The Globplot package can be downloaded by selecting "download" and following the instructions 
provided. TISEAN (https://www.pks.mpg.de/tisean//) and Biopython 
(https://biopython.org/wiki/Download) are required for the package to function. 

DisEMBL (http://dis.embl.de) is based on a neural network and consists of three separate 
predictors, trained on separate datasets, that comprise respectively residues within "loops/coils", 
"hot loops" (DisEMBL Hot loops) (loops with high B-factors – i.e. very mobile from X-ray crystal 
structure), or that are missing from the PDB X-ray structures (called "Remark 465") [58]. Among 
these, the only true disorder predictor is Remark 465 (DisEMBL 465), as the two others only 
predict regions devoid of regular secondary structure. DisEMBL also provides prediction of low 
sequence complexity (CAST predictor) and aggregation propensity (TANGO predictor). 

1. Paste the sequence in raw format or enter the SwissProt ID (or AC) in the foreseen 
field, enter Title (optional), click on "DisEMBL protein". 

2.  The result page provides a postcript (ps) file that can be downloaded. Below the 
graph, the amino acid sequence of the protein is given, with residues in loops and hot 
loops being colored in blue and red, respectively. Disordered residues, as predicted 
by Remark 465, are shown in green.  
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The DisEMBL pipeline package is released under the GPL license. The latest DisEMBL version 
can be obtained by selecting "download" and following the instruction. 

DISOPRED3 is based on support vector machine classifiers trained on PSI-BLAST profiles 
[59]. It therefore incorporates information from multiple sequence alignments since its inputs are 
derived from sequence profiles generated by PSI-BLAST. Hence, prediction accuracy is lower if 
there are few homologues. It is accessible from the PSIPRED4.0 web server page 
(http://bioinf.cs.ucl.ac.uk/psipred/).  

1.   Select the “DISOPRED3 (Disopred Prediction)” prediction method. Several 
predictions can be carried out at the same time (e.g., secondary structure prediction, 
domain and functions predictions). By default, PSIPRED4.0 method is selected, 
untick if needed. 

2.   Paste the raw protein sequence in the “submission details” part. Enter a job name 
(required) and optionally an e-mail address. Then click on “Submit”. 

3.  Results are displayed as a sequence plot where amino acids are annotated as 
“Disordered” (blue empty squares) or “Disordered, protein binding” (green empty 
squares). A DISOPRED plot is also returned and displays the prediction confidence 
values per amino acids. Amino acids having low confidence values (< 0.5) are not 
annotated on the sequence plot. The figure can be downloaded in PNG or SVG 
format. Alternatively, results can be downloaded as text files. The COMB NN format 
output provides the predicted scores of ordered (marked “.”) and disordered (marked 
“*”) residues while the PBDAT file contains score of protein-binding disordered 
residues (marked “^”) as well as disordered residues which not bind proteins (marked 
“-”) and ordered residues (marked “.”). Both of the COMB NN and PBDAT files can 
be opened with classical text-editing software.  

Disopred3 can be downloaded from http://bioinf.cs.ucl.ac.uk/software_downloads/.  
DisoMine (https://www.bio2byte.be/b2btools/disomine/) is a Neural Network (NN) based 

predictor of disordered regions [60]. The disorder is not directly predicted from the aminoacidic 
sequence but is the result of the predicted properties of amino acid residues (as their backbone 
dynamics). Predictors of these biophysical properties are based on independent experimental 
datasets with well-defined properties or quantitative information, whereas order/disorder 
categories are more difficult to capture. From these independently calculated properties, feature 
vectors of bounded continuous values are assembled, which will replace the amino acid sequence 
in machine learning methods. DisoMine uses as input the results of four different bioinformatic 
tools, i.e. PSIPRED (secondary structure predictor), DynaMine for backbone dynamics or side-
chain dynamics predictions (see 2.2.1) and EFoldMine (predictor of early folding regions).  

1. Paste the target protein sequences in FASTA format and click on “Submit”.  
2. The results will be displayed after a few seconds/minutes in an interactive graphical 

form. Click on "Click for more information" to display a table with explanations on 
how to interpret the graphical results. The obtained results can be downloaded in text 
format or viewed on a JavaScript applet. 

MoreRONN [61] is the successor of RONN [62], which is currently offline. As its 
predecessor, MoreRONN is based on Bio-Basis Function Neural Network (BBFNN), but the 
training input library has been clustered based on weak sequence similarities and tested with a ten-
fold cross-validation approach. Instead of using the entire protein, MoreRONN uses a sliding 
window approach of 15 residues, comparing overlapping windows. The information on which 
MoreRONN relies is a set of curated disordered sequences and it does not need any other 
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information (e.g., amino-acid characteristics or secondary structure predictions) which makes it a 
solid and fast predictor. The server can be found at https://moreronn.org/ website.  

1. Paste the sequences in FASTA format in the box.  
2. Click on “Submit Sequences” 
3. Wait until the end of the analysis and scroll down to visualize the results. Although 

the obtained data are not stored, it is possible to download the text file of the results 
clicking on “download raw data”. 

The MoreRONN source code is available on Github for download; this version can run locally on 
GNU/Linux without prediction limits. 

IsUnstruct is based on a dynamic programming searching for both disordered regions and 
individual disordered residues within the protein chain. It is based on a physical model in which 
each residue can be in one state i.e., ordered (fixed) or disordered (free). The model is an 
approximation of the Ising model, where a penalty for the state change takes the place of the 
interaction terms between neighbours. Starting from a query sequence in FASTA format the 
program calculates a profile of probabilities of disorder for each residue [63]. Program and server 
of IsUnstruct is based on potentials obtained from the Disordered Residues Data Base (DRDB) and 
on a library of disordered patterns (http://bioinfo.protres.ru/IsUnstruct/pattern.html) [64].  

1. Open the server at the web site http://bioinfo.protres.ru/IsUnstruct/ and paste the 
sequence in FASTA format. In the actual version of the program is possible to run 
three variants: using the entire library of disordered patterns, only with the HHHH 
pattern or without any pattern.  

2. Start the prediction by clicking on “Pred”. 
3. The server gives the results of short and long protocols, plus a graph.  

The code source can be downloaded from the website by selecting "get source" in the bottom right-
hand corner. 

DFLpred (Disorder Flexible Linkers predictor) is the first method able to predict disorder 
flexible linkers (DFLs). This model combines values of four features empirically selected, using a 
linear function to generate the output propensities. The results are in the form of a numeric score 
(between 0 and 1) representing the propensity of each residue to be a DFL, with higher values 
indicating a higher propensity to be a DFL. For values lower than 0.18 residues are considered 
NDFL (non-disordered flexible linker) [65]. DFLpred is available as a webserver at 
http://biomine.cs.vcu.edu/servers/DFLpred/.  

1. Paste the protein sequences in FASTA format or upload the file. Provide an e-mail 
address for the results. 

2. Click on “Run DFLpred” 
3. At the end of the run you will receive a notification by email and/or in the browser 

window, if still open. To visualize the results, download the text file. The server 
generates the propensities binary predictions (DFLs/NDFLs). Three lines will be 
present in the file: protein ID, aminoacidic sequence, and the propensities score for 
each residue. 

DFLpred is also provided as a stand-alone package written in Java, with details being provided at 
please https://fanchi.github.io/DFLpred/ for details. 

DISpro is available from the SCRATCH server (http://scratch.proteomics.ics.uci.edu/). It 
is based on a neural network [66]. It combines sequence profiles obtained by PSI-BLAST, 
secondary structure predictions and solvent accessibility. This predictor was trained on disordered 
sequences (i.e., regions of missing atomic coordinates) derived from the PDB.  
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1.  Enter the e-mail address (required), the sequence name (optional), paste the sequence 
in raw format, select the disorder predictor (i.e., DISpro) and predictions to be run by 
ticking the appropriate box (e.g., SSpro for Secondary Structure or ABTMpro for 
Alpha Beta Transmembrane) and click on "Validate". 

2.  Prediction results are sent by e-mail. Residues predicted to be disordered or ordered 
are indicated by a "D" or an "O", respectively. Per residue disorder probabilities are 
also provided. 

DisPro is also available as a stand-alone version for the analysis of large data sets, but only for 
Linux systems. It is also possible to download the SCRATCH suite of 1D predictors which includes 
protein secondary structure and relative solvent accessibility predictors. 

CSpritz (http://protein.bio.unipd.it/cspritz/) takes into account sequence profiles obtained 
from PSI-BLAST and structure predictions. It is a disorder predictor for high-throughput 
applications, including NMR mobility. 

CSpritz uses two separate predictors based on vector machines trained on different datasets 
[67]. The training dataset of short disordered regions (less than 45 residues) was derived from a 
subset of PDB sequences with short regions of missing density, while the training dataset of long 
regions was derived from both DisProt and from a subset of the PDB (i.e., PDBselect25). This 
server allows the submission of up to 10 sequences at one time and offers the possibility of choosing 
between predictions of short or long disordered regions. 

1.  Paste the sequence in FASTA format, enter the name of the query sequence 
(optional), and optionally the e-mail address.  

2.  Chose the data set for disorder prediction (i.e., X-ray, "short", or DisProt "long") and 
click on "Submit". 

3.  Prediction results are returned online. At the top of the page the user can find the links 
to download the results in different formats. Residues predicted to be disordered or 
ordered are indicated by a red "D" or a black "O", respectively. Disorder statistics are 
also shown (i.e., percentage of disorder, number of disordered regions of > 30 or of 
>50 residues in length, length distribution of segments). At the bottom of the page, 
secondary structure prediction and linear motifs from the ELM database are also 
given.  

ESpritz (http://protein.bio.unipd.it/espritz/) is based on a machine learning method which 
does not require sliding windows or any complex sources of information (Bi-directional Recursive 
Neural Networks (BRNN) [68]. 

1.  Enter the e-mail address (optional), the name of the query sequence (optional), and 
then paste the sequence in raw format. 

2.  Chose the type of disorder (i.e., X-ray, Disprot, or NMR) and the threshold (i.e., Best 
Sw or 5% False Positive Rate for conservative predictions), and then click on 
"Predict". 

3.  Prediction results are returned online and sent by e-mail. Residues predicted to be 
disordered are tagged with a D character. It is also possible to get disorder predictions 
(with disorder probability) in text format by using the corresponding link on the top 
of the result page. 

A stand-alone version of the program that can work on local machines can be obtained after 
requesting it via the download form at http://old.protein.bio.unipd.it/download/. 

PrDOS (http://prdos.hgc.jp/cgi-bin/top.cgi) is composed of two predictors: a predictor 
based on the local amino acid sequence, and one based on template proteins (or homologous 
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proteins for which structural information is available) [69]. The first part is implemented using 
support vector machine algorithm for the position specific score matrix (or profile) of the input 
sequence. More precisely, a sliding window is used to map individual residues into a feature space. 
A similar idea has already been used in secondary structure prediction, as in PSIPRED. The second 
part assumes the conservation of intrinsic disorder in protein families, and is simply implemented 
using PSI-BLAST and a specific measure of disorder. The final prediction is a combination of the 
results of the two predictors. 

1.  Paste the sequence in raw format, enter the sequence name and the e-mail address 
(optional) and click on "predict".  

2.  A new page appears where the estimated calculation time is indicated. The user is 
asked to confirm the submission by clicking on the OK button. 

3.  On the results page, the plot can be saved as an image (eps or svg format) or as a pdf 
by clicking on the chosen format in “Download plot in vector format” or as png format 
by clicking on it with the mouse right button. Residues with disorder probabilities 
higher than 0.5 are considered to be disordered. Above the graph, the amino acid 
sequence is shown and disordered residues are shown in red. Disorder probabilities 
per residue can be retrieved by clicking on the download button (below the graph), 
which yields an output in the casp or csv format. 

The server can accept a Multiple FASTA formatted input limited to sequences. A stand-alone 
version for large-scale dataset is available upon request. The latter can be addressed by e-mail by 
clicking on “contact us”.  

SPOT-Disorder2 (https://sparks-lab.org/server/spot-disorder2/) elaborates protein 
evolutionary information derived from the position-specific substitution matrix (PSSM) profile 
from PSI-BLAST [70], hidden Markov model (HMM) profile from HHblits and predicted 
structural properties from SPOT-1D [71] to predict protein intrinsic disorder [72]. These input 
features are computed with an ensemble of deep Squeeze-and-Excitation residual inception and 
long short-term memory (LSTM) networks. SPOT-Disorder2 and AUCpreD performed as the best 
available methods in the CAID experiment [30]. 

1.  Copy and paste the protein sequence in FASTA format and click on submit 
2. Prediction results are returned online and disordered residues and their disorder 

probability scores (between 0 and 9) are labeled in red along the sequence. The output 
can be downloaded in a compressed text file together with HMM/PSSM/SPOT-1D 
predictions. 

The server allows a maximum of ten sequences to be analyzed at a time. For larger analyses, the 
program can be downloaded by clicking on “Downloads” on the left of the page. 

SPOT-Disorder single (https://sparks-lab.org/server/spot-disorder-single/) is a single-
sequence based technique developed to improve the prediction of protein sequences with limited 
evolutionary information, for which profile-based methods are not suitable. It is based on a 
combination of Convolutional Neural Networks and LSTM networks [73].  

1. Copy and paste the protein sequence in FASTA format and click on submit. 
2. Prediction results are returned online and disordered residues and the respective 

disorder probabilities are highlighted in red along the sequence. The output can be 
downloaded in a compressed text file. 

The program is also available as a stand-alone version for the analysis of large data sets. Click on 
“Downloads” on the left of the page and then choose SPOT-Disorder Single under “Protein Local 
Structural Prediction” panel. 
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IDP-Seq2Seq (http://bliulab.net/IDP-Seq2Seq/) is based on sequence-to-sequence learning, 
a new class of RNN typically used to solve complex language problems. The authors consider the 
identification of disordered regions as a “syntactic” problem, in which the protein sequence 
represents the protein language and the predicted structure-based features and sequence-based 
features identify the “semantic space” where the algorithm maps the intrinsically disordered 
regions. In order to capture length-dependent characteristics, three predictors for long, short and 
both long and short prediction of disordered regions were fused in one single predictor [74].  

1. Enter the protein sequence in FASTA format or upload your file and click on submit. 
2. The results are returned online. Disordered residues are marked by a “1” red character. 

To download the result in text format, click on “Download” at the top of the page.   
AUCpreD (http://raptorx.uchicago.edu/StructurePropertyPred/predict/) predicts disorder 

using Deep Convolutional Neural Fields (DeepCNF), an integration of Conditional Random Field 
and Deep Convolutional Neural Network. Instead of considering the disorder state of each residue 
independently, this method correlates the disorder states of adjacent amino acids. AUCpreD was 
trained on the UniProt90 CASP9, CASP10 and CAMEO test proteins by maximizing the area under 
the ROC curve (AUC) [75]. 

The predictor is available at the RaptorX Structure Protein Prediction server 
(http://raptorx.uchicago.edu/StructurePropertyPred/predict/).  

1.  Paste the protein sequence(s) or upload the sequence file in FASTA format. Chose 
the prediction with sequence profile prediction or not (the latter option is faster but 
less accurate). Before clicking on submit, it is strongly recommended to provide an 
email address to retrieve the results. Each user can analyze up to 500 sequences.  

2. A result URL is returned online: click on it or paste the JobID in My Jobs section to 
retrieve the results. Your browser shall support HTML5 and allow JavaScript for 
interactive visualization. 

3. The result page is divided into three parts. The first section shows a summary of the 
prediction result and the download button. The second one returns the prediction 
along five lines: the first one (SEQ) returns the input sequence, the second and third 
strings (SS3, SS8) give the secondary-structure prediction, the fourth (ACC) show 
the solvent accessibility and the last one (DISO) the disorder regions indicated with 
the symbol ‘*’. Finally, the user can click on the Disorder box in the third section 
which will show the predicted disorder/order propensity of each residue by red/blue 
bars, respectively. Hovering the mouse over a residue will display the disorder/order 
probability in percentage for the labeled amino acid.  

The program is also available as a stand-alone version for the analysis of large data sets at 
https://github.com/realbigws/Predict_Property. 

Predictors that have not been trained on disordered proteins 
IUPred2A (https://iupred2a.elte.hu/) is a well establish disorder predictor which uses a 

novel algorithm that evaluates the energy resulting from inter-residues interactions [76]. Although 
it was derived from the analysis of the sequences of globular proteins only, it allows the recognition 
of disordered proteins based on their lower interaction energy. This provides a new way to look at 
the lack of a well-defined structure, which can be viewed as a consequence of a significantly lower 
capacity to form favorable contacts, correlating with studies by the group of Galzitskaya [77]. 
IUPred2A includes two tools, ANCHOR2, hence enabling the identification of disordered binding 
regions [78], and a new tool to predict the presence of conditionally redox sensitive regions. The 
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program is also available as a stand-alone version (in python) for the analysis of large data sets. It 
can be obtained by clicking on “Download” from the program main page. 

1.   Paste the amino acids query sequence in raw or FASTA format. Alternatively, enter 
the SWISS-PROT/TrEMBL ID or the UniprotKB accession number of the protein. 
Multiple sequences can be submitted in FASTA format from a local text file using 
the “Browse” button. In this case, results are returned by e-mail. 

2.  Chose the prediction type (long disorder, short disorder, structured regions), the 
context-dependent predictions to be run (i.e., ANCHOR2 for binding regions, redox 
state for conditionally redox-sensitive in disordered regions or none), and click on 
"Submit".  

3.  Prediction results are promptly returned online and the plot can be saved (png format) 
by clicking on it with the mouse right button. The output also provides a table with 
disorder probabilities per residue. If the ANCHOR2 prediction was selected, the 
output plot will show the probability profile of each residue to being part of a binding 
region (blue line). The significance threshold above which residues are considered to 
be disordered and/or being part of binding regions is 0.5. If the redox state-dependent 
prediction was selected, redox-sensitive disordered regions in the output are identified 
by a purple shading area on the graph and marked by a box below the graph. If a 
SWISS-PROT/TrEMBL ID or an UniprotKB accession number has been entered, 
several annotations are displayed such as reported eukaryotic linear motifs (ELM), 
post translational modifications (PTM) sites as well as available PDB structures. The 
figure can be saved (in png format) by clicking on the floppy disk icon present on the 
top right of the plots. Users can also retrieve the numerical scores by clicking on the 
“Download results” button in JSON or text formats.  

FoldUnfold (http://bioinfo.protres.ru/ogu/) calculates the expected average number of 
contacts per residue from the amino acid sequence alone [77]. The average number of contacts per 
residue was computed from a dataset of globular proteins. A region is considered as natively 
unfolded when the expected number of close residues is less than 20.4 for its amino acids and the 
region is greater or equal in size to the averaging window. The user can define the size of the sliding 
window, but it is recommended to use averaging frame of 41 and 11 to find long and short 
disordered regions, respectively. 

1.  Paste the sequence in FASTA format, and click on the "Predict" button. 
2.  Prediction results are returned online. In the “short result” description, boundaries of 

disordered regions (unfolded) are given at the bottom of the page, while the “long 
result” allows to save the output plot. In the profile, disordered residues are shown in 
red.  

DynaMine (http://dynamine.ibsquare.be/) provides prediction of protein backbone 
dynamics, using an input sequence in the form of backbone N-H S2 order parameters. The values 
are between 0 (for highly dynamic, full random movement) and 1 (rigid conformation). The 
DynaMine S2 estimates are based on NMR chemical shift values, covering a time scale from 
femtoseconds down to microseconds and low milliseconds [79,80]. Although it is a simple linear 
regression system it is able to accurately distinguish regions with different structural organizations 
present in the protein. DynaMine achieves the best performance without necessarily depending on 
prior knowledge of disorder or 3-D structural information, thus providing independent evidence 
between structural disorder and dynamics in protein regions. 

1. Provide one or more protein sequences in FASTA format or enter a UNIPROT 
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identifier. Enter an e-mail address (facultative). 
2. Click “Submit”. 
3. Open the link received by e-mail to get the access to the results page (your work will 

be stored for one week). The results will be present in three different forms: the 
annotated plot of backbone dynamics profile, a graphical representation of the protein 
sequence and a report for all the residues of the sequence. It is possible to download 
a zip file (link at the top of the page) with the results of all the sequences submitted.  

The DynaMine predictor is also available as a stand-alone version. The program can be run in local 
mode through the command line (Beta – python 2) or a JSON API. An APY key is required to 
obtain the predictions from DyneMine server. The APY key can be obtained by providing an e-
mail address and then by clicking on the “request APY key” button at 
http://dynamine.ibsquare.be/download/. 

s2D (https://www-cohsoftware.ch.cam.ac.uk/index.php/s2D) is trained on solution-based 
NMR data, which allows to quantitatively distinguish disordered random coil regions from 
disordered regions with residual secondary structure elements. The predictor uses a combination 
of artificial neural network and extreme learning machines. The advantage of this tool is the 
characterization of the conformational properties of disordered states and the identification of 
regions involved in disorder-to-order transitions [81]. 

1. To use the software, the user shall register at https://www-cohsoftware.ch.cam.ac.uk/.  
2. After logging in, click on s2D on the left menu and paste one raw protein sequence at 

a time. Tick “plot also random coil profile” and then submit. 
3. The result page returns two links: a) a tab separated file displaying the probability of 

each residue of populating α-helix, β-strand or random coil; b) a plot of the secondary 
structure populations. The yellow line in the plot represents disordered residues in 
random coil states, while blue and green bars show the probability of each amino acid 
to be in α-helix and β-strand structure, respectively. Disordered regions have both α-
helix and β-strand populations smaller than 0.5. 

The source code and executable are freely available for download: click on “s2D_py3” to run both 
version 2 and 1on Python3; for Python 2.7 click either on “version2” or “published version”. 

Stand-alone disorder predictors 
As there is an increasing need for investigation of disorder in proteomes, it is worth to 

mention stand-alone predictors that allow fast analysis and finer regulation of the parameters. We 
provide below a short description of these disorder predictors along with guidelines to download 
them. 

MobiDB-lite 3.0 (http://old.protein.bio.unipd.it/mobidblite/) is an optimized method for 
highly specific predictions of long IDRs. The method uses eight different predictors to derive a 
consensus that is refined to remove short disordered regions and keep only those longer than 20 
residues [82]. The metapredictor offers the possibility to characterize different flavors of disorder, 
by identifying either polyampholytic, positive or negative polyelectrolytic, low complexity regions 
(see 2.4) or regions enriched in cysteine, proline or glycine or polar residues [82]. MobiDB-lite 
works in Linux system and requires Java (version >=7.x) and Python (version 2 and 3). The 
program is easily called by the command line. 

DisPredict2 employs Support Vector Machine with the kernel Radial Basis Function and 
calculates a position specific estimated energy (PSEE) for each amino acid based solely on the 
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primary sequence of a protein. The PSEE depends on the neighborhood region of each amino acid, 
the pairwise contact energies between different amino acid types and their predicted relative 
solvent accessibility. The predictor was trained on short and long disordered sequences from both 
PDB and DisProt [83]. The user can download the software from 
https://github.com/tamjidul/DisPredict2_PSEE.  

To compile and execute the predictor, the following are required: 
- PSI-BLAST (ftp://ftp.ncbi.nih.gov/blast/),  
- SPINE X (http://sparks.informatics.iupui.edu/SPINE-X/),  
- IUPred2A (https://iupred2a.elte.hu/) 
- DAVAR [84] 
- libSVM ( http://www.csie.ntu.edu.tw/~cjlin/libsvm) 
- GCC (http://gcc.gnu.org/) 

rawMSA integrates different methods for the prediction of protein structure characteristics. 
The program works on the raw Multiple Sequence Alignment (hence the name) as input to the 
neural network to extract evolutionary information. The idea is that amino acids with context-
dependent similarities will map together with an embedding layer, as it occurs in natural language 
processing [85]. The program is available at https://bitbucket.org/clami66/rawmsa/src/master/. 

Rosetta ResidueDisorder is an application in the Rosetta suite developed to predict 
disordered regions from protein primary sequence or, for the first time, directly from the 
coordinates of a protein structure [86,87]. Starting from the primary sequence, the software 
generates an ensemble of conformation and average the energy scores of such conformations, 
highlighting disordered regions as the ones energetically less favorable. The last update of the 
software allows also to predict folding/unfolding events [87]. 

In order to use Rosetta ResidueDisorder, the user must download the Rosetta software from 
https://new.rosettacommons.org/docs/latest/getting_started/Getting-started. Practical instruction 
to use Rosetta ResidueDisorder can be found in the Supporting Material from [86]. 

Binary disorder predictors  
The charge/hydropathy method and its derivative FoldIndex is a predictor that has not 

been trained on disordered proteins. It is based on the elegant reasoning that folding of a protein is 
governed by a balance between attractive forces (of hydrophobic nature) and repulsive forces 
(electrostatic, between similarly charged residues) [88]. Thus, globular proteins can be 
distinguished from unstructured ones based on the ratio of their net charge versus their hydropathy. 
The Mean Net Charge (R) of a protein is determined as the absolute value of the difference between 
the number of positively and negatively charged residues divided by the total number of amino 
acid residues. It can be calculated using the program ProtParam at the ExPASy server 
(https://www.expasy.org/resources/protparam). The Mean Hydrophobicity (H) is the sum of 
normalized hydrophobicities of individual residues divided by the total number of amino acid 
residues minus 4 residues (to take into account fringe effects in the calculation of hydrophobicity). 
Individual hydrophobicities can be determined using the ProtScale program at the ExPASy server, 
which provides 24 different predefined hydrophobicity scales derived from the literature. The most 
frequently used is the scale determined by Kyte-Doolittle [89]. To use it, it is sufficient to indicate 
the options "Hphob / Kyte & Doolittle", a window size of 5, and normalizing the scale from 0 to 
1. The values computed for individual residues are then exported to a spreadsheet, summed and 
divided by the total number of residues minus four to yield (H). A protein is predicted as disordered 
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if H < [(R + 1.151) / 2.785]. Alternatively, charge/hydropathy analysis of a query sequence can be 
obtained by choosing this option on the main page of the PONDR server (see 2.2.1). 

A drawback of this approach is that it is a binary predictor, i.e., it gives only a global (i.e., 
not positional) indication, which is not valid if the protein is composed of both ordered and 
disordered regions. It can be only applied to protein domains, implying that a prior knowledge of 
the modular organization of the protein is required.  

A derivative of this method, FoldIndex (https://fold.weizmann.ac.il/fldbin/findex), solves 
this problem by computing the charge/hydropathy ratio using a sliding window along the protein 
[90]. However, since the default sliding window is set to 51 residues, FoldIndex does not provide 
reliable predictions for the N- and C-termini and is therefore not recommended for proteins with 
less than 100 residues.  

1.  Paste the sequence in raw format and click on "process". 
2.  The results page shows a plot that can be saved as an image (png format) by clicking 

on it with the mouse right button. Disordered regions are shown in red and have a 
negative "foldability" value, while ordered regions are shown in green and have a 
positive value. Disorder statistics (number of disordered regions, longest disordered 
region, number of disordered residues and scores) are given below the plot.  

The cumulative distribution function (CDF) is another binary classification method 
[91,92]. The CDF analysis summarizes the per-residue predictions by plotting predicted disorder 
scores against their cumulative frequency, which allows ordered and disordered proteins to be 
distinguished based on the distribution of prediction scores [91,92]. A CDF curve gives the fraction 
of the outputs that are less than or equal to a given value. At any given point on the CDF curve, the 
ordinate gives the proportion of residues with a disorder score less than or equal to the abscissa. 
The outputs of predictors are unified to produce per-residue disorder scores ranging from 0 
(ordered) to 1 (disordered). In this way, CDF curves for various disorder predictors always begin 
at the point (0, 0) and end at the point (1, 1) because disorder predictions are defined only in the 
range [0, 1] with values less than 0.5 indicating a propensity for order and values greater than or 
equal to 0.5 indicating a propensity for disorder. Fully disordered proteins have very low 
percentage of residues with low predicted disorder scores, as the majority of their residues possess 
high predicted disorder scores. On the contrary, the majority of residues in ordered proteins are 
predicted to have low disorder scores. Therefore, the CDF curve of a structured protein would 
increase very quickly in the domain of low disorder scores, and then goes flat in the domain of high 
disorder scores. For disordered proteins, the CDF curve would go upward slightly in the domain 
of low disorder scores, then increase quickly in the domain of high disorder scores. Fully ordered 
proteins thus yield convex CDF curves because a high proportion of the prediction outputs are 
below 0.5, while fully disordered proteins typically yield concave curves because a high proportion 
of the prediction outputs are above 0.5. Hence, theoretically, all fully disordered proteins should 
be located at the lower right half of the CDF plot, whereas all the fully ordered proteins should fall 
in the upper left half of this plot [91,92]. By comparing the locations of CDF curves for a group of 
fully disordered and fully ordered proteins, a boundary line between these two groups of proteins 
could be identified. This boundary line can therefore be used to separate ordered and disordered 
proteins with an acceptable accuracy, with proteins whose CDF curves are located above the 
boundary line being likely to be structured, and proteins with CDF curves below the boundary 
being likely to be disordered [91,92]. CDF-plots based on various disorder predictors have different 
accuracies [92]. PONDR® VSL2-based CDF was found to achieve the highest accuracy, which 
was up to 5-10% higher than the second best of the other five CDF functions for the separation of 
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fully disordered proteins from structured proteins also containing disordered loops or tails. As for 
the separation of fully structured from fully disordered proteins, the CDF curves derived from the 
various disorder predictors all were found to exhibit similar accuracies [92]. CDF analysis can be 
run from the PONDR server (see 2.2.1).  

1. Enter the protein name and paste the sequence in raw (or FASTA) format, choose the 
disorder predictor to be run, tick CDF and click on "Submit Query". 

2.  The result is provided as a plot than can be saved (gif format) by clicking on it with 
the right mouse button. Disorder statistics (number of disordered regions, longest 
disordered region, percentage of disorder, number of disordered residues and scores) 
and CDF output scores are given below the plot. 

The CH-CDF plot is an analytical tool combining the outputs of two binary predictors, the 
Charge-Hydropathy (CH) plot and the CDF plot, both predicting an entire protein as being ordered 
or disordered [93]. The CH-plot places each protein onto a 2D graph as a single point by taking the 
mean Kyte-Doolittle hydropathy of a protein as its X coordinate and the mean net charge of the 
same protein as its Y coordinate. In a CH-plot, structured, globular proteins and fully disordered, 
can be separated by a boundary line [88]. Proteins located above this boundary are likely to be 
disordered, while proteins located below this line are likely to be structured. The vertical distance 
on CH-plot from the location of the protein to the boundary line is then a scale of disorder (or 
order) tendency of the protein. This distance is referred to as the CH-distance. As explained above, 
in CDF-plots, ordered proteins curves tend to stay on the upper left half, whereas disordered 
proteins curves tend to locate at the lower right half of the plot. An approximately diagonal 
boundary line separating the two groups can be identified and the average distance of the CDF 
curves from this boundary is a measure of the disorder (order) status of a given protein and is 
referred to as CDF-distance. By putting together both the CH-distance and the CDF-distance, a 
new method called the CH-CDF plot was developed [93]. The CH-CDF plot provides very useful 
information on the general disorder status of a given protein. After setting up boundaries at CH=0 
and CDF=0, the entire CH-CDF plot can be split into four quadrants. Starting from the upper right 
quadrant, by taking the clockwise sequence, the four quadrants are named Q1 (upper right), Q2 
(lower right), Q3 (lower left), and Q4 (upper left). Proteins in Q1 are structured by CDF, but 
disordered by CH; proteins in Q2 are predicted to be structured by both CDF and CH; proteins in 
Q3 are disordered by CDF but structured by CH; and proteins in Q4 are predicted to be disordered 
by both methods. The location of a given protein in this CH-CDF plot gives information about its 
overall physical and structural characteristics. Figure 3 shows how to build a CH-CDF plot.  

Presently, there is no publicly available automated server for the generation of CH-CDF 
plots.   

Non-conventional disorder predictors  
The hydrophobic cluster analysis (HCA) is a non-conventional disorder predictor in that it 

provides a graphical representation of the sequence that helps in identifying disordered regions (see 
[94]). Although HCA was not originally intended to predict disorder, it is very useful for unveiling 
disordered regions [95]. HCA outputs can be obtained from http://mobyle.rpbs.univ-paris-
diderot.fr/cgi-bin/portal.py?form=HCA#forms::HCA. HCA provides a two-dimensional helical 
representation of protein sequences in which hydrophobic clusters (i.e., represented by the most 
hydrophobic residues V, I, L, M, Y, W, F) are plotted along the sequence (Figure 4) [95]. As such, 
HCA is not stricto sensu a predictor. Disordered regions are recognizable as they are depleted in 
(or devoid of) hydrophobic clusters. HCA stands aside from other predictors, since it provides a 
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representation of the short-range environment of each amino acid, thus giving information not only 
on order/disorder but also on the folding potential (see 2.3). Although HCA does not provide a 
quantitative prediction of disorder and rather requires human interpretation, it provides additional, 
qualitative information as compared to automated predictors. In particular, HCA highlights coiled-
coils, regions with a biased composition, regions with potential for induced folding and very short 
potential globular domains (for examples see [17,16,19]). Finally, it allows meaningful comparison 
with related protein sequences and enables a better definition of the boundaries of disordered 
regions. On the other hand, if HCA is a powerful tool to delineate regions devoid of regular 
secondary structure elements, it is poorly suited to recognize molten and premolten globules, i.e., 
proteins with a substantial amount of secondary structure but devoid of stable tertiary structure.  

1.   Paste the sequence (raw format) in the “Input Data” tab. Alternatively, upload a text 
file containing the query sequence. 

2.  Choose the output format (PDF or PostScript format) in the “Options” tab. The HCA 
plot can also be generated in black and white by clicking on “Yes” in the 
corresponding option. 

3.   Click on the “Run” button. The HCA plot is returned on line and can be saved by 
clicking on the floppy disk icon. 

2.2.2. Metapredictors 
GeneSilico MetaDisorder MD (http://genesilico.pl/metadisorder/) is a free open tool for 

prediction of protein disorder. The MetaDisorder web service is articulated into four different meta-
predictors. The first one of them is metadisorder, built on numerous disorder predictors, which are 
DISOPRED2, DisEMBL (3 versions), Globplot, DISprot, RONN, iPDA, IUPred (2 versions), 
Poodle-s, Pdisorder, Poodle-l, PrDOS and Spritz (2 versions). This meta-server was among the best 
predictors in CASP8 (2008). The second one is metadisorder3d, based on fold recognition methods 
to find similar sequences, such as Phyre, Pcons, HHsearch, PSI-BLAST, FFAS, MGenThreader. 
A genetic algorithm is used to deduce protein disorder using gaps in alignments. Finally, the 
metadisordermd combines the previous two meta-methods in a new one. 

The last and most famous is metadisorderm2, which corresponds to an improved version of 
the first metadisorder released in 2008 that instead of using the Sw score [Sw=(2ACC-1) where 
ACC=(Sensitivity+Specificity)/2], uses the so-called Sww score, which tries to capture the best 
features of the Sw score and AUC (Area Under a “Receiver Operating Characteristic”, ROC, curve) 
that is indicative of the classifier accuracy. One interesting point to mention here is that among 
these predictors are also other metaservers. As such, MetaDisorderMD2 is an extreme application 
of the concept that “the combination of different disorder predictors helps in refining the 
predictions”. This method is based on 13 different disorder predictors and 8-fold recognition 
methods. As a result, it provides the user with the raw CASP formatted output of each disorder 
predictor and corresponding alignments for the fold recognition methods, along with a computed 
consensus in the same format. It also displays a plot that allows one to compare the consensus to 
any other disorder predictor result [96]. 
Metadisorderm2 was among the best predictors of protein disorder evaluated during independent 
tests in CASP9 (2010). 

1. Enter a title to the query, the e-mail address and paste sequence (raw format) in the 
corresponding field. Then click on the "Submit" button. 

2. The results are displayed in an HTML page but can also be seen in raw text from a 
link available in the page results. An email is sent giving a link towards the result 
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page. On the graphical output, residues whose disorder probability is above 0.5 are 
considered as disordered. The results of all four metapredictors are shown.  

MULTICOM is a protein tertiary structure prediction server. It provides information on 
secondary structure, solvent accessibility, disorder, domain boundaries, along with predicted 
models (in PDB format). It is a simple averaging approach that is different from other meta-
methods based on consensus voting [51]. MULTICOM makes disorder predictions based on a five-
layers architecture, divided into target identification and ranking, multiple-template combination, 
model generation and model refinement [97]. The MULTICOM protein structure prediction system 
was enhanced during 2018 CASP13 experiment with three components: distance-driven template-
free modeling (ab initio), contact distance prediction based upon deep convolutional neural 
network, protein model ranking improved by deep learning and contact prediction. MULTICOM 
was ranked 3rd out of all 98 predictors in either template-based structure modeling and template-
free in CASP13 [98]. The server can be reached from 
http://sysbio.rnet.missouri.edu/multicom_cluster/ and returns results by e-mail in a CASP/PDB 
format.  

1. Enter a target name, the protein sequence in raw format and provide the email address 
in the corresponding field. Then click on the "Predict" button. 

2. Open the result e-mail that contains model evaluation, model combination, and model 
refinement data in the CASP/PDB format. 

The DEPICTER (DisorderEd PredictIon CenTER) server combines together ten disorder 
predictors to predict disorder, disorder functions, protein and nucleic acids bindings, linkers, and 
moonlighting regions. The prediction of disorder is based on a consensus calculated on three 
disorder predictors (SPOT-Disorder single, IUPred-long and IUPred-short). The consensus method 
works on 54 features extracted from each reside in the input protein sequence and the two flanking 
residues, using two sliding windows (e.g., prediction score for predicted residue, average of the 
prediction sores from the main window). These features are then analyzed with four machine 
learning algorithms to generate the final propensity score (values between 0 and 1). Residues with 
score greater than the threshold of 0.5 are considered as disordered. The predictor was trained on 
sequences from DisProt and PDB [99]. The DEPICTER server is available at 
http://biomine.cs.vcu.edu/servers/DEPICTER/.  

1. Enter or upload a file with protein sequence, provide your e-mail address (optional). 
2. Choose the methods to compute (e.g., disorder prediction, protein binding regions 

prediction, DNA-binding regions and so on - by default, all methods are selected) and 
click “RUN”.  

3. Results are returned online and sent by email if an address is provided. The results 
page shows the binary prediction of disordered regions (in grey), disordered protein-
binding regions (green), RNA/DNA-binding regions (light/dark blue) linkers (pink), 
and multifunctional regions (violet). For a complete prediction visualization, untick 
“Only binaries”. Hovering the mouse on the disordered region returns the amino acid 
position and its disorder propensity score. Results can be downloaded as a text file by 
clicking on “RESULTS.txt”. 

MFDp (Multilayered Fusion-based Disorder predictor) is a metapredictor that is made of 
three support vector machines specialized for the prediction of disordered regions. It combines 
these results with multiple complementary disorder predictors, namely DISOclust, DISOPRED, 
IUPRED-L and IUPRED–S. In addition, MFDp also takes into account secondary structure 
predictions, solvent accessibility, backbone dihedral torsion angles and B-factors in order to 
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generate its consensus [100]. The web server can be found at 
http://biomine.cs.vcu.edu/servers/MFDp/. It accepts up to five sequences at a time.  

1. Enter the protein sequence in FASTA format and provide the e-mail address in the 
corresponding field. Choose the predictor for which you want to see the result 
(DISOclust, DISOPRED, IUPRED L and/or IUPRED S) in addition to the MFDp 
prediction, and then click on the "Run" button. 

2. Results can be accessed from a link displayed on the MFDp processing page. An e-
mail is also sent giving a link towards the result page. Results are in the form of an 
alignment of the different predictor results and the consensus prediction built by 
MFDp. Disordered residues are marked by a red "D" character and the confidence 
values are reported below. In addition, results can also be downloaded in csv format. 

The standalone version of MFDp is freely available to academic users upon request by sending an 
e-mail to mizianty@ualberta.ca. 

MFDp2 (http://biomine.ece.ualberta.ca/MFDp2/) combines per-residue disorder 
probabilities predicted by MFDp with per-sequence disorder content predicted by DisCon. Then 
predictions are filtered with a post processing filter [101]. The server accepts up to 100 sequences. 

1. Enter the protein sequence in FASTA format and provide the e-mail address in the 
corresponding field.  

2. The output shows optimized per-residue disorder probability profiles, per-sequence 
disorder content, list (with analysis) of disordered segments, and several profiles that 
help in the interpretation of the results. The results are available online in a graphical 
format and can be also downloaded in a text-based (parsable) format. 

DisCoP (http://biomine.cs.vcu.edu/servers/disCoP/) (Disorder Consensus‐based Predictor) 
goes through a three stage process (i) sequence processing by SPINE-D, DISOclust, MD and 
DISOPRED2, (ii) elaboration of predictions to generate features and (iii) development of a 
regression model trained on the features to produce DisCoP’s prediction [102,103]. The server 
accepts up to five protein sequences. 

1. Enter or upload the sequence in FASTA format and provide an e-mail address. To 
start the prediction click on “Run disCoP”. 

2. The results page is returned by clicking on the given link in the status page, or on the 
link received by e-mail. It includes a visualization of the predictions and a text file 
with the prediction results (downloadable in csv format). The results are color-coded 
and provided as a real-valued confidence (propensity for disorder) and a binary 
prediction (disordered vs structured residue).  

PONDR-FIT uses a consensus artificial neural network (ANN) prediction method that 
combines PONDR-VLXT, PONDR-VSL2, PONDR-VL3, FoldIndex, IUPred, and TopIDP [104]. 
The predictor can be run online for academic use only, from http://original.disprot.org/pondr-
fit.php. Commercial users must obtain permission from http://www.pondr.com/. 

1. Enter the sequence file in FASTA (or EMBL) format and then click on the "Submit" 
button.  

2. The server returns a graphical plot of disorder probabilities for each amino acid 
position, along with a raw output file of the results. 

Interestingly, the server enables specifying regions of interest using a specific syntax described in 
the main page. 
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PredictProtein (www.predictprotein.org) is a server based on a system of neural networks 
that combines the outputs from several original prediction methods, with the evolutionary profiles 
and sequence features that correlate with protein disorder such as predicted solvent accessibility 
and protein flexibility. Beyond providing predictions of secondary structure, trans-membrane 
regions and disulphide bridges among other features, the server also returns predictions of disorder. 
In particular, the NORSnet, UCON, PROFBval and MetaDisorder (MD) programs can be run from 
the PredictProtein server.  

NORSnet is a neural network-based method for the identification of disordered loops [105]. 
NORSnet was trained to distinguish between very long contiguous segments with non-regular 
secondary structure (NORS regions) and well-folded proteins. The program is also provided as a 
Debian package that can be found at https://rostlab.org/owiki/index.php/Norsnet. 

Ucon is a method that combines predictions for protein-specific contacts with a generic 
pairwise potential. This predictor was trained against the DisProt and the PDB. It performs well in 
predicting proteins with long disordered regions [106]. Ucon can also be downloaded as a Debian 
package from https://rostlab.org/owiki/index.php/Ucon.  

MD (Meta Disorder) [107] runs a panel of four predictors carefully selected on the basis of 
their complementarity in predicting disorder, namely DISOPRED2, PROFbval [108], NORSnet 
and Ucon. Once it has gathered results from these predictors it calculates the arithmetic average 
over the four raw outputs. The results of MD that are included within the PredictProtein output, 
come in a raw format yielding the computed probability for the MD consensus associated to each 
distinct disorder predictor results. Like UCON and NORSp, MD can be also downloaded as a 
Debian package from http://rostlab.org/debian/pool/non-free/m/metadisorder/. 

From the PredictProtein page:  
1. Enter the amino acid sequence (raw data) and click on the "PredictProtein" button.  
2. Either enter the e-mail address without creating an account (in which case you will 

run Open PredictProtein) or create an account that will allow you subsequently to 
login with a password. Note that Open PredictProtein does not store jobs. 
Alternatively, open the link shown and wait until the end of the analysis. 

3. Upon completion of prediction, the user is sent an e-mail with a link to the result page. 
Boundaries of NORS regions are indicated above the annotated sequence in which 
solvent exposure, secondary structure elements, coils and trans-membrane regions are 
also indicated. On the left side of the result page, different layout options can be 
chosen. Clicking on “Protein Disorder and Flexibility” will give access to prediction 
results as provided by PROFBval, Ucon, NORSnet and MD in the form of colored 
boxes. Mouse over the different colored boxes to learn more about the annotations. 

MeDor (MEtaserver of DisORder) (http://MeDor.afmb.univ-mrs.fr/) stands aside with 
respect to other metapredictors as (i) it provides an output in a specific format that can be annotated, 
saved and further modified, and (ii) was not originally intended to provide a consensus of disorder 
prediction and was rather conceived to speed up the disorder prediction step by itself and to provide 
a global overview of predictions [29]. It is presently being updated, and the updated version is 
conceived to also generate two consensus disorder predictions, one corresponding to regions 
predicted as disordered by all the predictors and one corresponding to regions predicted as 
disordered by the majority of predictors.  

MeDor allows fast, simultaneous analysis of a query sequence by multiple predictors and 
easy comparison of the prediction results. It also enables a standardized access to disorder 
predictors and allows meaningful comparisons among various query sequences. It provides a 
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graphical interface with a unified view of the output of multiple disorder predictors. Beyond 
providing a graphical representation of the regions of predicted disorder, MeDor is also conceived 
to serve as a tool allowing to highlight specific regions of interest and to retrieve their sequence. In 
addition, MeDor outputs can be saved, modified and printed. Presently, the following programs are 
run by MeDor: a secondary structure prediction (SSP), based on the StrBioLib library of the 
Pred2ary program [109], HCA, DorA (an unpublished predictor developed in the AFMB lab that 
uses size and abundance of hydrophobic clusters in the HCA plot to predict disorder), MoreRONN, 
FoldUnfold, FoldIndex, MobiDB-lite, and Phobius. MobiDB-lite is a metapredictor that uses eight 
different disorder predictors (see 2.2.1). Phobius (http://phobius.sbc.su.se/index.html) predicts 
transmembrane regions. While SSP and HCA do not require a web connection, the other predictors 
are remotely launched through connection to the public web servers. Additional predictors could 
be nevertheless easily implemented in MeDor in the future. Predictors to be run can be selected 
from the MeDor input frame. 

MeDor provides a graphical output, in which the sequence query and the results of the various 
predictors are featured horizontally, with a scroll bar allowing progression from the N-terminus to 
the C-terminus. All predictions are drawn along the sequence that is represented as a single, 
continuous horizontal line. MeDor also allows highlighting specific regions of interest and 
retrieving their sequence. Output files are in the specific (.med) format that is made of XML and 
thus can provide a graphical output for any program that return such a format. As XML is quite 
simple to access, it is also possible to edit the “.med” file manually to get a fully customized output 
that could even integrate additional predictions not initially provided. The (.med) file format can 
also be opened by any XML reader and the format is well described by the “xsd” file provided with 
the program. It is also possible to customize the output (highlight regions of interest, change colors, 
add and edit comments...) and to retrieve the predictor statistics values at each position, as well as 
the amino acid sequence of specific regions of interest.  

1.  Go to the MeDor home page (http://MeDor.afmb.univ-mrs.fr/) 
2. Paste the sequence in either raw or FASTA format and optionally enter the sequence 

name 
3.  Click on "Start MeDor" 
4.  Alternatively, MeDor can be downloaded (chose the appropriate version according to 

your computer environment). Using the downloaded version of MeDor instead of the 
applet version enables the user to (i) print the results, (ii) save the output as an image, 
(iii) save (and load) files in the MeDor format, (iv) access the comment panel, (v) 
import a sequence by providing the SwissProt accession number. 

QUARTERplus (QUality Assessment for pRotein inTrinsic disordEr pRedictions) 
(http://biomine.cs.vcu.edu/servers/QUARTERplus/) is a server that provides disorder predictions 
along with easy to interpret residue-level quality assessment scores (QA) that reliably quantify the 
residue-level predictive quality of the predictors [111]. QA scores complement the propensities 
produced by the implemented disorder predictors by identifying regions where disorder predictions 
are more likely to be correct. The deep neural network utilizes the QA scores to identify and fix 
the regions where the original disorder predictions are poor. From the server main page, the user 
can also choose the “Multiple Sequence Mode” that enables analyzing up to 50 sequences by 
choosing one among the following predictors: disEMBL-465, disEMBL-HL, GlobPlot, IUPred-
long, IUPred-short and VSL2B. The server provides disorder prediction and QA scores for the 
selected predictor. The default option on the main page is the “Single Sequence Mode”, which 
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provides disorder prediction and QA scores for QUARTERplus Meta Predictor, SPOT Disorder, 
Disopred3 and IUPRED-short. 

1.  Paste the protein sequence in FASTA format.  
2. Enter your e-mail address.  
3. Click on “Run”. 
4. Upon completion of prediction, the user is sent an e-mail with a link to the result page 

and to a csv file. Results are in the form of a plot with per residue disorder scores for 
the four predictors (with residues with a score above 0.5 being considered as 
disordered). Below the graph, for each predictor is shown a bar with disordered 
regions shown in black and ordered regions shown in grey. Under each bar is another 
bar with pre-residue QA scores colored from red (poorly reliable) to green (highly 
reliable).  

2.2.3. Combining predictors and experimental data 
An extreme extension of the combined use of different predictors is the combined use of in 

silico and experimental approaches with the ultimate goal of inferring as many structural 
information as possible while limiting the experimental characterization to relatively low-
demanding experiments. An illustration of such a combined approach can be found in [112], where 
far-UV circular dichroism and computational analyses were combined. In that study, the authors 
plotted the ratio between the Q222 and Q200 (Q222/Q200) of a set of IDPs under study, along with the 
Q222/Q200 ratio of a set of well-characterized random coil-like and premolten globule-like proteins 
[113]. The authors then set an arbitrary threshold of the Q222/Q200 ratio that allows discrimination 
between random coil-like IDPs and IDPs adopting a premolten-like conformation. Then, they 
generated a plot in which the distance of each IDP under study from this threshold was plotted as 
a function of its CH-distance in the CH plot (Figure 5). This analysis was intended to combine, 
and hence extend, the two methods previously introduced by Uversky and co-workers [88,113] to 
allow random coil-like forms to be readily and easily distinguished from premolten-like forms 
among proteins predicted to be intrinsically disordered by the hydropathy/charge method. In the 
resulting plot, increasingly negative CH distances designate proteins with increasing disorder, 
while increasingly positive Q222/Q200 distances designate IDPs becoming progressively more 
collapsed, as a consequence of an increased content in regular secondary structure. Thus, the left 
bottom quadrant is expected to correspond to IDPs adopting a random coil-like conformation, while 
the right bottom quadrant is supposed to designate IDPs adopting a premolten globule-like 
conformation. 

2.3. Identifying disordered regions involved in binding to partners  

IDPs bind to their target(s) through interaction-prone short segments that become ordered 
upon binding to partner(s). These regions are referred to as "Molecular Recognition Elements" 
(MoREs) or "Molecular Recognition Features" (MoRFs) [114-116] or "Intrinsically Disordered 
Binding" (IDB) sites [78]. 

Before specific predictors became publicly available, these regions could be successfully 
identified using tools that had not been specifically designed to this aim: indeed, PONDR VL-XT 
and HCA were found to be very helpful to identify disordered binding regions. Owing to its high 
sensitivity to local sequence peculiarities, PONDR VL-XT was noticed to be able to identify 
disorder-based interaction sites [114] (for examples see [117,118]). 



27 
 

HCA is similarly instrumental for the identification of regions undergoing induced folding, 
because burying of hydrophobic residues at the protein-partner interface is often the major driving 
force in protein folding [119,78]. In some cases, hydrophobic clusters are found within secondary 
structure elements that are unstable on their own in the free protein, but can stably fold upon 
binding to a partner. Therefore, HCA can be very informative in highlighting potential induced 
folding regions (for examples see [50,120,112]).  

1.   Perform HCA on the query sequence using either the Mobyle portal or the MeDor 
metaserver (see 2.2.2) and look for short hydrophobic clusters occurring within 
disordered regions. 

2.   Perform prediction using PONDR VL-XT (see 2.2.1) and look for sharp (and short) 
drops in the middle of disorder predictions.  

In the last years, a few predictors aimed at identifying disorder-based regions have become 
publicly available. The majority of the MoRFs predictors are accessible via a web interface and 
they will be detailed below accompanied with a short description of their philosophy and details 
on how to run them. Additionally, some codes are freely available to be run in local mode, such as 
MoRFMPM (minimax probability machine) (https://github.com/HHJHgithub/MoRFs_MPM) 
[121], Predict-MoRF (https://github.com/roneshsharma/Predict-MoRFs) [122] and MoRFpred-
plus (https://github.com/roneshsharma/MoRFpred-plus) [123]. Note that some methods, such as α-
MoRFpred [114], α-MoRFpred-II [115], retro-MoRF [124] and the one developed by Fang and 
coworkers [125], are not available (as of May 2021) as web servers or as downloadable codes. 
Finally, some predictors, like MFSPSSMpred [126] and SPOT-MoRF [127], are currently not 
reachable. 

ANCHOR2 (https://iupred2a.elte.hu/), accessible from the IUPred2A server page, seeks to 
identify segments that reside in disordered regions that cannot form enough favorable intrachain 
interactions to fold on their own and are likely to gain stabilizing energy by interacting with a 
structured protein partner. The underlying philosophy of ANCHOR relies on the pairwise energy 
estimation approach developed for IUPred [128]. Detailed description of how the predictor works 
is reported in section 3.2.2.2.1 and an example of the output is shown in Figure 6A.  

The program is also available as a stand-alone version and can be run as a default sub-
routine within IUPred2A. It can be obtained by clicking on “Download” from the program main 
page. 

MoRFpred (http://biomine-ws.ece.ualberta.ca/MoRFpred/) identifies all types of MoRFs 
(α, β, coil and complex) [129]. MoRFpred uses a novel design in which annotations generated by 
sequence alignment are fused with predictions generated by a support vector machine, which uses 
a custom designed set of sequence-derived features. The features provide information about 
evolutionary profiles, selected physiochemical properties of amino acids, predicted disorder, 
solvent accessibility and B-factors. 

1.  Paste the sequence in FASTA format, provide the e-mail address (required). Up to five 
sequences can be entered. 

2. Click on "Run MoRFpred". 
3.  Results are returned on line by clicking on a link to the results page (an e-mail is also 

sent as soon as results are available). The first line displays the query sequence, while the second 
and third lines show the predictions. The second row annotates Molecular Recognition Feature 
(MoRF) (marked as "M", in red) and non-MoRF (marked as "n", in green) residues, and the third 
row gives prediction scores (the higher the score the more likely it is that a given residue is a 
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MoRF). A horizontal scroll bar allows moving along the sequence. Results can also be downloaded 
in csv format. 

fMoRFpred (http://biomine.cs.vcu.edu/servers/fMoRFpred/), for fast Molecular 
Recognition Feature predictor, can be used instead of its counterpart MorRFpred for faster 
prediction but with a slightly less accuracy [130]. 

1.  Paste the sequence in FASTA format, provide an e-mail address (required). Up to 
2000 sequences can be entered or alternatively browse for a local text file containing 
the sequences to analyze by clicking on “Choose a file”. 

2.  Click on "Run fMoRFpred". 
3.  Results are returned as a downloadable text file in the result page. Prediction for each 

protein is given in 5 lines: 1) protein name, 2) protein sequence where uppercase and 
lowercase amino acids residues stand for predicted MoRF and non-MoRF, 
respectively, 3) MoRFs probability prediction, 4) MoRFs binary prediction where “1” 
and “0” stands for predicted MoRF and non-MoRF residue, respectively, 5) disorder 
binary prediction where “1” and “0” stands for predicted disordered and ordered 
residue, respectively. 

MoRFchibi SYSTEM (https://morf.msl.ubc.ca/index.xhtml) is a set of three different 
MoRF predictors: MoRFCHiBi, MoRFCHiBi_Light and MoRFCHiBi_Web [131]. MoRFCHiBi, 
which is the fastest, uses only the physicochemical properties of amino acids. MoRFCHiBi_Light 
employs Bayes rule to integrate the MoRFCHiBi score as well as the disorder score generated by 
ESpritz. It accurately detects long MoRF sequences (> 30 residues). Finally, MoRFCHiBi_Web, 
which is the most accurate, integrates MoRFCHiBi scores as well as disorder propensity and 
conservation information using Bayes rule. Conservation information is based on the fact that 
MoRFs are more conserved than other regions in disordered proteins. Note that MoRFchibi 
SYSTEM is available as a web server, a RESTful web server and as a downloadable software. 

1.   Enter the sequence in FASTA format. 
2.  Click on “Submit Job”. Provide an e-mail optionally. 
3.  Predictions usually are returned in less than a minute for a single sequence and appear 

on line as a green row under the sequence input field. To download the text results, 
click on “Ready” and then on “Download”. The text file is composed of 8 columns: 
1) the residue index, 2) the residue name, 3) the MoRFCHiBi_Web (MCW) scores, 
4) the MoRFCHiBi_Light (MCL) scores, 5) the MoRFCHiBi (MC) scores, 6) another 
MoRF prediction, MoRFDC (MDC) based on the disorder prediction and the 
conservation score, 7) the disorder propensity score (IDP) and 8) the initial 
conservation propensity score (ICS). 

4.  Alternatively, MoRFchibi SYTEM provides a user-friendly graph to visualize 
predicted MoRFs (Figure 6B). The graphical results appear after clicking on 
“Graph”. By default, the graph displays the MCW predictions (in red) but it’s still 
possible to display the other predictions scores by clicking on the items on the right 
panel. To display the identified MoRFs sequences, click on “Toggle MoRF Bands” 
under the graph. The MoRFs appear as blue areas on the graph. Passing the mouse 
over the graph will display each amino acid residues for clear interpretation of the 
predictions. Graphical results can be downloaded by clicking on the “≡” symbol in 
PNG, JPEG, PDF or SVG formats. 

DISOPRED3 is a disorder predictor (see 2.2.1) that has been implemented with a protein 
binding site predictor [132]. The predictor seeks to identify protein binding sites in disordered 
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regions that fold upon binding to a protein partner using a support vector machine (SVM) that takes 
into account sequence conservation, amino acids composition as well as the localization of the 
analyzed region along the sequence. Guidelines to run this predictor are found in section 3.2.1.1.6. 
An example of a DISOPRED3 output is shown in Figure 6C. 

OPAL (http://www.alok-ai-lab.com/tools/opal/) combines the predictions of MoRFchibi 
and PROMIS (for Prediction of MoRFs Incorporating Structure) and computes a score to predict 
MoRFs with a size comprised between 5 and 25 residues [133]. MoRFchibi is based on the 
physicochemical properties of amino acids while the PROMIS model is used to discriminate 
between MoRF and non-MoRF residues according to structural attributes such as the half-sphere 
exposure (HSE), the solvent accessible surface area (ASA) and backbone angles of the disordered 
protein sequence.  

1.   Paste the raw protein sequence in the associated field. The sequence must be at least 
26 residues long. E-mail address is optional. 

2.  Click on “Submit Job”. A Job Id is given, enter it in the “Download Results” section 
and press “View Output”. Refresh until results are returned or wait for an e-mail. 

3.  Predictions output are returned on line as a text format comprising 5 columns: 1) 
residue index, 2) residue name, 3) the OPAL scores, 4) the PROMIS score and 5) a 
binarized score where 0 corresponds to non-MoRF region and 1 to MoRFs. Results 
can be saved locally as a text file by copy-pasting the data. 

Note that the OPAL+ server (http://www.alok-ai-lab.com/tools/opal_plus) has been 
developed. It slightly outperforms its OPAL counterpart by 0.4 – 0.7 % in several MoRF test sets 
[134]. OPAL+ incorporates the hidden Markov model (HMM) profiles and physicochemical 
properties of MoRFs and their flanking regions. OPAL+ is available as a web server or 
downloadable from https://github.com/roneshsharma/OPAL-plus. The prediction takes longer than 
OPAL since OPAL+ required a HMM alignment file, which is obtained from the HHblits web 
server (https://toolkit.tuebingen.mpg.de/tools/hhblits), as well as hsa2, hsb2 and sp3 files. These 
last files are generated by the SPIDER3 server which is currently unavailable since the Spark lab, 
which is hosting SPIDER and several other predictors (e.g spot-MoRF), is currently moving to 
another server. SPIDER2 or SPIDER3 packages are nonetheless still downloadable from 
https://sparks-lab.org/downloads/. 

DisoRDPbind (http://biomine.cs.vcu.edu/servers/DisoRDPbind/) predicts RNA, DNA and 
protein binding sites within disordered regions [135]. Four steps are performed by the predictor: 1) 
physicochemical properties of amino acids composing the input sequence are determined, the 
secondary structure and the disorder propensity are predicted and the sequence complexity is 
estimated, 2) numerical features proper to DNA, RNA and protein are generated from the previous 
step for the prediction of DNA, RNA and protein-binding residues, 3) the features are used as input 
for three logistic regression models (for each interaction type) to compute a propensity score for 
each amino acid, and 4) these scores are combined with functional annotations from sequence 
alignment generated by BLAST providing the final prediction.  

1.  Paste the input sequence in FASTA format and provide an e-mail address (required). 
Up to 5000 sequences can be entered or alternatively browse for a local text file 
containing the sequences to analyze by clicking on “Choose a file”. 

2.  Click on "Run DisoRDPbind". 
3.  Results are returned in seconds as a downloadable text file in the result page. 

Prediction for each protein is given in 8 lines: 1) protein name, 2) protein sequence 
where uppercase amino acids are predicted to interact with DNA, RNA or protein 
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while the lowercase amino acids residues do not, 3) binary results for each amino 
acids for the RNA-binding prediction (1: predicted to bind, 0: doesn’t bind), 4) RNA-
binding propensity scores, 5) binary results for each amino acids for the DNA-binding 
prediction (1: predicted to bind, 0: doesn’t bind), 6) DNA-binding propensity scores, 
7) binary results for each amino acids for the protein-binding prediction (1: predicted 
to bind, 0: doesn’t bind), 8) protein-binding propensity scores. Results can be saved 
locally as a text file by copy-pasting the data. 

2.4. General procedure for disorder prediction 

As already discussed, since the performance of predictors is dependent on both the type (i.e. 
short versus long, complete versus partial) of disorder they predict and on the type of disorder 
against which they were trained, multiple prediction methods need to be combined to improve the 
accuracy and specificity of disorder predictions. Figure 7 illustrates a general sequence analysis 
procedure that integrates the peculiarities of each method to predict disordered regions.  

1.   Retrieve the amino acid sequence and the description file of the protein of interest by 
entering the protein name at the UniProt (http://www.uniprot.org) in the "Search" 
field. 

2.  Generate a multiple sequence alignment. A set of related sequences can be obtained 
by running HHblits (http://toolkit.tuebingen.mpg.de/hhblits). Click on the "get 
selected sequences" option and save them to a file in FASTA format. Use this file as 
input for building up a multiple sequence alignment using TCoffee 
(http://tcoffee.crg.cat/apps/tcoffee/do:regular). Mark variable regions as likely 
corresponding to flexible linkers or long disordered regions. 

3.  Search for long (>50 residues) regions devoid of predicted secondary structure using 
the PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/psiform.html) [136] and 
PredictProtein (http://www.predictprotein.org/) servers. 

4.  Using either the amino acid sequence or the UniProt ID, search the D2P2 and 
MobiDB databases. As D2P2 does not cover all organisms, and MobiDB does not 
include IDEAL entries, it is also recommended to search the IDEAL database. Search 
also the PED. 

  In case no or incomplete information about disordered regions is obtained in this way, 
the analysis will have to be refined by performing the following steps.  

5.   Perform an analysis of sequence composition using the ProtParam ExPASy server 
(http://www.expasy.ch/tools/protparam.html) and compare the results with the 
average sequence composition of proteins within the UniProtKB/Swiss-Prot database 
(http://www.expasy.ch/sprot/relnotes/relstat.html).  

6.   Perform an analysis of sequence complexity using the SEG program [137]. Although 
the SEG program is implemented in many protein prediction servers (such as 
PredictProtein for instance), the program can also be downloaded from 
ftp://ftp.ncbi.nih.gov/pub/seg/seg, while simplified versions with default settings can 
be run at either http://mendel.imp.univie.ac.at/METHODS/seg.server.html or 
http://www.ncbi.nlm.nih.gov/BLAST or 
http://mendel.imp.ac.at/METHODS/seg.server.html. The stringency of the search for 
low-complexity segments is determined by 3 user-defined parameters: trigger 
window length [W], trigger complexity [K(1)] and extension complexity [K(2)]. 
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Typical parameters for disorder prediction of long non-globular domains are [W]=45, 
[K(1)]=3.4 and [K(2)]=3.75, while for short non-globular domains are [W]=25, 
[K(1)]=3.0 and [K(2)]=3.3. Note however, that low complexity regions can also be 
found in ordered proteins, such as coiled-coils and other non-globular proteins like 
collagen.  

7.   Search for (i) signal peptides and transmembrane regions using the Phobius server 
(http://phobius.sbc.su.se/index.html) [138], (ii) leucine zippers using the 2ZIP server 
(http://2zip.molgen.mpg.de/) [139], (iii) coiled-coils using programs such as Coils 
(http://www.ch.embnet.org/software/COILS_form.html) [140] and (iv) regions 
forming collagen triple-helices. Note that the identification of coiled-coils is crucial 
since they can lead to miss-predictions of disorder (for examples see [16,19]). 
Likewise, it is important to identify regions forming collagen triple helices otherwise 
they will be predicted as IDRs due to their high content in Gly and Pro residues. It is 
also recommended to use DIpro (http://contact.ics.uci.edu/bridge.html) [141] to 
identify possible disulfide bridges and to search for possible metal-binding regions 
by looking for conserved Cys3-His or Cys2-His2 motifs in multiple sequence 
alignments. Indeed, the presence of conserved cysteines and/or of metal-binding 
motifs prevents meaningful local predictions of disorder within these regions, as they 
may display features typifying disorder while gaining structure upon disulfide 
formation or upon binding to metal ions [88].  

8.   Run Pfam and CATH HMMs to identify structured domains [142,143]. It is also 
recommended to run Pfam HMMs to identify regions forming collagen triple-helices, 
otherwise they will be predicted as IDRs due to their high content in Gly and Pro 
residues. 

9.   Run HCA to highlight regions devoid of hydrophobic clusters and with obvious 
sequence bias composition. 

10.  Run disorder predictions and identify a consensus of disorder. Since running multiple 
prediction methods is a time-consuming procedure, and since combining several 
predictors often allows achieving accuracies higher than those of each of the 
component predictors, it is recommended to perform predictions using 
metapredictors. As a first approach, we suggest to use the default parameters of each 
metapredictor, as they generally perform at best in terms of accuracy, specificity and 
sensitivity. Once a gross domain architecture for the protein of interest is established, 
the case of domains whose structural state is uncertain can be settled using the 
charge/hydropathy method, which has a quite low error rate. As a last step, boundaries 
between ordered and disordered regions can be refined using HCA, and regions with 
propensity to undergo folding coupled to binding can be identified using 
MoRFchibiSYSTEM or OPAL, which are the most accurate predictors as discussed 
in [26]. 
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Figure legends 
 

Figure 1. Output provided by the D2P2 database for human p53, a thoroughly investigated 
protein (UniProt ID P04637) containing intrinsically disordered regions. This output well 
illustrates the amount of information that can be obtained on both structural organization and post-
translational modifications (PTM). The predicted Superfamily and Pfams domains (colored blocks) 
are shown. Regions predicted as disordered by the various predictors are shown along with a 
predicted disorder agreement. The level of agreement between all of the disorder predictors is 
shown as color intensity in an aligned gradient bar below the predictions (with a color code ranging 
from clear to deep blue with increasing agreement). The green segments represent disorder that is 
not found within a predicted SCOP domain. Below the disorder agreement line, ANCHOR binding 
sites are displayed (yellow blocks with zigzag infill), along with PTM sites from PhosphoSitePlus 
when known (shown as lettered spheres hanging below other predictions). 
Figure 2. Output provided by DescribePROT for human p53 showing the various predicted 
features ranging from disorder, solvent accessibility secondary structure, protein and nucleic acid 
binding sites, signal peptides, conservation and linker regions.  

Figure 3. The CH-CDF plot for an IDP (red) and a structured protein (green). (A) Disorder 
prediction curve by PONDR ® VSL2. The dashed line separates disordered from ordered residues. 
(B) CH plot for the two hypothetical proteins. The solid grey line represents the border between 
disordered and ordered proteins. The distance of each protein from the line is the Y-coordinate of 
that protein in the CH-CDF plot. (C) CDF plot of the two proteins. The average of the distances 
from the CDF curve to the boundary line (in gray) is the X-coordinate of that protein in the CH-
CDF plot. D) CH-CDF plot of the two protein. The graph is divided in four quadrants (Q1-4) as 
explained in the text. 

Figure 4. HCA plot of Hendra virus phosphoprotein (UniProt ID O55778). Hydrophobic amino 
acids (V, I, L, F, M, Y, W) are shown in green and are encircled and their contours are joined 
forming clusters. Clusters mainly correspond to regular secondary structures (α-helices and β-
strands). The shape of the clusters is often typical of the associated secondary structures. Hence, 
horizontal and vertical clusters are mainly associated with α-helices and β-strands, respectively. A 
dictionary of hydrophobic clusters, gathering the main structural features of the most frequent 
hydrophobic clusters has been published helping the interpretation of HCA plots [144]. Sequence 
segments separating hydrophobic clusters (at least 4 non hydrophobic amino acids) mainly 
correspond to loops or linker (LNK) regions between globular domains. Long regions devoid of 
clusters correspond to disordered regions and small clusters within disordered regions correspond 
to putative MoREs. Coiled-coil regions have a peculiar and easily recognizable appearance in the 
form of long horizontal clusters. Symbols are used to represent amino acids with peculiar structural 
properties (stars for prolines, black diamonds for glycines, squares and dotted squares for 
threonines and serines, respectively). Basic and acidic residues are shown in blue and red, 
respectively.   

Figure 5. CH-ellipticity plot of NTAIL proteins from Hendra and Nipah virus (HeV, NiV). For 
each NTAIL protein, the distance from the boundary in the CH plot, referred to as CH distance, has 
been plotted as a function of the distance from the boundary in the Q222/Q200 plot, where the latter 
is a threshold enabling separating random coil-like and premolten globule-like IDPs. Modified 
from [112].  
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Figure 6. MoRF predictions output generated by four different on-line predictors. (A) 
ANCHOR2 (blue line) and IUPred2A (red line) scores. (B) MoRFchibiSYSTEM results. Red 
curve: MoRFCHiBi_Web scores, blue areas: predicted MoRFs. (C) Annotated sequence plot 
generated by DISOPRED3. “Disorder” residues and “disorder, protein-binding” residues are 
framed in blue and green, respectively. Absence of annotations on residues reflects a low 
confidence level. Predictions have been carried out on a 150 residues artificial disordered protein 
having an average disorder propensity of 0.75 whose sequence has been generated with InSiDDe, 
a server for the generation of artificial protein sequences of desired length and disorder score 
(http://insidde.afmb.univ-mrs.fr/) [145]. 

Figure 7. Proposed general scheme for prediction of disordered regions in a protein.  
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