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Faculté des Sciences de Saint Jérôme, Case 142, 13397 Marseille Cedex 20, France
5Laboratory for Integrated Micro and Mechatronic Systems,

CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
(Dated: June 27, 2022)

As a fundamental physical quantity of thermal phonons, temporal coherence participates in a
broad range of thermal and phononic processes, while a clear methodology for the measurement of
phonon coherence is still lacking. In this Lettter, we derive a theoretical model for the experimental
exploration of phonon coherence based on spectroscopy, which is then validated by comparison
with Brillouin light scattering data and direct molecular dynamic simulations of confined modes in
nanostructures. The proposed model highlights that confined modes exhibit a pronounced wavelike
behavior characterized by a higher ratio of coherence time to lifetime. The dependence of phonon
coherence on system size is also demonstrated from spectroscopy data. The proposed theory allows
for reassessing data of conventional spectroscopy to yield coherence times, which are essential for the
understanding and the estimation of phonon characteristics and heat transport in solids in general.

Coherence is a fundamental characteristic of the wave-
like behavior of elementary particles and quasi-particles
[1–4]. Due to the wave nature of lattice vibrations,
phonon coherence has been established as the domi-
nant source of various unique thermal transport phe-
nomena, such as coherent thermal transport (including
minimum thermal conductivity in nanophononic crys-
tals [1, 2, 5–8] and phonon Anderson localization in
disordered nanophononic crystals [9–13]), band folding
[5, 14, 15] and phonon confinement [16–18]. Furthermore,
recent studies [19–23] have uncovered the significant im-
pact of phonon coherence on phonon-phonon scattering
[19–21], phonon modal correlations [20, 22, 23] and in-
terfacial phonon propagation [12], leading to clear dis-
crepancies with the predictions obtained from the par-
ticle picture and also to promote coherence as a critical
phonon attribute.

Phonon coherence is usually quantified by the physi-
cal quantity of coherence time [24]. However, most of
the experimental demonstrations of coherence for ther-
mal phonons are qualitatively inferred from the vari-
ation of measured thermal conductivity [1, 2, 10, 25].
For instance, the existence of coherent phonons is indi-
rectly evidenced by the experimental observation of the
non-monotonic variation of superlattice thermal conduc-
tivity with decreasing superlattice period [2]. On the
other hand, phononic quantities, including phonon num-
ber, eigenfrequency and scattering rate, can be mea-
sured from the well-established time-domain thermore-
flectance approach [26–28] or various spectroscopies [29–
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34], which are boosting the exploration of phonon physics
and thermal transport in different matters. Clearly, the
experimental characterization of the coherence of ther-
mal phonons is lagging behind, due to the lack of an ade-
quate theory, which impedes the scientific understanding
and practical application of phonon physics and thermal
transport.

In this Letter, we develop a theoretical model for ex-
perimentally investigating phonon coherence using spec-
troscopy measurements. The predictions of the model
disclose that in the case of confined nanostructures, such
as nanowires (NWs) and nanomembranes (NMs), the co-
herence time for different modes can be efficiently ex-
tracted. Because of the substantial phonon confinement,
modes have a prominent wavelike characteristic and ex-
hibit a significant dimensionality-dependent coherence.
Furthermore, the phonon coherence times and lifetimes
detected from spectroscopy agree qualitatively well with
the outcomes from the direct molecular dynamic (MD)
simulations. The proposed theory reassesses mainstream
spectroscopies to quantify mode coherence having a gen-
eral impact on the understanding and the estimation of
phonon and thermal properties.

Phonon lifetime is conventionally measured from the
Lorentzian fitting of experimental spectra, such as in-
elastic neutron scattering, inelastic x-ray scattering and
Brillouin-Mandelstam light scattering [17, 32, 35–37].
The underlying physics of a Lorentzian fit is based on
the hypothesis of an exponential decay of phonon dynam-
ics in time, assuming phonons as particles governed by
diverse scattering processes [38, 39]. In the frequency do-
main, the Lorentzian function is expressed as [38, 40, 41]
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Φks (ω) =
I0

4 (ω − ωks)
2
τpks

2
+ 1

, (1)

where Φks (ω) is the spectral mode energy and I0 is the
peak intensity. The physical quantities of eigenfrequency
(ωks) and lifetime (τpks) are simultaneously evaluated
by matching the experimental measurements as imple-
mented in Refs. [17, 32]. The Eq. (1) can also be ex-
pressed in terms of the modal linewidth (γks) according
to the expression of τpks = 1

2γks
. Using the normal mode

decomposition method, the spectral energy Φks (ω) can
also be calculated from MD simulations, making of Eq.
(1) a widely used model for studying the phonon lifetimes
and thermal transport in theoretical and numerical sim-
ulation works [38, 41–44].

Recent studies [21, 23, 45] demonstrated the signifi-
cance of coherence on the phonon dynamics and thermal
transport in various solids. By taking into account the
coherence effects, a pioneering work [21] established that
the time-dependent phonon number should be corrected
as follows

Nks (t) = Nks (0) e−γ
′
kste−4ln2·Ω2

kst
2

, (2)

where Nks (0) denotes the phonon number of mode ks
at the initial time of decay. γ′ represents the corrected
linewidth for this mode and Ωks denotes the inverse of
the temporal extension of the wavepacket. The corrected

phonon lifetime from Eq. (2) writes τp
′

ks = 1
2γ′ks

and the

temporal coherence time τ cks = 1
Ωks

.
On the other hand, the phonon number can also be

defined from the normal mode coordinate qks as

Nks (t) h̄ωks =
1

2
q̇ks(t)q̇

∗
ks(t) +

1

2
ωksqks(t)q

∗
ks(t), (3)

where ∗ indicates the complex conjugate. Based on Eqs.
(2) and (3), we can further infer the expression of the
normal mode coordinate as [24]

qks(t) ≈ q0e
−iωkste−

γ′ks
2 te−2ln2·Ω2

kst
2

, (4)

where q0 denotes the amplitude and e−iωkst corresponds
to the natural oscillation of the lattice wave. In a further
step, the mode energy can be obtained from the Fourier
transform of Eq. (4) as

Φks (ω) = 2 × 1

2
ωks

∣∣∣∣
∫ ∞

0

qks(t)e
iωtdt

∣∣∣∣
2

. (5)

The coefficient 2 accounts for the summation of the ki-
netic and the potential terms. Finally, the spectroscopy
model that includes both lifetime and coherence time is
obtained as

FIG. 1. (a) The experimental spectrum of GaAs nanowires
with a diameter D = 122 nm at the specific wavevector k =
(21.8,0,0) µm−1. (b) The fitting of experimental spectroscopy
data with the classical Lorentzian model of Eq. (1) and the
proposed one in Eq. (6). The experimental data were previ-
ously published by Kargar et al. [17]. (c) The MD spectral
analysis of Si nanowires with a diameter D = 1.5 nm at the
specific wavevector k = (0,0,0) µm−1. (d) The fitting of the
MD calculated spectral energy with the classical Lorentzian
model of Eq. (1) and the one of Eq. (6).

Φks (ω) = Icos

[
1

16ln2

τ c2ks
τp
′

ks

(ω − ωks)

]
e
−(ω−ωks)

2τc2ks
8ln2 ,(6)

where I denotes the peak intensity. In contrast to the
Lorentzian model of Eq. (1), our theory can simulta-
neously provide the information of eigenfrequency (ωks),

coherence corrected phonon lifetime (τp
′

ks) and coherence
time (τ cks).

As previously discussed, the spectral energy can be
measured by experimental spectroscopy as implemented
by many different techniques, and can also be calculated
from the normal mode decomposition with inputs from

MD simulations. However, Eq. (6) reveals that τp
′

ks and
τ cks are coupled in the spectral domain, making the fitting
for these two quantities non-unique.

A previous study [21] showed that the lifetimes fitted
by Eq. (1) are close to the coherence corrected ones, i.e.,

τpks ≈ τp
′

ks. Following this approximation, the lifetimes
and coherence times can be estimated from the spectral
energy via a two-step fitting: 1) the lifetime and eigen-
frequency can be obtained by fitting the spectral energy
with Eq. (1); 2) the second fitting is performed to extract
the coherence time from Eq. (6) based on 1). The fitting
code has been implemented in our open-source WPPT
package [46], which is originally designed to study the
coherence of phonons and the thermal conductivity of
solids.
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To support the proposed model, we further investi-
gate the coherence of phonons in the confined nanostruc-
tures. Previous studies [16–18, 47, 48] demonstrated that
phonon confinement appears along the non-periodic di-
rection as reducing the structure dimensionality to one or
two. In one-dimensional NWs, for example, phonons are
confined in the diameter direction as standing waves and
exhibit a diameter-dependent confinement [17, 27, 49].
For instance, Kargar et al. [17] have measured the phonon
subbands in GaAs NWs using the Brillouin-Mandelstam
light scattering spectroscopy. Figure 1(a) reports the ex-
perimental spectrum from Ref. [17] at a specific wavevec-
tor for a GaAs NW with a diameter D = 122 nm. Peaks
corresponding to different phonon modes clearly appear.
The fitting of a specific mode is shown in Fig. 1(b). The
proposed model displays a better agreement with the
spectroscopy data than the Lorentzian fit does. To pro-
vide further comparison, we also calculate the spectral
energy of Si NWs with smaller diameters, from MD sim-
ulations. The details about MD simulations and the nor-
mal mode decomposition are provided in Supplementary
Material [50]. Figure 1(c) reports the spectral energy at
wavevector k = (0,0,0) for a Si NW with a diameter
D = 1.5 nm. The fitting is carried out for a specific
mode in Fig. 1(d) and the proposed model was found to
provide a high accuracy as found in the experimental
spectroscopy data of Fig. 1(b), when the coherence ef-
fects are considered in the full phonon dynamics. The
same model is also applied to study the phonon coher-
ence in two-dimensional NMs, as reported in Sec. S3
of the Supplementary Material [50]. Figure S2 illustrates
how our model can satisfactorily fit the measured Raman
scattering data of Si NMs [18].

The estimated phonon lifetimes and coherence times
of GaAs NWs are reported in Figs. 2(a) and 2(b), re-
spectively. Lifetimes and coherence times are always
close to each other and gradually decrease when fre-
quency increases, which agrees qualitatively well with the
general frequency dependence observed in various solids
[21, 23, 42, 45]. The acoustic modes (AC) have higher
characteristic times than those of confined optical modes
(CO) at high frequencies.

We further evaluate the coherence of different modes
through the ratio of coherence times to lifetimes, τ c/τp.
This ratio compares the degree of the wavelike behavior
to the particlelike one for a specific mode. Figure 2(b)
highlights that when comparing the acoustic modes to
the confined ones, the wavelike behavior of phonons grad-
ually intensifies. As experimentally confirmed by Kargar
et al. [17], those GaAs NWs modes are resulting from
a confinement effect, which clearly exhibit a more pro-
nounced coherence as compared to the bulk optical and
the low-frequency AC modes. For CO modes, the size
of the phonon wavepackets, i.e., the spatial coherence
length of phonons lc [23, 51], along the radial direction
is comparable or even larger than the non-periodic di-
mension, as indicated in Fig. 2(c). Consequently, phonon
modes are confined along the diameter direction as stand-

ing waves with strong phonon coherence. Constratingly,
the wavepackets of AC modes can tilt along any direction
and the lengthes lc remain significantly smaller than the
size of the non-periodic dimension D, yielding a predom-
inant particlelike behaviour of those modes.

A further implementation of the proposed model to
MD simulations is presented in Figs. 2(d) and 2(e). The
decreasing trend of phonon lifetimes and coherence times
as a function of frequency in the full Brillouin Zone is also
obtained in Si NWs as a first validation. For phonons
with frequencies below 2 THz, where the acoustic modes
are predominant (See Fig. 3(c)), the values of τ c/τp ex-
hibit an increasing trend with frequency, indicating an
enhanced coherence as approaching the confined modes
frequency. This outcome qualitatively agrees with the
results obtained from the spectroscopy of GaAs NWs.

Note that the full phonon dispersion in Fig. 3(c) con-
tains a large range of modes which yields the scattered
data of Fig. 2(e). The average (black line, averaged over
frequency intervals) clearly discloses the enhanced wave-
like behavior for confined modes in the middle frequency
range. In addition, at frequencies above 6 THz, the ratio
decreases with frequency, demonstrating that the high-

FIG. 2. (a) The estimated lifetimes (τp) and coherence times
(τ c) versus frequency obtained from the experimental spec-
troscopy of GaAs NWs with diameter D = 122 nm. (b) The
ratio τ c/τp versus frequency for GaAs NWs. The AC and
CO in (a) and (b) denote normal acoustic and confined op-
tical modes, respectively. (c) A schematic of the different
behaviors of AC and CO modes in NWs. lc is the size of
the phonon wavepacket along the radial direction. D refers
to the nonperiodic (diameter) dimension of NWs. (d) The
estimated lifetimes (τp) and coherence times (τ c) versus fre-
quency obtained from the MD spectral energy of Si NWs with
diameter D = 1.5 nm. (e) The ratio τ c/τp versus frequency
for Si NWs. The black line in (e) corresponds to the averaged
ratio at a given frequency.
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frequency optical phonons resembles to bulk and weakly
confined modes, as expected from modes with very small
wavelengths.

The phonon confinement effect weakens when size in
the confined direction increases, i.e. when diameter
and thickness increase in NWs and NMs, respectively.
The weakened confinement is also accompanied by a fre-
quency reduction of the confined modes as observed in
spectroscopy measurements [17, 18] and phonon disper-
sions of Figs. 3(c) and 3(d).

With the spectroscopy data of the GaAs NWs [17], we
further estimate the dependence of the wavelike behav-
ior on the diameter from the ratio τ c/τp. Figure 3(a)
reports the decrease of the ratio τ c/τp with increasing
diameter for a confined mode, indicating the suppressed
wavelike behaviors due to the weakened phonon confine-
ment effect. The suppressed confinement with increasing
thickness is also observed in two-dimensional Si NMs (See
Sec. S3 in Supplementary Material [50]).

We further study the size-dependent wavelike behavior
using the MD spectral energy. Figure 3(b) highlights a
pronounced impact of the diameter on the times ratio in
Si NWs. The increase of τ c/τp below 2 THz is shifted to
a lower frequency as increasing the diameter due to the
red-shift of the confined mode frequency (See Figs. 3(c)
and 3(d)). Besides the suppression of the wavelike be-
havior around the frequency of the confined modes, a
larger diameter substantially reduces the times ratio in
the high frequency range, which might be caused by the
stronger boundary scattering [52], yielding the simulta-
neous decrease of the two characteristic times.

To demonstrate phonon coherence, we further investi-
gate the modal wave information of Si NWs from Lattice
Dynamics calculations [53] in Figs. 3(c-e). Figs. 3(c-
d) indicate that the confined modes around the region
of lowest optical modes shift to lower frequencies as the
diameter increases from 1.5 nm to 4 nm. In Fig. 3(e),
we further compare the eigen-displacements of two kinds
of optical modes at different frequencies (See the sym-
bols in Figs. 3(c) and 3(d)), i.e., the confined optical
modes in the low frequency region with high coherence,
and the bulk optical modes with strong particlelike be-
havior. The eigen-displacements of the confined modes
of the ultra-thin NWs (i.e., D = 1.5 nm) reveal a strong
confinement effect (See Fig. 3(e1)), in which the atoms
at the four corners are collectively vibrating in phase and
clearly interact with the boundary (See Video 1). How-
ever, for the D = 4 nm NWs reported in Fig. 3(e3),
the in-phase vibrations of the NW lattice cell are still
maintained but the interaction with boundary has been
partially suppressed (See Video 2), resulting in a weak-
ened confinement effect. The reduced wavelike behavior
expressed by the eigen-displacements are well consistent
with the estimated lifetimes and coherence times.

On the other hand, the eigen-displacements of the bulk
optical modes are also shown in Figs. 3(e2) and 3(e4).
Random and disordered vibrations are found for these
optical modes which are located in the high frequency

FIG. 3. (a) The ratio τ c/τp versus diameter for the mode
of lowest frequency in GaAS NWs. (b) The average ratio
τ c/τp versus frequency for Si NWs with different diameters.
The arrow in (b) denotes an increasing trend with diameter.
Phonon dispersion of Si NWs with diameters D = 1.5 nm (c)
and D = 4 nm (d). (e1-4) Perspective views of the atomic
eigen-displacements that correspond to the specific modes in
(c) and(d) referred to as symbols. Arrows in (e1-4) denote
the atomic vibrational directions.

region of the phonon dispersion. These vibrations with
out-of-phase atomic oscillations indicate the weak wave-
like behaviors as predicted by the proposed model in
Figs. 2(e) and 3(b) (See Video 3 and 4).

Our formalism of mode energy delivers a description
of phonon coherence and provides the measurable physi-
cal quantity of coherence time using conventional phonon
spectroscopy. In the context of previous studies on nanos-
tructures, we have demonstrated the general applicability
of our theory in assessing phonon coherence from both ex-
perimental measurements and numerical simulations. As
a general framework, the developed model is an effective
approach for studying phonon coherence in diverse solids
and provides a new metric to interpret broadly used spec-
troscopies.
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Faculté des Sciences de Saint Jérôme, Case 142, 13397 Marseille Cedex 20, France
5Laboratory for Integrated Micro and Mechatronic Systems,

CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan

∗ volz@iis.u-tokyo.ac.jp
† jie@tongji.edu.cn

ar
X

iv
:2

20
6.

12
17

2v
1 

 [
ph

ys
ic

s.
ap

p-
ph

] 
 2

4 
Ju

n 
20

22



2

S1. Direct MD simulations

All MD simulations are carried out using the LAMMPS package [1] with a time step of 0.35 fs. The Si-Si interactions
in silicon systems are modeled by the Stillinger-Weber potential [2]. For the NWs, a sufficient vacuum space (15 Å)
is added to the y and z directions, and x direction is simulated with a periodic boundary condition as shown by
Fig. S1(a). For the NMs, z direction contains 15 Å additional vacuum space, and x and y directions are simulated
with a periodic boundary condition (See Fig. S1(b)). A 100×1×1 and 100×20×1 supercells are, respectively, applied
to the MD simulations. After the structure relaxation and thermal equilibration in the isothermal-isobaric (NPT)
ensemble for 500 ps, EMD simulations with the microcanonical (NVE) ensemble are performed to record the atomic
trajectories.

FIG. S1. (a) The atomic crystal of a Si nanowire with a 1.5 nm diameter. (b) The atomic crystal of a Si nanomembrane with
a 1.5 nm thickness.

S2. Normal mode decomposition

The phonon modal velocity υ (k, s) can be expressed as [3]

υ (k, s) =
1

a

a∑

b,l

[u̇bl (t) · e∗b (k, s) × exp (ik ·R0l)] , (S1)

where u̇bl (t) is the velocity of the bth atom in the lth unit cell at time t, a is the number of cell, e∗ (λ) the complex
conjugate of the eigenvector of mode λ, and R0l is the equilibrium position of the lth unit cell. Here, k and s
correspond to the mode λ. The spectral energy can be further calculated as

Φks (ω) = 2 × 1

2
m

∣∣∣∣
∫ ∞

0

υ (k, s) eiωtdt

∣∣∣∣
2

, (S2)

where m is the mass of the Si atom.
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S3. Phonon coherence in Si nanomembrane

S3.1. The fitting of spectroscopy data

FIG. S2. The fitting of experimental spectroscopy with the classical Lorentzian model of Eq. (1) and with the proposed model
of Eq. (6). The experimental spectroscopy data of a Si nanomembrane with thickness 8 nm were previously published by Lee
et al. [4].

S3.2. Thickness dependent phonon coherence

FIG. S3. (a) The estimated lifetimes (τp) and coherence times (τ c) versus thickness obtained from the experimental spectroscopy
data of Si nanomembranes. (b) The ratio τ c/τp versus thickness for Si nanomembranes.
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