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ON DELISLE’S GEOGRAPHICAL PROJECTION

CHARALAMPOS CHARITOS AND ATHANASE PAPADOPOULOS

ABSTRACT. Joseph-Nicolas Delisle was one of the most important
scientists at the Saint Petersburg Academy of Sciences during the
first period when Euler was working there. Euler was helping
him in his work on astronomy and in geography. In this paper,
Delisle’s geographical projection is presented and Euler’s study of
this projection is explained, highlighting some important mathe-
matical points, in particular on the metric geometry of surfaces.

The final version of this paper will appear in the book Mathe-
matical Geography in the Eighteenth Century: Euler, Lagrange and
Lambert, ed. Renzo Caddeo and Athanase Papadopoulos, Springer
International Publishing, 2022.
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1. INTRODUCTION

The famous French geographer Joseph-Nicolas Delisle, who was Leon-
hard Euler’s colleague and collaborator at the Saint Petersburg Acad-
emy of Sciences, introduced a projection from the sphere onto the Eu-
clidean plane which became known as Delisle’s geographical projection.
In Figure 1, we have reproduced a map of the Russian Empire drawn
under the direction of EulerThe project, before Euler took it over,
was directed by Delisle, that uses Delisle’s projection. This projection
shares several properties of the conical projection which was used in
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2 CHARALAMPOS CHARITOS AND ATHANASE PAPADOPOULOS

Greek Antiquity, although the two projections are different. The coni-
cal projection is described in Chapters 21 and 24 of Book I of Ptolemy’s
Geography [7]. Tt is obtained by first projecting the surface of the Earth
onto a cone tangent to it along a certain parallel, in such a way that
each meridian is sent to the line in which the plane containing it in-
tersects the cone. This cone is then unfolded onto a plane. In this
way, parallels are sent to concentric circles and meridians to straight
lines with a common intersection point (which is not the North pole).
Distances are preserved on the parallel that we started with.
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FIGURE 1. A map of the Russian Empire, drawn using
Delisle’s method: this is the last map of Euler’s Atlas Russi-
cus, published in Saint Petersburg in 1745 [1]. Bibliotheque
nationale de France, Département Cartes et Plans

Ptolemy, who was aware of the fact that it is not possible for a
geographical map to preserve proportions of all distances, used a conical
projection in which these proportions are preserved along two special
parallels, namely, the parallel passing through the island of Thule (the
farthest northern location mentioned in the Geography, and in some
other geographical works of Greek antiquity)! and the equator. He then
discussed the corrections that have to be made in the region between
these two parallels in such a way that the distortion there is optimal. In
Delisle’s projection, which is the subject of the present chapter, like in
Ptolemy’s projection, proportions of distances are also preserved along
two chosen parallels. In particular, in Delisle’s map of the Russian
Empire, these parallels are those that bound this Empire. Like in
Ptolemy’s conical projection, Delisle’s map is constructed, in each case,
so that the distortion is optimized between these parallels.

1Some authors conjecture that Thule is an island in Norway, some others that it
is Groenland, and there are other possibilities
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We note incidentally that the preservation of ratios of distances on
some special parallel is also a property of the cylindrical projection of
Marinus of Tyre, see the discussion by Neugebauer in [4, p. 1037—
1039] where this author mentions a cylindrical projection by Marinus
in which ratios of distances are preserved along all the meridians and
along the parallel passing through the island of Rhodes.

We mention now another projection where one starts with a cone
which is not tangent to the sphere but which intersects it in two par-
allels. This projection is more closely related to the one of Delisle. It
was used by Gerardus Mercator in his 1544 construction of the map of
Europe; see [3, p. 178-179] where the author considers that Delisle’s
map is in fact the same as the one of Mercator. In any case, there is no
doubt that Delisle was familiar with Ptolemy’s maps, with other maps
of Antiquity, and with Mercator’s maps. In both projections (Ptolemy
and Mercator), parallels are sent to concentric circles and meridians to
straight lines intersecting at a point which is not the image of the North
pole. Delisle’s projection satisfies the same properties. In Figure 1, we
have reproduced a drawing from [3] that represents what the author
calls the Mercator—Delisle projection.

Finally, we note that in Lambert’s memoir on geography that is
translated in the present volume, the latter describes also a conical
projection in which two circles of latitude (that is, two parallels) are
mapped such that on the images of these parallels, the proportions are
preserved.

Euler, in his memoir titled De proiectione geographica De Lisliana in
mappa generali imperii russici usitata (On Delisle’s geographical pro-
jection used for a general map of the Russian Empire), published in
1778 (see [2], translated from the Latin in the present volume), gave a
mathematical description of Delisle’s projection. Our goal in this chap-
ter is to present, using modern mathematical notation, Euler’s descrip-
tion of this projection, highlighting certain interesting mathematical
points.

Delisle’s projection satisfies the following requirements:

e All meridians are represented by straight lines.

e The projection preserves the degrees of latitudes, i.e. the pro-
jection is faithful along the meridians.

e Meridians and parallels intersect perpendicularly.

All straight lines which are images of meridians intersect at a com-
mon point (we shall linger on this below). Such a map cannot preserve
at every point the ratio of the length corresponding to a single degree of
the parallel passing through this point to the length corresponding to
a single degree of the meridian. Euler thus writes (see ([2] §5) that the
following general question is of great importance: “In what way should
the meridians be arranged with respect to the parallels so that for the
whole extent of the map, the deviation from the ratio that the degrees of



4 CHARALAMPOS CHARITOS AND ATHANASE PAPADOPOULOS

FIGURE 2. The so-called Mercator-Delisle projection,
drawing from [3]

longitude and latitude which [the meridians and parallels| have among
themselves on the sphere is the smallest possible?”

In Delisle’s geographical projection, two special parallels are cho-
sen, along which the projection is an equidistant map, that is, the
proportion between the degrees of longitude and latitude is preserved.
Furthermore, Delisle discovered that if these parallels are equidistant
from the central parallel and one from the southernmost parallel and
the other from the northernmost parallel, then the deviation of the
geographical map is nowhere significant. Thus, another question is
to detect these two parallels mentioned above so that even the largest
errors that may arise in the map are the smallest possible.
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FIGURE 3. The southernmost and the northernmost paral-
lels that bound the Russian Empire and the principal merid-
ian AB.

One may also find mathematical comments on Delisle’s projection,
also based on Euler’s work, in [8], §1.1 titled Euler’s analysis on Delisle’s
map and in [3], Chapter VI, §5.

2. CONSTRUCTION OF DELISLE’S PROJECTION

In the rest of this chapter, following Euler [2], the figure of the Earth
is considered to be spherical. The fact that the Earth was known to be
rather a spheroid is not taken into account, since the difference between
this spheroid and a sphere will not be visible on a geographical map.
Thus, all meridians are great circles, or semi-circles, depending n the
context, of the same length.

In what follows, the sphere representing the Earth is denoted by S
and 0 will denote the length of the radius of every meridian.

For points X, Y on S an arc in S joining X and Y will be denoted by
XY. In practice, this arc will be either an arc of a meridian or an arc of
a parallel of S and in each case we shall determine it precisely. On the
other hand, the segment of straight line joining X and Y in the ambient
Euclidean space E® will be denoted by XY and will be referred to as a
line segment. Also, if X and Y are points on a meridian of S, then by
an abuse of notation we shall denote by XY the meridian (that is, the
great circle or semi-circle) determined by X and Y. Finally for points
X, Y on S, the distance of these points in S will be referred to as the
Earth distance between them while the distance of these points in E3
will be referred to as the Fuclidean distance between them.

Let P be a point of latitude p on the sphere S of radius ¢ representing
the Earth. The length of one degree of meridian is equal to §. The
length of one degree of longitude on the parallel passing through P
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is equal to 0 cosp. Thus, the ratio of one degree of longitude on the
parallel passing trough P to the length of one degree of latitude remains
constant on each meridian and equal to cos p.

Let Ay and By be respectively the southernmost and the northern-
most points of the Russian Empire. The parallels passing through these
points will be referred to as the southernmost and the northernmost
borders respectively, see Figure 3. The latitude of Ag is a = 40° and the
latitude of By is b = 70° approximately. We consider now an arbitrary
meridian intersecting the southernmost and the northernmost parallels
at the points A and B respectively, see Figure 3.

On this meridian AB, which will be referred to as the principal merid-
1an, we consider the points P and () whose latitudes are p = 50° and
q = 60° respectively. Finally on the parallels passing through the points
P and () we consider points P, and (), respectively such that the length
of the arcs PP, and QQ); (contained in the parallels) are § cosp and
0 cos q respectively. In other words, the longitude of both points P, and
@1 (measured from the principal meridian) is one degree, see Figure 4.

Since the length of a degree of meridian is small for our purposes, the
lengths of the line segments PP, and QQ; are almost equal to those
of the small arcs PP, and Q). That is, we may consider that the
lengths of the Euclidean segments PP, and QQ; are 6 cos p and 6 cos ¢
respectively. These segments may be considered perpendicular to the
meridian AB.

We wish to define a projection f : U — E? satisfying the require-
ments of the introduction, where U is an open subset of S containing
the Russian Empire and E? is the Euclidean plane. For this, we shall
first consider four specific points in E? which will serve as images of P,
Py, Q, Qq by f. These points will be denoted by P’, P/, @', Q}. Gradu-
ally, from these points a network consisting of the images of meridians
and parallels will be constructed in E? and thus the projection is de-
fined.

We first consider two points P’, Q' in E? with distance |P'Q’| =
d(q — p); that is, the Euclidean distance |P’Q’| in the plane E? is equal
to the distance of the points P and @ in S. The segment P'Q’ C E*
will be the image of the arc of meridian PQ) C S. Now, we consider
points P and Q) in E? such that:

(1) P'P| and Q'Q] are segments in E? perpendicular to P'Q’;

(2) |P'P]| = dcosp and |Q'Q}| = d cos q; that is, the distance |P'P)|
is the length of the arc PP, contained in the parallel passing through
P. Similarly for the distance |Q'Q’|; see Figure 4. By definition, the
points P’ P{, @', @} will be the images of P, P;, @, Q1 respectively
and the segments P'Q" and P{Q’ in E? will be the images of the arcs
of meridian PQ) and P;Q);.




ON DELISLE’S GEOGRAPHICAL PROJECTION 7

FIGURE 4. The principal meridian and the line segments
PP1 and QQI

We let O" be the intersection point of the lines containing the seg-
ments P'Q’ and P{Q} in E?. We shall compute the length of O'P’.
From Figure 4, we have:

PP - Q@ _ [P

‘P’Q" - ’P’O”
or,
d(cosp —cosq)  dcosp
(g —p) el
Therefore,
Y 5((] — Pp)Ccosp
) Po| = apeosy

cosp —cosq
This formula in degrees takes the form

(2) |P/O/| — (q_p) COSp.
COSpP — COS ¢

Note that in this discussion, the fact that the distance between two
points Z, W € E? is expressed in degrees 6 means that |ZW| is equal
to 00. In other words, |ZW/| is the length of an arc of meridian of S of
0 degrees.

Setting p = 50°, ¢ = 60° in (2) we find that |P'O’| is the length of
an arc of 45°1" in a meridian of S. Therefore, since the point P in S is
at distance 50° from the equator with respect the Earth distance of S,
we deduce that if O’ is placed in the ambient space E3 of S, namely,
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FIGURE 5. The image of the principal meridian in the Eu-
clidean plane EZ2.

on the vertical straight line passing trough N, then O’ lies beyond the
Earth’s North pole N at a Euclidean distance § - 45°1’ from P or at a
Euclidean distance ¢§ - 95°1” from the equator.

Now we can construct Delisle’s projection in E2. The images of all
the meridians will be straight lines emanating from O’. Considering
the line containing O'P’, we draw a circle Sps of center O’ and radius
O'P’ which is divided into parts equal to ¢ cosp, which is the length
of one degree of the parallel passing through P. The lines led from O’
and passing through each of the points in the subdivision will give all
the meridians that are drawn on the map. This being done, together
with the circle SSp/, we draw all the circles of center O’ which are
0 distant apart. These circles are the images of parallels of S and
the distance between two consecutive circles is one degree of latitude
(Figure 5). In this way a projection f satisfying all the requirements
of the introduction is defined.

In the next section calculating the distortion of f we will deduce
that the choice of P (p = 50°) and @ (p = 60°) choice of P and @ is
extremely close to the best choice of parallels along which the ratio of
degrees of longitude and latitude is correct.

3. THE DISTORTION OF DELISLE’S PROJECTION

In this section, in a more general context and following Euler’s math-
ematical analysis, we will estimate the distortion from reality of Delisle’s
projection in order to be able in the next section to detect the specific
points P and () on S mentioned above and apply the whole study to
the case of the map of the Russian Empire.
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First we will compute the angle w = P'O’P| corresponding to one
degree of longitude in the map, see Figure 3. We may assume that the
length of the circular arc of radius |O'P’| and of angle w is approxi-
mately equal to |P’Pj|. Therefore, from (1) the angle w in radians is
equal to

3) " | P’ P)| _ €Osp —Cosg

POl alg—p)
where the factor a = 55 = 0.01745329 measures one degree in radians.
With this formula we may see that w = 496" in degrees.

Now given that the latitude of P is equal to p, we consider the point
N’ in O'P’ at distance z from O’ such that

(O'P| = |O'N'| +|N'P'| =82+ 6(90 — p).

Since the distance of the pole N to the equator is 90°, the point N’ can
be considered as the image of the pole N by the projection f.

The distance |O’N’| measures how far is the point O’ beyond the
pole N’. Substituting in the previous equation |O’'P’| from (1) we get
1) o= la=peosp g,

cosp — cosq

If AY = f(A) and B" = f(B) we have |[A0'| = §(90° — a + 2).
Multiplying this quantity by w and using (3) we obtain that the length
of the circular arc of radius |O’A’| ad angle w is approximately |A’A’,|,
and, using 3, A’A| is

d(90° — a + z)(cosp — cos q)
a(q —p) ‘
Since the length of one degree on the parallel passing through A in S
is 0 cosa the difference
5(90° — b+ z)(cosp — cos q)
a(q —p)
shows the error of the projection at the extremity A.
Similarly the error of the projection at the extremity B is
d(90° — p + 2)(cosp — cos q)
alq —p)
Since the points P and ) belong to the meridian AB and since they
lie between A and B, and since the errors at the two extremities A and
B are assumed to be equal to each other, we obtain the equation
d(90° — a + z)(cosp — cos q)
a(q —p)

~ 6(90° — b+ z)(cosp — cos q)  Seosh

a(q—p)

—dcosa

—dcosb.

—dcosa
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which can take the form
(5) (a —b)(cosp — cosq) = (¢ — p)(cosa — cosb).

Considering a = 40°, b = 70°, p = 50°, ¢ = 60° we may verify that
the two members of (5) are almost equal. But in general, given a and
b, it is difficult to detect values p and ¢ inside (a,b) such that (5) is
satisfied.

Thus, instead of the quantities p and ¢ it is easier to work with the
quantity z which expresses the displacement of the point O’ from N'.
Below we shall express z as a function of ¢ and b and so z can be
calculated without using 4. One degree of parallel at the extremity A’
will be equal to @d(90 — a + z)w while the measure of one degree of the
parallel of S passing trough A is § cos a. Therefore the error at A is

ad(90 — a + z)w — d cos a.
Similarly at the extremity B the error is
ad(90 — b+ z)w — d cos b.
Setting that these errors are equal among themselves we obtain the
equation
ala —b)w = cosa — cosb
from which we get
cosa — cosb
6 =—
(6) “ ala—10b)
Now, after making equal the errors of the projection at the extremi-
ties A and B we impose the following additional condition:

e The error at A and B is equal to the one that occurs at the
midpoint X of the interval AB whose latitude is “T“’, which is

supposed to be the maximal error of the projection.
The error at X is

b b
&5(9O_a+ a—+

+ 2)w — d cos

Note that we have to assume that the sign of this error is negative so
it is necessary to put the error equal to

a+b a+b

d cos — ad(90 —

+ 2)w.

Since we have assumed that the errors at A, B and X are equal we
have the following equations

a+b_a5(90_a+b

ad(90 —a + z)w — d cosa = 6 cos + 2)w

and

a+b_a6(90_a+b

ad(90 — b+ z)w — d cosb = § cos + 2)w.
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Substituting now the value of w from (6) in one or the other of the two
previous equations we find the equation

(180 — 3a — b+ 22)(cosa — cosb) B a+b
= CO0s a + cos

(7) b—a 2

From (7) we can determine z as a function of a and b.

4. APPLICATIONS OF DELISLE’S PROJECTION TO THE MAP OF THE
RussiaAN EMPIRE

In this section, we will apply the previous analysis to the case of the
map of the Russian Empire. Taking a = 40° and b = 70° we have
@b — 55° and therefore from (6) we obtain

(8) cos40° — cos 70°  0,4240243
w = =
300 0, 5235987
in radians and hence (in degrees) w = 48'44”. Thus, from (7) we have

a(85° + 2z)w = cos 40° 4 cos 55° = 1, 33962.

Then, substituting the values of a and w we get

1,33962
o 2 — )
807+ 22 = o

In the previous section we have assumed that the maximal error
occurs at the midpoint of the arc AB. However, the point of maximal
error could deviate from the midpoint. So, we will find exactly the
point X at which the maximal error occurs. For this we consider the
function

=05° = » = 5°.

e:la,b) = R
with
9) e(r) = wa(90° — x + z) — cos z,
where x is expressed in degrees. Then we have ¢/(x) = asinzr — awa,

¢’(x) = a?cosz > 0 in [a, b]. Therefore the maximum occurs for z such
that sinz = w, where w is given by (8). Therefore we have

0,4240243
0, 5235987
and we get * = 54°4’, which is a point that differs little from the

midpoint of the arc AB.
Having found the above value for x, the error at this point will be

sinx =

a(90° — x + z)w — cosx

and if we impose that this quantity, taken with a negative sign, is equal
to the error at A we have

cosz —a(90° — z + z)w = (90° — a + z)w — cosa
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and thus we get the equation
a(180° — a — . + 22)w = cosz + cosa

from which the value z can be again drawn out. More precisely, since
x = 54°4" the equation takes the form

R51d |9, _ COSATCOST _ ooy
15 aw

therefore z = 5° since w = 0,8098270 (which corresponds in degrees to
w = 48°44").

Replacing the value z = 5° in (9), the function e(x) = aw(90° — x +
z) —cos x takes the form e(z) = aw(95° — x) — cos x. This last function
is almost zero for = 50° or x = 60°. Therefore, if we consider the
parallels defined for latitudes p = 50° and ¢ = 60° we deduce that
along these parallels the ratio of the degrees of latitude to the degrees
of longitude is almost constant. On the other hand, finding the values
of  which are roots of the equation aw(95°—x)—cos x = 0, we may find
exactly the latitudes of parallels along which the ratio of the degrees
of latitude to the degrees of longitude is constant. In this way one can
answer Euler’s second question mentioned in the introduction.

Note: We have seen that the function e(x) = aw(90° — z + z) — cosx
has a unique critical point, in particular a minimum at a point, say at
xo. Since e(a) = e(b) = |e(xp)| it follows that e(a) = e(b) = —e(xy) and
that the equation aw(95° — x) — cosz = 0 has exactly two roots.

Now let us compute how big is the error at A and B. The error at

Ais

aw(90° — a + z) — cosa = 5baw — 0, 7660444.

Since aw = 0,01410 the error turns out to be equal to 0,00946 and
since this error is expressed in fractions of a meridian degree, assigning
to such a degree the length of 15 miles the measure of the error is
0,14190 miles, that is the seventh part of a mile. Therefore at the
extremity B, where the latitude is 70°, and hence one degree of parallel
is equal to 0, 34202, the error is equal to the thirty-eight part of a mile,
which is easily tolerated.

Finally, it is quite easy now to construct Delisle’s map of the Russian
Empire, without considering the points P’ and @’ of Paragraph 2. For
this, we consider first a segment A’B’ in E? which will be the image of
the arc AB of the principal meridian. At a distance of 5 degrees from
B’ (or 59) we consider the point O" on the extension of the segment
A’B’. In the following, at the point A’ which is at a distant equal to 55°
from O, we consider with center O’ the circle Sy of radius O’A" and
this circle will be the image of the parallel passing through A. On Sy a
degree of longitude will be equal to 55aw = 0.77550, so the division on
this circle can be completed and all the meridians are easily drawn as
rays emanating from O and passing from the points of the subdivision
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of Sa. The images of the parallels of S whose latitude differs by one
degree will be circles of center O’ which have distance § among them.
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