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A new method for constructing linear codes with

small hulls *

Ligin Qian{ Xiwang Cao! Wei Lu? Patrick Solé¥

Abstract

The hull of a linear code over finite fields is the intersection of the code and its
dual, which was introduced by Assmus and Key. In this paper, we develop a method
to construct linear codes with trivial hull ( LCD codes) and one-dimensional hull by
employing the positive characteristic analogues of Gauss sums. These codes are quasi-
abelian, and sometimes doubly circulant. Some sufficient conditions for a linear code
to be an LCD code (resp. a linear code with one-dimensional hull) are presented. It
is worth mentioning that we present a lower bound on the minimum distances of the
constructed linear codes. As an application, using these conditions, we obtain some
optimal or almost optimal LCD codes (resp. linear codes with one-dimensional hull)
with respect to the online Database of Grassl.

Keywords: Linear codes, hull of a code, LCD codes, Gauss sums, quasi-abelian codes,
double circulant codes
MSC(2010): 94B05, 11T24, 11T71

1 Introduction

The hull of a linear code C over a finite field is defined to be

Hull(C) := CnCt.
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It is clear that Hull(C) is also linear. It is easy to see that a linear code C' is self-orthogonal
if and only if the dimension of Hull(C') is the dimension of C, i.e., Hull(C) = C, and it
is Linear Complementary Dual (LCD) if and only if the dimension of Hull(C) is zero, i.e.,
Hull(C') = {0}. Specifically, a linear code C' is self-dual if and only if the dimension of
Hull(C) is § for even n, where n is the length of C.

Hulls of linear codes have been introduced to classify finite projective planes in [I]. Later,
it turned out that hulls of linear codes play a vital role in determining the complexity of
some algorithms for checking permutation equivalence of two linear codes and computing
the automorphism group of a linear code [12| 13, 22 25]. It has been shown that these
algorithms are always effective when the dimension of the hull is small. Due to their wide
applications, some families of linear codes with special hulls such as LCD codes and linear
codes with one-dimensional hull have been of interest and extensively studied [4 [14], 15, 16,
18, 23, 24]. It is worth noting that the equivalence of many types of codes with LCD codes
has been extensively studied. Jin and Xing [10] showed that an algebraic geometry code over
Fom(m > 7) is equivalent to an LCD code. Moreover, a celebrated result was presented in
[5], which proved that any linear code over F, (¢ > 3) is equivalent to an LCD code. These
codes are practically useful in communications systems, various applications, and link with
other objects as shown in [3| 5] 6], [7, O] and references therein. Consequently, it is of interest
to study hulls, families of linear codes with small hulls. What needs to be emphasized
is that Li and Zeng [I8] constructed linear codes with one-dimensional hull by utilizing
quadratic Gaussian sums from quadratic number fields and Carlet, Li and Mesnager [4]
constructed LCD codes and linear codes with one-dimensional hull by employing character
sums in semi-primitive case from cyclotomic fields and multiplicative subgroups of finite

fields. They have made a lot of contributions in this regard.

Inspired by the above research work, we construct LCD codes and codes with one-
dimensional hull dimension, by using an analogue of Gauss sums where both the corre-
sponding additive and multiplicative character take their take values in a finite field instead
of the complex numbers. This method generalizes previous work [18], 20l 21]. Moreover, we
consider the order N > 2 of the homomorphism, while [I8] only considers N = 2. It turns
out that our constructions are more general and direct than previous work on small hulls
of linear codes. It is worth observing that we obtain some optimal or almost optimal LCD
codes and linear codes with one-dimensional hull from our constructions. Compared with
[18], the linear codes we constructed may be new when N > 2 in the sense. Furthermore,
we also present a lower bound on the minimum distances of the codes presented in this
paper. These codes have a lot of built-in symmetry: they are quasi-abelian of index 2 in

general [11], and double circulant in many cases.

The rest of this paper is organized as follows. Section 2 gives the preliminaries. In



Section 3, we give two concrete homomorphisms from a finite field into a finite field and
present the idea of constructing linear codes determined by a special generator matrix. In
Sections 4 and 5, we investigate LCD codes and linear codes with one-dimensional hull by
employing these two homomorphisms from a finite field to a finite field, respectively. In
addition, we present some examples of optimal or almost optimal LCD codes and linear
codes with one-dimensional hull. In Section 6, we present a lower bound on the minimum

distances of the constructed linear codes. Section 7 concludes the article.

2 Preliminaries

In this section, we introduce some notation and results in order for the exposition in this

paper to be self-contained, which will be useful later.

2.1 Codes

Let ¢ be a power of a prime p and [F, denote the finite field with ¢ elements. For a positive
integer n, a linear code of length n over FF, is defined to be a subspace of the F,-vector
spaces . A linear code C' of length n over Iy is called an [n, k, d], code if its F;-dimension
is k£ and the minimum Hamming distance of C'is d. If C' is an [n, k, d] code, then from the
Singleton bound, its minimum distance is bounded above by d < n—k+1. A code meeting

the above bound is called Maximum Distance Separable (MDS). A code is called almost

MDS if its minimum distance is one less than the MDS case. For w := (uy,ug2, - ,u,) and
n

v = (v1,v2, -+ ,vp) in Fy, the inner product of u and v is defined to be (u,v) := »_ uv;.
i=1

The dual C* of a linear code C of length n over F, is defined to be the set C+ = {v €
Fyl{c,v) = 0 for all ¢ € C}. A linear code C' is said to be self-orthogonal if C' C C+ and it

is said to be self-dual if C = C*. A linear code C is said to be linear complementary dual
(LCD) code if C N C*+ = {0}.

2.2 Homomorphisms

Starting from this subsection till the end of this paper, we let F,.m denote the finite field of
order 7™, where r is a prime number and m is a positive integer. Let F}n = F,m\{0}. Let
F, be the algebraic closure of the finite field F,.

Let ¢ be a homomorphism from F}.. into F;, that is, a mapping from F},. into FZ
with ¢(zy) = p(x)e(y) for all z,y € Fin. Define p(x) := @(x~1). Let ¢o be the trivial

homomorphism, which is defined by pg(z) =1 for all z € F}n.

The following lemma gives the orthogonality relations of the homomorphism .



Lemma 2.1. Let ¢ be defined as above. Then we have

T — 17 if ¥ = $0;
2, )= |
veF,, 0, if ¢ # o.
Proof. The proof is similar to that of [I7, Theorem 5.4] and omitted here. t

Let x be a homomorphism from F,= into Fz, that is, a mapping from F,m into ?2

with x(z + y) = x(x)x(y) for all z,y € F.m. Define x(x) := x(—x). Let xo be the trivial
homomorphism, which is defined by xo(x) =1 for all x € F,m.

We also have the following lemma, which presents the orthogonality relations of the

homomorphism Y.
Lemma 2.2. Let x be defined as above. Then we have
Tm? if X = X0;
> X@) = |
2€F,m 0, if x # xo-

Proof. The proof is similar to that of [I7, Theorem 5.4] and omitted here. O

2.3 Some results for the sum g(y, x)

Let ¢ and x be defined as Subsection 2.1. Then we define the sums

gl ) = > plz)x(z)

z€Fm

and

90, X) = 9@ %) = > ela x(-x).

xe]Fj,m

The following results show the value of the sum g(¢, x).

Lemma 2.3. Let ¢ and x be defined as Subsection 2.1. Then the sum g(p, x) satisfies

™ —1, if ¢ = @0 and x = xo;

gle.x) =9 -1, if o =y and x # xo;
0, if v # o and x = Xo-
Proof. The conclusion follows directly from Lemmas and O

Lemma 2.4. Let ¢ and x be defined as Subsection 2.1. If p # @o and x # xo, then

9(0, x)9(p, x) =1 € Fp.

4



Proof. For ¢ # ¢g and x # xo, we get

9(e,x)9(p,x) = > e@x@) D> ey Hx(-y)

meF:77L yEF:TVL
= > play x(z —y)
$7y€]F:.m
r—zy Y @)yl -1))
%yG]F:im
= > p(r) > xlylx - 1)
z€F yEF
= e(1) Y xO)+ > w@) D x(ylz—1))
yEFm z€F,m \{1} YyEF m
= =1 ) el
2eF%,, \{1}
= M=) el
we]ij
= .
This completes the proof of this lemma. O

The study of the behavior of the sum g(p, x) under various transformations of the ¢ or

x leads to a number of useful identities.

Lemma 2.5. Let ¢ and x be defined as Subsection 2.1. Then we have the following results.

(1) g(¢;X) = p(=1)g(¥, x);

(2) 9(@,x) = p(=1)g(w, x);

(3) 9(w, x)9(®, x) = @(=1)r™ for v # @o and x # Xxo;

(4) (g(e,x))P" = g(?", xP"), where p is the characteristic of F, and s is a positive integer.

Proof. The results of (1)-(3) are obvious by the definition g(y, x) and Lemma Next,
we prove the result of (4). Combined with the definitions of ¢ and x, we have

(9(p, )" = ( 2 w(w)x(x)> = > (@) (x@) = X ¢ (@)X (z) =

2E€F 2€F%, 2E€F*
S S
g(? , xP"). O

Remark 2.6. The ¢ and x in Section 2.1 are not the usual multiplicative and additive char-

acters, respectively. Moreover, the g(, x) is also not the usual Gaussian sums. However,



we can prove that the sum g(p,x) has similar properties to Gaussian sums (see Lemmas
and[2.5(1-3)). The definition of the sum g(,x) may have been studied before, but we

haven’t found any relevant references.

2.4 On characterizations of LCD codes and codes having one-dimensional
hull

In this paper, we consider the constructions of linear codes with small hull, mainly refer
to LCD codes and linear codes with one-dimensional hull. We will characterize when a
linear code is an LCD code or a linear code with one-dimensional hull. We next present

two lemmas for this purpose.

A complete characterization of LCD codes via the nonsingularity of their generator
matrices was employed in [3, [19], which provides a sufficient and necessary condition for a

linear code to be an LCD code.

Lemma 2.7. [3,[19] Let C be an [n, k] linear code over Fq with generator matric G = [Ij, P].
Then the code C is LCD if and only if I;,+PPT is nonsingular, i.e., —1 is not an eigenvalue
of the matriz PP, where PT denotes the transpose of P.

We also have the following lemma on a linear code having one-dimensional hull, which
provides an idea to construct linear codes with one-dimensional hull by using the eigenvalues

of the generator matrices.

Lemma 2.8. [/ (18] Let C be an [n, k] linear code over Fy with generator matric G = [I, P].
Then the code C has one-dimensional hull if the matric PPT has an eigenvalue —1 with

(algebraic) multiplicity 1.

3 Linear codes associated with homomorphisms

In this section, we construct the linear codes by using the two homomorphisms in Section
2.1.

Let r be a prime number and m a positive integer. F,m denotes the finite field of order
™. Let Fln = F,m\{0} and F}» = (a), where « is a fixed primitive element of Fn.
Assume that N > 1 is a positive integer and N|(r™ —1). Let ¢ be a power of p, where p is a
prime number. Assume that N|(¢ —1). Let F; = (8), where §8 is a fixed primitive element

—1
of . For the sake of convenience, we let u = ‘. Define the function

o Frm — T, o(0F) = P, (1)



where 0 < k < 7™ — 2. It is easy to know that ¢ is a homomorphism of order N. Define the

kernel of the homomorphism ¢ is the set
ker(p) := {a®,0 <k <r™ —2: p(a®) =1} = (o).

Assume that (p, ) = 1. Then there exists a positive integer ¢ such that r|(¢" — 1). Let

F;t = (y) and ¢ = 'y "=, where v is a fixed primitive element of ]F* For any a € F,m, we
define

Xa : Fpm — FZ, Xalz) = ¢Tr (@2) 2 € Fym, (2)

where Tr;:m denotes the trace function from F.m onto F,. It is easy to know that x, is a

homomorphism. It follows from the definition of x, that

9(o,xab) = P()g(¥;Xa) (3)

for a € Fpm and b € Fim
Fixv € Fq. Let Fpm = {z; : 1 < i <r™}. Define the 7™ xr™ matrix P = (p;;) € Mym(Fy)
by pij = p(z; — xi), where
p(xj —xi), if i 7 j;
p(rj —x;) = ’ ' A (4)
v, if 1 = 3.
For any a € F,m, set 0 := (xa(71), Xa(72), -+, Xa(2zrm))T, where “T” denotes the transpose

operator. Then the ith component of Pr, is

Zp —zi)Xa(rj) = Y pla—z)xa@)y =2 -z > pW)XaW+z:) = D> py)Xa(y)Xali)-

z€F, m y€eF,m y€eF,m

Hence, Pn, = ( > p(y)xa(y)> 1, and 7, is an eigenvector of P.
y€eF,m

Similarly, the ith component of PTn, is

Zp —zi)xa(rs) = Y plai—a)x@)y =i —2 Y pW)xalwi—y) = > pY)Xa(—y)Xalwi).

z€F,m yeF,m yeF, m

Hence, Py, = ( > p(y)xa(—y)> ne and 7, is also an eigenvector of PT.
yEIFTm

Next, we will prove that the r™ vectors {1, := (xa(1), Xa(®2), -+ , Xa(zym))T 1 @ € Fpm}

are linearly independent over F,.



Suppose that > kenq = 0, where k, € R,. Then we have

a€F,m
> kalxal@) Xa(@2), - xalzn)T =0,
a€F,m
T
— Z kaXa 331 Z ka,Xa x2 Z kaXa CUN") =0.
a€lF,m a€lF,.m a€lF,.m

Hence, > koxa(z;) =0 for any 1 <i <7r™.
aEFT'm

Given an element ag € F,m, we have

Z kaXa(Zi)Xao(—xi) =0 for any 1 <i <r™,
GE]FT'm

= Z kox1((a —ag)z;) =0 for any 1 <i <r™,

a€F,m

— Z Z kax1((a — ao)z) = 0,

z€F, m a€lF,m

— >k > xi((a—ag)z) =0.

a€F,m z€elF,m

By Lemma we obtain kq,m™ = 0 and then kq, = 0 by (r,p) = 1. Because qy is arbitrary,
we have k, = 0 for any a € F,m. Hence, the r™ vectors {1, := (xa(1), Xa(22), -+ , Xa(zym )T

a € Fym} are linearly independent over F,.

Therefore, the multisets { Y op(y)xaly) 1 a € Frm} and { > p(W)xa(—y) i a € Frm}
ye]F’V‘m yE]FT’m

present all eigenvalues of the matrix P and PT, respectively.

To sum up, PPy, = P( > p(y)xa(—y)> Na = ( > opWxaly) X p(y)xa(—y)> Na-

yEF,m y€eF,m y€F,m

Then the multiset {)\a = > p(xaly) D p(y)xa(—y):a € Fmm » presents all eigen-
yeF, m yeF,m

values of the matrix PPT and {1, : a € F,m} presents all eigenvectors of PPT.



Let the symbols be the same as above. According to Lemma 1), we obtain

X = > pWxa) Y pW)Xa(-Y)

yeF,m yeF,m

= (v+ D ewxa®) | [v+ D eWxal-v)

yEF m yeF m
= (v+9(®, xa)) (v + g(¥, Xa))
= v* +0g(p, Xa) + v9(2, Xa) + 9(2, Xa)9(0, Xa)
= v*+g(¢, Xa) + P(—1)vg(p, Xa) + ©(—1)(9(, Xa))?
= v*+ (14 @(—1))vg(e, xa) + ¢(—1)(9(, Xa))*-

Hence, all eigenvalues of PPT are given by the multiset

{Aa =07+ (1 + o(=1))vg(p, xa) + (= 1)(g(¢, Xa))* : @ € Frm }. (5)

Let €' := C(, ) be a linear code over F; with generator matrix G' = [I,m, P]. Then C is
a [2r"™,r™] linear code over ;. In Section 4, we construct LCD codes according to Lemma

In Section 5, we construct linear codes with one-dimensional hull by Lemma 2.8

4 The constructions of LCD codes

In this section, we present two simple constructions of LCD codes by using the two homo-
morphisms and . When m = 1 these codes are double circulant. In general, they are
quasi-abelian of index 2 as F,[H]—submodules of F,[H]? with H the additive group of F,m
[11].

Construction A. Define p(0) =v =0. We then obtain a r™ x r™ matriz P = (p;j) by

pij = p(xj — =),
which is defined as . It follows from (@ that all eigenvalues of PP are given by

07 if a = O,
>\(l = 2 ) . (6)
o(—1)(9(¢, xa))?, if a € Fim.
The following theorem gives the sufficient conditions for linear codes to be LCD codes

by Construction A.

Theorem 4.1. Let r be a prime number and m be a positive integer. Assume that N > 1
is a positive integer and N|(r™ — 1). Let q be a power of prime p and (p,r) = 1. Assume
that N|(q — 1). Let C := C(, ) be the linear code over F, with generator matriz [I,m, P].
Then we have the following.



(1) If there exists a positive integer s such that N|(p* — 1) and p(p**) # 1, then C is a
[2r™ r™] LCD code over F,. In particular, if p(q?) # 1, then C is an [2r™,r™] LCD

code over F.

(2) If there exists a positive integer s such that N|(p® + 1) and p(p~2%) # r?>™, then C is
an [2r™,r™] LCD code over F,.

Proof. Tt follows from @ that all eigenvalues of PPT are 0 when a = 0 and ¢(—1)(g(¢, xa))?
when a € Fjm. According to Lemma. we just have to prove that o(—1)(g(¢, xa))? # —
for any a € F¥... Assume on the contrary that there exists a € F,. such that ¢(—1)(g(, xa))?
=—1.

(1) If there exists a positive integer s such that N|(p® — 1), we get ¢P" = . Then

(P(=1)(g(p, xa))?)" = (1) = —1
(e(=1))""(g (%xa)) )P =-1
P (1) (g(£", Xaps))? = —1
( 1)(g9(; Xape))* = -1
P(=1)(@(P")9(p,xa))? = 1
P(=1)(9(#,xa))? = (@) = —p(™).

Mﬂﬂﬂﬂ

Combined ¢(—1)(g(¢,Xa))* = —1 with o(=1)(g(¢. xa))? = —(p**), we get p(p**) = 1
which is a contradiction. Hence, ¢(—1)(g(p, xa))? # —1 for any a € Fk.,

(2) If there exists a positive integer s such that N|(p® + 1), we get ©?" = !, Then

S S

((=1)(g(p, xa))P)"" = (=1 = -1
— @ ()" xaps))? = —1
— o H(=D(g(e™" Xaps))? = —1
— o (=D TP H(—1)gle ™ xa))? = —1
= ¢ {(=Dgl¢  x=a))? == ) (=1)) P = —p(p™*)
= ¢ (=D)(g(p, xa)? = —(p™*)

Combined ¢(—1)(g(, xa))? = =1 with 1 (=1)(g(p, xa))* = —p(p~?%), we get

(1) (g(, xa))*e (= 1)(9(, xa))* = ©(p™ )
(9(¢: Xa)9(#: xa))? = o(p™™)
2™ = o(p~?*) by Lemma

I

which is a contradiction. Therefore, ¢(—1)(g(¢, xa))? # —1 for any a € Fm

10



To sum up, —1 is not an eigenvalue of the matrix PP”. By Lemma Cisan [2r™ r™]

LCD code over FF,. This finishes the proof of the theorem. O

Two concrete examples with respect to Theorem are given as follows.

Example 4.2. Letr =7,m=1,N =3,p=2 and ¢ = 4. Let F} = (B), where [ is a fived
primitive element of F}. It is easy to check that q,r, N satisfy the conditions in Theorem
[4.4(1)(2). Then C is a quaternary [14,7,5] LCD code with generator matriz [I7, P], where

o 1 8 B B B 1
1 0 1 5 5 B p
g2 1 0 1 g B B
P=| g 5 1 0 1 5 B |,
g8 B 1 0 1 p
g2 B 1 01
1 g B B8 g 1 0

which is almost optimal in the sense that the minimum distance of the optimal quaternary

linear code with the length 14 and the dimension 7 is 6 by the online Database [8]. Moreover,

the dual code of C has parameters [14,7,5], which is also almost optimal.

Example 4.3. Letr =3,m = 1,N =2 and ¢ = p = 5. It is easy to check that q,7, N
satisfy the conditions in Theorem [{.1(2). Then C is an [6,3,3] LCD code over Fs with

generator matriz [I3, P, where

which is almost optimal in the sense that the minimum distance of the optimal 5-ary linear
code with the length 6 and the dimension 3 is 4 by the online Database [8]. Moreover, the

dual code of C has parameters [6,3, 3], which is also almost optimal.

In view of Theorem since the sufficient condition is abstract for a linear code to be

an LCD code, we present a concrete result as corollary in the following.

Corollary 4.4. Let r be a prime number and m be a positive integer. Assume that N > 1
is a positive integer and N|(r"™ — 1). Let q be a power of prime p and (p,r) = 1. Assume
that N|(q — 1). Let C := C(, ) be the linear code over F, with generator matriz [I,m, P].
Then we have the following.

2s(r"™—1)

(1) If there exists a positive integer s such that N|(p® — 1) and p— ¥  # 1 (mod r),
then C is an [2r™,r™] LCD code over F,.

11



(2) If there exists a positive integer s such that N|(p® + 1) and ™V # 1 (mod p), then
C is an [2r™,r™] LCD code over Fy.

Proof. Compared with the conditions of Theorem [4.1) we just have to prove that (1) if
p2S(TN71) # 1 (mod ), then p(p?*) # 1 and (2) if r2™Y £ 1 (mod p), then @(p~2%) # r?™,
respectively.
(1) Assume on the contrary that p(p?*) = 1, then p?* € ker(¢). Hence, p** € (a™V).
m rMm—1
Since ord(a?) = =L, we have p** "~ =1 (mod 7), it is a contradiction.
(2) Assume on the contrary that o(p~2%) = 2™, then (¢(p~2%))N = 2"V, Hence,

r?"N =1 (mod p), it is a contradiction. This completes the proof. O

Construction B. Define p(0) =v. We then obtain a ™ x ™ matriz P = (p;;) by

pij = plxj — xi),
which is defined as . For any a € Fym, we define fq : Fy — Fq by
z2, if a =0;
faw) =1 " ) ) ()
2+ (L+ o(=1))p(a)g(p, x1)z + o(=1)(@(a)g(e, x1))*,if a € Fim.

It follows from (@ that all eigenvalues of PPT are given by

Ao = fa(V)
for alla € Fym.

In order to construct LCD codes over F,;, we hope that there exists v € F, satisfying

fa(v) # —1 for any a € F,m. Hence, we present a lemma as follows.

Lemma 4.5. Let the symbols be the same as above. If ¢ > 2(N + 1), then there exists
v € Fy satisfying Ag := fo(v) # —1 for any a € Fym.

Proof. Since the order of ¢ is N, the set {fo(z) : @ € Fym} has at most N 4 1 distinct
polynomials. For any a € F,m, fo(z) = —1 has at most two solutions in F,. Theorefore, all
these equations in {fq(x) = —1: a € Fym} have at most 2(N + 1) solutions over [F,. Since
q > 2(N + 1), there exists an element v € F, such that v is not a solution of any equation
fa(x) = —1, i.e., there exists v € F, satisfying A\, = f,(v) # —1 for any a € Fym. O

Based on the discussion above, we can easily get the following theorem.

Theorem 4.6. Let r be a prime number and m be a positive integer. Assume that N > 1
is a positive integer and N|(r™ — 1). Let q be a power of prime p and (p,r) = 1. Assume
that N|(q —1). Let C := C(, ) be the linear code over F, with generator matriz [I,m, P].
If ¢ > 2(N + 1), then there exists v € Fy such that C is an [2r™,r™] LCD code over F.

12



Proof. By Lemmas and we can easily obtain the desired results. So we omit the
detail here. 0

Next, we present an example to explain the result of Theorem

Example 4.7. Let r = 2,m = 2,N = 3,p =5 and ¢ = 25. Let F5; = (), where 3 is a
fized primitive element of . Taking v = 2. It is easy to check that q,r, N satisfy the
conditions in Theorem . Then C' is an [8,4,4] LCD code over Fos with generator matrix
[14, P], where

52 516 58 1
616 62 1 58

p= g1 g2 g |’
1 ,68 616 ﬁ2

which is an almost MDS code. Moreover, the dual code of C has parameters [8,4, 4], which

18 also an almost MDS code.

5 The constructions of linear codes with one-dimensional
hull

In this section, we present the constructions of linear codes with one-dimensional hull by
using the two homomorphisms and . In order to construct linear codes with one-
dimensional hull over [F,, we hope that there exists v € F, satisfying \g = v? = —1 and
Aq # —1 for any a € Fym by Lemma 2.8 Let ¢ be a power of a prime p. In what follows,

we shall consider the construction dividing into two cases p = 2 and p > 3.

5.1 The case p=2

Define p(0) = v = 1. Then v? =1 = —1. We then obtain a 7™ x r™ matrix P = (p;;) by
pij = p(xj — @),

which is defined as . It follows from (5 that all eigenvalues of PP are given by

-1, if a = 0;
Aa = 9 . (8)
_1+(g(907Xa)) ) if aEF;fm.
Therefore, we present the following theorem.

Theorem 5.1. Let r be an odd prime number and m be a positive integer. Assume that

N > 1 is a positive integer and N|(r™ — 1). Let q be a power of p =2 and N|(q—1). Let

13



C := C(y 1) be the linear code over Fy with generator matriz [Im, P]. Then C is a [2r™,r™]

linear code over Fy with one-dimensional hull.

Proof. Tt follows from (8)) that all eigenvalues of PP are —1 when a = 0 and —1+(g(i, Xa))?
when a € Flmn. By using Lemma we just have to prove that —1 + (g(p, xa))? # —1
for any a € F}.. Note that the result g(¢, xa)g(@, Xa) = r"™ for any a € F}, from Lemma

Then g(¢,Xa) # 0 and g(p, xa) # 0 for any a € Fn. Hence, (g(¢, xa))* # 0 and
—14 (g9(v,Xa))? # —1 for any a € Ff.. The desired conclusion then follows. O

Here, we give a concrete example as follows.

Example 5.2. Letr =13,m =1,N =3,p=2 and ¢ = 4. Let F} = (3), where [ is a fized
primitive element of F}. It is easy to check that q,r, N satisfy the conditions in Theorem
5.1, Then C' is a [26,13, 8] linear code over Fy with one-dimensional hull and its generator
matriz [I13, P], where

1 1 8 p g 1 BB 1 BB B 1
1 1 1 5 B B 1 51 B BB
g1 1 1 B B g1 BB 1 BB
BB 1 1 1 g B B 1 B 1R
g2p g1 11 g gL BB
1 g g B 1 1 1 B B B 1 R
P=|p 1 5 g 5 1 1 1 5 g g1 p
g1 s g1 11 B g g1
1 g1 2 g 111 5 BB
g1 g1 2 g 1 11 BB
gop 1 g1 2 s g1 11 B
BB B 1 g1 g B 111
1 g g B 1 B 1 s 511

Moreover, the hull of C is a [26,1,26] cyclic code over Fy with generator matriz

(11111111111111111111111111).

5.2 The case p > 3

In this subsection, we let F; = (8), where 3 is a fixed primitive element of ;. Assume that
4l(g-1).

Define p(0) = v = B%l. Then v? = (5%)2 = ﬁq%l = —1. We then obtain a r™ x r™
matrix P = (p;;) by

pij = p(xj — i),

14



which is defined as . In addition, ¢(—1) = go(ozrm{l) — W = (B%)ﬁm1
g—=1 rm-1 rMm—1

(87 )~ =(-1)"~ . When % is odd, ¢(—1) = —1; when &N_l is even, p(—1) = 1.
Combined with , when ’”mT*l is odd, we have

N

- 17 if a = 07
he = )
—1—(9(¢,xa))? if a € Fym;

mo__ .
when ”"—Nl is even, we get

-1, if a = 0;
Ao = (10)

— 1+ (2v+ g(9, Xa))9(; Xa), if a € Fym.

Collecting all discussions above, we first present the sufficient conditions for constructing

linear codes with one-dimensional hull when TmN_ L is odd.

Theorem 5.3. Let r be a prime number and m be a positive integer. Assume that N > 1 is

a positive integer and N|(r™ —1). Let q be a power of prime p and (p,r) = 1. Assume that

N|(g—1) and 4|(¢—1). Let C := C( P be the linear code over Fy with generator matrix
®,

[I,m,P]. When WT_I is odd, C is a [2r™,r™] linear code over F, with one-dimensional hull.

Proof. The proof is similar to that of Theorem and omitted here. O

Example 5.4. Letr =3,m =2,N =8,p="7 and ¢ =49. Let F}q = (), where § is a fized
primitive element of Fiq. It is easy to check that q,v, N satisfy the conditions in Theorem
. Then C' is a [18,9, 8] linear code over Fy9 with one-dimensional hull and its generator

matriz [1y, P|, where

612 642 ,36 630 1 536 618 612 6
BlS B12 1 BlZ BSG ,86 642 6 ﬁSO
B30 6 612 ,86 ﬁ18 542 512 1 536
/86 ﬁ36 B?)O 512 612 6 1 618 642
P = 6 612 642 636 512 BlS 630 ,36 1
BlZ B30 BlS 1 B42 612 6 ﬁ36 ,86
642 ﬁlS ﬁ36 6 ,86 1 512 630 512
636 1 6 542 BSO B12 ,36 612 618
1 ﬁG 612 618 6 B?)O 536 542 BlQ

Moreover, the hull of C is a [18,1,18] quasi-cyclic code of index 2 over Fy9 with generator

matrix
(1 11111111 612 612 612 612 612 612 B12 B12 BlQ)'
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Compared with Ezample 2(2) in [18], the linear code C over Fy9 with one-dimensional hull
we obtained has better parameters than its parameters. In other words, the linear code C
of the length 18 with the dimension 9 has the minimal distance 8, while the linear code C
of the length 18 with the dimension 9 in [18, Ezample 2(2)] has the minimal distance 7.
That is to say, the linear code C over Fi9 with one-dimensional hull we obtained is also

considered new.

Example 5.5. Letr =7,m =1,N =6,p =5 and ¢ = 25. Let F5. = (f3), where ( is a fized
primitive element of F55. It is easy to check that q,v, N satisfy the conditions in Theorem
. Then C is a [14,7,7] linear code over Fa5 with one-dimensional hull and its generator

matriz [I7, P], where

9 1 BS B4 516 520 4
4 9 1 68 64 516 ﬁ%
520 4 9 1 58 54 ﬂlﬁ
P = 516 520 4 9 1 68 64 ,
54 516 520 4 9 1 BB
ﬂS 64 516 ﬁ20 4 )

1 58 64 516 520 4 9
which is an almost MDS code. Moreover, the hull of C' is a [14,1,14] quasi-cyclic code of

index 2 over Fos5 with generator matriz

(11111112222222).

Next, we turn to the sufficient conditions for constructing linear codes with one-dimensional

1

hull when 1 is even.

Theorem 5.6. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N|(r™ — 1). Let q be a power of prime p and (p,r) = 1. Assume

that N|(q— 1) and 4|(q — 1). Let C := C( S be the linear code over F, with generator
©

)
rm

matriz [Im, P]. When "5t is even and 20+ g(p, Xa) # 0 for all a € Fim, C is a [2r™, 1™

linear code over Fy with one-dimensional hull.

Proof. 1t follows from that all eigenvalues of PPT are —1 when a = 0 and —1 +
(2v+ g(@, Xa))9(@, Xa) When a € F}n. According to Lemma we just have to prove that
14+ (2v+ 9(p, Xa))9(p, Xa) # —1 for all a € Fin.

By utilizing Lemmal[2.4]and the proof of Theorem 5.1}, we obtain that g(¢, x4) # 0 for any
a € Ffn. When 2v+g(¢, xa) # 0 for all a € Fim, we have =14 (20+¢(¢, Xa))9(@, Xa) # —1
for all a € Flm.
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Therefore, the matrix PPT has an eigenvalue —1 with multiplicity 1. It then follows
from Lemma that C is a [2r"™,7™] linear code over F, with one-dimensional hull. O

In Theorem the condition “2v 4 g(p, xa) # 0 for all @ € F}” is not very straight-

forward. Hence, we will present the following corollary as a concrete result.

Corollary 5.7. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N|(r™—1). Let q be a power of odd prime p and (p,r) = 1. Assume

that N|(q — 1) and 4|/(¢ — 1). Let C := C’( P be the linear code over I, with generator
@5

matriz [Im, P]. Let =% be even. If ¢(q) # 1, then C is a [2r™,r™] linear code over F,

with one-dimensional hull.

Proof. Since WT_l is even and it follows from that all eigenvalues of PP are —1 when
a=0and -1+ (2v+ g(¥, Xa))9(¥, Xa) when a € Fr.. Suppose that 2v + g(p, x4) = 0 for
some a € Fm. Then g(¢, xa) = —2v € F, when p =1 (mod 4) and g(p, xa) = —2v € F2
when p = 3 (mod 4). In addition,

q

(9lexa))® = | D e(@)xal®)

2%,

9, Xaq)

s Xagq)
“Ngle, Xa)
7))~ 9(¢, Xa)

= g(p
= gl

= ¥y

(

= o

by N|(q— 1) and Section 3(3). If ©(q) # 1, then (g(¢, xa))? # 9(¢, Xa); 1-€., 9(¢, Xa) & Fq.
When p =1 (mod 4), F, C F,, which implies that g(¢, xa) ¢ Fp. It is a contradiction.
When p = 3 (mod 4), F,2 C F, by 4|(¢ — 1), which implies that g(p, xa) & Fp2. It is a

contradiction.

Hence, 2v+ g(¢, Xq) # 0. By using Lemma we obtain that g(¢, xq) # 0. Then —1+
(20 + g(, Xa))9(®, Xa) # —1 for all a € F¥n. Thus the matrix PPT has an eigenvalue —1
with multiplicity 1. It then follows from Lemma[2.8|that the desired result then follows. [

We now employ Corollary [5.7] to present a example as follows.

Example 5.8. Letr =7,m =1,N =3,p=>5 and ¢ = 25. Let F5, = (f3), where ( is a fized
primitive element of F55. It is easy to check that q,v, N satisfy the conditions in Corollary
. Then C is a [14,7,6] linear code over Fa5 with one-dimensional hull and its generator
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matriz [I7, P], where

) 1 616 BS ,88 516 1

1 2 1 ﬁlﬁ ,38 ,88 616
616 1 9 1 516 /38 /38
P = ﬁS 616 1 ) 1 516 ﬁS
ﬁS BS 616 1 2 1 516
ﬁlﬁ ,38 ,38 ﬁlﬁ 1 2 1

1 Blﬁ ,38 /38 516 1 )

Moreover, the hull of C' is a [14,1,14] quasi-cyclic code of index 2 over Fa5 with generator
matrix

(11111112222222).

Furthermore, some optimal or almost optimal LCD codes (resp. linear codes with one-
dimensional hull) derived from Theorems4.1|and 4.6| (resp. Theorems and Corollary
are listed in Table [1| by Magma [2].

Remark 5.9. In Table optimal linear codes with one-dimensional hull in [18, Section
A] can also be obtained by our construction methods when N = 2 (see the first row, fourth
row and fifth row of Table , which implies that our results contain partial results in [18,
Section A]. When N > 2, the linear codes are different from those in [18, Section A]. In
addition, although the second and third low parameters of Table[1] are the same, we verified

by Magma that the two codes are not equivalent.

6 The minimum distance of the linear code C,

In this section, we discuss the lower bound on the minimum distance of linear code C :=
C(g,v) With generator matrix G' = [I,m, P] defined in Section 3.

Assume that ¢ is a power of odd prime p and N = 2. Let Fm = {x; : 1 <4 < 1™}, where
1, ,Trmoy ATe NON-ZETO Squares in Fpm, Trmyr, o+, Tym_) AT€ NON-SQUAres in F,.m and

Tpm = 0. From Section 3, we have Pn, = 0,1, for any a € Fpm, where 0, := > p(y)xa(y)
yeF,m

and Ta = (Xa(xl)vxa(x2)7 e 7Xa(x7’m))T~ Let Q = (7711777127 Tt 777:Crm)- Then

PQ = (anlvpnﬂcz"" 7P77ITm)
( z1 My s xznwza"' 70xrm77xrm)
(7711777127"' 777wrm)A

= QA
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where

A= ) is a diagonal matrix.

0.1}.,«777,

Note that when v = 0,

0 07 lf a = 0,
cp(a_l)g(ap, Xl)a if a € ]F:m

Let’s just say g := g(, x1) for convenience.

It is easy to know that

A =g(e,x1) -1 : (11)

It follows the definition of the linear code C' that C' can be expressed in the following

form:
C = {c(k)=kG,keF;"},where k = (ki, kg, , kym).
For any codeword ¢(k) in C, we have

c(k) = kG
= k(Im,P)
(k,kP)
= (k,1),where I := l(k) = kP
(kp ko, - ey 1y, Loy oo L),

Multiply both sides of the equation I = kP by the matrix (), we obtain

1Q = kPQ = kQA.
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Based on the above discussion and combined with Eq. , we have the following three

equations:

(ll _gk17 7l7’m _gkrm)(nma" : 777$r7”71) = 07
2
(ll +gk17 7l7’m +gk7“m)(n$rm+17"' 7nm,«m71) = 07
L=
Wt tlm = 0.

In view of the above three equations, we present the following theorem. Before we do that,

My Vi,
let’s give some definitions. We define : = (Nays 5 Nwpm_, ) and : =
Ham i Vg,m
M ymay s s Ny )-
2
Theorem 6.1. Let C' := C(, ) be a linear code over ¥, with generator matriz G =

[I,m,P] defined by Section 3. Let A be a positive integer. Assume that any A vectors
in {fay s 5 Pa,m b are linearly independent and any A vectors in {vy,, -+ Vg m } are also
linearly independent. Then dpn(C) > A+ 1.

Proof. Suppose that ¢(k) is any codeword in C' which satisfies that wt(c(k)) < A+ 1. Note
that c(k) = (k, kP) = (k1) = (k.- kym, b1, -+ s bpm). Set Q= {(l1, k1), , (lym, kym ).
Let o = #{(l;, ki) € Q| (I, k;) = (0,0) and 1 < i <r™} y = #{(li, ki) € Q| Only one of [;
and k; isOand 1 <i <7r™} and z = #{(l;, k) € Q| l; #0and k; #0, and 1 < i < 7™},

Then we have

r+y+z=r"
! (12)
2c+y>2r"—A—1.
From , we obtain
x > rm—-—A-1 (13)
Let u; = I; — gk; and w; = [; + gk;, where 1 < i < ", Then
Moy
(Ul,"' 7u7‘m) :u1/~l'$1+'“+u7'mlu’$rm =0 (14)
/-'L.’Erm
and
Vg,
(wh... 7w7‘m) :lewl‘F""i"wrmVme =0. (15)
Vg,m
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According to , it is easy to know that there are at least r™ — A zeros in ug,- -+, Upm.

Similarly, there are also at least "™ — A zeros in wq, - ,w,m. Without loss of generality,
let’s assume that wgy1 = -+ = upm = 0. Combined Eq. and fiy,,- -, g, are linearly
independent, then we have u; = --- = ua = 0. Hence, we obtain u; = -+ = u,m = 0.
Similarly, we also deduce wi; = -+ = wym = 0. Therefore, we get [y = --- = [,m = 0 and
ki =--- = km = 0. Then ¢(k) is a zero codeword. That is to say, for any nonzero codeword
cin C, we have wt(c) > A+ 1. So dmin(C) > A+ 1. This completes the proof. O

Remark 6.2. According to Theorem [0.1], we expect to find the largest A that satisfies the
assumption of Theorem [6.1 It is trivial that A = 1 satisfies the assumption of Theorem
. When TWT_l > 2 and m = 1, it is easy to prove that A = 2 satisfies the assumption
of Theorem [6.1 Based on the a lot of examples we have tried by Magma, we guess that
A = TmT*l satisfies the assumption of Theorem . If this conjecture is correct, then
dmin(C) > WTH But we fail to prove it. Thus we would like to put it here as an open

problem.

Conjecture 6.3. Let p > 3, r be two distinct prime numbers and m a positive integer.
Assume that N = 2. Let C := C(,,) be a linear code over F, with generator matriz
G = [I;m, P], where P is defined by Section 3. Then

(1) When v =0, we have

3, if '™ = 3;

dmin =
) TS if T £ 3,

(2) When v # 0 and r™ =1 (mod 4), we have

IR i o = 414
dmin(c) - m
IS if v #£ L
Remark 6.4. Ezample[[.3 and some examples in Table[1] can illustrate the validity of the
above results. In fact, we have tried a lot of examples by Magma, the comjecture is also

correct. But we fail to prove it. Thus we would like to put it here as a conjecture.

7 Conclusion

In this paper, we propose a general method to construct LCD codes and linear codes with
one-dimensional hull through the homomorphisms from finite fields into finite fields. Based

on the eigenvalues of the matrix PPT, some sufficient conditions for a linear code to be
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an LCD code (resp. a linear code with one-dimensional hull) have been presented in this
paper. With these conditions, we obtain some optimal and almost optimal LCD codes
(resp. linear codes with one-dimensional hull) by Magma [2], which are exhibited in Table
Additionally, we also obtain several almost MDS LCD codes (resp. almost MDS codes
with one-dimensional hull) (see Examples and [5.5).

Compared with [I8], their construction methods are specific and special, while our meth-

ods are more general and direct. It is mainly reflected in three aspects:

1. In [I8], the matrix P studied by the authors satisfies the symmetry property, while
the matrix P we employed in this paper is a general matrix whose eigenvalues are

completely determined;

2. In [18], the authors constructed linear codes with one-dimensional hull over finite fields
by using the generator matrix over quadratic number fields, while we construct them

directly by utilizing the generator matrix over finite fields;

3. Taking N = 2, we obtain that [I8, Theorem 5] is a special of our results in Theorem
by comparing the constraints. The results of Theorem contain [I8, Theorems 3
and 4]. In some sense, some of linear codes with one-dimensional hull we constructed
may be new when N > 2 by comparing with [I8] (see Example . In addition,
we present a lower bound on the minimum distance of linear code C' over F, with

generator matrix G = [Im, P] when N = 2.

We should emphasize that our results apply to (p,7) = 1. It would be interesting to
extend the results of the present work to p = r. The main open problem is Conjecture [6.3
In addition, although there are many LCD codes and linear codes with one-dimensional
hull, it seems to be difficult to determine the minimum distances of the codes presented
in this paper when N > 2. It will be of interest to find other constructions such that the

minimum distances of these codes can be determined.
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Table 1: The list of optimal or almost optimal linear codes over small fields

r,m, N F, [n, k,d] Theorems
r=13,m=1N=3 I, [26,13,9]* | Theorem .(1)
r=13m=1,N=4 F5 26,13,9]* | Theorem [4.1 .(1)
r=17m=1,N=8 Fy [34,17,12]* | Theorem [4 (1)
r=17m=1N =4 Fs [34,17,11]* | Theorem [ (1)
r=5m=1N=2 F7 [10,5, 5]* Theorem .(2)
r=7m=1,N=2 Fs5 [14,7,6]* Theorem (4.1 .(2)
LCD codes r=11,m=1,N=2 I, [22,11,8]* | Theorem [4 (2)
r=13m=1,N=2 Fs 26,13,9]* | Theorem [4.1 .(2)
r=17m=1N =2 I, [34,17,11]* | Theorem .(2)
r=17Tm=1N =4 Fy [34,17,11]* | Theorem (4.1} .(2)
r=17m=1,N =2 Fs [34,17,11]* | Theorem [4 (2)
r=3,m=1,N=2 F; 6,3, 3]* Theorem [4.6} .
r=3m=2N=2 Fr (18,9, 7]* Theorem
r=5m=1N=2 F7 [10,5, 5]* Theorem
r=11,m=1,N=2 Fr (22,11, 8]* Theoremm
r=7m=1N=3 Fy [14,7,6]* Theorem
Linear codes with r=3m=1,N=2 s 6,3, 3]* Theorem
one-dimensional hull |r=7,m=1,N =2 Fs [14,7,6]* Theorem
r=11,m=1,N=2 Fyg [22,11,8]* | Theorem
r=17m=1,N =4 Fyo [34,17,11]* | Corollary
r=17m=1,N =28 Fyg [34,17,11]* | Corollary
r=17m=1,N =2 s (34,17, 11]* Corollary

The codes with asterisk (*) have the property that linear codes are best known g-ary linear
codes in [2], which is optimal. The codes with asterisk (*) have the property that linear
codes have better parameters according to the Database [2], which is almost optimal in the
sense. For example, the linear code over Fg of the length n = 10 with the dimension £k =5

has the minimum distance 5, while the code in the Database [2] has the minimum distance

6.
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