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ABSTRACT
Line-of-sight effects in strong gravitational lensing have long been treated as a nuisance. However, it was recently proposed that
the line-of-sight shear could be a cosmological observable in its own right, if it is not degenerate with lens model parameters. We
firstly demonstrate that the line-of-sight shear can be accurately measured from a simple simulated strong lensing image with
percent precision. We then extend our analysis to more complex simulated images and stress test the recovery of the line-of-sight
shear when using deficient fitting models, finding that it escapes from degeneracies with lens model parameters, albeit at the
expense of the precision. Lastly, we check the validity of the tidal approximation by simulating and fitting an image generated
in the presence of many line-of-sight dark matter haloes, finding that an explicit violation of the tidal approximation does not
necessarily prevent one from measuring the line-of-sight shear.

Key words: gravitational lensing: strong – cosmology: theory – software: development

1 INTRODUCTION

Strong gravitational lensing is one of the most elegant probes of
the late-time Universe. Massive objects such as galaxies and galaxy
clusters bend the local spacetime geometry and produce multiple,
distorted images of distant background sources. When the source–
lens–observer alignment is good, the image forms an Einstein ring.
In an otherwise perfectly homogeneous and isotropic Universe, the
morphology of that ring is a direct probe of the gravitational field
generated by the strong lens.
However, on the scales probed by strong gravitational lensing,

the Universe is very inhomogeneous. Therefore, we expect that
inhomogeneities – typically dark matter haloes – near the line of
sight (LOS) will generate weak lensing distortions that will affect the
images produced by the strong lensing process. We generically refer
to the effects induced by this weak lensing of strong lensing images as
LOS effects. These effects have been studied for their impact on, for
example, the determination of the Hubble parameter via time-delay
cosmography (Gilman et al. 2020), in which case they are considered
to be a nuisance effect. But when LOS effects are observable, they
also provide some insight into the distribution of dark matter. For
example, the effects of individual haloes of dark matter, whether in
the main lens or along the LOS, can lead to the detection of dark
matter structures on small scales (Vegetti & Koopmans 2009; Vegetti
et al. 2012; Despali et al. 2018; Sengül et al. 2022; Nightingale et al.
2022) and the study of their properties (Vegetti & Koopmans 2009;
Vegetti et al. 2014; Ostdiek et al. 2022; Zhang et al. 2022). Line-
of-sight haloes and main-lens subhaloes lead to different signatures
on strong lensing images, and their effects might be disentangled
(Dhanasingham et al. 2022), although the detectability of individual

★ E-mail: natalie.hogg@ipht.fr

haloes remains an open question (He et al. 2022). Finally, LOS effects
in strong lensing may constitute a novel probe of weak lensing in their
own right, which is the motivation of the present work.
Line-of-sight perturbations can be modelled in two complementary

ways. One option is to add thin perturbers along the LOS in a multi-
plane lensing formalism (Blandford & Narayan 1986), a methodology
which is particularly suitable for taking into account the presence of
several subdominant yet clearly identifiable mass concentrations near
the LOS. However, this approach is not suitable for modelling the
collective effect of a large number of perturbers, due to an excessive
number of extra parameters thereby added to the lens model.
This difficulty can be overcome by encapsulating the collective

effects of LOS inhomogeneities into an effective, external conver-
gence and shear perturbing the LOS (Kovner 1987; Bar-Kana 1996;
Schneider 1997; Birrer et al. 2017; Fleury et al. 2021b). Although this
neglects higher-order effects such as flexion, this parametric method
is usually considered good enough on large scales. An analysis of
both approaches and how to connect them is presented in Fleury et al.
(2021a), where one can also find a discussion of higher-order effects.
The idea that the LOS shear can, in principle, be extracted from

strong lensing images in galaxy lensing was proposed by Birrer et al.
(2017, 2018) as an alternative probe of cosmic shear. Based on this
approach, a first attempt at correlating this LOS shear with standard
weak lensing was made by Kuhn et al. (2021). However, the set-up
developed in this programme relied on a non-optimal treatment of
LOS effects that overlooked some degeneracies between foreground
shear and the main lens modelling. It also employed a somewhat
optimistic and simple model for the main lens.
In this paper, we re-analyse the possibility of measuring the LOS

shear with Einstein rings generated by galaxy lensing using the
minimal model introduced by Fleury et al. (2021a), in lieu of the
parametrisation used by Birrer et al. (2017). This model fully accounts
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for degeneracies between the main lens and its LOS corrections,
thereby providing an effective description that depends on only one
additional complex parameter. This parameter, denoted 𝛾LOS, is
expected to be mostly independent of the main lens model. In our
analysis, we take great care in studying the level of complexity required
when modelling the main lens, showing that too simplistic a model
can result in biases and a loss of accuracy in the reconstruction of the
LOS shear.
We present the first demonstration that the LOS shear can be ob-

served using a series of simulated strong lensing images of increasing
complexity. In particular, we show that the LOS shear is generally
measurable without systematic biases, and that the next-order LOS ef-
fects, while present, do not introduce further biases. These results are
obtained thanks to our modifications of the lenstronomy software1
(Birrer & Amara 2018; Birrer et al. 2021), to which we contributed
a new subpackage, LineOfSight, included in the software from
version 1.11.0.
The paper is organised as follows: in Section 2 we recapitulate the

LOS theory and demonstrate how degeneracies between the LOS
shears and other parameters are avoided in the so-called minimal
model; in Section 3, we show how the LOS shear is systematically
measurable; in Section 4 we explore the validity of the tidal regime.
In Section 5 we present our conclusions. In Appendix A we describe
our modifications to the strong lensing software lenstronomy, while
Appendix B contains details of the parameter choices used to create
the mock image data analysed in this work.
Throughout this work, we employ the spatially flat ΛCDM cosmo-

logical model described by the Planck 2018 data release (Aghanim
et al. 2020), with 𝐻0 = 67.4 kms−1 Mpc−1 and Ωm = 0.315.

2 THE MINIMAL LINE-OF-SIGHT MODEL AND ITS
ADVANTAGES

In this section, we review the theoretical underpinnings of LOS effects
as presented in Fleury et al. (2021a) and demonstrate how the inherent
degeneracies can be absorbed in the so-called minimal model, paving
the way for the LOS shear to be measured.

2.1 Tidal perturbations to a strong lens

As a ray of light passes through the inhomogeneous Universe from
source to observer, its path is perturbed by the presence of massive
objects. In the simplest strong lensing situation, the deflection of
light is assumed to be caused by a single lens. In this case, the whole
problem is encapsulated in the lens equation,

𝜷 = 𝜽 − 𝜶(𝜽), (1)

where 𝜷 is the angular position of the source, 𝜽 is the angular position
of the observed image and 𝜶(𝜽) is the displacement angle, which is
in turn determined by the gravitational potential associated with the
surface density of the lens, projected along the LOS.
A more elaborate description can be made by including the effects

of other nearby objects on the image. The most general approach to
deal with this situation is the multi-plane lensing set-up (Blandford
& Narayan 1986), in which each additional lens mass is considered
to reside in its own plane along the LOS. However, the recursive
nature of the multi-plane lens equation makes analytical treatments
of complicated lensing situations intractable.

1 https://github.com/lenstronomy/lenstronomy.
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Figure 1.When LOS perturbations to a strong lens can be treated in the tidal
regime, they intervene in the lens equation (2) via three distortion matrices:
Aod,Aos,Ads. For each couple ab,Aab represents the distortions to a small
source placed at (b) as observed from (a) due to the perturbers only.

A simpler approach is to treat the inhomogeneities along the LOS
as tidal perturbations which induce a shear and convergence on the
image produced by the main lens. This has the advantage of a far
simpler theoretical description than the multi-plane case (Kovner
1987; Seitz & Schneider 1994; Bar-Kana 1996; Schneider 1997;
Fleury et al. 2021b); see McCully et al. (2014); Fleury et al. (2021a)
for explicit derivations of the perturbed lens equation in the tidal
regime, starting from the general multi-plane framework.
In this simplified description, the lens equation (1) becomes

𝜷 = Aos𝜽 −Ads 𝜶(Aod𝜽), (2)

where the amplification matricesAos,Ads,Aod encapsulate all the
LOS perturbations. They are commonly parameterised as

Aab = 1 − 𝚪ab , 𝚪ab =


𝜅ab + Re (𝛾ab) Im (𝛾ab) − 𝜔ab

Im (𝛾ab) + 𝜔ab 𝜅ab − Re (𝛾ab)

 , (3)

for ab ∈ {os, ds, od}.The quantities 𝜅ab, 𝛾ab, 𝜔ab represent the conver-
gence, the complex shear, and the rotation of an image as seen from
the position (a) with respect to its source at the position (b), due to the
inhomogeneities between (a) and (b) – see Fig. 1. For example, if a
circular source were placed in the source plane (s), and observed from
the main-lens plane (d), then 𝛾ds would be the complex ellipticity of
its image due to the perturbations between (d) and (s). When all the
perturbations are set to zero, 𝚪os = 𝚪ds = 𝚪od = 0, we recover the
standard single-plane lens equation (1).
It is expected that the tidal regime, and hence Equation (2), is valid

when all the perturbers besides the main lens are either a smoothly
distributed mass on the LOS, which would induce convergence,
or compact masses lying far from the LOS, which would induce
shear; rotation is caused by successive shears along different axes.
Throughout this paper, we shall assume that 𝜅, 𝛾, 𝜔 are all very small,
although Equation (2) would remain valid even for large values of
those parameters. This description of a perturbed strong lensing
system is simple enough to be easily implemented in and rigorously
tested by the current state-of-the art strong lensing software, as we will
describe in Section 2 and Section 3. It is, in addition, easily extended
beyond the tidal regime following the dominant-lens approach of
Fleury et al. (2021a), as we will touch on in Section 4.

MNRAS 000, 1–19 (2023)
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2.2 Absorbing degeneracies in a minimal model

In this work, we aim to show that the LOS shear can be measured
from strong lensing images. However, as shown by Fleury et al.
(2021a), the three shears involved in Equation (2), 𝛾os, 𝛾ds, 𝛾od,
cannot be measured independently, because they are degenerate with
the main-lens properties and with one another. This degeneracy is a
generalisation of the well-known mass-sheet degeneracy (Falco et al.
1985), and is called the source-position transformation (Schneider &
Sluse 2014), since it stems from our ignorance of the exact position
and morphology of the source that is lensed. For example, one may
multiply Equation (2) with any matrixA and redefine the unknown
source position as 𝜷 → A𝜷; the resulting lens equation is formally
identical to Equation (2), but withAos → AAos andAds → AAds.
Degeneracies may be removed by arbitrarily fixing a definition for

the unknown source 𝜷. This is analogous to lifting a gauge freedom
by fixing the gauge. As shown in Fleury et al. (2021a), there exists
a particularly meaningful choice, leading to a minimal model for
the perturbed lens equation. The first step consists in rewriting the
displacement angle as the gradient of a potential,

𝜶(𝜽) = d𝜓
d𝜽

, (4)

where

𝜓(𝜽) ≡ 𝐷ds
𝐷od𝐷os

�̂�(𝐷od𝜽) , (5)

and �̂�(𝒙) is twice the projected gravitational potential produced by
the surface density of the main lens, Σ(𝒙),

�̂�(𝒙) ≡ 4𝐺
𝑐2

∫
d2𝒚 Σ(𝒚) ln |𝒙 − 𝒚 | , (6)

where 𝐺 is Newton’s constant and 𝑐 the speed of light.
Then, multiplying Equation (2) with the combination AodA−1

ds ,
we obtain the minimal model for the lens equation,

�̃� = ALOS𝜽 − d𝜓eff
d𝜽

, (7)

with the transformed source position �̃� ≡ AodA
−1
ds 𝜷, and

ALOS ≡ AodA
−1
dsAos , (8)

𝜓eff (𝜽) ≡ 𝜓(Aod𝜽) . (9)

Equation (7) effectively describes a main lens with potential 𝜓eff and
external tidal perturbations,ALOS, located in the same plane.
Since Equations (2) and (7) are equivalent up to a source position

transformation, the corresponding lens models would succeed or
fail equally when fitting a strong lensing image. Therefore, any two
distinct situations with the sameALOS and 𝜓eff are observationally
indistinguishable. This is why the (od), (os) and (ds) perturbations
cannot be independently measured. However, when the perturbations
are small, |𝚪od |, |𝚪ds |, |𝚪os | � 1, 𝚪LOS = 1−ALOS is linearised as

𝚪LOS ≈ 𝚪od + 𝚪os − 𝚪ds . (10)

This means that the potentially measurable shear component is

𝛾LOS ≈ 𝛾od + 𝛾os − 𝛾ds . (11)

We shall see in Section 2.3 that 𝛾LOS can indeed be measured from
a mock strong lensing image with a much higher precision than any
one of 𝛾od, 𝛾os or 𝛾ds taken independently.
Another degeneracy revealed by the minimal model (7) is between

the foreground perturbations (od) and the properties of the main lens,
through the effective potential 𝜓eff of Equation (9). Specifically, the
𝜓eff = cst contours are the images of the 𝜓 = cst contours by the

foreground perturbations encoded inAod. This generally makes it
hard to distinguish between, for example, the effect of the ellipticity of
the main lens and a foreground shear 𝛾od. Note, however, that in many
widely used elliptical lens models, such as the singular isothermal
ellipsoid (SIE, Kormann et al. 1994), or its generalisation, the elliptical
power law (EPL, Tessore & Metcalf 2015), the foreground shear–
ellipticity degeneracy is only approximate, because in those models
the lens ellipticity is implemented at the level of the iso-density
contours, not in the iso-potential contours. That is why, in their
pioneering numerical experiments, Birrer et al. (2017) could measure
both 𝛾od and 𝛾os − 𝛾ds = 𝛾LOS − 𝛾od. Since this only applies to very
specific lens models that are not necessarily well motivated from the
astrophysical point of view, such an operation should nevertheless be
considered very risky; we thus recommend not to try measuring 𝛾od
in general, unless there is a compelling reason to trust the result.
We have chosen to focus the above discussion on the shear. The

other components of the tidal matrix 𝚪LOS are the convergence 𝜅LOS
and the rotation 𝜔LOS. It is well known that the convergence and
source position can be transformed in such a way that the observed
lensing image is left invariant – this is precisely the mass-sheet
degeneracy – which means that any attempt to measure or constrain
the LOS convergence from a strong lensing image would be a pointless
undertaking. For this reason, we shall keep the convergence parameters
fixed to zero throughout this paper, both when generatingmock images
and when fitting them.
The rotation is induced by lens–lens coupling, and is generally

small when the secondary lenses are individually weak, 𝜔 = O(𝛾2).
However, it can play a significant role when the shear on the image is
large – say, 10% or more. Shears this large would be unusual in real
strong lensing data so when generating our mock images we restrict
ourselves to smaller values, and keep the rotation parameters fixed
to zero. Nevertheless, when fitting images with the minimal model,
we include 𝜔LOS as a free (and in this case nuisance) parameter. Its
presence accounts for any slight non-linear effect that may be induced
by larger shears, and thus ensures a better recovery of 𝛾LOS from a
given mock image.

2.3 A simple example with lenstronomy

To demonstrate the advantage of the minimal model over the full
model with a concrete example, we simulate a strong lensing image
using the software lenstronomy, which we modified to include the
LOS formalism described above. Our modifications are now part of
the public version of this code. For full details of our modifications
of lenstronomy, see Appendix A.
We create a simple lens using an EPL profile, with additional

shears 𝛾od, 𝛾os, 𝛾ds. The ellipticity of the profile, along with its centre
and the LOS shear components, are all drawn randomly. We model
the source and the lens light with elliptical Sérsic light profiles. The
ellipticity of the source is also generated at random. Throughout this
work we simulate the noise on our mock images according to the
Hubble Space Telescope Wide Field Camera 3 F160W noise settings
in lenstronomy (Windhorst et al. 2011). The resulting simulated
image is shown in Fig. 2 and the specific model parameters associated
with this image are listed in Table 1.
Using the affine-invariant ensemble sampling Markov chain Monte

Carlo (MCMC) parameter inference method available in the emcee
package2 (Foreman-Mackey et al. 2013), we then fit the simulated
image shown in Fig. 2 with two different models: a model comprised

2 https://github.com/dfm/emcee.
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https://github.com/dfm/emcee


4 N. B. Hogg et al.

Figure 2. The image produced by a simple lens model consisting of an
elliptical power law mass profile and a elliptical Sérsic lens light profile, with
an elliptical Sérsic source (model parameters listed in Table 1).

of an EPL plus the full LOS model (2), i.e. the same model as was
used to generate the mock image; and a model comprised of an EPL
plus the minimal model (7). We sample all the parameters listed in
Table 1 except for the lens and lens light central positions, which are
kept fixed at the centre of the image. We impose uniform priors on all
the parameters and run chains containing ten walkers per parameter.
As discussed above, we expect that the individual shear components
in the full model will be degenerate with each other, while the 𝛾LOS
combination of the minimal model will be accurately recovered. In
both cases (full and minimal model), we expect the foreground shear
𝛾od to be degenerate with the ellipticity of the main lens.
In Fig. 3, we show the one- and two-dimensional marginalised

posterior distributions for the (os) and (ds) shears (left panel) and
(od) shear and lens ellipticity (right panel) which result from fitting
the simple simulated image with the full LOS model. Note that all
the contour plots presented in this paper were produced using the
chainconsumer package3 (Hinton 2016).
From these plots, we can see that while the shear parameters

are correctly recovered at the level of 1𝜎, there are very strong
degeneracies between the (os) and (ds) shears. This results in large
uncertainties for 𝛾os and 𝛾ds, on the order of 10%, i.e. comparable or
larger than the expected signal. Furthermore, the expected degeneracy
between the (od) shear and the lens ellipticity is clearly present. As
discussed in Section 2.2, the simplicity of the EPL model artificially
alleviates that degeneracy, giving the impression that the main lens’s
ellipticity can be measured independently of the foreground shear.
In Fig. 4, we show the one- and two-dimensional marginalised

posterior distributions for the (od) shear and lens ellipticity (left panel)
and LOS shear and lens ellipticity (right panel) which result from
fitting the simple simulated image with the minimal model. From
these plots, we can see that, as expected, the minimal LOS shear 𝛾LOS
evades any of the previous degeneracies. The input value is perfectly
recovered with, in this simple example, a remarkable precision on the
order of a few parts in 104.
The results presented in this section demonstrate the clear advantage

of using the minimal model over the full model. This advantage can

3 https://github.com/Samreay/ChainConsumer.

Table 1. The parameters used to simulate the image shown in Fig. 2, along
with the priors on the parameters sampled in the MCMC to produce the results
shown in Fig. 3 and Fig. 4. The ellipticities, positions and shear parameters
were all drawn at random. The lens light position and ellipticity are fixed to
be the same as those of the EPL profile. The magnitudes quoted are apparent
magnitudes. The expected values of the minimal LOS quantities 𝛾LOS, 𝜔LOS
are derived from Equation (8) using the decomposition of Equation (3).

Component Parameter Value Prior

𝜃E 1.2′′ [0.01′′, 10′′]

𝛾 2.6 [0, 4.0]

Lens (EPL) 𝑒1 −0.053 [−0.5, 0.5]

𝑒2 0.077 [−0.5, 0.5]

𝑥 0.014′′ –

𝑦 −0.048′′ –

Magnitude 20 –

Lens light (Sérsic ellipse) 𝑅Sérsic 0.5′′ [0.001, 10.0]

𝑛Sérsic 4.0 [0.5, 5.0]

Magnitude 24 –

𝑅Sérsic 0.3′′ [0′′, 10′′]

𝑛Sérsic 1.0 [0.5, 5]

Source light (Sérsic ellipse) 𝑒1 0.104 [−0.5, 0.5]

𝑒2 −0.038 [−0.5, 0.5]

𝑥 −0.003′′ [−0.1′′, 0.1′′]

𝑦 0.048′′ [−0.1′′, 0.1′′]

𝛾od1 −0.0027 [−0.5, 0.5]

𝛾od2 −0.0060 [−0.5, 0.5]

LOS 𝛾os1 −0.0091 [−0.5, 0.5]

𝛾os2 −0.028 [−0.5, 0.5]

𝛾ds1 0.019 [−0.5, 0.5]

𝛾ds2 0.018 [−0.5, 0.5]

𝛾LOS1 −0.031 [−0.5, 0.5]

Derived 𝛾LOS2 −0.052 [−0.5, 0.5]

𝜔LOS 0.00033 [−0.5, 0.5]

be understood as being due to a more efficient parameterisation of
the problem at hand. It is comparable to the use of 𝑆8 ∝ 𝜎8

√
Ωm in

standard cosmic shear, which is better constrained than 𝜎8 (see Hall
2021 for a thorough explanation as to why); or to the use of 𝜔 = Ωℎ2

in cosmic microwave background constraints.
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Figure 4. Inference with the minimal model (7), from fitting the simulated image in Fig. 2 with the minimal model. Left panel: one- and two-dimensional
marginalised posterior distributions of the effective LOS shear and lens ellipticity. Right panel: Same for the (od) shear and lens ellipticity. The dashed lines show
the input value of each parameter.

3 LINE-OF-SIGHT SHEAR MEASUREMENTS FROM
REALISTIC MOCK IMAGES

In this section, we show how the LOS shear is systematically measur-
able from a larger set of more complicated images than the simple
example shown in the previous section. We also assess how the
measurement of the LOS shear is affected if the images are fit with

lens models that are slightly to drastically different to those used to
create the images.

3.1 Methodology

We generate a catalogue of 64 mock images, depicted in Fig. 6,
following a protocol which we will describe in Section 3.1.1. We
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Figure 5. Schematic of our composite lens model on the celestial sphere. The
baryonic component (orange) is described by a an elliptical Sérsic model
whose centre is placed at (0, 0) . The dark-matter halo (blue) has an elliptical
NFW profile and its centre (𝑥h, 𝑦h) is offset with respect to the baryons. This
composite main lens is then perturbed by the LOS shears 𝛾od, 𝛾os, 𝛾ds. The
source (green) is a perturbed elliptical Sérsic placed at (𝑥s, 𝑦s) .

then fit those images with four different models which we present
in Section 3.1.2, focusing on the inference of the shear 𝛾LOS. The
precision and accuracy of the recovery 𝛾LOS for eachmodel is assessed
using statistical tools we will describe in Section 3.1.3.

3.1.1 Complex mock images from a composite lens model

We increase the complexity of the lens modelling in a number of ways
compared to Section 2, so as to mimic real strong lensing images. We
now model the lens with two constituent parts: a baryonic component
modelled with an elliptical Sérsic profile, and a dark matter halo
modelled with an elliptical Navarro–Frenk–White (NFW) profile
(Navarro et al. 1996). Note that in both profiles, the ellipticity is
implemented at the level of the potential rather than at the level of
the convergence. This means that their iso-potential contours are
elliptical, but not their iso-density contours. The halo is offset from
the centre of the baryons and the ellipticities of each component are
not constrained to be of the same magnitude or direction. The set-up
is depicted in Fig. 5.
We model the lens and source light with elliptical Sérsic profiles.

Furthermore, we perturb the source light by adding three additional
elliptical Sérsic profiles on top of the original, each with an amplitude
of 1% of the main source. Such perturbations will not be included in
the fitting model, and thus aim to account for our general ignorance
of the details of the source light. Finally, we shear each image using
the full LOS shear model.
We simulate 64 such systems, each with every model parameter

drawn at random from physically motivated distributions. The full pa-
rameter ranges and distributions are described in detail in Appendix B.
The resulting simulated images are shown in Fig. 6, where their broad
diversity in morphology can be clearly seen.
We quantify the quality of an image with a notion of cumulated

signal-to-noise ratio. Specifically, for an image 𝑖 composed of pixels 𝑝,
we define

𝑄𝑖 ≡
∑︁
𝑝∈𝑖
SNR(𝑝) Θ[SNR(𝑝) − 1] , (12)

where SNR(𝑝) denotes the signal-to-noise ratio of pixel 𝑝. The lens

light is not included in the signal because it is unrelated to the quality
of the lensed image, and the noise accounts for both the background
and shot noise. The Heaviside function Θ in the sum of Equation (12)
implies that only the pixels with a signal-to-noise ratio larger than
one are accounted for in the computation of the quality 𝑄𝑖 . The
advantage of this definition of quality is that it accounts for both the
traditional notion of SNR (the brighter, the better) and for the number
of pixels that are covered by the image (the larger and more resolved,
the better).

3.1.2 Four fitting models

We employ four models to fit the simulated images in our catalogue,
each with a different level of complexity compared to the mocks. We
describe them below; see Table 2 for a summary of the parameters
included in or excluded from each model.

(i) The comprehensive model is identical to the set-up used to
generate the mock images, except that LOS effects are described by
the minimal model (7) with parameters 𝛾od, 𝛾LOS, 𝜔LOS; the rotation
term 𝜔LOS is a nuisance parameter included to absorb the small
non-linear effects arising from shear–shear couplings. As mentioned
earlier, perturbations to the source light are not included.
(ii) The no foreground shear model is identical to the compre-

hensive model, except that the foreground shear 𝛾od involved in the
effective potential of Equation (9) is set to zero, thereby implying
𝜓eff = 𝜓 here. The motivation for this model is twofold. On the
one hand, the presence of 𝛾od in the minimal model is precisely
what makes it different from a more traditional model comprising
a composite lens plus external shear, such as those used for some
of the H0LiCOW lenses (Wong et al. 2020). It is thus essential to
evaluate the role of this new parameter. On the other hand, we expect
a degeneracy to exist between the ellipticity of the main lens and the
foreground shear. If this degeneracy were perfect, then only two of the
three complex parameters 𝛾od, 𝑒Sérsic, 𝑒NFW would suffice to describe
an image, allowing us to set one of them to zero. The performance
of the no foreground shear model will thus assess the validity of this
degeneracy in a composite lens scenario.
(iii) In the aligned halo model, the centres of the baryon and

dark matter components are both fixed to (0, 0), thus removing the
possibility for the halo to be offset from the baryons. The purpose
of this model is to check if neglecting this offset leads to systematic
biases in the inference of the other parameters, as was noticed by
Gomer & Williams (2021). The aligned model is otherwise identical
to the comprehensive one.
(iv) In the power law model, finally, the entiremain lens ismodelled

using a single EPL profile, and with no additional NFW halo, as we
used in our simple example in Section 2. This model aims to quantify
the impact of neglecting the composite character of a lens on the
recovery of the LOS shear.

3.1.3 Evaluating the precision and accuracy of the models

We now present the quantitative criteria that we use to assess the
precision and accuracy of the inference of 𝛾LOS in each model. Firstly,
we note that when fitting the images in our mock catalogue, the
MCMC parameter inference does not always succeed in obtaining
either an upper or lower bound on one or both components of 𝛾LOS,
particularly in the less informative models. We therefore discard
the cases where one or both bounds were not obtained from the
quantitative comparison of the models that will follow. We refer to
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Figure 6. Our catalogue of 64 simulated images produced according to the protocol presented in Section 3.1.1.

the remaining images in the mock catalogue as the productive images,
P, denoting their number as 𝑁P .

Furthermore, for an image 𝑖 ∈ P with a given model, the posterior
distribution of 𝛾LOS is generally non-Gaussian; in particular, the 68%-
confidence domain is not always symmetric, which translates into
asymmetric error bars.We call𝜎±

𝑎,𝑖
the corresponding upper and lower

uncertainties at 68%-confidence level on the component 𝑎 ∈ {1, 2}
of 𝛾LOS for the 𝑖th image. This implies that for each image and
model, the uncertainty on the LOS shear is a priori described by four
numbers, which is somewhat cumbersome. For further simplicity,
we summarise them all by the geometric mean of the symmetrised

uncertainty of each component of the LOS shear:

𝜎𝑖 ≡

√√√(
𝜎+
1,𝑖 + 𝜎−

1,𝑖
2

) (
𝜎+
2,𝑖 + 𝜎−

2,𝑖
2

)
. (13)

The general precision of a model is then quantified from the mean
uncertainty on the LOS shear over all its productive images,

�̄� ≡ 1
𝑁P

∑︁
𝑖∈P

𝜎𝑖 . (14)

The accuracy of a model, i.e. its ability to recover the true value of
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Table 2. Summary of the properties and results of the four models used to fit the mock images of Fig. 6.

Comprehensive model No foreground shear model Aligned model Power law model

Features

Foreground shear X 7 X X

LOS shear X X X X

Baryon ellipticity X X X –

Halo ellipticity X X X –

Baryon–halo offset X X 7 –

Results

Productive images: 𝑁P 63 (98%) 62 (97%) 56 (88%) 28 (44%)

Precision: �̄� 0.011 0.011 0.010 0.010

Accuracy: 𝜒2 1.0 3.4 62.9 92.2

Outliers: 𝑁>2𝜎 0 2 36 20

𝛾LOS, may be evaluated with a quantity inspired by the reduced 𝜒2,
accounting for the asymmetry of the uncertainties. Namely, for each
component 𝑎 ∈ {1, 2} of the LOS shear, we define

𝜒2𝑎 ≡ 1
𝑁P

∑︁
𝑖∈P

1
𝜎2
𝑎,𝑖

(
𝛾
LOS,out
𝑎,𝑖

− 𝛾
LOS,in
𝑎,𝑖

)2
(15)

with

𝜎𝑎,𝑖 ≡
{
𝜎+
𝑎,𝑖

if 𝛾LOS,out
𝑎,𝑖

≤ 𝛾
LOS,in
𝑎,𝑖

𝜎−
𝑎,𝑖

if 𝛾LOS,out
𝑎,𝑖

> 𝛾
LOS,in
𝑎,𝑖

(16)

where 𝛾LOS,in
𝑎,𝑖

and 𝛾LOS,out
𝑎,𝑖

are respectively the true (input) value
and the best fit (output) value of the component 𝑎 of the LOS shear of
the 𝑖th image. Again, for further simplicity and to avoid describing the
accuracy of a model with two numbers 𝜒21 , 𝜒

2
2 , we shall summarise

them by their arithmetic mean,

𝜒2 ≡ 1
2

(
𝜒21 + 𝜒22

)
. (17)

Lastly, we can examine the number 𝑁>𝑛𝜎 of outliers, i.e. the
images for which the best fit output for 𝛾LOS lies further than a certain
number 𝑛 of 𝜎 from the true input value. Specifically, we consider
that an image 𝑖 is an 𝑛𝜎 outlier if���𝛾LOS,out𝑖

− 𝛾
LOS,in
𝑖

���2 > 𝑛2
(
𝜎21,𝑖 + 𝜎22,𝑖

)
, (18)

where𝜎𝑎,𝑖 was defined in Equation (16). This definition thus accounts
for the asymmetry of the error bars.

3.2 Results

3.2.1 Examining the fits of a single image

We firstly present the results of the fits to a single image as a
representative example of the results in the rest of this section. In
Fig. 7 we show the 44th image in our mock catalogue, along with
the one- and two-dimensional marginalised posterior distributions for
𝛾LOS1 and 𝛾LOS2 obtained when fitting with all four models described
above. We chose this particular image to focus on as it is of roughly
median quality and the shear parameters were well-sampled in all of
the models used to fit it.

From the contour plot, we can see that in both the comprehensive
model and the no foreground shear model, the LOS shear is well
recovered. On the other hand, in both the aligned model and in the
power law model, the posteriors are fairly biased away from the
expected values. This indicates that the less informative the model
is, the worse the recovery of the shear is. However, the precision of
the recovered shears is roughly the same in all four models, implying
that the error bar on 𝛾LOS is insensitive to the model used. This is in
line with the results we presented in Section 2, where we showed how
𝛾LOS is not degenerate with lens model parameters. We will explore
this point further in the following.
We now show the result of fitting our entire simulated image

catalogue with the four models described above. In Fig. 8, we show
the input LOS shear components as computed from the three individual
shears of the full model versus the output LOS shear components as
recovered from the images by the MCMC parameter inference. The
colour bars show the log of the quality criterion 𝑄. Darker colours
thus represent larger values of 𝑄 and hence larger SNR values.
Only the results from the productive images in each model are

shown in this figure.

3.2.2 Results of the comprehensive model

In the top two panels of Fig. 8, we show the result of fitting all the
images in our catalogue with the comprehensive model. The number
of productive images in this case is 𝑁P = 63, that is 98% of the
complete sample. We can see that in this model, the LOS shear is
always very well recovered from the images.
The mean absolute precision of the recovered shear is �̄� = 0.01

and does not show any correlation with the amplitude of 𝛾LOS. In
comparison, the precision of the inference of 𝛾LOS found in Section 2
when demonstrating the advantage of the minimal model was about
two orders of magnitude better. The better precision obtained in that
case can be attributed to the relative simplicity of the lens and source
model being used.
Our measure for the accuracy of the LOS shear recovery yields

𝜒2 = 1.0, which shows that uncertainties are well estimated for both
components. As for the number of outliers, we find 𝑁>2𝜎 = 0 points
away from the true value by more than 2𝜎. This is well within the
expected proportion of 2𝜎 outliers in the Gaussian case, 5%.
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Figure 7. Left panel: the 44th image in our catalogue. Right panel: the one- and two-dimensional marginalised posterior distributions for 𝛾LOS1 and 𝛾LOS2 obtained
by fitting this image with the power law model (blue), aligned halo model (green), no foreground shear model (magenta) and comprehensive model (orange). The
dashed lines represent the expected values.

Furthermore, the image-quality criterion𝑄 defined in Equation (12)
is well correlated with the size of the error bars on each point, with
the most precise constraints generally coming from the best images
(the darkest coloured points).

3.2.3 Results of the model with no foreground shear

Next, we fit our catalogue of mock images with the model containing
no foreground shear, 𝛾od = 0. The input–output plot for this case is
shown in the second two panels of Fig. 8, with the points plotted
in magenta. The number of productive images in this case is one
fewer than in the comprehensive model, 𝑁P = 62, that is 97% of the
catalogue.
With the exception of two outliers (which are not visible due to

the scale of the plot), the two LOS shear components are generally
well recovered in this case too. The precision measure is unchanged
compared to the comprehensive model, with �̄� = 0.01. The accuracy
is slightly reduced overall, 𝜒2 = 3.4, while the number of outliers is
increased, with 𝑁>2𝜎 = 2 (3% of the productive images), though
still in line with the expectation for a normal distribution. This implies
that the inclusion of foreground shear in the comprehensive model is
not strictly necessary for a better fit to an image. We will discuss this
point further below.

3.2.4 Results of the aligned model

Thirdly, we fit our catalogue of images with the aligned halo model.
The input–output plot for this case is shown in the third two panels of
Fig. 8, with the points plotted in green. We now see how worsening
the model can degrade the fit; there is a larger number of outliers and
unconstrained points, leading to the number of productive images
shrinking to 𝑁P = 56, that is 88% of the catalogue. While the
precision of the recovery of the two components of 𝛾LOS is unaffected,

�̄� = 0.01, the accuracy is now very bad, 𝜒2 = 62.9, with more than
two thirds of the productive images being outliers, 𝑁>2𝜎 = 36.

3.2.5 Results of the power law model

Lastly, we fit our catalogue of images with the power law model. The
input–output plot for this case is shown in the bottom two panels of
Fig. 8, with the points plotted in blue. Of the four models used to fit
the simulated images, this is clearly the worst, with a large number
of unconstrained points that result from the difficulty the MCMC
has when trying to fit complex images with an overly simplistic
model: 𝑁P = 28. Of the remaining points, the accuracy measure
is 𝜒2 = 92.2, with again over two thirds of the productive images
leading to a measurement of 𝛾LOS that is biased by more than 2𝜎,
𝑁>2𝜎 = 20. The mean precision of the recovered shear components
remains in line with that of the other models, �̄� = 0.01.

3.3 Discussion

From these results, summarised in Table 2, we can clearly see the
importance of using a sufficiently feature-rich model to fit complicated
images, if a reliable and precise measurement of the LOS shear is
desired, with well-sampled posterior distributions that yield upper and
lower bounds on the recovered shear parameters. This is emphasised
in Fig. 9, where we plot the histogram of the mean error on the
shear in each model (left panel) and the histogram of the difference
between the input and output values of the shear (right panel). From
this plot, we can see how the distribution of the size of the error is
extremely similar across all the models. However, in the right-hand
panel, we can see how the comprehensive model yields consistently
more accurate shear measurements than the rest, with the greatest
difference between input and output shear being less than 2𝜎; this
is in stark contrast to the aligned halo and power law models, where

MNRAS 000, 1–19 (2023)



10 N. B. Hogg et al.

−0.05

0.00

0.05

γLOS
1

Comprehensive

γLOS
2

−0.05

0.00

0.05
No foreground shear

−0.05

0.00

0.05
Aligned halo

−0.04 −0.02 0.00 0.02 0.04

−0.05

0.00

0.05
Power law

−0.04 −0.02 0.00 0.02 0.04

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
(Q

)

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
(Q

)

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
(Q

)

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
(Q

)

Input γLOS, in

O
u

tp
u

t
γ

L
O

S
,

ou
t
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the greatest difference grows as large as 20𝜎. The accuracy of the no
foreground shear model is very close to that of the comprehensive
model, barring the two outliers previously mentioned above.
The MCMC sampling is also less successful if a poor model is

used: when using the no foreground shear model, we found two-sided
bounds on both components the LOS shear for nearly 100% of the
catalogue, whereas when using the power law model, we found two-
sided bounds on both the shear parameters for less than half of the
catalogue.
We can further examine the correlation between the quality mea-

sure 𝑄𝑖 defined in Equation (12) and the uncertainty 𝜎𝑖 on 𝛾LOS
defined in Equation (13) for each image 𝑖, as plotted in the left-hand
panel of Fig. 10. From this plot, we can see a strong negative corre-
lation between these quantities, with larger average errors coming
from images of worse quality (smaller 𝑄). A simple linear fit yields
log10 𝜎 ≈ −0.76 log10𝑄 + 1.01. This implies that for precise mea-
surements of 𝛾LOS to be obtained, poor quality images should be
removed from the catalogue. On the other hand, in the right-hand
panel of Fig. 10, we plot the difference between the input and output
𝛾LOS in units of 𝜎 against 𝑄. We can see that there is virtually no
correlation between these quantities; in other words, the accuracy of
the shear recovery is not affected by the image quality. Note that we
chose to plot these relationships for the comprehensive model as an
example, but the trend remains the same for the no foreground shear
model.
The excellent recovery of 𝛾LOS obtained from fitting with the

no foreground shear model show that the degeneracy between the
foreground shear and the properties of the main lens is indeed strong
enough that the composite lens images can be satisfactorily obtained
by the MCMC parameter inference even when 𝛾od is fixed to zero.
This is another powerful argument in favour of the use of the minimal
model and again strongly emphasises the fact that 𝛾LOS is the only
notion of shear that can evade such degeneracies and thus be accurately
measured from strong lensing images.
For test purposes, we tried to increase the amplitude of the source

perturbations, which we recall are not accounted for in the fitting
models, so as to mimic a poorer modelling of the source light. In that
case, we found that the reduced 𝜒2, which quantifies the accuracy of
the measurement of 𝛾LOS, increases and becomes larger than unity
even for the comprehensive model. This suggests that a too simple
modelling of the lens light could lead to systematic biases in the
measurements of the LOS shear. Such a systematic effect could be
mitigated by using complex source models when fitting the images,
but this approach may not translate easily when it comes to analysing
real data (Nightingale & Dye 2015; Nightingale et al. 2018).
The results presented in this section show that the LOS shear is

systematically measurable from simulated images if the lens model
used to fit the images is of comparable complexity to that used to
generate them. They also show that the foreground shear does not
need to be included for good inference if the model for the main lens
is sufficiently rich.

4 VALIDITY OF THE TIDAL APPROXIMATION

The analysis and results presented so far were based on the lens
equation (2), which supposes that all LOS perturbations to a strong
lens – typically dark matter haloes that would lie near the optical
axis – can be modelled as tidal fields, whose effect is encoded in the
amplification matricesAod,Aos,Ads. In this section, we assess the
validity of this tidal approximation by fully simulating the effect of
randomly distributed haloes on an image.

4.1 The tidal regime and beyond

A LOS perturber is said to be in the tidal regime if the deflection field
that it produces can be described by a quadratic potential across the
strong lensing image under consideration. Suppose for instance that
the observer sees a source that is lensed by a halo ℎ in the absence
of the main lens and any other perturber. The corresponding Fermat
potential can be expanded at second order in the position 𝜽 in the
vicinity of the LOS (𝜽 = 0),

𝜓ℎ (𝜽) = 𝜓ℎ (0) + 𝜶ℎ (0) · 𝜽 + 1
2
𝜽 ·Aℎ𝜽 + . . . (19)

where 𝜶ℎ (0) is the displacement angle caused by ℎ for an image
observed along the optical axis, andAℎ is the contribution of ℎ to the
amplification matrixAos. A similar expansion could be performed
for the (od) and (ds) cases; see Fleury et al. (2021a) for further details
on the general theory of LOS perturbations in strong lensing. We
have chosen to drop the (os) subscripts or superscripts when there is
no ambiguity to alleviate notation.
The tidal regime for the halo ℎ is satisfied as long as Equation (19),

together with its (od) and (ds) analogues, remain valid up to an angle
on the order of the main lens’s Einstein radius, 𝜃E. This requirement is
satisfied when ℎ lies sufficiently far from the LOS; as it gets closer, the
higher-order terms hidden in the suspension points of Equation (19)
may become non-negligible. Among them, the first one that we
may worry about is the cubic term, O(𝜃3), generally referred to as
flexion because its effect is to produce arc-shaped images (Bacon et al.
2006). Flexion can be understood as gradients ofA, i.e. gradients of
convergence and shear; it consists of two complex numbers4

F ≡ 𝜕𝛾 = 𝜕∗𝜅 , G ≡ 𝜕∗𝛾 , (20)

where 𝜕 ≡ (𝜕/𝜕𝜃1 − i𝜕/𝜕𝜃2)/2 is the standard complex derivative
with respect to the complex counterpart 𝜃1 + i𝜃2 of 𝜽 = (𝜃1, 𝜃2).
When the flexion due to LOS perturbers is properly accounted for in
the lens equation, Equation (2) is significantly more complicated, with
the addition of four extra complex parameters (Fleury et al. 2021a).

4.2 A line of sight populated with haloes

Since all the previous results we presented were obtained under the
assumption that the tidal approximation is valid, we need to understand
if it is a good description of the real Universe: how often do perturbers
escape this regime, and do they jeopardise our ability to measure the
LOS shear from strong lensing images?
In order to test this, we simulate a simple strong lens with a very

large number of dark matter haloes in a volume around and along
the LOS using the multi-plane lensing formalism. We compute the
shear induced on the image by these LOS haloes and then fit the
image using the same MCMC procedure followed in the previous
sections, with a model again based on the minimal model. If the tidal
approximation is valid, we expect the model to provide a good fit and
an accurate recovery of the induced shear from the image. If the tidal
approximation is significantly broken, we expect to see some sign of
it, which could be a biased recovery of the shear, or a bad fit due to
the non-negligible role of higher-order distortions.
The main lens and source light are modelled in the same way as in

Section 2, except that, for the sake of simplicity, we do not include
any lens light. The ellipticities of the lens and source are drawn at
random, while the remaining parameters are chosen in a physically

4 These definitions follow the conventions of Fleury et al. (2021a), which
differ by a factor two from those of Bacon et al. (2006).
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realistic way. Specifically, we set the Einstein radius of the main lens
𝜃E = 1.5′′, the slope of the elliptical power law potential 𝛾EPL = 2.6,
the apparent magnitude of the source as 23, the half-light radius of
the source 𝑅Sérsic = 0.3′′ and the Sérsic index 𝑛Sérsic = 6.0. The
main lens is placed at 𝑧d = 0.5 and the source is placed at 𝑧s = 1.5.
The angular positions of the centre of the main lens and of the source
are chosen so as to be observed at 𝜽 = 0 in the presence of the haloes,
𝜷s = −𝜶os (0) and 𝜷d = −𝜶od (0). Conversions between distances

and redshifts are performed with astropy (Astropy Collaboration
et al. 2022). As a reminder, we work in the spatially flat ΛCDM
cosmology described by the Planck 2018 data (Aghanim et al. 2020),
with 𝐻0 = 67.4 km s−1 Mpc−1 and Ωm = 0.315.

We generate the halo population as follows. We consider a region
of space consisting of a comoving cylinder around the optical axis,
with comoving radius 𝑅 = 11.6Mpc. This number is chosen so that
a point lens with mass 𝑀 = 1012 𝑀� located halfway between the
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Figure 11. The Tinker et al. (2008) halo mass function between 108 𝑀� and
1015 𝑀� .

observer and the source and with a transverse comoving distance 𝑅
from the optical axis would produce an (os) shear of 10−6 on the latter.
We then randomly populate this region with a uniform comoving
number density

𝑛 =

∫ 𝑀max

𝑀min

d𝑀
𝑀

d𝑛
d ln𝑀

, (21)

where d𝑛/d ln𝑀 denotes the halo mass function (HMF) evaluated
following Tinker et al. (2008) as implemented in the colossus
package5 (Diemer 2018) at 𝑧d = 0.5. We fix a lower mass cutoff
to 𝑀min = 108 𝑀� corresponding to the typical mass of galactic
subhaloes in the cold dark matter scenario, and 𝑀max = 1015 𝑀� ,
which yields 𝑛 = 5.6Mpc−3. The mass of each halo is randomly
drawn from the same HMF, shown in Fig. 11.
This procedure results in a very large number of haloes, 𝑁tot =

1.1× 107 in the cylindrical region, among which many are practically
too light or too far from the LOS to be relevant to the analysis. For
computational efficiency, we thus remove the haloes for which a point
lens with the same mass would individually produce an (os) shear
with magnitude below 10−6 on the optical axis. After this operation,
we are left with 𝑁 = 3.4 × 104 haloes , whose positions are depicted
in Fig. 12. The points in red indicate the haloes that significantly
evade the tidal regime (see Section 4.3).
The haloes themselves are modelled with NFW profiles. We com-

pute their concentration using the Diemer & Joyce (2019) model
for the mass–concentration relation, which is available in colossus.
We then use the cosmology subpackage of lenstronomy to convert
these into the angular scale radius and the deflection angle at the scale
radius which constitute the remaining parameters of the NFW mass
profile in lenstronomy. The left andmiddle panels of Figure 13 show
the distribution of individual (os) shear and convergence produced
by the 𝑁 haloes on the LOS. We can see that the individual tidal
effects are generally small, except for a handful of haloes producing
convergences and shears of percent order.
Lastly, in each plane containing a halo, we add a uniform component

of negative density in order to compensate for the added mass under
the form of haloes. This procedure mostly aims to avoid producing
a too strong net convergence along the LOS. In practice, we set

5 https://bitbucket.org/bdiemer/colossus.
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of which around 14% have a relative variation of shear Δℎ greater than 0.1
across 𝜃E (of which we again plot a tenth), shown in red.

the negative convergence in each of those planes ℎ so as to exactly
compensate the positive convergence 𝜅ℎ (0) produced by the halo on
the optical axis. This choice is not strictly consistent from a physical
point of view, but it has the virtue of simplicity.

4.3 Is the tidal regime a good approximation?

A first, qualitative, assessment of the tidal approximation can be made
by examining the variations of the convergence and shear fields due to
the haloes only, i.e. in the absence of the main lens. This is shown in
Fig. 14, where we observe that the (os) convergence and shear due to
the haloes display variations on the order of 100% on the scale of the
main lens’s Einstein radius. The convergence map in particular (left
panel of Fig. 14) reveals the presence of a handful of haloes sitting
very close to the optical axis, hence strongly evading the tidal regime,
while remaining subcritical.
This diagnostic can be further quantified by computing the relative

variation Δ of the (os) shear 𝛾 as we move away from the optical axis
by one unit of the main lens’s Einstein radius, 𝜃E = 1′′,

Δ2 =

����𝛾(𝜃E �̂�) − 𝛾(0)
𝛾(0)

����2 + ����𝛾(𝜃E �̂�) − 𝛾(0)
𝛾(0)

����2 , (22)

where (�̂�, �̂�) is an orthonormal basis of the image plane. Note that
if the gradients of the shear can be considered constant across the
image (flexion regime), then Δ can be expressed in terms of the two
complex flexions defined in Equation (20) as

Δ2 =
1
2
𝜃2E |𝛾 |

−2
(
|F |2 + |G|2

)
. (23)

Wefirst consider the valueΔℎ ofΔ for each halo ℎ taken individually.
The distribution of Δℎ for the 𝑁 haloes is shown in the right panel of
Fig. 13. We can see that a considerable number of haloes produce a
shear with significant variations on the scale of 𝜃E. Figure 12 shows in
red the haloes for which Δℎ ≥ 0.1; they are unsurprisingly clustered
around the optical axis. We find that about 14% of the total sample
(4.8 × 103 haloes) have these especially large values of Δℎ .
As expected from the above consideration, the combined effect of

all the haloes does escape the tidal regime. We indeed find Δtot = 0.44
for the total (os) shear, whose central value is 𝛾os = −2.4 × 10−2 +
3.8i × 10−3. This number drops to Δtot = 0.045 if we remove all
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the haloes ℎ with Δℎ ≥ 0.1, in which case the cumulative shear
becomes 𝛾os = −1.8 × 10−2 − 9.8i × 10−4. This indicates that the
haloes escaping the tidal regime are not negligible in the total shear
produced along the LOS.
In order to quantify the impact of beyond-tidal effects on the

measurement of the LOS shear, we generate two images: the first
one is the image that would be observed from a system consisting
of our main lens plus 𝑁 haloes and the second one the image that
would be observed from the same system but without the haloes ℎ
such that Δℎ ≥ 0.1. We do this using the multi-plane formalism in
lenstronomy. The two images are shown in the top and bottom
left-hand panels in Fig. 15.
We then fit these two images using the minimal model, plus an

EPL mass profile for the main lens. For this part of the work, we
changed our MCMC parameter inference method to use ensemble
slice sampling (Karamanis & Beutler 2021) as implemented in the
zeus package6 (Karamanis et al. 2021), which we again modified
lenstronomy to include. We made this change due to the increased
difficulty of the inference which required a faster and more powerful
sampling method than the affine-invariant ensemble sampler provided
in emcee.
In Fig. 16, we show the one- and two-dimensional marginalised

posterior distributions of the (od) and LOS shears that result from
fitting the images in Fig. 15. The dashed lines indicate expected values
of 𝛾od (0) and 𝛾LOS (0) = 𝛾os (0) + 𝛾od (0) − 𝛾ds (0) exactly along the
optical axis, in the absence of the main lens. We firstly consider the

6 https://github.com/minaskar/zeus.

left-hand panel of this figure, which shows the results from fitting
the image produced in the presence of the full population of haloes.
The expected LOS shear is recovered with good accuracy, but with a
precision degraded by about two orders of magnitude compared to the
results of Section 2, whose image was generated from a strictly tidal
LOS perturbation model. Furthermore, as we can see from the top
right panel of Fig. 15, there is an obvious strong residual between the
observed image and the reconstructed image. The dipolar morphology
of these residuals is reminiscent of the F -type flexion signal predicted
by Fleury et al. (2021a) (see Fig. 7 therein). Further investigation is
nevertheless required in order to assess the detectability of such a
signal in a realistic set-up.
Taking now the contour plot in the right-hand panel of Fig. 16,

which results from fitting the image with the strongly non-tidal haloes
removed, we can see that once again the LOS shear is recovered with
good accuracy, while the precision is not significantly improved. The
residuals exhibited in the case with the full halo population are still
present with a similar amplitude, as can be seen in the bottom right
panel of Fig. 15.
These results indicate that, quite surprisingly, significant violations

of the tidal regime do not entirely prevent one from measuring a
notion of LOS shear from a strong lensing image. The tidal model is
thus extremely resilient. Furthermore, the best-fit LOS shear appears
to be unbiased with respect to the expected values on the optical axis.7
Beyond-tidal effects then significantly increase the uncertainty on the

7 This conclusion regarding the impact of higher-order LOS perturbations can
be compared with the recent finding that the boxiness or diskiness of strong
lenses do not significantly bias 𝐻0 measurements (Van de Vyvere et al. 2022).
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Figure 15. The image produced in the presence of the full population of haloes (top left) along with the reconstruction from the best-fit parameters found by the
MCMC (top middle) and the normalised residuals of the difference between the two (top right). The bottom panels show the same but without the haloes ℎ
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shear measurement, which may be attributed to the fact that the shears
are simply not single-valued across the image. They also produce
visible patterns in the residuals of the best fit. A natural question is
whether those patterns can be attributed to a combination of flexion
signals; we shall address this point in future work.
We stress that the quantitative conclusions of this section should

be taken with a pinch of salt. Indeed, in the scenario we constructed,
haloes were initially randomly distributed in space without any
clustering. However, in reality, halo positions are strongly correlated,
with many small haloes found in the vicinity of larger ones, and
following the cosmic two-point correlation function on large scales.
Such correlations imply the presence of large coherent structures far
from the LOS that could produce a rather uniform shear. In other
words, we expect the role of beyond-tidal effects to be overestimated
in the present analysis. An important next step for future work will
be to simulate a distribution of haloes that follows a cosmologically
motivated two-point correlation function, possibly by obtaining a
distribution of haloes and their physical characteristics such as mass
and concentration from an 𝑁-body simulation.

5 CONCLUSIONS

In this paper, we have provided a clear demonstration that the minimal
model, based on the dominant lens approximation and the tidal
regime, to describe line-of-sight effects in strong gravitational lensing,
evades the degeneracies inherent in other formalisms which try to
address the same problem. Armed with this powerful model, we
showed how the line-of-sight shear can be measured with percent-
level accuracy from complicated strong lensing images even when
source perturbations are not modelled. Furthermore, we tested the
validity of the tidal approximation by simulating the effect of around
3.4 × 104 dark matter haloes on a strong lensing image, finding that
while the approximation may not be completely robust, LOS shear
measurements are nevertheless possible.
Concretely, in Section 2, we laid out the theoretical background to

this work, beginning with the treatment of LOS effects in the tidal
regime. We argued that the degeneracies present between the three
shear terms in the lens equation in this regime means that they cannot
be measured independently of each other or of the model parameters
describing the main lens, but that a so-called minimal model can
be constructed in which these degeneracies are eliminated. Using
lenstronomy – modified for this work to include this LOS formalism
– we demonstrated the advantage that the minimal model has over
the full model, by constructing a simple lens model with shear and
fitting the resulting image with both the full and minimal model. As
expected, the aforementioned degeneracies were present in the full
model but not in the minimal model.
Equipped with this demonstration of the advantage of the minimal

model, we applied it to the inference of the LOS shear from a set of 64
simulated strong lensing images, each produced by a rich composite
lens model consisting of an elliptical dark matter halo offset from an
elliptical baryonic core, along with LOS shear and perturbations to
the source light, in Section 3. We fitted these images with a series of
models, among which the optimal performance was obtained in the
case where all the features of the simulated lenses are included save
the foreground shear. This model is very similar to the composite lens
models used to fit the H0LiCOW lens SDSS 1206+4332 by Birrer
et al. (2019) and the STRIDES lens DES J0408-5354 by Shajib et al.
(2020), both re-analysed by the TDCOSMO collaboration, again with
a composite lens model (Millon et al. 2020), and is similar to the
multi-baryonic component lens models used by Williams & Zegeye

(2020) and Nightingale et al. (2019), for example. In this case, we
concluded that the LOS shear could be measured with an average
absolute uncertainty of 1%, without any systematic bias or degeneracy
with the lens model parameters. We also showed how the inference
of the LOS shear worsens with decreasing model complexity, as is to
be expected.
Finally, in Section 4, we explored the validity of an important

assumption: that LOS perturbers can be treated in the tidal regime.
By simulating a scenario in which a volume around the LOS is
populated with dark matter haloes, we analysed the images produced
in the case where potentially beyond-tidal haloes were present and
in the case where these haloes were removed. We observed a clear
breakdown of the tidal regime, albeit with no effect on the accuracy
of the measurement of the LOS shear. However, the precision was
significantly worsened with respect to the best-case scenario of a
very simple lens model in Section 2. As a result of the way we
modelled the distribution of the dark matter haloes, it is likely that
we have overestimated their beyond-tidal effects, making this a very
conservative estimate of the achievable precision of the LOS shear.
Lastly, we would like to highlight the important debate in the

literature regarding whether external shear is truly external or not –
in other words, if the distortions to a strong lensing image which have
been traditionally attributed to the presence of perturbers external to
the main lens are in fact due to another, perhaps poorly understood
or controlled-for effect. One example of this was brought to light by
Van de Vyvere et al. (2020), who showed how incorrect truncation
at the edges of a mass profile for a main lens can induce a spurious
external shear. While this effect is important for reconstructions of
lensing potentials from mass maps, it does not play a role in our
current work due to our use of exact mass profiles which essentially
extend to infinity. In that work, the spurious shear was also found to
decrease to negligible magnitudes provided a large enough region
for the mass map was used. The existence of external shear was
recently further called into question by Etherington et al. (2023), who
showed how the best-fit value of an external shear parameter does
not faithfully represent the actual shear if the lens mass is modelled
by a simplistic elliptical power law. This finding is completely in
agreement with the results of the current work.
In conclusion, the prospects for the use of the LOS shear as a new

cosmological probe are excellent – provided that the main lens mass
is modelled correctly. The LOS shear, which as we have shown is
free from the usual degeneracies that plague typical strong lensing
observables, will be able to be measured not only in current strong
lensing data but from the many thousands of new strong lenses which
are expected to be observed in the next five years by LSST and JWST,
and further afield, by Euclid. The LOS shear thus has the potential
to be employed in synergy with weak lensing surveys, magnifying
the information that we receive from the inhomogeneous sky and
boosting the constraints on cosmological parameters that are already
in our hands.
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APPENDIX A: MODIFYING lenstronomy

The lenstronomy software is a modular code designed primarily
for modelling strong gravitational lenses, with numerous cosmo-
logical applications. The software contains a number of packages
and subpackages which deal with the separate aspects of this task.
For example, the LensModel package contains subpackages such as
Profiles, which in turn contains a class for each lens mass profile
which is available in lenstronomy.
The modifications to lenstronomy made for this work follow

this modular structure. We introduced a new subpackage under
the LensModel package called LineOfSight, which contains a
new class, SinglePlaneLOS. This new class contains functions to
compute the displacement angle, Hessian and Fermat potential in
the LOS formalism. The class also inherits the ray shooting function
(i.e. the computation of the source position 𝜷), the lensing potential
function and the functions for computing the lens mass enclosed in a
given sphere or projected radius and lens mass density from the native
lenstronomy class SinglePlane, as these quantities are unchanged
by LOS effects.
Furthermore, our new LineOfSight package contains a subpack-

age called LOSModels, inside which are the LOS and LOS_MINIMAL
classes. The functions encoding the LOS effects are defined in the LOS
class, and these functions are then called in the SinglePlaneLOS
class. The additional parameters associated with the LOS effects are
also defined in the LOS class, and the parameters associated with
the minimal model are defined in LOS_MINIMAL. The additional
parameters are:

• os: 𝛾os1 , 𝛾
os
2 , 𝜅

os, 𝜔os;
• od: 𝛾od1 , 𝛾

od
2 , 𝜅

od, 𝜔od;
• ds: 𝛾ds1 , 𝛾

ds
2 , 𝜅

ds, 𝜔ds;

in the LOS model and

• od: 𝛾od1 , 𝛾
od
2 , 𝜅

od, 𝜔od;
• LOS: 𝛾LOS1 , 𝛾LOS2 , 𝜅LOS, 𝜔LOS;

in the LOS_MINIMAL model.
The finalmodificationswemade tolenstronomywere to introduce

additional unit tests which ensure the validity of the functions and
the quantities which they return each time the code is built. We
created two types of unit test. The first checks that when all the
additional LOS parameters are fixed to zero, the SinglePlaneLOS
functions return the same values as the SinglePlane functions for
a given source and lens. The second exploits the correspondence
that exists between the LOS formalism and multi-plane lensing with
three shear planes. This allows us to construct unit tests which check

that the LOS modifications return the same values as those returned
by the equivalent multi-plane set-up using the MultiPlane class of
lenstronomy.
For example, in Table A1, we show the output of the altered single-

plane functions that we implemented in the SinglePlaneLOS class
with the equivalent MultiPlane settings for a simple lens model
consisting of an elliptical power law lens model with three shear
planes. The lens and shear parameters, image positions, and the lens
and source redshifts were chosen at random to produce these results.
The displacement angle computed by the SinglePlaneLOS class

is identical to that computed in the multi-plane case to machine
precision, Δ𝛼 ∼ 10−16 arcsec. The elements of the Hessian matrix
in the LOS case are the same as in the multi-plane case at the level
of at least 10−8. Finally, the time delay resulting from the modified
Fermat potential in the SinglePlaneLOS class matches that of the
multi-plane case at the level of O(10−11) days.

APPENDIX B: MOCK IMAGE CATALOGUE MODEL
PARAMETERS

In this Appendix, we describe the full set of model parameters used
to create the images in our mock catalogue. The numbers used to
describe galaxy masses, half-light radii and Sérsic indices are freely
inspired from Suess et al. (2019).

B1 Baryonic core: Sérsic ellipse

This component is modelled using the
SERSIC_ELLIPSE_POTENTIAL in lenstronomy, which re-
quires the angular half-light radius 𝑅Sérsic, the Sérsic index 𝑛Sérsic,
the ellipticity components 𝑒1, 𝑒2, the effective convergence 𝑘eff and
the centre position 𝑥, 𝑦.
We begin by drawing a redshift for each lens from a uniform

distribution, 𝑧 ∼ U(0.4, 0.6) and from this compute the angular
diameter distance to each lens, 𝐷od. Next, we draw the mass of
the baryonic component randomly from a log-normal distribution,
M ∼ lnN [ln(Mmean), ln(2)/2], where the mean massMmean =

2 × 1011M� . This distribution ensures that 95% of the lens galaxies
we simulate have a mass which is at most a factor of two smaller or
larger than the mean mass. From this we compute the half-light radius
of the baryonic core in arcseconds,

𝑅Sérsic
arcsec

=
M

Mmean

2 kpc
𝐷od

180 × 3600
𝜋

. (B1)

We also draw the values for the Sérsic index from a log-normal
distribution, 𝑛Sérsic ∼ lnN[ln(𝑛mean), ln(1.5)/2], where 𝑛mean = 4.
We compute the ellipticity components using the following expres-

sions,

𝑒1 =
(1 − 𝑞)

(1 + 𝑞) cos(2𝜙) , (B2)

𝑒2 =
(1 − 𝑞)

(1 + 𝑞) sin(2𝜙) , (B3)

where 𝑞 is the aspect ratio and 𝜙 the orientation angle of the ellipse.
We draw the aspect ratio and orientations for each lens from uniform
distributions, 𝑞 ∼ U(0.7, 1.0) and 𝜙 ∼ U(0, 2𝜋) respectively.
We compute the effective convergence at the half-light radius,

𝜅eff =
M

Σcrit𝐼
, (B4)

whereM is the lens mass in units of 𝑀� , Σcrit is the critical surface
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Table A1. Example output of the SinglePlaneLOS and MultiPlane classes for comparison.

SinglePlaneLOS MultiPlane Difference

Displacement angle (0.92460116, 0.77805976)′′ (0.92460116, 0.77805976)′′
(
4.44089210 × 10−16, 3.33066907 × 10−16

)′′
Hessian


0.11183298 −0.0151521

−0.01004559 0.15331121



0.11183299 −0.0151521

−0.01004559 0.15331119



6.50405486 × 10−9 −3.40569642 × 10−10

−1.94965391 × 10−10 −2.69573809 × 10−8


Time delay 6.19293093 days 6.19293093 days −1.18127730 × 10−11 days

density in the lens plane in units of 𝑀�/arcsec2 and the normalisa-
tion 𝐼 is the integrated convergence for the given lens when 𝜅eff = 1
in units of arcsec2.
Finally, the centre of each lens is fixed to zero, 𝑥 = 𝑦 = 0, i.e.

exactly aligned with the optical axis.

B2 Lens light: Sérsic ellipse

We model the lens light with an identical Sérsic ellipse profile
so that the lens light traces the lens mass exactly. We use the
SERSIC_ELLIPSE light profile in lenstronomy, which takes the
same parameters as the SERSIC_ELLIPSE_POTENTIAL mass profile,
less the effective convergence and with the addition of an apparent
magnitude.
We start by computing the absolute magnitude of each lens,

𝑀 = 𝑀� − 2.5 log10
(
M
Υ

)
, (B5)

where 𝑀� = 4.74 is the absolute magnitude of the Sun and Υ = 2 is
the mass-to-light ratio for the lens galaxy. The apparent magnitude is
then

𝑚 = 𝑀 + 5 log10
(

𝐷

1Mpc

)
+ 25, (B6)

where 𝐷 is the luminosity distance to the lens, computed from the
redshift and angular diameter distance,

𝐷 = (1 + 𝑧)2𝐷od. (B7)

The remainder of the lens light parameters for each lens are the same
as those used for the baryonic core.

B3 Dark matter halo: NFW ellipse

We model the dark matter halo using the NFW_ELLIPSE mass profile
in lenstronomy, which requires the scale radius, 𝑅s, the deflection
angle at the scale radius 𝛼, the ellipticity components 𝑒1, 𝑒2 and the
centre position, 𝑥, 𝑦.
We start by drawing the ratio of dark matter to baryons in the

lens galaxy from a uniform distribution, 𝜆 ∼ U(0.3, 1.0), and thus
compute the mass of each halo via

Mhalo = M/𝜆. (B8)

We draw the concentration of each halo randomly from a log-normal
distribution, 𝑐 ∼ lnN(𝑐mean, 0.2), where 𝑐mean = 101.1. We then use
lenstronomy to compute the scale radius and deflection angle for
each halo from the mass and concentration.
We follow the same procedure as for the ellipticity of the baryonic

component to compute the ellipticity of each NFW halo. Lastly, we
displace the centre of each halo from the baryonic core by drawing an
offset (in parsecs) from a normal distribution, 𝑜 ∼ N(0, 300). This
distribution is motivated by the findings of Kuhlen et al. (2013), who

found a 300–400 pc offset in a simulation of a Milky Way-like galaxy.
An even larger offset of 1.62 kpc has been observed in a central galaxy
in the Abell 3827 cluster (Massey et al. 2015).

B4 Source light: Sérsic ellipse

As with the lens light, we model the source component using the
SERSIC_ELLIPSE light profile in lenstronomy, and our methodol-
ogy for computing the model parameters for each source is the same
as followed for the lens light, except for two differences: the half-light
radius and apparent magnitude are computed using the angular diame-
ter distance from observer to source, 𝐷os, rather than observer to lens,
𝐷od; and the centre of the source, 𝑥, 𝑦, is allowed to be offset from
the optical axis. We draw the source centre randomly from a uniform
distribution on a disk, with the maximum allowed displacement from
the optical axis being given by whichever is smallest: the half-light
radius or the effective Einstein radius of the lens.

B5 Einstein radius

We estimate the Einstein radius of our composite lenses by neglecting
the ellipticity and offset of their components, i.e. as if the lenses were
axially symmetric; 𝜃E is, thus, the solution of

𝜃E − 𝛼Sérsic (𝜃E) − 𝛼NFW (𝜃E) = 0 , (B9)

where 𝛼Sérsic and 𝛼NFW are the displacement angles individually
produced by the baryon and dark-matter component of the lens.
After drawing randomly their parameters, we compute 𝜃E by solving
Equation (B9) numerically, and we only keep the lenses such that
𝜃E > 0.5′′, to ensure that the images we produce have arcs or rings
which are reasonably well separated from the lens light.

B6 LOS shear

We add the LOS shear to the images using the LOS model that we
implemented in lenstronomy. The two components of the od, os
and ds shears, 𝛾1 and 𝛾2, are drawn from uniform distributions on a
disk. This is done by drawing the square of each shear component
randomly from a uniform distribution, 𝛾2 ∼ U(0, 𝛾2max), where we
set 𝛾max = 0.025 to ensure that the LOS shear, 𝛾LOS, is never larger
than 5% – as we discussed in Section 2, large shears can induce
rotation in the image with respect to the source.
The two components of each shear are then computed via

𝛾1 = 𝛾 cos(2𝜙), (B10)
𝛾2 = 𝛾 sin(2𝜙), (B11)

where 𝜙 is drawn randomly from a uniform distribution, 𝜙 ∼ U(0, 𝜋).
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