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Abstract

Imitative and contrarian behaviors are the two typical opposite attitudes of investors in stock markets.
We introduce a simple model to investigate their interplay in a stock market where agents can take only
two states, bullish or bearish. Each bullish (bearish) agent polls m “friends” and changes her opinion
to bearish (bullish) if (1) at leastmρhb (mρbh) among them agents inspected are bearish (bullish)
or (2) at leastmρhh > mρhb (mρbb > mρbh) among them agents inspected are bullish (bearish).
The condition (1) (resp. (2)) corresponds to imitative (resp. antagonistic) behavior. In the limit where
the numberN of agents is infinite, the dynamics of the fraction of bullishagents is deterministic and
exhibits chaotic behavior in a significant domain of the parameter space{ρhb, ρbh, ρhh, ρbb, m}. A
typical chaotic trajectory is characterized by intermittent phases of chaos, quasi-periodic behavior and
super-exponentially growing bubbles followed by crashes.A typical bubble starts initially by growing
at an exponential rate and then crosses over to a nonlinear power law growth rate leading to a finite-
time singularity. The reinjection mechanism provided by the contrarian behavior introduces a finite-size
effect, rounding off these singularities and leads to chaos. We document the main stylized facts of this
model in the symmetric and asymmetric cases. This model is one of the rare agent-based models that give
rise to interesting non-periodic complex dynamics in the “thermodynamic” limit (of an infinite number
N of agents). We also discuss the case of a finite number of agents, which introduces an endogenous
source of noise superimposed on the chaotic dynamics.

http://arXiv.org/abs/cond-mat/0109410v1


“Human behavior is a main factor in how markets act. Indeed, sometimes markets act
quickly, violently with little warning. [. . .] Ultimately, history tells us that there will be a
correction of some significant dimension. I have no doubt that, human nature being what it
is, that it is going to happen again and again.” Alan Greenspan, Chairman of the Federal
Reserve of the USA, before the Committee on Banking and Financial Services, U.S. House
of Representatives, July 24, 1998.

1 Introduction

In recent economic and finance research, there is a growing interest in incorporating ideas from social
sciences to account for the fact that markets reflect the thoughts, emotions, and actions of real people as
opposed to the idealized economic investor whose behavior underlies the efficient market and random
walk hypothesis. This was captured by the now famous pronouncement of Keynes (1936) that most in-
vestors’ decisions “can only be taken as a result of animal spirits – of a spontaneous urge to action rather
than inaction, and not the outcome of a weighed average of benefits multiplied by the quantitative proba-
bilities”. A real investor may intend to be rational and may try to optimize his actions, but that rationality
tends to be hampered by cognitive biases, emotional quirks,and social influences. “Behavioral finance”
is a growing research field (Thaler (1993), De Bondt and Thaler (1995), Shefrin (2000), Shleifer (2000),
Goldberg and von Nitzsch (2001)), which uses psychology, sociology, and other behavioral theories to
attempt to explain the behavior of investors and money managers. The behavior of financial markets
is thought to result from varying attitudes toward risk, theheterogeneity in the framing of information,
from cognitive errors, self-control and lack thereof, fromregret in financial decision-making, and from
the influence of mass psychology. Assumptions about the frailty of human rationality and the acceptance
of such drives as fear and greed are underlying the recipes developed over decades by so-called technical
analysts.

There is growing empirical evidence for the existence of herd or “crowd” behavior in speculative
markets (Arthur (1987), Bikhchandaniet al. (1992), Johansenet al.(1999, 2000), Orléan (1986, 1990,
1992), Shiller (1984, 2000), Topol (1991), West (1988)). Herd behavior is often said to occur when
many people take the same action, because some mimic the actions of others. Herding has been linked to
many economic activities, such as investment recommendations (Graham and Dodd (1934), Scharfstein
and Stein (1990)), price behavior of IPO’s (Initial Public Offering) (Welch (1992)) fads and customs
(Bikhchandaniet al. (1992)), earnings forecasts (Trueman (1994)), corporate conservatism (Zwiebel
(1995)) and delegated portfolio management (Maug and Naik (1995)).

Here, we introduce arguably the simplest model capturing the interplay between mimetic and contrar-
ian behavior in a population ofN agents taking only two possible states, “bullish” or “bearish” (buying
or selling). In the limit of an infinite numberN → ∞ of agents, the key variable which is the fraction
p of bullish agents follows a chaotic deterministic dynamicson a subspace of positive measure in the
parameter space. Before explaining and analyzing the modelin subsequent sections, we compare it in
three respects to standard theories of economic behavior.

1. Since in the limitN → ∞, the model operates on a purely deterministic basis, it actually chal-
lenges the purely external and unpredictable origin of market prices. Our model exploits the continuous
mimicry of financial markets to show that the disordered and random aspect of the time series of prices
can be in part explained not only by the advent of “random” news and events, but can also be generated
by the behavior of the agents fixing the prices.

In the limit N → ∞, the dynamics of prices in our model is deterministic and derives from the
theory of chaotic dynamical systems, which have the featureof exhibiting endogenously perturbed mo-
tion. After the first papers on the theory of chaotic systems,such as Lorenz (1963), May (1976), (see,
e.g., Collet-Eckmann (1980) for an early exposition), a series of economic papers dealt with models
mostly of growth—Benhabib-Day (1981), Day (1982, 1983), Stutzer (1980). Later, a vast and varied
number of fields of economics were analyzed in the light of thetheory of chaos—Grandmont (1985,
1987), Grandmont-Malgrange (1986). They extend from macro-economics—business cycles, models
of class struggles, political economy—to micro-economics—models with overlapping generations, opti-
mizing behavior—and touch subjects such as game theory and the theory of finance. The applicability of
these theories has been thoroughly tested on the stock market prices—Brocket al.(1987), Brock (1988),
Brock-Dechert (1988), LeBaron (1988), Brocket al.(1991), Hsieh (1989), Scheinkman-LeBaron (1989a,
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1989b)—in studies which tried to detect signs of non-lineareffects and to nail down the deterministic
nature of these prices. While the theoretical models—Van Der Ploeg (1986), De Grauwe-Vansanten
(1990), De Grauweet al.(1993)—seem to agree on the relevance of chaotic deterministic dynamics, the
empirical studies—Eckmannet al.(1988), Hsieh-LeBaron (1988), Hsieh (1989, 1991, 1992), LeBaron
(1988), Scheinkman-LeBaron (1989a,b)—are less clear-cut, mostly because of lack of sufficiently long
time series (Eckmann-Ruelle (1992)), or, because the deterministic component of market behavior is
necessarily overshadowed by the inevitable external effects. An additional source of “noise” is found to
result from the finiteness of the numberN of agents. For finiteN , the deterministically chaotic dynamics
of the price is replaced by a stochastic dynamics shadowing the corresponding trajectories obtained for
N → ∞.

The model presented here shows a mechanism of price fixing—decisions to buy or sell dictated
by comparison with other agents—which is at the origin of an instability of prices. From one period
to the next, and in the absence of information other than the anticipations of other agents, prices can
continuously exhibit erratic behavior and never stabilize, without diverging. Thus, the model questions
the fundamental hypothesis that equilibrium prices have toconverge to the intrinsic value of an asset.

2. We can also consider our model in the context of the increasing market volatility of financial
markets. The volatility of prices generated by our chaotic model could give a beginning of an explanation
of the excess volatility observed on financial markets—Grossman-Shiller (1981), Fama (1965), Flavin
(1983), Shiller (1981), West (1988)—which traditional models, such as ARCH, try to incorporate (Engle
(1982), Bollerslevet al.(1991), Bollerslev (1987)).

3. Finally, we can see speculative bubbles in our model as a natural consequence of mimetism.
We can compare this to the two basic trends in explaining the problem of bubbles. The first makes
reference to rational anticipations—Muth (1961)—and rests on the hypothesis of efficient markets. With
fixed information, and knowing the dynamics of prices, the recurrence relation for the price is seen to
depend on the fundamental value and a self-referential component, which tends to cause a deviation
from the fundamental value: this is a speculative bubble—Blanchard-Watson (1982). This theory of
rational speculative bubbles fails to explain the birth of such events, and even less their collapse, which it
does not predict either. Recent developments improve on these traditional approached by combining the
rational agents in the economy with irrational “noise” traders (Johansenet al. (1999, 2000), Sornette and
A. Johansen (2001)). These noise traders are imitative investors who reside on an interaction network.
Neighbors of an agent on this network can be viewed as the agent’s friends or contacts, and an agent
will incorporate his neighbors’ views regarding the stock into his own view. These noise traders are
responsible for triggering crashes. Sornette and Andersen(2001) develop a similar model in which the
noise traders induce a nonlinear positive feedback in the stock price dynamics with an interplay between
nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula
transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical
prices, as well as accelerated speculative bubbles preceding crashes.

The second trend purports to explain speculative bubbles bya limitation of rationality—Shiller (1984,
2000), West (1988), Topol (1991). It allows to incorporate notions which the neo-classical analysis does
not take into account: asymmetry of information, inefficiency of prices, heterogeneity of anticipations—
Grossman (1977), Grossman-Stiglitz (1980), Grossman (1981), Radner (1972, 1979). In our approach,
which follows the second trend, the agents act without knowing the actual effect of their behavior: this
contrasts the position of a model-builder—Orléan (1986, 1989, 1990, 1992). This, in turn, can lead to
prices which disconnect from the fundamental indicators ofeconomics.

In the present paper we show that self-referred behavior in financial markets can generate chaos and
speculative bubbles. They will be seen to be caused by mimetic behavior: bubbles will form due to
imitative behavior and collapse when certain agents believe in the advent of a turn of trend, while they
observe the behavior of their peers.

Section 2 defines the model. Section 3 provides a qualitativeunderstanding and analysis of its dy-
namical properties. Section 4 extends it with a quantitative analysis of the phases of speculative bubbles
in the symmetric case. Section 5 describes the statistical properties of the price returns derived from
its dynamics in the symmetric case. Section 6 discusses the asymmetric case. Section 7 explores some
effects introduced by the finitenessN < ∞ of the number of agents. In Section 8 we summarize our
conclusions.
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2 The model

We consider an economy in which the population makes choicesbetween two possible states when
tomorrow’s price is uncertain. The choice depends on expected capital gains. The portfolio choice
then becomes a price expectation problem. Each agent has a different set of informations, obtained
by observing other agents. Agents do not operate with reference to fundamental value, but rather with
respect toexpected market price. They are able to make profits if their expectations are judiciously
chosen. It is rational for the agent—Keynes (1936), Orléan(1986, 1989), Sornette (2001) (see Chap.
4)—to take into account collective judgments in order to make portfolio profits.

That is why, for constituting expectations at timet + 1, the information used by an agent is the price
expectation, at timet, of a certain sample ofotheragents randomly chosen among the population. This
takes into account collective opinion and its expected correctness, that is, their confidence (or absence
thereof) in the continuation of a deviation from the fundamental value. Their opinion refers to two kinds
of price, market price and fundamental value, as exhibited by Keynes (1936):

1. Speculation relying on short term action and especially market opinion and market price. The
most important aspect is the market price expectation, thatis, the collective opinion about future market
prices.

2. Firm behavior: long term behavior relying on economic reality and fundamental value. This leads
agents to detect excessive increase or decrease of market price and thus leads to anticipatory adaptation
of the market price. This causes the collapse of the bubble.

The importance of the interplay of these two classes of investing (which can be used by a same agent
alternatively), corresponding to fundamental value investors and technical analysts (or trend followers),
has been stressed by several recent works (Lux and Marchesi (1999), Farmer and Joshi, 2001) to be
essential in order to retrieve the important stylized factsof stock market price statistics. This has recently
been incorporated within a macroscopic model of the stock market with a competition between nonlinear
trend-followers and nonlinear value investors (Ide and Sornette (2001), Sornette and Ide (2001)). We
build on this insight and construct a very simple model of price dynamics, which puts emphasis on the
fundamentalnonlinearbehavior of both classes of agents.

These well-known principles generate different kinds of risks between which agents choose by arbi-
trage. The former is acompeting risk—Keynes (1936), Orléan (1989)—which leads agents to imitate the
collective point of view since the market price includes it.Thus, it is assumed that Keynes’ animal spirits
may exist. More simply, there is the risk of mistaken expectation: agents believe in a price different from
the market price. Keynes uses his famous beauty contest as a parable for stock markets. In order to
predict the winner of beauty contest, objective beauty is not very important, but knowledge or prediction
of others’ prediction of beauty is. In Keynes’ view, the optimal strategy is not to pick those faces the
player thinks the prettiest, but those the other players arelikely to think the average opinion will be, or
those the other players will think the others will think the average opinion will be, or even further along
this iterative loop.

On the other hand, in the latter case, the emerging price is not necessarily in harmony with eco-
nomic reality and fundamental value. Self-referred decisions and self-validation phenomena can then in-
deed lead to speculative bubbles or sunspots—Azariadis (1981), Azariadis-Guesnerie (1982), Blanchard-
Watson (1982), Jevons (1871), Kreps (1977). Thus, the latter risk is the result ofprecaution. It addresses
the fitting of market price to fundamental value, and by extension, collapse of the speculative bubble.

Both attitudes are likely to be important and are integratedin decision rules. Agents realize an
arbitrage between the two kinds of risk we have described. That is why they have both a mimetic
behavior and an antagonistic one: they either follow the collective point of view or they have reversed
expectations.

We are now going to put these assumptions into the simplest possible mathematical form. We assume
that, at any given timet, the population is divided into two parts. Agents are explicitly differentiated as
being bullish or bearish in proportionpt, andqt = 1− pt, respectively. The first ones expect an increase
of the price, while the bearish ones expect a decrease. The agents then form their opinion for time
t + 1 by sampling the expectations ofm other agents at timet, and modifying their own expectations
accordingly. The numberm of agents polled by a given agent to form her opinion at timet + 1 is the
first important parameter in our model.
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We then introduce threshold densitiesρhb andρhh. We assume0 ≤ ρhb ≤ ρhh ≤ 1. A bullish agent
will change opinion if at least one of the following propositions is true:

1.At leastm · ρhb among them agents inspected are bearish.

2. At leastm · ρhh among them agents inspected are bullish.

The first case corresponds to “following the crowd,” while the second case corresponds to the “an-
tagonistic behavior.” The quantityρhb is thus the threshold for a bullish agent (“haussier”) to become
bearish (“baissier”) for mimetic reasons, and similarly,ρhh is the threshold for a bullish agent to become
bearish because there are “too many” bullish agents. One reason for this behavior is, as we said, that the
deviation of the market price from fundamental value is feltto be unsustainable. Another reason is that
if many managers tell you that they are bullish, it is probable that they have large “long” positions in
the market: they therefore tell you to buy, hoping to be able to unfold in part their position in favorable
conditions with a good profit.

The deviation of the thresholdρhb above the symmetric value1/2 is a measure of the “stubbornness”
(or “buy-and-hold” tendency) of the agent to keep her position. Forρhb = 1/2, the agent strictly
endorses without delay the opinion of the majority and believes in any weak trend. This corresponds to a
reversible dynamics. A valueρhb > 1/2 expresses a tendency towards conservatism: a largeρhb means
that the agent will rarely change opinion. She is risk-adverse and would like to see an almost unanimity
appearing before changing her mind. Her future behavior hasthus a strong memory of her past position.
ρhb − 1/2 can be called the bullish “buy-and-hold” index.

The deviation of the thresholdρhh below 1 quantifies the strength of disbelief of the agent in the
sustainability of a speculative trend. Forρhh = 1, she always follows the crowd and is never contrarian.
For ρhh close to1/2, she has little faith in trend-following strategies and is closer to a fundamentalist,
expecting the price to revert rapidly to its fundamental value. 1 − ρhh can be called the bullish reversal
index.

Putting the above rules into mathematical equations we see that the probabilityP for an agent who
is bullish at timet to change his opinion at timet + 1 is:

P = Prob ({x < m · (1 − ρhb)} ∪ {x > m · ρhh}) , (1)

wherex is the number of bullish agents found in the sample ofm agents.
In an entirely similar way, we introduce thresholdsρbh, andρbb. The thresholdsρbh andρbb have

completely symmetric roles when the agent is initially bearish. ρbh − 1/2 can be called the bearish
“buy-and-hold” index.1 − ρbb can be called the bearish reversal index. The probabilityQ for a bearish
agent at timet to become bullish at timet + 1 is:

Q = Prob ({x < m · (1 − ρbh)} ∪ {x > m · ρbb}) .

We can combine these two rules into adynamical lawgoverning the time evolution of the popu-
lations. Denotingpt the proportion of bullish agents in the population at timet, we can find the new
proportion,pt+1, at timet + 1, by taking into account those agents which have changed opinion accord-
ing to thedeterministic lawgiven above. To simplify notation, we letpt+1 = p′ andpt = p. Then, the
above statements are easily used to expressp′ in terms ofp, by using the probability of findingj bullish
people amongm (Corcos (1993)):

p′ = p − p ·
∑

j≥m·ρhb
or j<m·(1−ρhh)

(

m

j

)

pm−j(1 − p)j

+ (1 − p) ·
∑

j≥m·ρbh
or j<m·(1−ρbb)

(

m

j

)

(1 − p)m−jpj (2)

≡ Fρ,m(p) ,

whereρ = {ρhb, ρbh, ρhh, ρbb}. Thus, the functionFρ,m(p) completely characterizes the dynamics of
the proportion of bullish and bearish populations.
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3 Qualitative analysis of the dynamical properties

3.1 The limit m → ∞
The law given by Eq.2 is not easy to analyze, and we give in Fig.1 a few sample curvesFρ,m. We see
that asm gets larger, the curves seem to tend to a limiting curve. Using this observation, our conceptual
understanding of the dynamics can be drastically simplifiedif we consider the problem for a large number
m of polled partners. Indeed, it is most convenient to first study the unrealistic problemm = ∞ and to
view the largem case as a perturbation of this limiting case. The main ingredient in the study of the case
m = ∞ is the Law of Large Numbers, which we use in a form given in Feller (1966):
Lemma. Let g be a continuous function on[0, 1]. Then, fors ∈ [0, 1],

lim
m→∞

m
∑

j=0

(

m

j

)

sj(1 − s)m−j · g(j/m) = g(s) . (3)

We apply this lemma to the (piecewise continuous) functiong = fh, wherefh is the indicator
function of the set definingP :

fh =

{

1 , if x ≥ ρhb or x < 1 − ρhh,
0 , otherwise .

(4)

Similarly, we define

fb =

{

1 , if x ≥ ρbh or x < 1 − ρbb,
0 , otherwise .

(5)

It is now easy to check that the lemma implies

lim
m→∞

Fρ,m(p) = p − p · fh(1 − p) + (1 − p) · fb(p) ≡ Gρ(p) . (6)

Note again that we do not considerGρ(p) itself as an evolution law for the population of bullish agents,
but Gρ can serve very well as an approximation for the true lawsFρ,m for largem. In Fig. 1 we show
how the functionsFρ,m converge toGρ.

3.2 Classification of the different regimes

In the preceding section, we have shown how to gain a qualitative understanding of the mapsFρ,m,
whenm is large. We can now apply in a rather straightforward way thegeneral theory of 1-dimensional
discrete time dynamical systems (seee.g., Collet-Eckmann (1980)) to the functionsFρ,m. The recurrence
pt → pt+1 can exhibit several typical behaviors which, for largem depend essentially only on the set
of parametersρ. We enumerate a few of them and refer the reader to Figs. 2 and 3. In this section, we
restrict our attention to the symmetric caseρhb = ρbh andρhh = ρbb.

1.The most trivial case is the appearance of a stable fixed point. This will occur when the buy-and-
hold indexρhb − 1/2 is not too large and the reversal index1 − ρhh is not too small. For example, this
occurs forρhh = ρbb = 0.75, ρhb = ρbh = 0.72, andm = 60. Then, the population will equilibrate,
and converge top = 1 − q ≈ 0.68, or top ≈ 0.32 (see upper panel of figure 3).

2. The next more interesting case is the appearance of a limitcycle (of period 2): at successive times,
the population of bullish and bearish agents will oscillatebetween two different values. This happens,
e.g., for ρhh = ρbb = 0.76, with the other parameters as before (see second panel of figure 3).

3. But for certain values of the parameters,e.g., ρhh = ρbb = 0.85, the sequence of values ofpt

is achaoticsequence, with positive Liapunov exponent (cf. Eckmann-Ruelle (1985)). The mechanism
for this is really a combination of sufficiently strong buy-and-hold indexρhb − 1/2 and of sufficiently
weak reversal index1− ρhh. This regime thus occurs when the opinion of a trader has a strong memory
of her past positions and changes it only when a strong majority appears. This regime also requires
a weak belief of the agent in fundamental valuation, as she will believe until very late that a strong
bullish or bearish speculative trend is sustainable. Fundamentally, it is thisself-referentialbehavior of
the anticipationsalonewhich is responsible for a deterministic, but seemingly erratic evolution of the
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population of bullish and bearish agents. No external noiseis needed to make this happen, and in general,
we view external stimuli as acting on top of the intrinsic mechanism which we exhibit here (Eckmann
(1981)). Note that the set of parameter valuesρ for which chaos is expected (say, near the values used at
the bottom of Fig. 3) has positive Lebesgue measure.

We next consider in more detail the time evolution ofpt for the parameter values of the last frame of
Fig. 3, which are typical for the abundant set of “chaotic” parameter values, and we will show how the
time evolution exhibits “speculative bubbles.” This phenomenon is akin to the notion of intermittency
(of “Type I”) as known to physicists, seee.g., Manneville (1991) for an exposition. Indeed, we can
distinguish two distinct behaviors in the last frame of Fig.3, which occur repeatedly with more or
less pronounced separation. The first process is the “laminar phase,” which is seen to occur when the
populationpt is near 0.5. Then, the evolution of the population is slow, and the population grows
slowly away from 0.5, either monotonically or through an oscillation of period 2, depending onρ. This
motion is slower when the inspected sample size (m) is larger, reflecting a more stable evolution for
less independent agents. When the distance from 0.5 is large, erratic behavior sets in, which persists
until the population reaches again a value of about 0.5, at which point the whole scenario repeats. The
determinism of the model is reflected by “equal causes lead toequal effects,” while its chaotic nature is
reflected by the erratic length of the laminar periods, as well as of the bubbles of wild behavior.

Having analyzed qualitatively the evolution of the number of bullish agents, we next describe how
the priceπt+1 of an asset at timet + 1 is related to the proportionpt of bullish agents. One can argue
(Corcos (1993), Bouchaud and Cont (1998), Farmer (1998)) that the price changeπt+1 − πt from one
period to the next is amonotonefunction of pt (and, perhaps, ofπt). This function is positive when
pt > 1/2 and negative whenpt < 1/2. If the reaction to a change inpt is reflected in the prices in the
next period, then a bubble inpt will lead to a speculative bubble in the prices in the next period. Thus,
our model predicts the occurrence of bubbles from the behavior of the agents alone. Furthermore, for
quite general laws of the form

πt+1 = H(πt, pt) , (7)

a simple application of the chain rule of differentiation leads to the observation that the variableπt has
the same Liapunov exponent aspt. In fact, this will be the case if0 < ∂πH < λ and∂pH > c > 0,
whereλ is the Liapunov exponent forpt, as follows fromδπt+1 = ∂πH ·δπt +∂pH ·δpt. This condition
is, in particular, satisfied for a law of the formπt+1 = πt + G(pt), whereG is strictly monotone. Thus,
chaotic behavior of bullish agents leads to chaotic behavior of prices.

In the sequel, we shall take the simplest form of a log-difference of the price linearly proportional to
the order unbalance (Farmer (1998)), leading to

lnπt+1 − lnπt+1 ≡ rt+1 = γ(pt − 1
2 ) , (8)

showing that the returnrt calculated over one period is proportional to the imbalancept − 1
2 . Thus, the

properties of the return time series can be derived directlyfrom those ofpt as we document below.
To summarize this qualitative analysis of the case of an infinite numberN of agents, we observe a

time evolution which, while satisfying certain criteria ofrandomness (such as possessing an absolutely
continuous invariant measure and exhibiting a positive Liapunov exponent—cf. Eckmann-Ruelle (1985))
at the same time exhibits some regularities on short time scales, since it is deterministic. Our model thus
establishes that straightforward fundamental conditionsmay suffice to generate chaotic stock market
behavior, depending on the parameter values. If the market adjusts present market price on the basis
of expectations and mimicry—self-referred behavior—thenchaotic evolution of the population will also
imply chaotic evolution of prices.
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4 Quantitative analysis of the speculative bubbles within the chaotic
regime in the symmetric case

For an infinite numberN of agents and in the symmetric caseρhb = ρbh ≡ ρ1 andρhh = ρbb ≡ ρ2, let
us rewrite the dynamical evolution (2) of the system as

p′ = p − p

m
∑

j=0

(

m

j

)

pm−j(1 − p)jf

(

j

m

)

+ (1 − p)

m
∑

j=0

(

m

j

)

(1 − p)m−jpjf

(

j

m

)

, (9)

where

f(x) =

{

1, if x ≥ ρ1 or x < 1 − ρ2

0, otherwise.
(10)

Let us define

gm(p) =

m
∑

j=0

(

m

j

)

pm−j(1 − p)jf

(

j

m

)

, (11)

which yields
p′ = Fm(p) = p − p · gm(p) + (1 − p) · gm(1 − p) . (12)

This expression (12) generalizes (6) to arbitrarym.
As was described in the previous section, this system can exhibit chaotic behavior for certain values

of the parameters. An example is given in figure 4 which shows along time series, showing many positive
bubbles and negative bubbles interrupted by chaotic oscillatory phases. For the time being, we do not
worry about the existence of the negative bubbles, which arerarely if ever observed in real markets: this
is an artifact of the symmetryρhb = ρbh ≡ ρ1 andρhh = ρbb ≡ ρ2, that we shall relax later. Keeping
the symmetry assumption simplified the theoretical analysis without changing the key results obtained
below.

Let us consider the first bubble developing in the time interval from t = 35 to t = 546 as seen in
figure 5-a). Figure 5-b plots the logarithm ofp − 1/2 as a function of linear time: the linear trend from
t = 35 to t ≈ 480 seen in the lower panel qualifies an exponential growthp − 1/2 ∝ eκt (with κ > 0)
followed by a super-exponential growth accelerating so much as to give the impression of reaching a
singularity in finite-time.

To understand this phenomenon, we plot the logarithm ofFm(p)− p versus the logarithm ofp− 1/2
in figure 6 for three different values ofm = 30, 60 and100. Two regimes can be observed.

1. For smallp − 1/2, the slope oflog10(Fm(p) − p) versuslog10(p − 1/2) is 1, i.e,

p′ − p ≡ Fm(p) − p ≃ α(m)

(

p − 1

2

)

. (13)

This expression (13) explains the exponential growth observed at early times in figure 5.

2. For largerp − 1/2, the slope oflog10(Fm(p) − p) versuslog10(p − 1/2) increases above1 and
stabilizes to a valueµ(m) before decreasing again due to the reinjection produced by the contrarian
mechanism. The interval inp − 1/2 in which the slope is approximately stabilized at the value
µ(m) enables us to write

Fm(p) − p ≃ β(m)

(

p − 1

2

)µ(m)

, with µ > 1 . (14)

These two regimes can be summarized in the following phenomenological expression forFm(p):

Fm(p) =
1

2
+ (1 − 2gm(1/2)− g′m(1/2))

(

p − 1

2

)

+ β(m)

(

p − 1

2

)µ(m)

, (15)

=
1

2
+

(

p − 1

2

)

+ α(m)

(

p − 1

2

)

+ β(m)

(

p − 1

2

)µ(m)

with µ > 1 , (16)
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and
α(m) = −2gm(1/2) − g′m(1/2) . (17)

This expression can be obtained as an approximation of the exact expansion derived in the Appendix.
In order to check the hypothesis (16), we numerically solve the following problem

min
{α,β,µ}

∣

∣

∣

∣

∣

∣

∣

∣

Fm(p) − 1

2
− [1 + α]

(

p − 1

2

)

− β

(

p − 1

2

)µ∣

∣

∣

∣

∣

∣

∣

∣

2

, (18)

which amounts to constructing the best approximation of theexact mapFm(p) in terms of an effective
power law acceleration (see (20) below). The results obtained form = 60 interacting agents andρhb =
ρbh = 0.72 andρhh = ρbb = 0.85 are given in table 1 and shown in figure 7. The numerical valuesof α
are in good agreement with the theoretical prediction :α(m) = F ′

m(1/2)−1 which yieldsα(m) ≃ 0.011
in the present case (m = 60, ρhb = ρbh = 0.72 andρhh = ρbb = 0.85). As a first approximation, we can
consider that the exponentµ is fixed over the interval of interest, which is reasonable according to the
very good quality of the fits shown in figure 7. We can conclude from this numerical investigation that
µ(m) ∈ [3, 4]. A finer analysis shows however that the exponentµ is in fact not perfectly constant but
shifts slowly from about3 to 4 asp increases. This should be expected as the functionFm(p) contains
many higher-order terms. We can also note that the parameterpc = (β/α)−1/µ, which defines the
typical scale of the crossover remains constant and equal topc ≃ 0.70 for all the fits (except for the
largest intervalp − 1/2 < 0.2, for which pc = 0.8). In sum, the procedure (18) and its results show
that the effective power law representation (16) is a cross-over phenomenon: it is not dominated by the
“critical” value ρhb = ρbh of the jump of the map obtained in the limit of largem.

Introducing the notationǫ = p − 1/2, the dynamics associated with the effective map (16) can be
rewritten

ǫ′ − ǫ = α(m)ǫ + β(m)ǫµ(m), (19)

which, in the continuous time limit, yields

dǫ

dt
= α(m)ǫ + β(m)ǫµ(m) . (20)

Thus, for smallǫ, we obtain an exponential growth rate

ǫt ∼ eα(m)t , (21)

while for large enoughǫ

ǫt ∼ (tc − t)−
1

µ(m)−1 . (22)

For example, form = 60 with ρhb = ρbh = 0.72 andρhh = ρbb = 0.85, we can check on figure 6
thatµ(m) = 3, which yields for largeǫ:

pt −
1

2
∼ 1√

tc − t
. (23)

The prediction (23) implies that plotting(pt − 1/2)−2 as a function oft should be a straight line in
this regime. This non-parametric test is checked in figure 8 on five successive bubbles. This provides
a confirmation of the effective power law representation (16) of the map. The fact that it is the lowest

Optimization Domain α β µ

0 ≤ p − 1
2 ≤ 0.05 0.011 11.67 3.27

0 ≤ p − 1
2 ≤ 0.10 0.013 43.66 3.77

0 ≤ p − 1
2 ≤ 0.15 0.014 60.32 3.91

0 ≤ p − 1
2 ≤ 0.20 0.004 30.64 3.54

Table 1: Optimized parametersα, β andµ for several optimization interval with m=60 interacting agents
andρhb = ρbh = 0.72 andρhh = ρbb = 0.85
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estimateµ ≈ 3 shown in table 1 which dominates in figure 8 results simply from the fact that it is the
longest transient corresponding to the regime wherep is closest to the unstable fixed point1/2. This is
visualized in figure 8 by the horizontal dashed lines indicating the levelsp − 1/2 = 0.05, 0.01 and0.2.
This demonstrates that most of the visited values are close to the unstable fixed point, which determines
the effective value of the nonlinear exponentµ ≈ 3.

With the price dynamics (8), the prediction (22) implies that the returnsrt should increase in an
accelerating super-exponential fashion at the end of a bubble, leading to a price trajectory

πt = πc − C(tc − t)
µ(m)−2

µ(m)−1 , (24)

whereπc is the culminating price of the bubble reached att = tc whenµ(m) > 2, such the finite-time
singularity inrt gives rise only to an infinite slope of the price trajectory. The behavior (24) with an
exponent0 < µ(m)−2

µ(m)−1 < 1 has been documented in many bubbles (Sornetteet al. (1996), Johansen
et al. (1999, 2000), Johansen and Sornette (1999, 2000), Sornetteand Johansen (2001), Sornette and
Andersen (2001), Sornette (2001)). The casem = 60 with ρhb = ρbh = 0.72 andρhh = ρbb = 0.85

shown in figure 6 leads toµ(m)−2
µ(m)−1 = 1/2, which is in reasonable agreement with previously reported

values.
Interpreted within the present model, the exponentµ(m)−2

µ(m)−1 of the price singularity gives an estimation
of the “connectivity” numberm through the dependence ofµ on m documented in figure 6. Such a
relationship has already been argued by Johansenet al., (2000) at a phenomenological level using a
mean-field equation in which the exponent is directly related to the number of connections to a given
agent.

5 Statistical properties of price returns in the symmetric case

Using the price dynamics (8), the distribution ofp− 1/2 is the same as the distribution of returns, which
is the first statistical property analyzed in econometric work (Campbellet al. (1997), Lo and MacKinlay
(1999), Lux (1996), Pagan (1996), Plerou et al (1999), Laherrère and Sornette (1998)). Note that the
distribution ofp−1/2 is nothing but the invariant measure of the chaotic mapp′(p) which can be shown
to be continuous with respect to the Lebesgue measure (Eckmann and Ruelle (1985)). Figure 9 shows
the cumulative distribution ofrt ∝ pt−1/2. Notice the two breaks at|p−1/2| = 0.28, which are due to
the existence of weakly unstable periodic orbits corresponding to a transient oscillation between bullish
and bearish states.

Figure 10 plots in double logarithmic scales the survival distribution ofrt ∝ pt−1/2 for m = 30, 60
and100. Form = 60, we can observe an approximate power law tail but the exponent is smaller than1 in
contradiction with the empirical evidence which suggests atail of the survival probability with exponents
3 − 5. In the other cases, we cannot conclude on the existence of a power law regime, but it is obvious
that the tail behavior of the distribution function dependson the numberm of polled agents.

Figure 11 shows the behavior of the autocorrelation function for m = 60 and m = 100, with
the same values of the other parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85. Form = 100, the
presence of the weakly unstable orbits is felt much stronger, which is reflected in 1) a very strong periodic
component of the correlation function and 2) its slow decay.Even form = 60, the correlation function
does not decay fast enough compared to the typical duration of speculative bubbles to be in quantitative
agreement with empirical data. This anomalously large correlation of the returns is obviously related to
the deterministic dynamics of the returns. We thus expect that including stochastic noise due to a finite
numberN of agents (see below) and adding external noise due to “news”will whiten rt significantly.

Figure 12 compares the correlation function for the returnstime seriesrt ∝ pt−1/2 and the volatility
time series defined as|rt|. The volatility is an important measure of risks and thus plays an important
role in portfolio managements and option pricing and hedging. Note that taking the absolute value of the
return removes the one source of irregularity stemming fromthe change of sign ofrt ∝ pt−1/2 to focus
on the local amplitudes. We observe in figure 12 a significantly longer correlation time for the volatility.
Moreover, the correlation function of the volatility first decays exponentially and then as a power law.
This behavior has previously been documented in many econometric works (Dinget al. (1993), Ding
and Granger (1996), Mülleret al. (1997), Dacorognaet al. (1998), Arneodoet al. (1998), Ballocchiet
al. (1999), Muzyet al. (2001)).
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6 Asymmetric cases

We have seen that the symmetric caseρhb = ρbh andρhh = ρbb is plagued by the weakly unstable
periodic orbits which put a strong and unrealistic imprint on the statistical properties of the return time
series. It is natural to argue that breaking the symmetry will destroy the strength of these periodic orbits.

From a behavioral point of view, it is also quite clear that the attitude of an investor is not symmetric.
One can expect a priori a stronger bullish buy-and-hold index ρhb − 1/2 than bearish buy-and-hold
index ρbh − 1/2: one is a priori more prone to hold a position in a bullish market than in a bearish
one. Similarly, we expect a smaller bullish reversal index1 − ρhh than bearish reversal index1 − ρbb:
speculative bubbles are rarely seen on downward trends as itis much more common that increasing
prices are favorably perceived and can be sustained much longer without reference to the fundamental
price.

Such an asymmetry has been clearly demonstrated empirically in the difference between the rate of
occurrence and size of extreme drawdowns compared to drawups in stock market time series (Johansen
and Sornette (2001)). Drawdowns (drawups) are defined as thecumulative losses (gains) from the last
local maximum (minimum) to the next local minimum (maximum). Drawdowns and drawups are very
interesting because they offer a more natural measure of real market risks than the variance, the value-
at-risk or other measures based on fixed time scale distributions of returns. For the major stock market
indices, there are very large drawdowns which are “outliers” while drawups do not exhibit such drastic
change of regime. For major companies, drawups of amplitudelarger than15% occur at a rate about
twice as large as the rate of drawdowns, but with lower absolute amplitude.

Figure 13 compares the dynamics for the symmetric system (upper panel (a)) and for the asymmetric
system (lower panel (b)). It is clear that, as expected, the number of periodic orbits decreases significantly
in the asymmetric system. However, there are still an unrealistic number of negative bubbles. It is not
possible to increase the asymmetry sufficiently strongly without exiting from the chaotic regime. This
unrealistic feature is thus an intrinsic property and limitation of the present model. We shall indicate in
the conclusion possible extensions and remedies.

Figure 14 compares the cumulative distributions ofp − 1/2 for m = 60 for the symmetric and
asymmetric cases. The strong effect of the weakly unstable periodic orbits observed in the periodic case
has disappeared. In addition, the tail of the distribution decays faster in the asymmetric case, in better
(but still not very good) agreement with empirical data.

Figure 15 shows the correlation function of the returns for asymmetric and an asymmetric case. In
the asymmetric case, there is no trace of oscillations but the decay is slightly slower.

7 Finite size effects

Until now, our analysis has focused on the limit of an infinitenumberN → ∞ of agents, in which
each agent polls randomlym agents amongN . In this limit, we have shown that, for a large domain
in the parameter space, the dynamics of the returns is chaotic with interesting and qualitatively realistic
properties.

7.1 Finite-size effects in other models

We now investigate finite-size effects resulting from a finite numberN of interacting agents trading on
the stock market. This issue of the role of the number of agents has recently been investigated vigor-
ously with surprising results. First, Egenteret al., (1999) studied theN -dependence of the dynamical
properties of price time series of the Kim-Markowitz (1989)and of the Lux-Marchesi (1999) models.
They found that, if this numberN goes to infinity, nearly periodic oscillations occur and thestatistical
properties of the price time series become completely unrealistic. Stauffer (1999) reviewed this work
and others such as the Levy-Levy-Solomon (1995, 2000) model: realistically looking price fluctuations
are obtained forN ∼ 102, but forN ∼ 106 the prices vary smoothly in a nearly periodic and thus unre-
alistic way. The model proposed by Farmer (1998) suffers from the same problem: with a few hundred
investors, most investors are fundamentalists during calmtimes, but bursts of high volatility coincide
with large fractions of noise traders. WhenN becomes much larger, the fraction of noise traders goes to
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zero in contradiction to reality. On a somewhat different issue, Huang and Solomon (2001) have stud-
ied finite-size effects in dynamical systems of price evolution with multiplicative noise. They find that
the exponent of the Pareto law obtained in stochastic multiplicative market models is crucially affected
by a finiteN and may cause in the absence of an appropriate social policy extreme wealth inequality
and market instability. Another model (apart from ours) where the market may stay realistic even for
N → ∞ seems to be the Cont-Bouchaud percolation model (2001). However, this only occurs for an
unrealistic tuning of the percolation concentration to itscritical value. Thus, in most cases, the limit
N → ∞ leads to a behavior of the simulated markets which becomes quite smooth or periodic and thus
predictable, in contrast to real markets. Our model which remains (deterministically) chaotic is thus a
significant improvement upon this behavior. We trace this improvement on the highly nonlinear behav-
ior resulting from the interplay between the imitative and contrarian behavior. It has thus been argued
(Stauffer (1999)) that, if these previous models are good descriptions of markets, then real markets with
their strong random fluctuations are dominated by a rather limited number of large players: this amounts
to assume that the hundred most important investors or investment companies have much more influence
than the millions of less wealthy private investors.

There is another class of models, the minority games (Challet and Zhang (1997)), in which the dy-
namics remains complex even in the limitN → ∞. It has been established that the fluctuations of
the sum of the aggregate demand have an approximate scaling with similar sized fluctuations (volatil-
ity/standard deviation) for anyN andm for the scale scaled variable2m/N , wherem is the memory
length (Challetet al. (2000)). In a generalization, the so-called Grand Canonical version of the Mi-
nority Game (Jefferieset al. (2001)), where the agents have a confidence threshold that prevents them
from playing if their strategies have not been successful over the lastT turns, the dynamics can depend
more sensitively onN : asN becomes small, the dynamics can become quite different. ForlargeN , the
complexity remains.

The difference between the limitN → ∞ considered up to now in this paper and the case of finiteN
is thatpt is no more the fraction of bullish agents. For finiteN , pt must be interpreted as the probability
for an agent to be bullish. Of course, in the limit of largeN , the law of large numbers ensures that the
fraction of bullish agents becomes equal to the probabilityfor an agent to be bullish. There are several
ways to implement a finite-size effect. We here discuss only the two simplest ones.

7.2 Finite external sampling of an infinite system

Consider a system with an infinite number of agents for which the fractionpt of bullish agents is governed
by the deterministic dynamics (2). At each time stept, let us sample a finite numberN of them to
determine the fraction of bullish agents. We get a numbern, which is in general close but not exactly
equal toNpt due to statistical fluctuations. The probability to findn bullish agents amongN agents is
indeed given by the binomial law

Pr(n) =

(

N

n

)

pn(1 − p)N−n . (25)

This shows that the observed proportionp̃ = n/N of bullish agents is asymptotically normal with meanp
and standard deviation1/

√

p(1 − p)N : Pr(p̃) ∼ N (p, 1/
√

p(1 − p)N). Iterating the sampling among
N agents at each time step gives a noisy dynamicsp̃t shadowing the true deterministic one.

Figure 16 compares the dynamics of the deterministicpt corresponding toN → ∞ (panel (a)) with
p̃t for a numberN = m + 1 = 61 of sampled agents among the infinite ensemble of them (panel (b)).
Panel (c) is the “noise” time series defined asp̃t − pt, i.e, by subtracting the time series of panel (a) from
the time series of panel (b). The noise time series of panel (c) thus represents the statistical fluctuations
due to the finite sampling of agents’opinions. Figure 16-b shows the characteristic volatility clusters
which is one of the most important stylized properties of empirical time series.

For largeN , we can write

p̃t = pt +
1

√

pt(1 − pt)N
Wt (26)

where{Wt} are iid gaussian variables with zero mean and unit variance.Therefore, the correlation
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function CorrN (τ) at lagτ 6= 0 is obtained from that forN → ∞ by multiplication by a constant factor:

CorrN (τ) =
NVar(p)

E[1/{p(1− p)}] + NVar(p)
× Corr∞(τ) andτ 6= 0, (27)

≃ Corr∞(τ) for largeN , (28)

whereE[x] denotes the expectation ofx with respect to the continuous invariant measure of the dynami-
cal system (2). Note thatE[1/{p(1− p)}] always exists form < ∞ since the support of the continuous
measure of (2) with respect to Lebesgue measure is bounded from below by a value strictly larger than0
and from above by a value strictly less than1. Figure 17 shows that the correlation function ofp̃t is very
close to that of the deterministic trajectorypt.

To quantify further the impact of the statistical noise stemming from the finite size of the market,
figures 18 and 19 show the return maps ofp̃t, i.e, p̃t+1 as a function of̃pt, for m = 60 polled agents
among a total numberN = 61 of agents (fig 18) andN = 600 (fig 19).

Figure 20 shows the price trajectory obtained byπt = πt−1 exp[r̃t] in linear and logarithmic scale.
The super-exponential acceleration of the price giving rise to sharp peaks in the semi-logarithmic repre-
sentation (Roehner and Sornette (1998)) is clearly visible.

7.3 Finite number N of agents

We now introduce a genuine finite stock market withN agents. We assume that the agents do not know
the exact numberN of agents in the market (this is realistic) and they are in contact with onlym other
agents that they poll at each time period. Not knowing the true value ofN but assuming it to be large,
it is rational for them to develop the best predictor of the dynamics by assuming the ideal case of an
infinite number of agents withm polled agents and thus use the deterministic dynamics (2) astheir best
predictor.

At each time periodt, each agent thus chooses randomlym agents that she polls. She then counts
the number of bullish and bearish agents among her polled sample ofm agents. This number divided by
m gives her an estimation̂pt of the probabilitypt be to bullish at timet. Introducing this estimation in
the deterministic equation (2), the agent obtains a forecast p̂′ of the true probabilityp′ to be bullish at the
next time step.

Results of the simulations of this model are shown in figure 21. We observe a significantly stronger
“noise” compared to the previous section, which is expectedsince the noise is itself injected in the
dynamical equation at each time step. As a consequence, the correlation function of the returns and
of the volatility decay faster than their deterministic counterpart. The correlation of the volatility still
decays about ten times slower than the correlation of the returns, but this clustering of volatility is not
sufficiently strong compared to empirical facts.

Other more realistic models of a finite number of agents can beintroduced. For instance, at timet,
consider an agent among theN . She choosesm other agents randomly and polls them. Each of them is
either bullish or bearish as a result of decisions taken during the previous time period. She then counts the
number of bullish agents among them, and then determines her new attitude using the rules (1). Ifshe is
polled at timet + 1 by another agent, her attitude will be the one determined from t to t + 1. In this way,
we never refer to the deterministic dynamicspt but only to its underlying rules. As a consequence, this
deterministic dynamics does not exert an attraction that minimizes the effect of statistical fluctuations
due to finite sizes. This approach is similar to going from a Fokker-Planck equation (equation (2)) to a
Langevin equation with finite-size effects. This class of models will be investigated elsewhere.

8 Conclusions

The traditional concept of stock market dynamics envisionsa stream of stochastic “news” that may move
prices in random directions. This paper, in contrast, demonstrates that certain types of deterministic
behavior—mimicry and contradictory behavior alone—can already lead to chaotic prices.

If the market prices are assumed to follow thept behavior, our description refers to the well-known
evolution of the speculative bubbles. Such apparent regularities often occur in the stock market and form
the basis of the so-called “technical analysis” whereby traders attempt to predict future price movements
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by extrapolating certain patterns from recent historical prices. Our model provides an explanation of
birth, life and death of the speculative bubbles in this context.

While the traditional theory of rational anticipations exhibits and emphasizes self-reinforcing mech-
anisms, without either predicting their inception nor their collapse, the strength of our model is to justify
the occurrence of speculative bubbles. It allows for their collapse by taking into account the combination
of mimetic and antagonistic behavior in the formation of expectations about prices.

The specific feature of the model is to combine these two Keynesian aspects of speculation and
enterprise and to derive from them behavioral rules based oncollective opinion: the agents can adopt an
imitative and gregarious behavior, or, on the contrary, anticipate a reversal of tendency, thereby detaching
themselves from the current trend. It is this duality, the continuous coexistence of these two elements,
which is at the origin of the properties of our model: chaoticbehavior and the generation of bubbles.

It is a common wisdom that deterministic chaos leads to fundamental limits of predictability because
the tiny inevitable fluctuations in those chaotic systems quickly snowball in unpredictable ways. This
has been investigated in relation with for instance long-term weather patterns. However, in the context of
our models, we have shown that the chaotic dynamics of the returns alone cannot be the limiting factor
for predictability, as it contains too much residual correlations. Endogenous fluctuations due to finite-
size effects and external news (noise) seem to be needed as important factors leading to the observed
randomness of stock market prices. The relation between these extrinsic factors and the intrinsic ones
studied in this paper will be explored elsewhere.

Remark and Acknowledgements: This paper is an outgrowth and extension of unpublished work by
three of us (AC, JPE, AM) which was in turn based on the Ph.D. ofAnne Corcos. We are grateful to J.V.
Andersen for useful discussions. This work was partially supported by the Fonds National Suisse (JPE
and AM) and by the James S. Mc Donnell Foundation 21st centuryscientist award/studying complex
system (DS).
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Appendix

We expandFm(p) around the fixed pointp = 1/2, so that, using the symmetry ofFm(p)

Fm(p) =
1

2
+ F ′

m(1/2) ·
(

p − 1

2

)

+ F (3)
m (1/2) ·

(

p − 1

2

)3

+ · · · (29)

First of all, it is obvious to show by recursion that

F ′
m(1/2) = 1 − 2gm(1/2)− g′m(1/2) (30)

F (2k+1)
m (1/2) = −2(2k + 1)g(2k)

m (1/2) − g(2k+1)
m (1/2) if k > 0 . (31)

The problem thus amounts to calculating the derivatives ofgm.
Some simple algebraic manipulations allow to obtain

g′m(p) = m

m−1
∑

j=0

(

m − 1

j

)

pm1−j(1 − p)j

[

f

(

j

m

)

− f

(

j + 1

m

)]

(32)

= −m

m−1
∑

j=0

(

m − 1

j

)

pm1−j(1 − p)j∆1fm(j), (33)

where∆1fm(·) is the first order discrete derivative off
(

·
m

)

, which yields

g′m

(

1

2

)

= − m

2m−1

m−1
∑

j=0

(

m − 1

j

)

∆1fm(j) . (34)

By recursion, it is easy to prove that

g(k)
m

(

1

2

)

=
(−1)k m!

2m−k k!

m−k
∑

j=0

(

m − k

j

)

∆kfm(j) (35)

and∆kfm(·) is thekth order discrete derivative off
(

·
m

)

:

∆kfm(j) =

k
∑

i=0

(

k

i

)

(−1)if

(

j + i

m

)

. (36)

Finally,

F (2k+1)
m (1/2) =

m!

2m−2k−1 (2k)!





1

2k + 1

m−2k−1
∑

j=0

(

m − 2k − 1

j

)

∆2k+1fm(j)

−(2k + 1)

m−2k
∑

j=0

(

m − 2k

j

)

∆2kfm(j)



 . (37)
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économique, Sept.

Ballocchi, G., M. M. Dacorogna, R. Gencay (1999), Intraday Statistical Properties of Eurofutures by
Barbara Piccinato,Derivatives Quarterly, 6, 28-44.

Benhabib J. & R.H. Day (1981), ‘Rational Choice and Erratic Behaviour’,Review of Economic Studies,
July, 153.

Bikhchandani S., D. Hirshleifer, I. Welch (1992), ‘A Theoryof Fads, Fashion, Custom and Cultural
Changes as Informational Cascades’,Journal of Political Economy, 100(5), 992–1026.

Blanchard O. & M.W. Watson, (1982), ‘Bubbles, Rational Expectations and Financial Markets’, P. Wach-
tel (Ed.), inCrises in the Economic and Financial Structure, Lexington Books, 295–315.

Bollerslev T., R.Y. Chou, N. Jayaraman & K.F. Kroner (1991),‘Les modèles ARCH en finance : un
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in Bourguinat H. & Artus P. (Eds.),Théorie Economique et Crise des Marchés financiers, Economica,
45–65.
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Figure 1: The family of functionsFρ,m(p) for ρhb = ρbh = 0.72 andρhh = ρbb = 0.85. The curves are for
m = 13 + j · 26, j = 0, . . . , 13. Note the convergence to the functionGρ, (indicated bym = ∞).
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Figure 2: Four curvesFρ,m, for m = 60 andρhb = ρbh = 0.72, with ρhh = ρbb = 0.75, 0.76, 0.77, 0.85.
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Figure 4: Evolution of the system over10000 time steps forN = ∞, m = 60 polled agents and the
parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85.
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Figure 9: Cumulative distribution form = 60 polled agents and the parametersρhb = ρbh = 0.72 and
ρhh = ρbb = 0.85.
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Figure 11: The upper panels represent the time seriespt for m = 60 (left) andm = 100 (right). The
lower panels represents the corresponding autocorrelation function ofrt ∝ p − 1/2 for m = 60 (left) and
m = 100 (right) with the same parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85.
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Figure 12: Autocorrelation function of the returns and of the volatility for m = 60 polled agents and the
parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85.
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Figure 13: Time evolution ofpt over10000 time steps form = 60 polled agents in (a) a symmetric case
ρhb = ρbh = 0.72 andρhh = ρbb = 0.85 and (b) an asymmetric caseρhb = 0.72, ρbh = 0.74, ρhh = 0.85
andρbb = 0.87.
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Figure 14: Distribution function ofp − 1/2 for m = 60 polled agents and parametersρhb = ρbh = 0.72
andρhh = ρbb = 0.85 (dashed line) andρhb = 0.72, ρbh = 0.74, ρhh = 0.85 andρbb = 0.87 (continuous
line).
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Figure 15: Correlation function form = 60 polled agents and parametersρhb = ρbh = 0.72 andρhh =
ρbb = 0.85 (dashed line) andρhb = 0.72, ρbh = 0.74, ρhh = 0.85 andρbb = 0.87 (continuous line).
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Figure 16: Time evolution ofpt over 10000 time steps form = 60 polled agents with (a)N = ∞, (b)
N = m + 1 = 61 agents and parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85. The panel (c) represents
the noise due to the finite size of the system and is obtained bysubtracting the time series in panel (a) from
the time series in panel (b).
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Figure 17: Correlation function form = 60 polled agents withN = ∞ (thin line),N = 600 (dashed line)
andN = 61 (continuous line) agents and parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85.
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Figure 18: Return map of the fraction of bullish agents form = 60 polled agents amongN = 61 agents
(points) and the deterministic trajectory (continuous line) corresponding toN = ∞ agents. The parameters
areρhb = ρbh = 0.72 andρhh = ρbb = 0.85.
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Figure 19: Return map of the fraction of bullish agents form = 60 polled agents amongN = 600 agents
(points) and the deterministic trajectory (continuous line) corresponding toN = ∞ agents. The parameters
areρhb = ρbh = 0.72 andρhh = ρbb = 0.85.
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Figure 20: Upper panel: return trajectoryr̃t = γp̃t − 1/2 for m = 100, N = 100, ρhb = ρbh = 0.72 and
ρhh = ρbb = 0.85 andγ = 0.01. Middle panel: price trajectory obtained byπt = πt−1 exp[r̃t] . Lower
panel: same as the middle panel withπt shown in logarithmic scale. Note the “flat trough-sharp peak”
structure of the log-price trajectory (Roehner Sornette (1998)).
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Figure 21: Evolution of the system over10000 time steps form = 60 polled agents with (upper panel)
N = ∞, (second panel)N = m + 1 = 61 and parametersρhb = ρbh = 0.72 andρhh = ρbb = 0.85. The
lower panel represents the “noise” introduced by the finite size of the system and is obtained by subtracting
the upper panel from the second panel.

39


