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Abstract

Imitative and contrarian behaviors are the two typical gigaattitudes of investors in stock markets.
We introduce a simple model to investigate their interptag stock market where agents can take only
two states, bullish or bearish. Each bullish (bearish) agelts m “friends” and changes her opinion
to bearish (bullish) if (1) at leastipn, (mppr) among them agents inspected are bearish (bullish)
or (2) at leastmpnn, > mpny (Mmpwy, > mppn) among them agents inspected are bullish (bearish).
The condition (1) (resp. (2)) corresponds to imitative ffremntagonistic) behavior. In the limit where
the numberNV of agents is infinite, the dynamics of the fraction of bullefents is deterministic and
exhibits chaotic behavior in a significant domain of the pzeter space prs, por, Phh, Pob, M} A
typical chaotic trajectory is characterized by internmttphases of chaos, quasi-periodic behavior and
super-exponentially growing bubbles followed by crash&sypical bubble starts initially by growing
at an exponential rate and then crosses over to a nonlinegrgaw growth rate leading to a finite-
time singularity. The reinjection mechanism provided by tlontrarian behavior introduces a finite-size
effect, rounding off these singularities and leads to ch&@s document the main stylized facts of this
model in the symmetric and asymmetric cases. This modeB®bime rare agent-based models that give
rise to interesting non-periodic complex dynamics in theeftnodynamic” limit (of an infinite number
N of agents). We also discuss the case of a finite number of sg&hich introduces an endogenous
source of noise superimposed on the chaotic dynamics.
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“Human behavior is a main factor in how markets act. Indeethetones markets act
quickly, violently with little warning. [..] Ultimately, history tells us that there will be a
correction of some significant dimension. | have no doubt, th@aman nature being what it
is, that it is going to happen again and agdirAlan Greenspan, Chairman of the Federal
Reserve of the USA, before the Committee on Banking and Eiab8ervices, U.S. House
of Representatives, July 24, 1998.

1 Introduction

In recent economic and finance research, there is a growiagest in incorporating ideas from social
sciences to account for the fact that markets reflect thegifitsyemotions, and actions of real people as
opposed to the idealized economic investor whose behawnidenlies the efficient market and random
walk hypothesis. This was captured by the now famous procement of Keynes (1936) that most in-
vestors’ decisionsc¢an only be taken as a result of animal spirits — of a spontasenge to action rather
than inaction, and not the outcome of a weighed average affitsmultiplied by the quantitative proba-
bilities”. A real investor may intend to be rational and may try to optie his actions, but that rationality
tends to be hampered by cognitive biases, emotional quarigsocial influences. “Behavioral finance”
is a growing research field (Thaler (1993), De Bondt and THa@95), Shefrin (2000), Shleifer (2000),
Goldberg and von Nitzsch (2001)), which uses psychologsiotmgy, and other behavioral theories to
attempt to explain the behavior of investors and money meisagrhe behavior of financial markets
is thought to result from varying attitudes toward risk, theterogeneity in the framing of information,
from cognitive errors, self-control and lack thereof, froegret in financial decision-making, and from
the influence of mass psychology. Assumptions about thgfrfihuman rationality and the acceptance
of such drives as fear and greed are underlying the recipesageed over decades by so-called technical
analysts.

There is growing empirical evidence for the existence ofitar“crowd” behavior in speculative
markets (Arthur (1987), Bikhchandaei al. (1992), Johanseet al(1999, 2000), Orléan (1986, 1990,
1992), Shiller (1984, 2000), Topol (1991), West (1988)).rdHbehavior is often said to occur when
many people take the same action, because some mimic thasofiothers. Herding has been linked to
many economic activities, such as investment recommemtafGraham and Dodd (1934), Scharfstein
and Stein (1990)), price behavior of IPO’s (Initial Publiéf&ing) (Welch (1992)) fads and customs
(Bikhchandaniet al. (1992)), earnings forecasts (Trueman (1994)), corporatservatism (Zwiebel
(1995)) and delegated portfolio management (Maug and N&RY)).

Here, we introduce arguably the simplest model capturiagriterplay between mimetic and contrar-
ian behavior in a population ¥ agents taking only two possible states, “bullish” or “bsehti(buying
or selling). In the limit of an infinite numbeN — oo of agents, the key variable which is the fraction
p of bullish agents follows a chaotic deterministic dynanvesa subspace of positive measure in the
parameter space. Before explaining and analyzing the nmindeibsequent sections, we compare it in
three respects to standard theories of economic behavior.

1. Since in the limitN" — oo, the model operates on a purely deterministic basis, itadigtahal-
lenges the purely external and unpredictable origin of migokices. Our model exploits the continuous
mimicry of financial markets to show that the disordered armtiom aspect of the time series of prices
can be in part explained not only by the advent of “random” siawd events, but can also be generated
by the behavior of the agents fixing the prices.

In the limit N — oo, the dynamics of prices in our model is deterministic andvesrfrom the
theory of chaotic dynamical systems, which have the feaifiexhibiting endogenously perturbed mo-
tion. After the first papers on the theory of chaotic systesnsh as Lorenz (1963), May (1976), (see,
e.g, Collet-Eckmann (1980) for an early exposition), a seriegamnomic papers dealt with models
mostly of growth—Benhabib-Day (1981), Day (1982, 1983)t&tr (1980). Later, a vast and varied
number of fields of economics were analyzed in the light ofttteory of chaos—Grandmont (1985,
1987), Grandmont-Malgrange (1986). They extend from m@&canomics—business cycles, models
of class struggles, political economy—to micro-economiasodels with overlapping generations, opti-
mizing behavior—and touch subjects such as game theonhartti¢ory of finance. The applicability of
these theories has been thoroughly tested on the stock nmaites—Brocket al(1987), Brock (1988),
Brock-Dechert (1988), LeBaron (1988), Broekal (1991), Hsieh (1989), Scheinkman-LeBaron (1989a,



1989b)—in studies which tried to detect signs of non-lineféects and to nail down the deterministic
nature of these prices. While the theoretical models—Van Beeg (1986), De Grauwe-Vansanten
(1990), De Grauwet al(1993)—seem to agree on the relevance of chaotic detetimidimmamics, the
empirical studies—Eckmanet al(1988), Hsieh-LeBaron (1988), Hsieh (1989, 1991, 1992Rdren
(1988), Scheinkman-LeBaron (1989a,b)—are less cleamuostly because of lack of sufficiently long
time series (Eckmann-Ruelle (1992)), or, because the metetic component of market behavior is
necessarily overshadowed by the inevitable external tstfédam additional source of “noise” is found to
result from the finiteness of the numh¥€rof agents. For finitéV, the deterministically chaotic dynamics
of the price is replaced by a stochastic dynamics shadowiagadrresponding trajectories obtained for
N — oo.

The model presented here shows a mechanism of price fixingisides to buy or sell dictated
by comparison with other agents—which is at the origin of rstability of prices. From one period
to the next, and in the absence of information other than titieipations of other agents, prices can
continuously exhibit erratic behavior and never stabjlizi#hout diverging. Thus, the model questions
the fundamental hypothesis that equilibrium prices hawmtwerge to the intrinsic value of an asset.

2. We can also consider our model in the context of the incrgasiarket volatility of financial
markets. The volatility of prices generated by our chaotitiei could give a beginning of an explanation
of the excess volatility observed on financial markets—&man-Shiller (1981), Fama (1965), Flavin
(1983), Shiller (1981), West (1988)—which traditional nets] such as ARCH, try to incorporate (Engle
(1982), Bollerslewet al(1991), Bollerslev (1987)).

3. Finally, we can see speculative bubbles in our model as aalatansequence of mimetism.
We can compare this to the two basic trends in explaining télpm of bubbles. The first makes
reference to rational anticipations—Muth (1961)—andgestthe hypothesis of efficient markets. With
fixed information, and knowing the dynamics of prices, theureence relation for the price is seen to
depend on the fundamental value and a self-referential ooemt, which tends to cause a deviation
from the fundamental value: this is a speculative bubbleanBhard-Watson (1982). This theory of
rational speculative bubbles fails to explain the birthwaflsevents, and even less their collapse, which it
does not predict either. Recent developments improve aettiaditional approached by combining the
rational agents in the economy with irrational “noise” eesl(Johanseet al. (1999, 2000), Sornette and
A. Johansen (2001)). These noise traders are imitativesiok&ewho reside on an interaction network.
Neighbors of an agent on this network can be viewed as thet'ageands or contacts, and an agent
will incorporate his neighbors’ views regarding the stootoihis own view. These noise traders are
responsible for triggering crashes. Sornette and And€g@bil) develop a similar model in which the
noise traders induce a nonlinear positive feedback in thekgirice dynamics with an interplay between
nonlinearity and multiplicative noise. The derived hypsdit stochastic finite-time singularity formula
transforms a Gaussian white noise into a rich time seriesgesing all the stylized facts of empirical
prices, as well as accelerated speculative bubbles pregedishes.

The second trend purports to explain speculative bubbledibyitation of rationality—Shiller (1984,
2000), West (1988), Topol (1991). It allows to incorporatéions which the neo-classical analysis does
not take into account: asymmetry of information, inefficgof prices, heterogeneity of anticipations—
Grossman (1977), Grossman-Stiglitz (1980), Grossmanl(l ¥8&dner (1972, 1979). In our approach,
which follows the second trend, the agents act without kngwihe actual effect of their behavior: this
contrasts the position of a model-builder—Orléan (19889, 1990, 1992). This, in turn, can lead to
prices which disconnect from the fundamental indicatorscanomics.

In the present paper we show that self-referred behavionanfiial markets can generate chaos and
speculative bubbles. They will be seen to be caused by nmirbetiavior: bubbles will form due to
imitative behavior and collapse when certain agents beliethe advent of a turn of trend, while they
observe the behavior of their peers.

Section 2 defines the model. Section 3 provides a qualitatickerstanding and analysis of its dy-
namical properties. Section 4 extends it with a quantiedinalysis of the phases of speculative bubbles
in the symmetric case. Section 5 describes the statisticglepties of the price returns derived from
its dynamics in the symmetric case. Section 6 discussesstheraetric case. Section 7 explores some
effects introduced by the finitenedé < oo of the number of agents. In Section 8 we summarize our
conclusions.



2 The model

We consider an economy in which the population makes chdietseen two possible states when
tomorrow’s price is uncertain. The choice depends on exgecapital gains. The portfolio choice
then becomes a price expectation problem. Each agent hdfeeenli set of informations, obtained
by observing other agents. Agents do not operate with neéeréo fundamental value, but rather with
respect toexpected market priceThey are able to make profits if their expectations are jodaly
chosen. It is rational for the agent—Keynes (1936), Orl@886, 1989), Sornette (2001) (see Chap.
4)—to take into account collective judgments in order to enpé&rtfolio profits.

That is why, for constituting expectations at timne 1, the information used by an agent is the price
expectation, at time, of a certain sample ajtheragents randomly chosen among the population. This
takes into account collective opinion and its expectedemtness, that is, their confidence (or absence
thereof) in the continuation of a deviation from the fundataévalue. Their opinion refers to two kinds
of price, market price and fundamental value, as exhibitelddynes (1936):

1. Speculation relying on short term action and especialiyket opinion and market price. The
most important aspect is the market price expectationjsh#te collective opinion about future market
prices.

2. Firm behavior: long term behavior relying on economiditgand fundamental value. This leads
agents to detect excessive increase or decrease of maidesaipd thus leads to anticipatory adaptation
of the market price. This causes the collapse of the bubble.

The importance of the interplay of these two classes of imvg$which can be used by a same agent
alternatively), corresponding to fundamental value itmessand technical analysts (or trend followers),
has been stressed by several recent works (Lux and Marct@39), Farmer and Joshi, 2001) to be
essential in order to retrieve the important stylized fafttock market price statistics. This has recently
been incorporated within a macroscopic model of the stoaketavith a competition between nonlinear
trend-followers and nonlinear value investors (Ide anch8tie (2001), Sornette and Ide (2001)). We
build on this insight and construct a very simple model of@ynamics, which puts emphasis on the
fundamentahonlinearbehavior of both classes of agents.

These well-known principles generate different kinds siksibetween which agents choose by arbi-
trage. The former is eompeting risk-Keynes (1936), Orléan (1989)—which leads agents to tmttze
collective point of view since the market price includedihus, it is assumed that Keynes’ animal spirits
may exist. More simply, there is the risk of mistaken expibata agents believe in a price different from
the market price. Keynes uses his famous beauty contest asahbl@ for stock markets. In order to
predict the winner of beauty contest, objective beauty tsyeoy important, but knowledge or prediction
of others’ prediction of beauty is. In Keynes’ view, the opdil strategy is not to pick those faces the
player thinks the prettiest, but those the other playerdilealy to think the average opinion will be, or
those the other players will think the others will think theeeage opinion will be, or even further along
this iterative loop.

On the other hand, in the latter case, the emerging pricetis@wessarily in harmony with eco-
nomic reality and fundamental value. Self-referred dedisiand self-validation phenomena can then in-
deed lead to speculative bubbles or sunspots—Azariaddd j18zariadis-Guesnerie (1982), Blanchard-
Watson (1982), Jevons (1871), Kreps (1977). Thus, the ldtteis the result oprecaution It addresses
the fitting of market price to fundamental value, and by esi@m, collapse of the speculative bubble.

Both attitudes are likely to be important and are integratedecision rules. Agents realize an
arbitrage between the two kinds of risk we have describedat Thwhy they have both a mimetic
behavior and an antagonistic one: they either follow théectiVe point of view or they have reversed
expectations.

We are now going to put these assumptions into the simplasilple mathematical form. We assume
that, at any given time, the population is divided into two parts. Agents are exfijidifferentiated as
being bullish or bearish in proportign, andg; = 1 — p,, respectively. The first ones expect an increase
of the price, while the bearish ones expect a decrease. Témsathen form their opinion for time
t + 1 by sampling the expectations of other agents at timg and modifying their own expectations
accordingly. The numben of agents polled by a given agent to form her opinion at timel is the
first important parameter in our model.



We then introduce threshold densitjgg andp,;,. We assum@ < pp, < prr < 1. A bullish agent
will change opinion if at least one of the following propadaits is true:

1.At leastm - p;, among then agents inspected are bearish.
2. At leastm - py;, among then agents inspected are bullish.

The first case corresponds to “following the crowd,” while $econd case corresponds to the “an-
tagonistic behavior.” The quantity;,; is thus the threshold for a bullish agent (“haussier”) todme
bearish (“baissier”) for mimetic reasons, and similaply, is the threshold for a bullish agent to become
bearish because there are “too many” bullish agents. Osendar this behavior is, as we said, that the
deviation of the market price from fundamental value is tielbe unsustainable. Another reason is that
if many managers tell you that they are bullish, it is proleablat they have large “long” positions in
the market: they therefore tell you to buy, hoping to be ablertfold in part their position in favorable
conditions with a good profit.

The deviation of the thresho}g,, above the symmetric valug'2 is a measure of the “stubbornness”
(or “buy-and-hold” tendency) of the agent to keep her positi Forp,, = 1/2, the agent strictly
endorses without delay the opinion of the majority and velidn any weak trend. This correspondsto a
reversible dynamics. A valye,, > 1/2 expresses a tendency towards conservatism: a laig@eans
that the agent will rarely change opinion. She is risk-ag@end would like to see an almost unanimity
appearing before changing her mind. Her future behaviothhasa strong memory of her past position.
pny — 1/2 can be called the bullish “buy-and-hold” index.

The deviation of the threshold},;, below 1 quantifies the strength of disbelief of the agent in the
sustainability of a speculative trend. Fgy;, = 1, she always follows the crowd and is never contrarian.
For pps, close tol/2, she has little faith in trend-following strategies andlizsser to a fundamentalist,
expecting the price to revert rapidly to its fundamentabeall — py;, can be called the bullish reversal
index.

Putting the above rules into mathematical equations wehsgdlte probabilityP for an agent who
is bullish at timef to change his opinion at time+ 1 is:

P =Prob({x <m-(1—pp)}U{z>m-prn}) , (1)

wherez is the number of bullish agents found in the samplexcdgents.

In an entirely similar way, we introduce thresholag, andpy,. The thresholdg,; andp,, have
completely symmetric roles when the agent is initially ligar p,;, — 1/2 can be called the bearish
“buy-and-hold” index.1 — py, can be called the bearish reversal index. The probaldilifgr a bearish
agent at time to become bullish at time+ 1 is:

Q =Prob({x<m-(1—ppn)}U{x>m-pw}) .

We can combine these two rules intalgnamical lawgoverning the time evolution of the popu-
lations. Denotingy; the proportion of bullish agents in the population at titneve can find the new
proportion,p;, 1, attimet + 1, by taking into account those agents which have changedoopatcord-
ing to thedeterministic langiven above. To simplify notation, we Igt,; = p’ andp; = p. Then, the
above statements are easily used to expgressterms ofp, by using the probability of finding bullish
people amongn (Corcos (1993)):

Po= p-p Y (T;)p’”‘j(l—p)j

JZmeppp
or j<m-(1—ppp)

+ (1-p- > <T;)(1 —p)" Iy ()

j=Zm-pyp
or j<m-(1—ppp)

= Fg,m(p) )

wherep = {pPnb, Pohs Phh, pob}. Thus, the functiorF, ,,, (p) completely characterizes the dynamics of
the proportion of bullish and bearish populations. ~



3 Qualitative analysis of the dynamical properties

3.1 Thelimitm — oo

The law given by E(ﬂ2 is not easy to analyze, and we give inﬂ:'ﬂyfew sample curves, ,,. We see
that asm gets larger, the curves seem to tend to a limiting curve. gJgiis observation, our conceptual
understanding of the dynamics can be drastically simplifiee consider the problem for a large number
m of polled partners. Indeed, it is most convenient to firstigtihe unrealistic problemn = oo and to
view the largen case as a perturbation of this limiting case. The main ingradh the study of the case
m = oo is the Law of Large Numbers, which we use in a form given indfgl1966):

Lemma. Let g be a continuous function df, 1]. Then, fors € [0, 1],

n%iinm; @) s(1=)" - g(j/m) = g(s) - ®)

We apply this lemma to the (piecewise continuous) funcgor: f,, where f; is the indicator
function of the set defining’:

_J 1, ifx>ppporz <1—pun,
In = {O, otherwise . (4)
Similarly, we define
_J1, ifx>pporz <1— ppp,
To { 0, otherwise. (5)

It is now easy to check that the lemma implies

Jim Fym(p) = p—p-fu(l=p)+ (1 =p)- filp) = Golp) . (6)
Note again that we do not considgy,(p) itself as an evolution law for the population of bullish atgen
but G, can serve very well as an approximation for the true l&ys, for largem. In Fig. ﬂ we show
how the functions, ,,, converge ta3,,. -

3.2 Classification of the different regimes

In the preceding section, we have shown how to gain a queéitainderstanding of the mags, .,
whenm is large. We can now apply in a rather straightforward waygtieeral theory of 1-dimensional
discrete time dynamical systems (geg, Collet-Eckmann (1980)) to the functiohy ,,,. The recurrence
ps — peo1 can exhibit several typical behaviors which, for largedepend essentially only on the set
of parameterg. We enumerate a few of them and refer the reader to Eigs. E.ahnltBis section, we
restrict our attention to the symmetric casg = py, andpn, = pib.

1.The most trivial case is the appearance of a stable fixed.pbhis will occur when the buy-and-
hold indexpr, — 1/2 is not too large and the reversal index- py, is not too small. For example, this
occurs forppn, = ppy = 0.75, pry = ppr, = 0.72, andm = 60. Then, the population will equilibrate,
and convergetp = 1 — ¢ = 0.68, or top = 0.32 (see upper panel of figuﬂa 3).

2. The next more interesting case is the appearance of ecliwli (of period 2): at successive times,
the population of bullish and bearish agents will oscillagdween two different values. This happens,
e.g, for pnr = ppy = 0.76, with the other parameters as before (see second panel cému

3. But for certain values of the parametezsy, pn;, = ppy = 0.85, the sequence of values pf
is achaoticsequence, with positive Liapunov exponent (cf. EckmaneHe(1985)). The mechanism
for this is really a combination of sufficiently strong bugekhold indexpy,;, — 1/2 and of sufficiently
weak reversal index — pyj. This regime thus occurs when the opinion of a trader ha®agimemory
of her past positions and changes it only when a strong ntyjappears. This regime also requires
a weak belief of the agent in fundamental valuation, as shiebeifieve until very late that a strong
bullish or bearish speculative trend is sustainable. Fomedeally, it is thisself-referentialbbehavior of
the anticipationglonewhich is responsible for a deterministic, but seeminglaterevolution of the



population of bullish and bearish agents. No external nisiseeded to make this happen, and in general,
we view external stimuli as acting on top of the intrinsic maagism which we exhibit here (Eckmann
(1981)). Note that the set of parameter valpésr which chaos is expected (say, near the values used at
the bottom of Fig[]3) has positive Lebesgue measure.

We next consider in more detail the time evolutiorppfor the parameter values of the last frame of
Fig. B which are typical for the abundant set of “chaoticfgraeter values, and we will show how the
time evolution exhibits “speculative bubbles.” This pheremon is akin to the notion of intermittency
(of “Type I") as known to physicists, seeg, Manneville (1991) for an exposition. Indeed, we can
distinguish two distinct behaviors in the last frame of F@.which occur repeatedly with more or
less pronounced separation. The first process is the “larpimase,” which is seen to occur when the
populationp; is near 0.5. Then, the evolution of the population is slowg #re population grows
slowly away from 0.5, either monotonically or through aniliation of period 2, depending op. This
motion is slower when the inspected sample sizg is larger, reflecting a more stable evolution for
less independent agents. When the distance from 0.5 is, largaic behavior sets in, which persists
until the population reaches again a value of about 0.5, ahwboint the whole scenario repeats. The
determinism of the model is reflected by “equal causes leadital effects,” while its chaotic nature is
reflected by the erratic length of the laminar periods, as agebf the bubbles of wild behavior.

Having analyzed qualitatively the evolution of the numbgbullish agents, we next describe how
the pricerm; 1, of an asset at time+ 1 is related to the proportiop. of bullish agents. One can argue
(Corcos (1993), Bouchaud and Cont (1998), Farmer (1998j)tte price change;,; — = from one
period to the next is aonotondunction of p, (and, perhaps, of;). This function is positive when
p: > 1/2 and negative whep, < 1/2. If the reaction to a change jn is reflected in the prices in the
next period, then a bubble j» will lead to a speculative bubble in the prices in the nextqeerThus,
our model predicts the occurrence of bubbles from the benafithe agents alone. Furthermore, for
quite general laws of the form

Tep1 = H(me,pe) (7)

a simple application of the chain rule of differentiatioadis to the observation that the variablehas
the same Liapunov exponentgs In fact, this will be the case # < 9.H < Aandd,H > ¢ > 0,
where) is the Liapunov exponent fox, as follows fromyn;1 = 0. H - dm + 0, H - dp,. This condition
is, in particular, satisfied for a law of the form., = m + G(p:), whereG is strictly monotone. Thus,
chaotic behavior of bullish agents leads to chaotic bemafiprices.

In the sequel, we shall take the simplest form of a log-déffexe of the price linearly proportional to
the order unbalance (Farmer (1998)), leading to

Inmp —Inmgr = rg1 =v(pe— 3) (8)

showing that the return, calculated over one period is proportional to the imbalance % Thus, the
properties of the return time series can be derived diréaily those ofp, as we document below.

To summarize this qualitative analysis of the case of anitefimumberN of agents, we observe a
time evolution which, while satisfying certain criteriai@domness (such as possessing an absolutely
continuous invariant measure and exhibiting a positivepuiv exponent—cf. Eckmann-Ruelle (1985))
at the same time exhibits some regularities on short timescsince it is deterministic. Our model thus
establishes that straightforward fundamental conditimay suffice to generate chaotic stock market
behavior, depending on the parameter values. If the madfass present market price on the basis
of expectations and mimicry—self-referred behavior—tbleaotic evolution of the population will also
imply chaotic evolution of prices.



4 Quantitative analysis of the speculative bubbles withintie chaotic
regime in the symmetric case

For an infinite numbelN of agents and in the symmetric casg = pyr, = p1 andpnn, = ppy = p2, let
us rewrite the dynamical evolutioﬁ (2) of the system as

pP=p —pio (T;)p’”_j(l -p)f (%) +(1 —p)i (?)(1 —p)" P f (%) .

=0
where .
[ Life>piorz<1l—po
flz)= { 0, otherwise (10)
Let us define .
_ M\ m—j ie(d
gm(p) = Z( .)p (L=p)f (—) ; (11)
j=o \J m
which yields
P =Fn)=p—p gn)+1-p) gn(l—p). (12)

This expressior[(]2) generaliz§ (6) to arbitrary

As was described in the previous section, this system caibieghaotic behavior for certain values
of the parameters. An example is givenin figl]re 4 which showe@time series, showing many positive
bubbles and negative bubbles interrupted by chaotic asmilf phases. For the time being, we do not
worry about the existence of the negative bubbles, whichaaedy if ever observed in real markets: this
is an artifact of the symmetmy;,, = pur, = p1 andppn, = pry = p2, that we shall relax later. Keeping
the symmetry assumption simplified the theoretical analysihout changing the key results obtained
below.

Let us consider the first bubble developing in the time iraeflom¢ = 35 to ¢ = 546 as seen in
figure[$—a). Figur«ﬂS—b plots the logarithmp@f- 1/2 as a function of linear time: the linear trend from
t = 35tot ~ 480 seen in the lower panel qualifies an exponential grgwth1/2 oc et (with k > 0)
followed by a super-exponential growth accelerating sohmagto give the impression of reaching a
singularity in finite-time.

To understand this phenomenon, we plot the logarithifi,ofp) — p versus the logarithm of — 1/2
in figureﬂi for three different values af = 30, 60 and100. Two regimes can be observed.

1. For smallp — 1/2, the slope ofog,,(F,.(p) — p) versudog,,(p — 1/2)is 1, i.e,

P =p=Fnp) —p~alm) <p—%> - (13)

This expressior[(]3) explains the exponential growth ateskat early times in figurf 5.

2. For largemp — 1/2, the slope ofog,(F.(p) — p) versuslog,,(p — 1/2) increases aboveand
stabilizes to a valug(m) before decreasing again due to the reinjection producelddydntrarian
mechanism. The interval in — 1/2 in which the slope is approximately stabilized at the value
wu(m) enables us to write

1

w(m)
Fn(p) —p = B(m) <p— 5) , withp > 1. (14)

These two regimes can be summarized in the following phenotogical expression faF;,, (p):

p(m)
Fulp) = 5+ (=200 -g/2) (p-5) 450 (-3) . 49)

1
2
1
2

+ (p — %) + a(m) (p — %) + B(m) (p — %)H(m) with p > 1, (16)



and
a(m) = —2¢,(1/2) - g,,(1/2) . a7

This expression can be obtained as an approximation of #het expansion derived in the Appendix.
In order to check the hypothesl6), we numerically sdaheefollowing problem

Bty -5 -0+l (-3) -5 (p-3)

which amounts to constructing the best approximation oktteect mapF;,, (p) in terms of an effective
power law acceleration (seE[ZO) below). The results obthfarm = 60 interacting agents ang,, =
pur = 0.72 andppy, = ppy = 0.85 are given in tablﬂl and shown in figLﬂe 7. The numerical vabfies
are in good agreement with the theoretical predictiofvi) = F, (1/2)—1 which yieldsa(m) ~ 0.011
in the present case{ = 60, pny = ppr, = 0.72 andprn = pp, = 0.85). As a first approximation, we can
consider that the exponentis fixed over the interval of interest, which is reasonableoading to the
very good quality of the fits shown in figuﬂa 7. We can conclugenfthis numerical investigation that
u(m) € [3,4]. A finer analysis shows however that the exponeit in fact not perfectly constant but
shifts slowly from abous8 to 4 asp increases. This should be expected as the fundiig(p) contains
many higher-order terms. We can also note that the parameter (ﬁ/a)’l/“, which defines the
typical scale of the crossover remains constant and equal te 0.70 for all the fits (except for the
largest intervap — 1/2 < 0.2, for which p. = 0.8). In sum, the procedurE{lB) and its results show
that the effective power law representati@ (16) is a coyas-phenomenon: it is not dominated by the
“critical” value pp;, = ppr, Of the jump of the map obtained in the limit of large

Introducing the notatiom = p — 1/2, the dynamics associated with the effective (16) can be
rewritten

2
; (18)

min
{a,8,1}

¢ —e=a(m)e+ B(m)e" ™), (19)
which, in the continuous time limit, yields
dE (m)
prie a(m)e + B(m)e™ . (20)
Thus, for smalk, we obtain an exponential growth rate

€ ~ et (22)

)

while for large enough
€r ~ (te —t)" ®WI-T | (22)

For example, forn = 60 with pp, = ppr, = 0.72 andpp, = ppy, = 0.85, we can check on figur|§ 6
thatu(m) = 3, which yields for large:

1 1

L

(23)

The prediction[(28) implies that plotting, — 1/2)~2 as a function of should be a straight line in
this regime. This non-parametric test is checked in figlire Sive successive bubbles. This provides
a confirmation of the effective power law representatfof (fdéhe map. The fact that it is the lowest

Optimization Domain| « I} 1
0<p—1<005 [0.011 11.67 3.27
0<p—41<010 | 0013 43.66 3.77
0<p-—1<015 | 0014 6032 3.91
0<p—1<020 | 0004 3064 3.54

Table 1: Optimized parametets  andy for several optimization interval with m=60 interactingeags
andpp, = ppr, = 0.72 andpp, = pp = 0.85



estimaten, ~ 3 shown in table[|1 which dominates in figLI]e 8 results simplyrftbe fact that it is the
longest transient corresponding to the regime wheeeclosest to the unstable fixed point2. This is
visualized in figure[|8 by the horizontal dashed lines indigathe levely — 1/2 = 0.05,0.01 and0.2.
This demonstrates that most of the visited values are ctofeetunstable fixed point, which determines
the effective value of the nonlinear exponart 3.

With the price dynamics[[8), the predictiom(22) impliestthi@e returns; should increase in an
accelerating super-exponential fashion at the end of albulgading to a price trajectory

pn(m)—2

= e — C(t, — t)rm=1 | (24)

wherer, is the culminating price of the bubble reached at ¢t. whenu(m) > 2, such the finite-time
singularity inr; gives rise only to an infinite slope of the price trajector)heTbehavior|Q4) with an
exponent) < % < 1 has been documented in many bubbles (Sorretttd. (1996), Johansen
et al. (1999, 2000), Johansen and Sornette (1999, 2000), Soarattdohansen (2001), Sornette and
Andersen (2001), Sornette (2001)). The case= 60 with py, = ppr, = 0.72 andpp, = ppy = 0.85
shown in figure[b leads t% = 1/2, which is in reasonable agreement with previously reported
values.

Interpreted within the present model, the exporﬁ%ﬁﬁ%ﬁ of the price singularity gives an estimation
of the “connectivity” numbern through the dependence afon m documented in figurE| 6. Such a
relationship has already been argued by Johaeseth, (2000) at a phenomenological level using a
mean-field equation in which the exponent is directly relatethe number of connections to a given
agent.

5 Statistical properties of price returns in the symmetric @ase

Using the price dynamicﬂ(8), the distributionyof 1/2 is the same as the distribution of returns, which
is the first statistical property analyzed in econometricki@€ampbellet al. (1997), Lo and MacKinlay
(1999), Lux (1996), Pagan (1996), Plerou et al (1999), Liadterand Sornette (1998)). Note that the
distribution ofp — 1/2 is nothing but the invariant measure of the chaotic migp) which can be shown
to be continuous with respect to the Lebesgue measure (Eokarad Ruelle (1985)). Figuﬂa 9 shows
the cumulative distribution of; « p; — 1/2. Notice the two breaks &b — 1/2| = 0.28, which are due to
the existence of weakly unstable periodic orbits corredpanto a transient oscillation between bullish
and bearish states.

Figur plots in double logarithmic scales the survivsiribution ofr; « p, —1/2 form = 30, 60
and100. Form = 60, we can observe an approximate power law tail but the exgasmemaller thari in
contradiction with the empirical evidence which suggestslaf the survival probability with exponents
3 — 5. In the other cases, we cannot conclude on the existencemfiarpaw regime, but it is obvious
that the tail behavior of the distribution function dependshe numbem of polled agents.

Figure shows the behavior of the autocorrelation fumcfar m = 60 andm = 100, with
the same values of the other parametgfis= pp;, = 0.72 andpp, = pp, = 0.85. Form = 100, the
presence of the weakly unstable orbits is felt much strongach is reflected in 1) a very strong periodic
component of the correlation function and 2) its slow de@&en form = 60, the correlation function
does not decay fast enough compared to the typical duratispezulative bubbles to be in quantitative
agreement with empirical data. This anomalously largeetation of the returns is obviously related to
the deterministic dynamics of the returns. We thus expettitttluding stochastic noise due to a finite
numberN of agents (see below) and adding external noise due to “neilisivhiten r; significantly.

Figur compares the correlation function for the rettime series; « p;—1/2 and the volatility
time series defined ds;|. The volatility is an important measure of risks and thuyplan important
role in portfolio managements and option pricing and hegightote that taking the absolute value of the
return removes the one source of irregularity stemming fiteerchange of sign of, « p; —1/2to focus
on the local amplitudes. We observe in fig 12 a signifigdatiger correlation time for the volatility.
Moreover, the correlation function of the volatility firsedays exponentially and then as a power law.
This behavior has previously been documented in many ecetimmvorks (Dinget al. (1993), Ding
and Granger (1996), Millest al. (1997), Dacorognat al. (1998), Arneodcet al. (1998), Ballocchiet
al. (1999), Muzyet al. (2001)).



6 Asymmetric cases

We have seen that the symmetric cagse = ppr, andpnr, = pwy IS plagued by the weakly unstable
periodic orbits which put a strong and unrealistic imprinttbe statistical properties of the return time
series. It is natural to argue that breaking the symmetrydestroy the strength of these periodic orbits.

From a behavioral point of view, it is also quite clear that #ttitude of an investor is not symmetric.
One can expect a priori a stronger bullish buy-and-holdneg — 1/2 than bearish buy-and-hold
index ppp, — 1/2: one is a priori more prone to hold a position in a bullish nearthan in a bearish
one. Similarly, we expect a smaller bullish reversal index p,, than bearish reversal indéx— pyy:
speculative bubbles are rarely seen on downward trendsigsntich more common that increasing
prices are favorably perceived and can be sustained mugeiarithout reference to the fundamental
price.

Such an asymmetry has been clearly demonstrated empjricdhie difference between the rate of
occurrence and size of extreme drawdowns compared to deawwvgbock market time series (Johansen
and Sornette (2001)). Drawdowns (drawups) are defined asuthelative losses (gains) from the last
local maximum (minimum) to the next local minimum (maximurDrawdowns and drawups are very
interesting because they offer a more natural measure bin@et risks than the variance, the value-
at-risk or other measures based on fixed time scale digtimiof returns. For the major stock market
indices, there are very large drawdowns which are “outlietsile drawups do not exhibit such drastic
change of regime. For major companies, drawups of amplitarder than15% occur at a rate about
twice as large as the rate of drawdowns, but with lower albs@mplitude.

Figur compares the dynamics for the symmetric systepefymanel (a)) and for the asymmetric
system (lower panel (b)). Itis clear that, as expected, timeltrer of periodic orbits decreases significantly
in the asymmetric system. However, there are still an uistgahumber of negative bubbles. It is not
possible to increase the asymmetry sufficiently strongtheit exiting from the chaotic regime. This
unrealistic feature is thus an intrinsic property and latidn of the present model. We shall indicate in
the conclusion possible extensions and remedies.

Figure compares the cumulative distributiongpof 1/2 for m = 60 for the symmetric and
asymmetric cases. The strong effect of the weakly unstasledtic orbits observed in the periodic case
has disappeared. In addition, the tail of the distributienays faster in the asymmetric case, in better
(but still not very good) agreement with empirical data.

Figure shows the correlation function of the returns feymmetric and an asymmetric case. In
the asymmetric case, there is no trace of oscillations leudléitay is slightly slower.

7 Finite size effects

Until now, our analysis has focused on the limit of an infinitemberN — oo of agents, in which
each agent polls randomiy agents amongv. In this limit, we have shown that, for a large domain
in the parameter space, the dynamics of the returns is chaithi interesting and qualitatively realistic
properties.

7.1 Finite-size effects in other models

We now investigate finite-size effects resulting from a émtumberNV of interacting agents trading on
the stock market. This issue of the role of the number of aglas recently been investigated vigor-
ously with surprising results. First, Egentgral., (1999) studied théV-dependence of the dynamical
properties of price time series of the Kim-Markowitz (198®)d of the Lux-Marchesi (1999) models.
They found that, if this numbeN goes to infinity, nearly periodic oscillations occur and shatistical
properties of the price time series become completely listiea Stauffer (1999) reviewed this work
and others such as the Levy-Levy-Solomon (1995, 2000) moeelistically looking price fluctuations
are obtained foV ~ 102, but for NV ~ 106 the prices vary smoothly in a nearly periodic and thus unre-
alistic way. The model proposed by Farmer (1998) suffemnftioe same problem: with a few hundred
investors, most investors are fundamentalists during ¢eimas, but bursts of high volatility coincide
with large fractions of noise traders. Whahbecomes much larger, the fraction of noise traders goes to
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zero in contradiction to reality. On a somewhat differestiss, Huang and Solomon (2001) have stud-
ied finite-size effects in dynamical systems of price evotutvith multiplicative noise. They find that
the exponent of the Pareto law obtained in stochastic nligkijive market models is crucially affected
by a finite N and may cause in the absence of an appropriate social palimnge wealth inequality
and market instability. Another model (apart from ours) vehthe market may stay realistic even for
N — oo seems to be the Cont-Bouchaud percolation model (2001).eienythis only occurs for an
unrealistic tuning of the percolation concentration tocitgical value. Thus, in most cases, the limit
N — oo leads to a behavior of the simulated markets which becomies gmooth or periodic and thus
predictable, in contrast to real markets. Our model whichaias (deterministically) chaotic is thus a
significant improvement upon this behavior. We trace thigrisnement on the highly nonlinear behav-
ior resulting from the interplay between the imitative amshitarian behavior. It has thus been argued
(Stauffer (1999)) that, if these previous models are goadigtions of markets, then real markets with
their strong random fluctuations are dominated by a rathetdd number of large players: this amounts
to assume that the hundred most important investors ortimegg companies have much more influence
than the millions of less wealthy private investors.

There is another class of models, the minority games (Ctealieé Zhang (1997)), in which the dy-
namics remains complex even in the lint — co. It has been established that the fluctuations of
the sum of the aggregate demand have an approximate scatmgimilar sized fluctuations (volatil-
ity/standard deviation) for anyv andm for the scale scaled variab®* /N, wherem is the memory
length (Challetet al. (2000)). In a generalization, the so-called Grand Candmiession of the Mi-
nority Game (Jefferiest al. (2001)), where the agents have a confidence threshold tbagmis them
from playing if their strategies have not been successfat the lastl” turns, the dynamics can depend
more sensitively oV: as N becomes small, the dynamics can become quite differenfafge N, the
complexity remains.

The difference between the lim — oo considered up to now in this paper and the case of filite
is thatp, is no more the fraction of bullish agents. For fini¥e p, must be interpreted as the probability
for an agent to be bullish. Of course, in the limit of larye the law of large numbers ensures that the
fraction of bullish agents becomes equal to the probaliityan agent to be bullish. There are several
ways to implement a finite-size effect. We here discuss drdytwo simplest ones.

7.2 Finite external sampling of an infinite system

Consider a system with an infinite number of agents for whietfitactionp, of bullish agents is governed
by the deterministic dynamicﬂ (2). At each time stepet us sample a finite numbé¥ of them to
determine the fraction of bullish agents. We get a numhewhich is in general close but not exactly
equal toNp, due to statistical fluctuations. The probability to findullish agents amongy agents is
indeed given by the binomial law

Pr(n) = (jr\[)p”(l -p)N " (25)

This shows that the observed proportjpa: n/N of bullish agents is asymptotically normal with mean
and standard deviatiaty \/p(1 — p)N : Pr(p) ~ N(p,1/+/p(1 — p)N). Iterating the sampling among
N agents at each time step gives a noisy dynapichadowing the true deterministic one.

Figure compares the dynamics of the determinjsticorresponding tav — oo (panel (a)) with
p: for a numberN = m + 1 = 61 of sampled agents among the infinite ensemble of them (pbjel (
Panel (c) is the “noise” time series definedbas- p;, i.e, by subtracting the time series of panel (a) from
the time series of panel (b). The noise time series of paf¢h(s represents the statistical fluctuations
due to the finite sampling of agents’opinions. Fig 16-tmshthe characteristic volatility clusters
which is one of the most important stylized properties of &ioal time series.

For largeN, we can write

1
Pt = pt + ———onuW, (26)
(1 —p)N

where {1V} are iid gaussian variables with zero mean and unit variadd¢erefore, the correlation
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function Corry (7) at lagr # 0 is obtained from that foNV — oo by multiplication by a constant factor:

NVar(p)
Corry (T) B/ {0 — )] + NVar(p) x COrrso(7) andr # 0, (27)
~ Corr(r) forlargeN , (28)

whereE[z] denotes the expectation efwith respect to the continuous invariant measure of the ayna
cal system|(2). Note thdt[1/{p(1 — p)}] always exists fofrn < oo since the support of the continuous
measure of|(2) with respect to Lebesgue measure is bounatadielow by a value strictly larger than
and from above by a value strictly less thhrFigur shows that the correlation functiorppfs very
close to that of the deterministic trajectqry

To quantify further the impact of the statistical noise steéng from the finite size of the market,
figures[1B andl 19 show the return mapsigfi.e, .11 as a function of;, for m = 60 polled agents
among a total numbe¥ = 61 of agents (fid 78) andv = 600 (fig [L9).

Figure shows the price trajectory obtainedipy= 7,1 exp|r:] in linear and logarithmic scale.
The super-exponential acceleration of the price giving tissharp peaks in the semi-logarithmic repre-
sentation (Roehner and Sornette (1998)) is clearly visible

7.3 Finite number N of agents

We now introduce a genuine finite stock market wifragents. We assume that the agents do not know
the exact numbeN of agents in the market (this is realistic) and they are inactrwith onlym other
agents that they poll at each time period. Not knowing the walue of N but assuming it to be large,

it is rational for them to develop the best predictor of th@alyics by assuming the ideal case of an
infinite number of agents with polled agents and thus use the deterministic dynarﬂics (Redrsbest
predictor.

At each time period, each agent thus chooses randomlyagents that she polls. She then counts
the number of bullish and bearish agents among her polleglsasfrm agents. This number divided by
m gives her an estimatiofy of the probabilityp, be to bullish at time. Introducing this estimation in
the deterministic equatioﬂ(Z), the agent obtains a fotgad the true probability’ to be bullish at the
next time step.

Results of the simulations of this model are shown in fi.e\/ﬂe observe a significantly stronger
“noise” compared to the previous section, which is expesiade the noise is itself injected in the
dynamical equation at each time step. As a consequencepthaation function of the returns and
of the volatility decay faster than their deterministic nterpart. The correlation of the volatility still
decays about ten times slower than the correlation of thenst but this clustering of volatility is not
sufficiently strong compared to empirical facts.

Other more realistic models of a finite number of agents caintbeduced. For instance, at time
consider an agent among thé She chooses: other agents randomly and polls them. Each of them is
either bullish or bearish as a result of decisions takemduhie previous time period. She then counts the
number of bullish agents among the and then determines her new attitude using the rﬁles (&hefs
polled at timet + 1 by another agent, her attitude will be the one determined frto ¢ + 1. In this way,
we never refer to the deterministic dynamigsbut only to its underlying rules. As a consequence, this
deterministic dynamics does not exert an attraction thaimzes the effect of statistical fluctuations
due to finite sizes. This approach is similar to going from &keo-Planck equation (equatioﬂ (2)toa
Langevin equation with finite-size effects. This class ofdels will be investigated elsewhere.

8 Conclusions

The traditional concept of stock market dynamics envisasseam of stochastic “news” that may move
prices in random directions. This paper, in contrast, destrates that certain types of deterministic
behavior—mimicry and contradictory behavior alone—canady lead to chaotic prices.

If the market prices are assumed to follow fhebehavior, our description refers to the well-known
evolution of the speculative bubbles. Such apparent rejgkaoften occur in the stock market and form
the basis of the so-called “technical analysis” wherebgedra attempt to predict future price movements
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by extrapolating certain patterns from recent historicgadgs. Our model provides an explanation of
birth, life and death of the speculative bubbles in this emtt

While the traditional theory of rational anticipations éils and emphasizes self-reinforcing mech-
anisms, without either predicting their inception nor thegillapse, the strength of our model is to justify
the occurrence of speculative bubbles. It allows for thellapse by taking into account the combination
of mimetic and antagonistic behavior in the formation of@xations about prices.

The specific feature of the model is to combine these two K&gneaspects of speculation and
enterprise and to derive from them behavioral rules basewibective opinion: the agents can adopt an
imitative and gregarious behavior, or, on the contraryicgrdte a reversal of tendency, thereby detaching
themselves from the current trend. It is this duality, thattauous coexistence of these two elements,
which is at the origin of the properties of our model: chabthavior and the generation of bubbles.

Itis a common wisdom that deterministic chaos leads to foretgal limits of predictability because
the tiny inevitable fluctuations in those chaotic systemiskdy snowball in unpredictable ways. This
has been investigated in relation with for instance lomgyteeather patterns. However, in the context of
our models, we have shown that the chaotic dynamics of thiengtlone cannot be the limiting factor
for predictability, as it contains too much residual caatielns. Endogenous fluctuations due to finite-
size effects and external news (noise) seem to be neededbastamt factors leading to the observed
randomness of stock market prices. The relation betweese tbetrinsic factors and the intrinsic ones
studied in this paper will be explored elsewhere.
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three of us (AC, JPE, AM) which was in turn based on the Ph.[Brwfe Corcos. We are grateful to J.V.
Andersen for useful discussions. This work was partiallymuted by the Fonds National Suisse (JPE
and AM) and by the James S. Mc Donnell Foundation 21st cersgitigntist award/studying complex
system (DS).
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Appendix

We expand,, (p) around the fixed poing = 1/2, so that, using the symmetry %, (p)

1 1 1\*
Fulp) = 5+ 1/ (p= 5 )+ OG- (p-3) +-
First of all, it is obvious to show by recursion that

FlL(1/2) = 1-2g.(1/2) =g, (1/2)
FEMD(1/2) = =202k + 1)g3¥(1/2) — g2 1 (1/2) if k> 0.

The problem thus amounts to calculating the derivatives,pf
Some simple algebraic manipulations allow to obtain

o = (T (2) (21

J

m—1
—m (mj_ 1)pm1-j<1 — Y D),
§=0

whereA; f,,,(-) is the first order discrete derivative ﬁf(z), which yields
(D) = S (o)
Im\3) = Tgm-1 j LmAJ) -
By recursion, it is easy to prove that
1 (=1)F m! L m—k ,
(k) (Z) = A=/ 7%

andAy f,,(+) is thek' order discrete derivative of (= ):

m

k

_ k (it
k J ;(2) ( m >
Finally,
m 1 "E m—2k—1 .
R = [2k+1 ; ( j )A%“f’”(j )
m2E ok .
—(2k +1) ; ( ; )AQkfm(J)] :
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Figure 2: Four curves), ,,,, for m = 60 andpp, = ppr, = 0.72, with pp, = p, = 0.75,0.76,0.77, 0.85.
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Figure 4: Evolution of the system ov&0000 time steps forN = oo, m = 60 polled agents and the
parametergy, = ppn, = 0.72 andppy, = ppp = 0.85.
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Figure 5: The first bubble of figurg 4 faV = oo agents withm = 60 polled agents and parameters
pry = por = 0.72 andppp, = ppp = 0.85.
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Figure 6: The logarithm of,,(p) — p versus the logarithm op — 1/2 for three different values of
m = 30,60 and100, with pp, = ppr, = 0.72 andpy;, = pry, = 0.85. Note the transition from a slopeto a

large effective slope before the reinjection due to therewisn mechanism.
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Figure 7: Approximation of the functiof,, (p) — % by the functionf (p) = [1 + «] (p + %) +05 (p + %)M
over differentp-intervals, form = 60 interacting agents and parametggs = ppr, = 0.72 andpp, = ppy =

0.85.
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Figure 8: m versust to qualify the finite time singularity predicted b {23) for = 60 with
ory = pon = 0.72 andpnn, = pry = 0.85. The points are obtained from the time sepgsnd the straight
continuous lines are the best linear fits. The horizontahe@dines indicate the leveis— 1/2 = 0.05,0.01
and0.2 to demonstrate that most of the visited values are closeetariktable fixed point, which determines
the effective value of the nonlinear exponemnt: 3.
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Prh = pop = 0.85.

28



Survival Distribution

10° T T
—_— m=30
' | = m=60
| | === m=100
2
E
©
Ko}
e
o
10_1—5 ‘ — HH‘—4 H0
10 10 10

1/2-p

Figure 10: Survival distribution fom = 30,60 and 100 polled agents and parametens, = ppn, = 0.72
andppy, = ppp, = 0.85

s m:‘BU . ‘ m:‘100

0.8 0.8
: :

0.2 0.2
c 0.5 | | | | | | | | | — - 0_5 | ‘ | | | | | -
é I/ — ;5 0 Hm'm“m“H“““mmm“““HHHXHHHmnnnnnl#,(,‘,‘,‘,‘,‘,‘,‘ AAAAAAAAAAAAAAAAAAAAAAA |
S
< _osf 7 <*0-5

710 2‘0 4‘0 6‘0 8‘0 (irrfllé;[llag 1%0 11‘10 léO 1&‘30 200 710 2‘0 4‘0 6‘0 8‘0 (irrfllé;[llag 1%0 11‘10 léO 1&‘30 200
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m = 100 (right) with the same parametepg, = pp, = 0.72 andpp, = pp» = 0.85.

29



1.2 T T T T

= Return
= Volatility
1 —
Exponential Power law
decay decay
0.8 1
0.6 1
0.4 1
0.2H i
0 AAPNAS V “‘-—--W e
| | L | |

0 50 100 150 200 250 300

Figure 12: Autocorrelation function of the returns and o ttolatility for m = 60 polled agents and the
parametergy, = ppr, = 0.72 andppy, = pp = 0.85.
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Figure 13: Time evolution op; over 10000 time steps forn = 60 polled agents in (a) a symmetric case

pry = pon, = 0.72 andppp, = ppp = 0.85 and (b) an asymmetric cagg, = 0.72, ppr, = 0.74, ppp = 0.85
andpbb = 0.87.
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Figure 15: Correlation function fat, = 60 polled agents and parametens, = ppr, = 0.72 andppy, =
pwy = 0.85 (dashed line) andy,, = 0.72, ppp, = 0.74, ppp, = 0.85 andpy, = 0.87 (continuous line).
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Figure 16: Time evolution op; over 10000 time steps form = 60 polled agents with (a]V = oo, (b)

N =m+ 1 = 61 agents and parametesg, = ppr, = 0.72 andpn, = pry = 0.85. The panel (c) represents
the noise due to the finite size of the system and is obtainetilblyacting the time series in panel (a) from
the time series in panel (b).
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Figure 17: Correlation function for, = 60 polled agents withV = oo (thin line), N = 600 (dashed line)
and N = 61 (continuous line) agents and paramet@ys= pyr, = 0.72 andpp, = ppy, = 0.85.
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Figure 18: Return map of the fraction of bullish agents+#or= 60 polled agents amongy = 61 agents
(points) and the deterministic trajectory (continuoug)inorresponding t& = oo agents. The parameters
arepn, = ppr, = 0.72 andpp, = ppy, = 0.85.
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Figure 19: Return map of the fraction of bullish agentsrfor= 60 polled agents amongy = 600 agents
(points) and the deterministic trajectory (continuoug)inorresponding t& = oo agents. The parameters
arepn, = ppr, = 0.72 andpp, = ppy, = 0.85.
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Figure 20: Upper panel: return trajectaty= vp; — 1/2 for m = 100, N = 100, ppp = ppr, = 0.72 and
prh = pop = 0.85 and~y = 0.01. Middle panel: price trajectory obtained ly = m;—1 exp[r;] . Lower
panel: same as the middle panel withshown in logarithmic scale. Note the “flat trough-sharp peak
structure of the log-price trajectory (Roehner Sorneté9g)).
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Figure 21: Evolution of the system ov&d000 time steps form = 60 polled agents with (upper panel)
N = o0, (second panelN = m + 1 = 61 and parametergy,, = ppr, = 0.72 andpp;, = pp, = 0.85. The
lower panel represents the “noise” introduced by the firite of the system and is obtained by subtracting

the upper panel from the second panel.
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