Hubert Schaetzel 
  
MATRIX ALGORITHM FOR DIOPHANTINE EQUATIONS' ENUMERATION by

Keywords: Diophantine equations, algorithm, enumeration

The purpose of this article is to give a method to compare the number of solutions of the Diophantine equations R(z1, z2, . . . , zn) = c, c being the parameter for which the comparison is made. Matrices with remarkable properties are produced which are the essential contribution of our study. Their usefulness is obvious as they characterize each independent constituent on the left hand side of the Diophantine equations and can therefore be reused in some other equations under specied conditions. The remarkable eciency of the method allows us then to tackle the twin primes' conjecture and Friedlander-Iwaniec theorem's generalization, these choices made among a lot of other practicable options.

Résumé. (Algorithme matriciel pour le dénombrement d'équations diophantines). Le but ici est de donner une méthode pour comparer le nombre de solutions d'équations diophantines du type R(z1, z2, . . . , zn) = c, c étant le paramètre pour lequel la comparaison est faite. Des matrices aux propriétés remarquables sont produites qui sont la contribution essentielle de notre étude. Leur utilité est évidente car elles caractérisent chaque constituant indépendant du membre gauche de ces équations diophantines et peuvent donc être réutilisées dans d'autres équations sous des conditions spéciques. La remarquable ecacité de la méthode nous permet ensuite d'aborder la conjecture des nombres premiers jumeaux et la généralisation du théorème de Friedlander Iwaniec, ces choix étant faits parmi bien d'autres options envisageables.
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1. Introduction hvid rilert9s tenth prolem titled 4yf the possiility of solving hioE phntine eqution4 rised the question in IWHH of the existene of generl lgorithmi method with (nite numer of steps enling to deideD for ny hiophntine equtionD whether this eqution hs integer solutions or notF his my seem very low requirement s it doesn9t sk for their preise vlues nor how mny solutions existF roweverD even for so smll requirementD uri wtiysevih9s theorem 12 nswered to rilert9s question in IWUH y the negtiveD estlishing tht hiophntine setsD whih re the sets of integer soE lutions of hiophntine eqution with prmetersD re extly ll reursively enumerle setsD whih mens tht suh n lgorithm nnot existF o whtc hould we e disourged for even 4yes or no4 question nnot e nsweredc ill we lwys hve to restrt n exerise when going from one eqution to notherc ho only spei(lly dpted methods or use of rute fore hve ny hne of eing useful in this mthemtil dominc yf ourse notF xothing indites tht there re not lrge domins where similr pprohes n led to proli( resultsF o wht out eting some of the odds herec yur fous will e on deomposing hiophntine equtions in independent piees for whih we n (nd enumertive properties reusle in other hiophntine equtions where ny one of these piees oursF 2. Frameworking e hiophntine eqution is polynomil eqution with one or more unE knowns nd integer oe0ientsF vet us hve suh n equtionX R(z 1 , z 2 , . . . , z n ) = 0 @IA sn order to solve itD let us write supposedly 4equivlent4 expression R(z 1 , z 2 , . . . , z n ) ≡ 0 mod m where m -→ +∞ @PA st is indeed pproprite if ijetion emerges etween the set of solutions (z 1 , z 2 , . . . , z n ) of the eqution nd the set (z 1 mod m, z 2 mod m, . . . , z n mod m) s m is given higher vluesF vet us oserve tht there is surjetion from the (rst set to the seond set nd the requirement for ijetion is the followingX E the eqution hs (nite numer of solutions (z 1 D z 2 D . . . D z n )D E the prmeter m is given su0ient high vlueD E the domin of de(nition of eh z i is ] -m, m]D E if z i is solution then z i -mD nor z i + m is oneF he lst ondition is met most of the time if the initil eqution is not linerF ytherwise reduing the domin of de(nition of z i to the pproprite hoie of [0, m[ or ] -m, 0] will do the joF ueeping the previous remrks in mindD we n refous our ttention towrds equtions with n in(nite numer of solutionsF yf ourseD the serh of the whole set of solutions is nonsense thenF es m tends towrds in(nityD the symptoti ehviour of the growth of the numer of solutions is the new trgetF et this stgeD we must e le to write m -→ +∞ in more prtil wyF vet us strt withX

m = 2 i 2 • 3 i 3 . . . p ip k k . . . p ip r r , @QA
where p k will eventully desrie ll prime numers nd i p k will e givenD unsurprisingly for the rederD higher nd higher vlues @supposedly up to +∞AF he solutions to the eqution R(z 1 , z 2 , . . . , z n ) ≡ 0 mod 2 i 2 • 3 i 3 . . . p ip k k . . . p ip r r will however still e out of reh unless there is some wy to get them k from the omposite equtionsX

R(z 1 , z 2 , . . . , z n ) ≡ 0 mod p ip k k @RA
o e firD even this lst eqution my seem to e unsolvle when i p k -→ +∞F e will nevertheless ome up with step y step method onsisting on going up the previous pth solving for the numer of solutions ofX

R(z i ) ≡ 0 mod p k ↓ R(z i ) ≡ 0 mod p ip k k ↓ R(z 1 , z 2 , . . . , z n ) ≡ 0 mod p ip k k ↓ R(z 1 , z 2 , . . . , z n ) ≡ 0 mod 2 i 2 • 3 i 3 . . . p ip k k . . . p ip r r ↓ R(z 1 , z 2 , . . . , z n ) ≡ 0 mod + ∞ ↓ R(z 1 , z 2 , . . . , z n ) = 0
his will e done y repling (rst R(z 1 , z 2 , . . . , z n ) = 0 y R(z 1 , z 2 , . . . , z n ) = c nd solving for ll c9s in the sme timeF fut prior to thtD we give some indispensle writing onventionsD voulry nd de(nitionsF " Target c X e ll c the trget nd use systemtilly this letterF yne n look upon it s (tive vrile s it simply tkes ll the vlues tken y R(z 1 , z 2 , . . . , z n ) mod 2 i 2 • 3 i 3 . . . p ip k k . . . p ip r r when z 1 , z 2 , . . . , z n deE sried eh of their hosen domin of de(nition @N D Z or P A in some menvironmentF " N , Z, P X sul revitions of nturl numersD integers nd prime numersF " m_environment X he hoie of some (nite ring Z/mZ s the domin of de(nition of z 1 , z 2 , . . . , z n nd R(z 1 , z 2 , . . . , z n )F he stndrd modulo m opertion is implemented in this environmentF " #(c) X xumer of ourrenes of some event cF " Variables x i , y i , z i X rile z i in R(z 1 , z 2 , . . . , z n ) represent either N D Z or P ording to the following systemti writing onventionsX

z i =     
x i : N or Zvrile y i : P vrile z i : eny kind of the previous vriles " Independent constituent X sndependent onstituents re polynomils of one or more vriles seprted eh other y sum sign " + " in given hiophntine eqution nd with no ommon vrile on oth side of the signF o illustrteD for R(x, y, z) = x 2 + y 2 -(xy) 2 -z 4 D vrile z is n independent onstituent @oviously -z 4 = +(-z 4 )AD vriles x or y re notD ut the expression x 2 + y 2 -(xy) 2 s whole is n independent onstituentF " Instance X en instne is the hoie of some prime numer p k in m = 2 i 2 3 i 3 . . . p ip k k . . . p ip r r F " Cardinal matrix X e (nite or in(nite rnk mtrix whih eventully proE vides the reltive proportions of solutions over ll the trgets c ompred to trget 0 @or some other trgetAF ome of the de(nitions need more explntion of ourse whih will e tken re progressively undernethF vet us note tht upoming expressions if (eq, a, b) men if eq is true thn a else bF vet us lso note tht whenever we will mention 4solve the eqution4D we will generlly men 4solve for the numer of solutions of the eqution4F 3. Cardinal matrices Theorem 1. Let us have two independent variables u and v and two Diophantine functions f and g. Let us consider the number of events #(u, v) = #i such that f (u) + g(v) = i. Then

#(i) = +∞ j=-∞ #(i -j) • #(j) @SA
where #(j) is the number of events u such that f (u) = j and #(i -j) is the number of events v such that g(v) = i -j.

ProofF " his is trivil s we just umulte the events suh tht f (u)+g(v) = (i -j) + j = iF

Note. he term 4event4 hereD lthough reminisent of itD hs nothing to do with proilitiesF st is relted to n tul nd strightforwrd enumertionF Denition 1. vet us suppose tht i nd j re de(ned in (nite set @like for exmple the menvironment Z/mZAF vet us onsider the mtrix C g (i, j) = [#(i-j)] otined oveF he mtrix C g (i, j) is nmed the irulnt rdinl mtrix of g(v)F

Note. his mtrix provides the ontriution of g(v) to get some (nl event f (u) + g(v) = cF sf one provides the ontriution C f (i ′ , j ′ ) of f (u) then the numer #c of some event c is otined y simple mtrix multipliE tion C f (i ′ , j ′ ) • C g (i, j) nd this proess n e generlized to ny numer of independent vriles or group of vrilesF Theorem 2. The circulant cardinal matrix of an independent constituent, within the quotient ring Z/mZ environment, is a square (m, m) matrix.

ProofF " vet us onsider the mtrix C g (i, j) = [#(i -j)] of some funtion gF sn the hosen menvironmentD the quntities i nd j tke only integers vlues in [0, m -1]F e n then ttriute the result to mtrix C g (r, s) = [#(i -j)] with r = 1 to m nd s = 1 to mF Theorem 3. Circulant cardinal matrices are commutative.

ProofF " he numer of events for f (u) + g(v) = c is the sme s for g(v) + f (u) = cF rene the resultF Theorem 4. Circulant cardinal matrices are (right) circulant matrices.

ProofF " his is immedite s [#(i-j mod m)] = [#((i+r mod m)-(j +r mod m))]F reneD it follows the mtrix9s expressionX

       #0 #(m -1) #(m -2) . . . #1 #1 #0 #(m -1) . . . #2 F F F F F F F F F F F F F F F #(m -2) #(m -3) #(m -4) . . . #(m -1) #(m -1) #(m -2) #(m -3) . . . #0       
es immedite onsequene lsoD irulnt rdinl mtries hve ll the properties of irulnt mtriesF hereforeX Theorem 5. The eigenvectors matrix of the circulant cardinal matrices is an invariant in a given environment m. ProofF " he eigenvetors mtrix U (r, s) r=1 to m, s=1 to m is equl to the m y m squre mtrixX

U (r, s) = 1 √ m [w (r-1)•(s-1) ]
where w = e 2πi m is the mroot of 1F he reder n refer to 1 for exmpleF reneD for given mD the eigenvetors mtrix is totlly de(nedF Note. sn given environmentD the #c vlues of the trgets re otined essentilly y eigenvlues multiplitionsF sndeedD the reiprol of the eigenvetors mtrix is equl to its trnsonjuE gte U * (r, s) @nd its onjugte U (r, s)AX

U -1 (r, s) = U * (r, s) = 1 √ m [w -(r-1)•(s-1) ] = U (r, s)
vet us then hve σ f (r, s) nd σ g (r, s) the digonl mtrix of eigenvlues of the rdinl mtries C f (r, s) nd C g (r, s) of f nd g respetivelyF veving side the (r, s) indexing we getX

C f • C g = U • σ f • U * • U • σ g • U * = U • σ f • σ g • U * F
his generlizes to s mny independent onstituents of the initilly hosen hiophntine eqution s long s the environmentD tht is the squre mtrix rnkD is the smeF Theorem 6. Recalling that w = e 2πi m , the eigenvalues in a m_environment are equal to:

σ j = m-1 k=0 #(m -k) • w (j-1)•k = m-1 k=0 #k • w -(j-1)•k
with j = 1 to m and where #k are the projection's results of the currently studied function. ProofF " his is stndrd result for irulnt mtriesF he reder n refer gin to 1F rere the indexing of the eigenvlues strts with j = 1 nd goes up to j = mF Denition 2. he projetive rdinl imge of R(z 1 , z 2 , . . . , z n ) in the menvironment is de(ned s the set of numers of ourrenes of the vlue cD noted #cD when vriles z 1 , z 2 , . . . , z n desried eh the disrete domin of de(nition [0, m -1]F e projetive rdinl imge is the resulting m vlues of

#c X [#0D #1D . . .D #(m -1)]F Note. feing in menvironmentD #(m + k) = #kF sn prtiulr #m = #0F
Denition 3. he normlized rdinl imge is the frtionl vlues oE tined y multiplying y the sme rtio the previous rdinls of the rdinl imge in order to get n verge vlue over the m elements of the set equl to 1F reneD writing normlized omponents s ##cD we get X

[##0, ##1, . . . , ##(m -1)] = m m-1 i=0 #i [#0, #1, . . . , #(m -1)] @TA
Theorem 7. The rst column of the circulant cardinal matrices C R (i, j) of function R is the projective cardinal image and is therefore equal to the product C R (i, j) by the column vector 

K =      1 0 . . . 0      ProofF " king j = 0 in C R (i, j) = [#(i -j)]D
(R(z 1 , . . . , z n ), m)X 1 m        ##0 ##(m -1) ##(m -2) . . . ##1 ##1 ##0 ##(m -1) . . . ##2 F F F F F F F F F F F F F F F ##(m -2) ##(m -3) ##(m -4) . . . ##(m -1) ##(m -1) ##(m -2) ##(m -3) . . . ##0       
void sn this setionD we hve tken re prtilly of the following step ited eforeX e propose now to oserve wht hppens when we sle up from m = p 

R(z i ) ≡ 0 mod p ip k k ↓ R(z 1 , z 2 , . . . , z n ) ≡ 0 mod p ip k k sn p ip k k D two
ip k k to m = p i p k +1 k D m = p i p k +2 k D m = p i p k +3 k nd so
ip k +r k environmentX ##c = ##(c + p ip k k ) @UA
Note. eording to the R(. . .) design enounteredD one my hve temE porry stility from some r to r + 1 nd then filureF tility nnot e tken for grnted for omplex expressions too rpidlyD ut this is not the se for more stndrd funtions @monomilsD some symmetri expressions like

x 2 1 + a • x 1 • x 2 + x 2 2 A
where there is no suh potentil mishpF 5. Enumeration in a product environment e wnt to tke re of the following step in our overll strtegyX

R(z 1 , z 2 , . . . , z n ) ≡ c mod p ip k k ↓ R(z 1 , z 2 , . . . , z n ) ≡ c mod 2 i 2 • 3 i 3 . . . p ip k k . . . p ip r r
nd therefore we hve to strt with the prolem onsisting in solving the sling of two termsX

{R(z 1 , z 2 , . . . , z n ) ≡ c mod p ip 1 1 } {R(z 1 , z 2 , . . . , z n ) ≡ c mod p ip 2 2 } ↓ R(z 1 , z 2 , . . . , z n ) ≡ c mod p ip 1 1 • p ip 2 2
vet us write respetively the pir of normlized rdinl imges

[##0, ##1, . . . , ##(m 1 -1)]D [##0, ##1, . . . , ##(m 2 -1)] nd esides [##0, ##1, . . . , ##(m -1)] where m 1 = p ip 1 1 D m 2 = p ip 2 2 nd m = p ip 1 1 • p ip 2 2 F
Theorem 8. The relative proportions of events in the product environment are given by the product of normalized events:

##c = ##(c mod m 1 ) • ##(c mod m 2 )
ProofF " he former expression simply express tht the numer of events of @uDvA is the produt of the numer of events u y the numer of events vD whih is stndrd resultF xow wht out solving the 4p k 4 hllengec 6. Condensed cardinal matrices 6.1. General scope. fy nowD the wy to enumerte the numer of soluE tions of some hiophntine eqution R(. . .) = c hs een desried in lmost ll generl spetsF sn shortD it onsistsD for eh instne p i D in mtries multipliE tions in proper environment @where the degree of stility is rehedAD nd the resulting normlized rdinl imgesD then undergo repetitive trnsltions of vlues followed y n in(nite produt over ll the instnes 2D 3D . . .D p i D . . .D +∞F his (nlly gives the proportionl rtio of solutions ##c ##c ref of ny trget c to some hosen referene trget c ref F e strightforwrd use of this generl pproh however would e still quite umersome to del withF sn prtiulrD we mentioned the terms 4eh inE stne4 nd it would e quite ene(il to e le to level up to 4nlogous lsses of instnes4F sn the sme wy 4ny trget4 would e welome to some 4nlogous lsses of trgets4F yther luky simpli(tions my lso depend on the hosen hiophntine equtionF sndeedD for funtions like monomils for exmpleD the normlized rdinl imge [##0D ##1D . . .D ##(m -1)] will ontin multiple identil vlues nd therefore rdinl mtries lsoF sn order to give hint on the vst spetrum of the method9s enhnementsD we will tke here two exmplesF he (rst one will e the olign onjeture nd the seond one the more omplex priendlnderEswnie eqution generlE iztionF his will e done fter disussing the generl monomil seF 6.2. Target permutations and primitive roots. wultiplition of rE dinl mtries give the numer of ourrenes #c of some events cF he results re olleted in the systemti order #0, #1, #2, nd so onF st my e interE estingD s we will see lter onD to hoose di'erent orderF he most e0ient wy to del with this is to use symmetril permuttion mtries @see referene 15AF Property 1. Let us consider J a symmetrical permutation matrix. Then

J 2 = I
where I is the identity matrix. ProofF " he trnspose mtrix of J is the inverse mtrix of J @see properties of permuttion mtries t referene 15AF sf J is symmetrilD the result followsF J 2 = J. t J = IF Property 2. The application of multiplications to the right and the left by the same symmetrical permutation matrix to each of eigenvectors matrix, eigenvalues matrix and inverse eigenvectors matrix of a cardinal matrix provides a permutation of cardinal images as long as the rst component (rst line) is excepted. ProofF " vet us rememer tht the rdinl imge is otined y multiplying the rdinl mtrix y the spei( olumn vetor K @see K shpe in theoE rem UAF vet us then hve C some rdinl mtrixD U nd σ its eigenvetors nd eigenvlues mtriesF st follows C.K = U.σ.U * .K whih is equivlent to J.C.K = (J.U.J).(J.σ.J).(J.U * .J).(J.K) vet us suppose tht J does not swp the (rst omponent of KF hen J.K = K s ll the other omponents of K re equl to 0 nd therefore J.C.K = (J.U.J).(J.σ.J).(J.U * .J).KF he reder my refer to 14 for the de(nition of primitive root modulo some integerF sn prtiulrD ny odd prime p i hs t lest one primitive rootF sn order to lighten nottionsD we will write the prime numer p nd hoosing primitive root of pD we note it systemtilly gF es onsequene there is ijetionD with equl elements in the soure nd the destintion setsD etween {0, 1, 2, • • • , p -1} nd {0, g 0 , g 1 , g 2 , • • • , g p-2 }F his immeditely shows tht the trget 0 will lwys e prtiulr se s it nnot e expressed s power of gF his lter remrk omined with the ove remrk on the neesE sry exlusion of the permuttion of the (rst omponent of K leds us preisely to do soF fut other thn thisD we re free to swp the remining omponents using the desried proedureD if we need soD in order to trnsform the rE dinl imge

{#0, #1, #2, • • • , #(p -1)} to {#0, #g 0 , #g 1 , #g 2 , • • • , #(g p-2 )}
or some other permuttionF ith the spei(ed tehniqueD it is esy to tre preisely the position of the omponents of the eigenvetors nd eigenvlues mtries whih individul vlues don9t hnge in the proessF Note. withing the omponents of mtrix with the sme symmetriE l permuttion mtrix respetively on the right nd on the left is to pply respetively the sme permuttions on the lines nd on the olumnsF Note. efter the permuttionsD the underneth irulnt struture of the originl mtrix is no more visileF he reder n refer to ppendix e for few exmples of lines nd olumns swithingF he hosen se is p = 13D g = 2 nd @#(g 2u mod p) ≡ 2D #(g 2u+1 mod p) ≡ 0AF 6.3. The monomial case. wonomils re typilly esier ojets to hnE dle with thn polynomils in prtil senseF sndeedD the trgets n e gthered in ongruene lsses llowing ondensed mtrix expressionsF oD lE though reduing the glol sopeD these ojets o'er lredy lot of study opportunities nd re very interesting s they provide full literl expressions for enumertionF sn this susetionD we mke distintion of p > 2 nd p = 2D the lter se eing tken re in nother wyF es we lredy mentionedD the trget 0 plys speil role s it nnot e expressed s funtion of g some primitive root of pF wore insight revels esides tht formuls drwn for this se hve usully simpler writing tht those for c ̸ = 0F xeverthelessD it is not spei( se knowledging tht we will ddress it in the sme time s ll the trgetsF elso s previously mentionedD we hve two types of vriles x nd yD nd therefore two monomils to onsider x n nd y n D the (rst one where x tkes integer vlues nd the seond where y ddresses prime numersF he strtegy of resolution remins the smeD seeking rdinl imges nd rdinl mtries of x n nd y n F Theorem 9. The cardinal image of -z 2k+1 is the same as the cardinal matrix of z 2k+1 where z is either a variable of integers or prime numbers and k is a natural number.

ProofF " e hve -z 2k+1 = (-z) 2k+1 F fy hirihlet9s nd gheotrev9s denE sity theorem @see 2AD we hve equiprole events for z nd -zD hene the resultF Theorem 10. Let us have d the greater common divisor of n and p -1 where p is a prime number d = gcd(n, p -1).

The (original) cardinal matrix CX(r, s) of x n in the p_environment is a circulant matrix with rst column image components equal to:

CX(1, 1) = 1 CX(g u.d , 1) = d, u = 0 to (p -1)/d -1 CX(r, 1) = 0, r ̸ = 1 and r ̸ = g u.d mod p
ProofF " fy 4originl4 we men here efore normliztionF ht sidD we hve the trditionl resultX g p-1 ≡ 1 mod p he rdinl imge of x n is otined thnks to the list {0 n , g 0n , g 1n , g 2n , • • • , g (p-2)n } mod pF st ontins redundnies when d ̸ = 1 nd the distint elements redue to {0, g 0d , g 1d , g 2d , • • • , g (δ-1).d

d times } mod pD where δ = p-1 d nd the d nteedents of g u.d re g u+v• p-1 d D v = 0D 1D • • • D d-1F herefore the set x n D x = 0, 1, 2, • • • , +∞ n e written s {0, g 0d , g 1d , g 2d , • • • , g (δ-1).d d times } mod pD p + {0, g 0d , g 1d , g 2d , • • • , g (δ-1).d d times } mod pD 2p + {0, g 0d , g 1d , g 2d , • • • , g (δ-1).d d times } mod pD • • • D +∞F
he numers of events of the ongruene lsses 0 nd g k g u.d D k ∈ {0, 1, 2} modulo p is therefore proportionl to the vlue in the right memer of the following equtions

#(0 mod p) = 1 #(g 0 g u.d mod p) = d #(g 1 g u.d mod p) = 0 #(g 2 g u.d mod p) = 0 • • • #(g d-1 g u.d mod p) = 0 for ny u ∈ {0D 1D • • • D δ -1}F
Theorem 11. The cardinal image x n in the p k _environment is identical to the case k = 1 except for multiples of p.

ProofF " e primitive root g modulo p is lso primitive root modulo p k unless g p-1 = 1 mod p 2 in whih se p + g is primitive root ording to referene 14F e therefore n lwys hose some primitive root for whih we n represent the vlues x n D x = 0 to p k -1 with the sme d multipliity of given previously exept for multiples of pF por those there will e equl rdinlity exept for 0 (mod p)F Theorem 12. The (original) cardinal matrix CY (r, s) of y n is equal to

CY = CX -I
where I is the identity matrix of rank p. ProofF " he set y n D y = 2, 3, 5, 7, 11, • • • , +∞ modulo p gives equiprole events 1 d , 2 d , • • • , (p -2) d mod p y the gheotrev9s density theorem @see 2AF he only missing element ompred to the se x n is therefore 0F his mens repling CX(1, 1) = 1 in the previous se y CY (1, 1) = 0F he mtrix eing irulntD we get CY (r, r) = 0 for ll integers r = 1 up to r = pF Theorem 13. The cardinal image y n in the p k _environment is identical to the case k = 1. The degree of stability of y n is therefore equal to 1.

ProofF " here re no multiples of p involved in this se nd theorem II enle then to onludeF Theorem 14. For a Diophantine expression sum or dierence of independent monomials containing at least one independent variable of prime numbers y n , the global degree of stability is equal to 1. ProofF " his is n immedite result of theorem VF sndeedD when the trget c is multiple of p the numer of events #(u) ontriution of y n is 0 whih nels ny omintion of events (u, v, • • • )F Note. prom now onD in ll expressions involving exponentition of g the mod p term is impliedF fy g k D we systemtilly men g k mod p even if not expressly mentionedF Denition 6. vet us hve d the gretest ommon divisor of n nd p -1 where p is prime numerD d = gcd(n, p -1)F vet us hve md multiplier of d nd divisor of p -1 suh tht d ≤ md ≤ p -1F e @primitive rootA ordered rdinl mtrix CX(r, s) of x n versus md in the penvironment is mtrix otined y swithing lines nd olumns of the originl rdinl mtrix in the sme wy suh thn the (rst olumn @nd therefore (rst lineA of the new mtrix orresponds to the order 0D g i .g u.md D i = 0 to mdD u = 0 to (p -1)/md -1D tht isD fter 0D we tke i = 0 nd exhust ll the vlues u = 0 to (p -1)/md -1D then we tke i = 1 nd exhust gin ll the vlues u = 0 to (p -1)/md -1 nd so onF Example 1. For p = 13, g = 2, n = 2, we have d = gcd(n,p-1) = gcd(2,12) = 2. Let us take md = 4. Then the original order of targets 0 1 2 3 4 5 6 7 8 9 10 11 12 0 g 0 g 1 g 4 g 2 g 9 g 5 g 11 g 3 g 8 g 10 g 7 g 6 will be changed to 0 1 3 9 2 6 5 4 12 10 8 11 7 0 g 0 g 4 g 8 g 1 g 5 g 9 g 2 g 6 g 10 g 3 g 7 g 11 Property 3. Equal values transfer property : Let us consider C the cardinal matrix of x n (or y n ). Let us have X, a column vector of rank p and suppose that its k th components have same values for all line indices k such that k ≡ g i .g u.d mod p, i a xed value and u any integer. Then the l th components of C.X have same values for all line indices l such that l ≡ g j .g v.d mod p, j a xed value and v any integer.

ProofF " e onsider respetively the r + 1 th omponent of the following ojetsX c r of the (rst olumn of the rdinl mtrix CD x r of olumn vetor X nd y r of olumn vetor Y = C.XF e hve y r = c r .x 0 + c r-1 .x 1 + c r-2 .x 2 + ... + c r-p+1 .x p-1 F e then reEindex the memers of the equlity repling r y g j to get ProofF " his is trivil onsequene of property QF Note. xote lso tht the olumn vetor K in theorem U hs the previous property s ll omponents exept the (rst one re equl to 0F Property 5. Let us consider a permutation of two columns (or two lines) of the cardinal matrix of x n (or y n ). Then one recovers the said swapped matrix by the same permutation of the eigenvector matrix, eigenvalues matrix and inverse eigenvalues matrix. ProofF " his is generl property for ny mtrixF Property 6. The eigenvectors matrix of an ordered matrix versus md is composed of left circulant matrix blocks of rank (p -1)/md except for the rst column and line. ProofF " sing theorem T nd property SD let us onsider the generl term 1 √ p w g i .g j of the ordered mtrix omponent in some mtrix lokF hen the equlity g i .g j = g -md+i .g j+md mens onservtion of vlue of the omponent on the seondry digonl so long tht we sty in the lokF he rnk (p -1)/md is diret onsequene of the primitive root property g p-1 ≡ 1 mod pF Property 7. The (p -1)/md lines' sums of the blocks of the eigenvectors matrix are equal to each other. So also for columns' sums. ProofF " his is n immedite onsequene of irulnt mtriesF Property 8. The (p -1)/md lines' sums of the blocks of the conjugate eigenvectors matrix are equal to each other. So also for columns' sums. ProofF " his is gin n immedite onsequene of irulnt mtriesF Property 9. The eigenvalues of an ordered matrix versus md are equal to each other in the corresponding matrix blocks of rank (p -1)/md facing the eigenvectors matrix except for the component on the rst column and line. ProofF " his is n immedite result of the generl vlue of the spei( eigenE vlues here @j b IA

y g i -c g i .x 0 = p-1 j=0 c g i -g j .x g j F he hypothesis is x k.g u.d = x k nd c k.g u.d = c k F st results y g i -c g i .g u.d .x 0 = p-1 j=0 c (g i -g j ).
σ j = m-1 k=0 #k • w -(j-1)•k . rere #k = d for k = g u.d nd 0 otherwiseD so tht σ g k +1 = d d-1 k=0 •w -(j-1)•g k .g u.d = σ g k .g u.d +1
where u = 0 to (p -1)/d -1F feing property for d it is lso for multiple of d whih is the se of mdF rene the sme eigenvluesF Property 10. The multiplicity of the eigenvalues of a cardinal matrix,

except the eigenvalue p, is (p -1)/d. ProofF " his is n immedite result of the previous propertyF Example 2. p = 13, g = 2, n = 2, d = 2.
The three re-ordering cases are then: Case versus md = 2. 0 g 0 g 2 g 4 g 6 g 8 g 10 g 1 g 3 g 5 g 7 g g Case versus md = 4.

0 g 0 g 4 g 8 g 1 g 5 g 9 g 2 g 6 g 10 g 3 g g 11 0 1 3 9 2 6 5 4 12 10 8 7 13 √ 13 √ 13 √ 13 - √ 13 - √ 13 - √ 13 √ 13 √ 13 √ 13 - √ 13 - √ 13 - √ 13 
Case versus md = 6.

0 g 0 g 6 g 1 g 7 g 2 g 8 g 3 g 9 g 4 g 10 g g 11 0 1 12 2 11 4 9 8 5 3 10 6 7 13 √ 13 √ 13 - √ 13 - √ 13 √ 13 √ 13 - √ 13 - √ 13 √ 13 √ 13 - √ 13 - √ 13 
ith these strting premisesD we re now le to ondensed the rdinl mtries reduing redundnies progressively from (p -1)/d to 1 still keeping ll the originl informtionF e will follow trk using numeril exmplesF Theorem 15. Let us consider the components c(r, s) of the ordered cardinal matrix versus md of x n (or y n ) in the p_environment where integer md is dened as multiplier of d and divider of p -1 as earlier. The following condensed matrix with components cc(cr, cs) hold the same information in regard to the numbers of events for the targets g i .g u.md as the original ordered cardinal matrix with reduced redundancies together with keeping property 3:

cc(1,1) = c(1,1) cc(1+j,1) = c(2+(j-1) p-1 md , 1), j = 1 to md cc(1,1+k) = p-1 md i=1 c(1,1+i+(k-1) p-1 md ), k = 1 to md cc(1+j,1+k) = p-1 md i=1 c(2+(j-1). p-1
md ,1+i+(k-1) p-1 md ), j = 1 to md, k = 1 to md ProofF " hnks to property UD it is trivil redundny progressive redution from (p -1)/d to 1D the prmeter mdD divider of p -1 nd multiplier of dD eing given some vlue inEetweenF sllustrtion is given y the exmples in ppendix eF Denition 7. e ll ondensed mtrix the result of redution proess identil to the one desried ove whih trnsforms mtrix of rnk 1+(p-1) to mtrix of rnk 1 + mdF Denition 8. e ll lok nd loks9 re the unit nd the whole of omponents overing rnge of size @(p -1)/mdD(p -1)/mdA of the ordered rdinl mtries efore redution @strting indexes r ≥ 2D s ≥ 2D indexes spei(ed in theorem ISAF Denition 9. fy extensionD we ll loks9 re the resulting re of the ondensed mtrixD tht isD the ondensed mtrix exept (rst line nd (rst olumnF Theorem 16. The eigenvectors matrix of the condensed cardinal matrix versus md of x n (or y n ) in the p_environment is the condensed matrix of the eigenvectors matrix of the ordered cardinal matrix of x md (or y md ) versus md. The eigenvalues matrix of the condensed cardinal matrix versus md of x n (or y n ) in the p_environment is the condensed matrix of the eigenvalues matrix of the ordered cardinal matrix of x d (or y d ) versus md. ProofF " his is n immedite result of the equlity of the sum in lines of the eigenvetors ordered mtrix loks @property UAD the equlity of the eigenvlues in the eigenvlues mtrix loks fing it @property WA nd the equlity of the sums in olumns of the onjugte eigenvetors mtrix loks @property VAF Property 11. Eigenvalues multiplication property. The targets proportions for a Diophantine equation based on sums of monomials are carried out essentially by eigenvalues multiplications. ProofF " vet us hve K s de(ned in theorem 7F vet us hve M i the ontrted mtries of x i to the ommon 1 + md rnkF he trgets proportions #c re otined y the mtrix multiplition M 1 .M 2 • • • M k .KF fy the invrine property of the eigenvetors mtrix of ontrted mtrix expressed y theorem ITD ll M i shre the sme eigenvetors mtrix

U F herefore M 1 .M 2 • • • M k .K = (U.σ 1 .U -1 ).(U.σ 2 .U -1 ) • • • (U.σ k .U -1 ).K = U.σ 1 .σ 2 • • • σ k .U -1 .K
Theorem 17. The condensed cardinal matrix of x n and y n , respectively equating vi = 1 for x n and vi = 0 for y n , is given by

[C] = [U ][σ][U ]
where

[U ] = 1 √ p       1 λ 0 λ 0 • • • λ 0 1 λ 1 λ 2 • • • λ md 1 λ 2 λ 3 • • • λ 1 • • • • • • • • • • • • • • • 1 λ md λ 1 • • • λ md-1       [U ] = 1 √ p       1 λ 0 λ 0 • • • λ 0 1 λ * 1 λ * 2 • • • λ * md 1 λ * 2 λ * 3 • • • λ * 1 • • • • • • • • • • • • • • • 1 λ * md λ * 1 • • • λ * md-1       [σ] =       σ 0 0 0 • • • 0 0 σ 1 0 • • • 0 0 0 σ 2 • • • 0 • • • • • • • • • • • • • • • 0 0 0 • • • σ md      
and where

[U ] is the conjugate matrix of [U ],
and for u ≥ 1

λ u = p-1 md -1 r=0 w g u-1+r.md mod p-1
and

λ 0 = p -1 md .
and

σ 0 = p -1 + vi and σ u = vi + d. p-1 md -1 r=0 w -g u-1+r.d mod p-1
Note. sf md = d then

σ u = vi + d.λ u
ProofF " st is strightforwrd lultion from the initil ordered rdinl mtrix using g i .g j = g i+j F Note. he reder will (nd in ppendix g omputer progrm enling to lulte ny exmple of the ondensed rdinl mtriesF st gives lso the eigenvetors nd eigenvlues mtriesF Property 12. As for the initial cardinal matrix, the dierence between a condensed matrix CX of x n and a condensed matrix CY of y n of same rank (versus any admissible md) is the identity matrix.

CX = CY + I @VA
ProofF " eording to theorem IUD the eigenvetors mtries re the sme for the two ses nd the eigenvlues di'er y the identityF rene the resultF

Note. e nnot stress enough the importne of this reltionship etween the mtrix of n integers9 vrile nd its prime numers9 ounterprtF fesides eing fundmentl propertyD it is lso utterly useful nd will ome up in no timeF Theorem 18. Let us have some condensed cardinal matrix CY (a, b) versus

md of a prime variable y n . Here a ≥ 1, b ≥ 1. Let us re-index its components c y (a, b) using r = a -2, s = b -2.
Then the components' values such that r ≥ 0, s ≥ 0 are given by the following expression

c y (r, s) = d • #(u, v) \ g r ≡ g u.d + g s .g v.md mod p @WA where #(u, v) is the number of event (u, v) satisfying the equation for u = 0 to p-1 d -1 and v = 0 to p-1 md -1.
ProofF " st results from the initil de(nition of the rdinl mtrix tht #(ij) = d when i -j = g u.d for some u ∈ [0, p-1 d [D hene the multiplying ftor dF ithin the loks9 reD we hve i = g r .g w.md nd j = g s .g v.md for some for some (r, s, v, w) ∈ ([0, md -1], [0, md -1], [0, p-1 md [, [0, p-1 md [)F hen equlity g u.d = g r .g w.md -g s .g v.md is the sme s g r .g w.md = g u.d + g s .g v.md F e know y now tht eh trget g r .g w.md hs sme events9 rdinlity in front of mtrix9 lok s trget g r F he ordering to get ondensed mtrix versus md mens then to ollet the events

(u, v) ∈ ([0, p-1 d [, [0, p-1 md [) with onstnt sF
Note. eginD for seond time ut di'erent sujetD we nnot stress enough the importne of eqution W for ny resolution of hiophntine equE tion sed on monomils @ut not onlyAF hereforeD we purposely give here spei( denomintion to suh kind of expressionD nmely 4the primitive roots9 eqution4F

Property 13. Let us consider a condensed matrix of a prime variable y n .

Equalities between components c(r, s) and c(r

′ , s ′ ), r ≥ 0, s ≥ 0, r ′ ≥ 0, s ′ ≥ 0,
of such an object are dened by matrix involutions depending on two cases. Case 1 :

(p -1)/2 ≡ 0 mod d r ′ s ′ = 0 1 1 0 r s Case 2 : (p -1)/2 ≡ d/2 mod d r ′ s ′ = 0 1 1 0 r s + d/2 d/2
ProofF " es g is primitive rootD we use the property

g p-1 2 ≡ -1 mod pF hen if g r ≡ g u.d + g s .g v.md mod pD we n write -g r ≡ g u.d .g p-1 2 -g s .g v.md mod pD tht is g s ≡ g u.d-v.md+ p-1 2 + g r .g -v.
md mod pF es d divides md ll vlues of u.d -v.md re rehed y w.d for some integer wF ghnging the dummy indexes (u, v) we get g s ≡ g u.d+ p-1 2

+ g r .g v.md mod p F he numer of events #(u, v) is therefore the sme if @r ′ = sD s ′ = rD p-1 2 ≡ 0 mod dA or @r ′ = s + d 2 D s ′ = r + d 2 D (p -1)/2 ≡ d/2
mod dAF rene the result of eh seF st is esy to hek tht these trnsformtions re involutions @selfEinverse funE tionsAF Property 14. For lesser condensed matrices of a prime variable y n , where d ̸ = md, in the blocks 'area, the blocks of rank d form a right circulant pattern. That is, we have the following property for any components modulo md:

r ′ s ′ = 1 0 0 1 r s + d d
ProofF " sf g r ≡ g u.d + g s .g v.md mod pD we n write g r+d ≡ g d+u.d + g s+d+v.md mod pF he dummy prmeter u eing repled y u -1D we get g r+d ≡ g u.d + g s+d+v.md mod pF rene simultneously r ′ = r + d mod md nd r ′ ≡ r + d mod mdF

Note. he property is true lso in the se md = d ut uselessF Note. his kind of 4symmetry4 extents to vrile of integers @therefore monomils x n A s the ddition of 1 to eh of the omponents of the min digonl preserves the previous reltionsF Property 15. Let us consider the most condensed matrix of a prime variable y n , that is md = d. We then get the additional matrix involutions depending on two cases. Case 1 :

(p -1)/2 ≡ 0 mod d r ′ s ′ = -1 0 -1 1 r s Case 2 : (p -1)/2 ≡ d/2 mod d r ′ s ′ = -1 0 -1 1 r s + 0 d/2
ProofF " sing gin the property g p-1 2

≡ -1 mod pD if g r ≡ g u.d + g s .g v.d mod pD we n write g 0 ≡ g -r .g u.d + g s-r .g v.d mod pD tht is g -r ≡ g u.d + g s-r .g v.d+ p-1 2 mod pD hnging the dummy indexes (u, v)F he numer of events #(u, v) is therefore the sme if @r ′ = -rD s ′ = -r + sD p-1 2 = 0 mod dA or @r ′ = -rD s ′ = -r + s + d 2 D (p -1)/2 ≡ d/2 mod dAF rene the result of eh seF eginD it is esy to hek tht these trnsformtions re involutions @selfEinverse funtionsAF Note. he three previous properties re very useful if the ondensed mtrix size is smll s it llows quite shorter lultionsF Theorem 19. The minimal size of a condensed cardinal matrix for a Diophantine equation composed of monomials z n 1 1 to z n k k , z i being either a variable of integers or of primes is equal to

nr = 1 + lcm(d 1 , • • • , d i , • • • , d k )
where

d i = gcd(p -1, n i ), i = 1 to k.
ProofF " sn order to multiply mtriesD they ought to e of the sme sizeF por eh of the vrileD the smllest size of the ondensed mtrixD exepting (rst line nd row is d i nd neessry size is therefore multiple of this vlue @plus oneAF rene the lower ommon multiple when di'erent powers re present in the equtionF Note. here re n in(nity of ondensed mtries of di'erent sizes in some environment for given hiophntine eqution omposed of monomilsF fut there is only one ondensed mtrix with miniml size within this environment nd for this prtiulr hiophntine equtionF sn order to simplify the upoming overviewD the most ondensed mtrix will e denominted without more detil s the ondensed mtrixF 6.4. The Polignac case. ith the previous study on the monomil seD the olign se n e ddress quite rpidlyF roweverD s it is our (rst exmpleD we will repet some of the previous rgumentsD with spei( detilsD in order to mke it esier on the rederF he priedlnderEswnie will e treted without going in suh detils ginF e ought to strt here with the most trivil nd seemingly useless se whih of ourse is the monomil of degree oneD nmely xF sts rdinl imge is [1, 1, . . . , 1] in ny environment nd therefore its degree of stility is 1F sts rdinl mtrix is [1] whih n e extended to ny normlized rdinl mtrix with omponents ll equl to 1/m in menvironmentF e n then turn our ttention to the y vrileD tht is prime numers9 vrile seF Theorem 20. The cardinal image and cardinal matrix of a P _variable in a p i _environment, p i > 2 are respectively equal to:

p i p i -1        0 1 . . . 1 1       
and

1 p i -1        0 1 1 . . . 1 1 0 1 . . . 1 . . . . . . . . . . . . . . . 1 1 1 . . . 1 1 1 1 . . . 0        @IHA
ProofF " he projetionD in m = p i environmentD onsists in the proportions of vlues 0 to m -1 otined while y tke ll the vlues 2D 3D 5D 7D 11 up to +∞F eferring to hirihlet9s nd gheotrev9s theorem 2D we know tht there is n equl symptoti reprtition of the prime numers ending on the sid vlues 0 to p i -1 for modulo p i proess exept for 0F sn the ltter seD the only prime @ending on 0A is p i F his ourrene orresponds therefore to proportion equl to +1/∞F esymptotillyD we therefore get ##0 = 0 nd ##c = p i p i -1 if c ̸ = 0D the lst frtion ommon to ll c ̸ = 0 enling to hve n overll verge equl to 1F sn the normlized rdinl mtrix eh of the omponents re then multiplied y the inverse of the environment vlueD here 1/p i F Theorem 21. The degree of stability of the y variable is equal to 1 for any instance p i > 0.

ProofF " yne n repet the sme rgument s in theorem PH hnging the m = p i environment to n m = p r i environmentD r > 1D r ∈ N F he equiproE ility for ll instne not multiple of p i is onservedF he only di'erene is tht the previous projetion from p i onto 0 is just devited onto p i F e thereE fore get proportion equl to 0 on ll multiples of p i F qoing from r = 1 to r > 1 onsist only for the rdinl imge to trnslte p r-1 i times the dt y p i stepsF Note. e write the mtrix with only I s omponents [1] nd the identity mtrix s usully [I]F hen the rdinl mtrix of theorem IH is equl to

1 m -1 ([1] -[I]) @IIA Theorem 22. The circulant matrix ([1] -[I]
) n rst column components dier by a unit only.

ProofF " vet us proeed y reurreneF he sttement is true for n = 1 s there re only 0 nd 1 in the olumnF vet us suppose Theorem 24. The cardinal image and cardinal matrix of a P _variable in a m = 2 i2 _environment, i 2 -→ +∞ are respectively equal to:

([1] -[I]) n-1 = f (m) • [1] ± [I] for n > 1F his is lso the initil form of ([1] -[I]) 1 s we just hve to tke f (m) = 1 nd djust the sign in front of [I]F hen using [1][1] = m[1]D we get ([1] -[I]) n = (f (m) • [1] ± [I]) • ([1] -[I]) = f (m)•[1][1]-f (m)[1]±[1]-±[I] = (mf (m)-f (m)±1)•[1]∓[I] = g(m)•[1]∓[I]F he (rst
2            0 1 0 1 . . . 0 1            and 2 m            0 1 0 1 . . . 0 1 1 0 1 0 . . . 1 0 0 1 0 1 . . . 0 1 1 0 1 0 . . . 1 0 . . . . . . . . . . . . . . . . . . . . . 0 1 0 1 . . . 0 1 1 0 1 0 . . . 1 0            @IPA
ProofF " he integer 2 doesn9t hve primitive root whih mkes this se very speil oneF he projetion of the set P modulo 2D 4D 8D etF gives equl reprtition on odd numers @gin ording to gheotrevAD ut no even numers re produed exept when projeting 2F rene ompletely di'erent pttern hereF Note. vet us tke the writing onvention for the former rdinl mtrix ProofF " eording to theorem PQD the vlues of the omponents of ([1] -[I]) n re symptotilly equivlent s the mximum di'erene etween omponents is 1 whih eomes negligele when m -→ +∞F he multiplition y [(0, 1)] give omponents di'ering y 0 or m/2D thus the multiplition y 2 m [(0, 1)] give omponents di'ering y 0 or 1 ginF he rtios etween mtrix oe0ients is therefore tending towrds 1F he sole notile e'et on the initil mtrix @rememer tht we re primrly interested in reltive proportionsA is therefore multiplitive e'et whih is 1 for normlized itemsF Theorem 26. The eigenvalues of the cardinal matrix of a P _variable in a m = 2 i2 _environment, i 2 -→ +∞ is equal to:

σ 1 = 1 m , σ 1+ m 2 = -1 m , σ j = 0 if j ̸ = {1, 1 + m 2 }
ProofF " he eigenvetors mtrix of the rdinl mtrix is the sme of ourse s given in theorem S s the mtrix is still irulnt nd we use theorem T for the eigenvlues expressionF rere m is even nd therefore we getX

σ j = 1 m m-1 k=0 #(m -k) • w (j-1)•k = w j-1 m m 2 -1 k=0 w 2k•(j-1)
qoing k to the de(nition of wD we getX

σ j = e 2π(j-1)•i m m m 2 -1 k=0 e 4πk•(j-1)•i m
he terms of the sum re roots of the unitF he sum is equl to 0 unless e 4π(j-1)•i m = 1 @se k = 1AD tht is j ≡ 1 mod m/2F rene the resultF Theorem 27. The relative proportion, c being the parameter, of solutions of equation

y 1 + y 2 + ... + y n = c
is given by:

##(c) = 2 • p i \c p i ≥3 (1 -( -1 p i -1 ) n-1 ) • p i ∤c p i ≥3 (1 -( -1 p i -1 ) n )
ProofF " he degree of stility of vrile y k eing 1 for ny instne p i > 2D we n use the theorems IH nd IPF rving the sme result for ll trgets exept 0D we n redue the squre mtrix9 rnk to PF

     0 1 1 • • • 1 1 0 1 • • • 1 F F F F F F F F F F F F 1 1 1 1 • • • 0      -→ 0 p i -1 1 p i -2
henD fter normliztionD the mtrix eing identil for eh vrileD we pply n exponent n to the sid mtrix nd multiply y the olumn vetor K of theorem UX

##(c = 0) ##(c ̸ = 0) = p i 0 1 1 p i -1 p i -2 p i -1 n • 1 0
sing eigenvlues nd eigenvetorsD we then getX

##(c = 0) ##(c ̸ = 0) = (p i -1)• 1 1 1 -1 p i -1 • 1 0 0 -1 (p i -1) n • 1 p i -1 1 1 -1 • 1 0 nd therefore (nllyX ##(c ≡ 0 mod p i ) ##(c ̸ = 0 mod p i ) = 1 -( -1 p i -1 ) n-1 1 -( -1 p i -1
) n e remindD in the lst reltionsD the instne nd environment in whih we operteF he result in environment p ip k k is the sme s the degree of stility is 1F o upgrde the result to n environment 2 i 2 • 3 i 3 . . . p ip k k . . . p ip r r D ording to theorem VD we hve to multiply together these results ndD s r -→ +∞D we get the in(nite produts of the theorem exept for the ftor 2F sn theorem PSD we identi(ed the ontriution of the instne p i = 2 s mere multiplition y slr @with glol normlized e'et unit multiplitionAF e diret look to the studied eqution provides n immedite explntionF ith even respetively odd quntity of vriles in y 1 + y 2 + ... + y n = cD the result gives overwhelmingly even respetively odd vluesD in other words ftor 2 mpli(tion to even numers9 lss while ftor 0 to the odd numers9 lssF he multiplitive ftor 2 will provide this e'et in oth @odd nd even numer of vrilesA sesF his result opens window for more generlized se of the olign onjeture if we go further thn the mere omprison of proportionsF he reder n refer to 18 permt heet ixerises S nd IV for full enumertion resolution nd more @ring sums nd so onAF futD let us now go k to our (rst ojetive hereD the olign prolemF he projetion of the set -P in the p i environment gives the sme gheotrev distriution s for the set P F qoing through ll the previous stepD we will end with the sme rdinl imge nd rdinl mtrix enling us to settle the se of the following hiophntine equtionF Theorem 28. The asymptotic proportions of solutions #c of the equation c = p 1 -p 2 is given by:

#(c) = 2 p i \c p i ≥3 p i p i -1 p i ∤c p i ≥3 p i • (p i -2) (p i -1) 2
ProofF " e use the generl result for n vriles nd tke n = 2F fesides the reltive proportions is the sme notion for 5 nd 55F

Theorem 29. Polignac conjecture 11.

The asymptotic number of solutions π c (x) of the equation

c = p 1 -p 2 , c = 2n ̸ = 0, n ∈ N , is given by lim x-→+∞ π c (x) = 2 • C 2 • p i \c p i ≥3 p i -1 p i -2 • x ln 2 (x) where C 2 = p i ≥3 (1-1 (p i -1) 2 ) = p i ≥3 p i (p i -2)
(p i -1) 2 ≈ 0, 66016 . . . is the twin prime constant (see reference 6). ProofF " eny p i is dividing 0D thus from theorem PV we getX

#(0) = 2 p i ≥3 p i p i -1
st follows the rtio of symptoti events for trget di'erent from 0 nd trget 0X

#(c ̸ = 0) #0 = p i ∤c p i ≥3 p i (p i -2) (p i -1) 2 p i ∤c p i ≥3 p i p i -1 = p i ∤c p i ≥3 p i -2 p i -1 his is equivlent toX lim x-→+∞ π c̸ =0 (x) = p i ∤c p i ≥3 p i -2 p i -1 lim x-→+∞ π 0 (x)
he symptoti numer of solutions π(x) for c = 0D tht is the numer of events p 1 = p 2 is the numer of primes up to x when x -→ +∞ nd is equl to π 0 (x) ∽ x/ ln(x) ording to the prime numers theorem @see referene 3A nd therefore

lim x-→+∞ π c̸ =0 (x) = p i ∤c p i ≥3 p i -2 p i -1 • x ln(x) = p i \c p i ≥3 p i -1 p i -2 • p i ≥3 p i -2 p i -1 • x ln(x)
vet us then evlute

p i ≥3 p i -2 p i -1 = p i ≥3 p i (p i -2) (p i -1) 2 • p i ≥3 p i -1 p i = C 2 • p i ≥3 p i -1 p i = 2 • C 2 • p i p i -1 p i
fesidesD the iuler produt derived from the iemnn zet funtion ording to referene 7 is

ζ(z) = n⩾1 1 n z = p i p z i p z
i -1 herefore using the hrmoni series nd referene 6

p i p i p i -1 = n⩾1 1 n = lim n-→+∞ H n ∼ lim n-→+∞ ln(n)
his gives us the ultimte 1 ln(n) ftor needed to on(rm the olign formulF 6.5. A standard technique. heling with the instne p i = 2D s the reder my hve notied is quite umersome even for the simplest se exposed hereF st is muh more e0ient to study this se without going k eh time to the originl premises in the following wy whih esides is n equivlent wy to hndle hiophntine eqution enumertion prolemF olving R(z 1 , z 2 , . . . , z n ) ≡ c mod p

ip k
k is simply to write the dt proessE ing loopX for z 1 = 0 to p

ip k k -1 if z 1 is P vrile skip events z 1 ≡ 0 mod p k for z 2 = 0 to p ip k k -1 if z 2 is P vrile skip events z 2 ≡ 0 mod p k • • • for z n = 0 to p ip k k -1 if z n is P vrile skip events z n ≡ 0 mod p k c ≡ R(z 1 , z 2 , . . . , z n ) mod p ip k k #c = #c + 1 xext z n • • • xext z 2 xext z 1
kipping events of the type z j ≡ 0 mod p k is the proess of trnsforming z j into the proper rdinl imge if z j is P vrile while there is no need of this opertion otherwiseF por p k = 2 the vlues re in generl smll enough for diret lultion from whih one n dedue the proportions etween the di'erent rdinls 5 nd therefter pinpointing the degree of stility with dpted numer of loopsX

• • • for y j = 1 to 2 k step 2 • • • c = R(y j , . . .) #c = #c + 1 • • • xext y j • • •
ith the olign9s equtionD nd p = 2D we get preiselyX for his stndrd tehnique rings us lso k to the previous setion deling with the degree of stilityD setion R de(nition S eqution UD the PEperiod pttern extending up to in(nity llowing usD fter the instne p = 2D the suessive multiplitions with the results given for the instnes p = 3D p = 5D nd so onF eppendix h provides n exmple of omputer progrm enling to lE ulte the normlized rdinl ftors for the priedlnderEswnie eqution whih will e our next sujetF e few dpttions would mke it suitle for other types of equtions with degree of stility equl to 1 ording to the stndrd tehnique just given ove @hnge of monomils9 powersD numer of loopsD dpttion of normlizing ftorAF st n lso e dpted of ourse to higher degrees of stility ording to the sme exposed tehniqueD ut with risk of rpid time proessing over)owF roweverD for ny duious result with lterntive tehnique evlutionD going k for omprison to this stndrd proedure is essentilF 6.6. The Friedlander-Iwaniec case. priedlnder nd swnie proved in IWWT the in(nite numer of primes y of the type x 2 1 + x 4 2 F e will generlize the reserh to n eqution

y 1 = 1 to 2 k step 2 for y 2 = 1 to 2 k step 2 c = y 1 -y 2 #c = #c + 1 xext y 2 xext
c = -y + x 2 1 + x 4 2
where we wnt to ompre the numer of solutions 5 of the trget c to the numer of solutions 5H of the trget 0D when y -→ +∞D for whih priedlnder nd swnie gve the dditionl formulX

lim y-→+∞ #{y = x 2 1 + x 4 2 } = f an(0) • w • y 3/4 ln(y) @IQA
where f an(0

) = 4/π nd w = 1 0 (1 -t 4 ) 1 2 dt = Γ(1/2)Γ(5/4) 2•Γ(7/4) F
Theorem 30. The degree of stability of the Friedlander-Iwaniec general equation is equal to 1.

ProofF " he eqution eing omposed of independent monomils inluding vrile of prime numersD we use theorem IRF Theorem 31. The ranks of the condensed matrices for the Friedlander-Iwaniec equation are given by the following cases:

M atrices M 0 M 1 M 2 M 0.M 1.M 2 Instance var -y var x 2 1 var x 4 2 rank lesser p gcd(p -1, 1) gcd(p -1, 2) gcd(p -1, 4) 1 + lcm cases 2 1 1 1 2 1 mod 4 1 2 4 5 p = 1 mod 8 p = 5 mod 8 3 mod 4 1 2 2 3
ProofF " he se p = 2 is treted y spei( evlution s desried erlierF ytherwiseD the size of the ondensed mtrix exept (rst line nd olumn is given for eh monomil y d = gcd(p -1, n) where n is the degree of the vrile in penvironmentF heorem IW then enles to onludeF Theorem 32. Let us have M 0 a condensed cardinal matrix of -y. Then:

Case 1: Rank = 5. Case 2: Rank = 3.

M 0 =   0 (p -1)/2 (p -1)/2 1 (p -3)/2 (p -1)/2 1 (p -1)/2 (p -3)/2  
ProofF " he rdinl mtries of -y nd y re identil ording to theorem WF fesidesD using theorem ISD the ondensed rdinl mtrix of x is

    1 (p -1)/md • • • (p -1)/md 1 (p -1)/md • • • (p -1)/md • • • • • • • • • • • • 1 (p -1)/md • • • (p -1)/md    
where md is ny multiple of d nd divider of p -1F rere we hve d = 1D so the only ondition is tht md divides p -1F he ondensed rdinl mtries of eh se is then dedued y sutrting the identity mtrix ording to property IPF Theorem 33. Let us have M 1 a condensed cardinal matrix of x 2 1 . Then: Case 1: Rank = 5.

M 1 =       1 (p -1)/2 0 (p -1)/2 0 2 x 1 x 2 x 3 x 4 0 x 2 x 3 + 1 x 4 x 1 + 1 2 x 3 x 4 x 1 x 2 0 x 4 x 1 + 1 x 2 x 3 + 1      
where

x 4 = p -2 -x 1 -x 2 -x 3
and where, for u and v integers within the intervals [0, (p -1)/2[ and [0, (p -1)/4[ respectively,

x 1 = 1 + 2.#(u, v) \ g 0 ≡ g 2u + g 4v mod p x 2 = 2.#(u, v) \ g 1 ≡ g 2u + g 4v mod p x 3 = 2.#(u, v) \ g 2 ≡ g 2u + g 4v mod p x 4 = 2.#(u, v) \ g 3 ≡ g 2u + g 4v mod p
Case 2: Rank = 3.

M 1 =   1 0 p -1 2 (p -1)/2 (p -3)/2 0 (p + 1)/2 (p -1)/2  
ProofF " he vlues of the omponents for the (rst line nd (rst olumn re otined strightforwrdly thnks to theorem ISF por se ID s shown in theorem QID we hve p ≡ 1 mod 4D d = 2 nd md = 4F e get p-1 2 ≡ 0 mod 2 nd the symmetry versus the prinipl digonl in the loks9 re is then dedued from property IQ se IF herefore M 1 -I is equl to

M 1 -I =       0 (p -1)/2 0 (p -1)/2 0 2 x 1 -1 x 2 x 3 x 4 0 x 2 x 5 x 6 x 7 2 x 3 x 6 x 8 x 9 0 x 4 x 7 x 9 x 10      
for some integers x i D i = 1 to 10D to e de(nedF hen using property IR se ID the trnsformtions r ′ ≡ r + 2 mod 4 nd s ′ ≡ s + 2 mod 4 led to the equivlene of positions strting with index (0, 0) on the seond line nd seond olumn of the ondensed mtrixX

0 0 ≡ 2 2 , 1 0 ≡ 3 2 , 3 0 ≡ 1 2 , 1 1 ≡ 3 3 .
herefore we get the following mtrixX

M 1 -I =       0 (p -1)/2 0 (p -1)/2 0 2 x 1 -1 x 2 x 3 x 4 0 x 2 x 5 x 4 x 7 2 x 3 x 4 x 1 -1 x 2 0 x 4 x 7 x 2 x 5      
he sum of the omponents of eh line eing the sme provides the dditionl equlity 2 + x 1 -1 + x 3 = x 5 + x 7 s x 2 nd x 4 re ommon terms in the seond nd third lines of the mtrixF hen using lemm PD given lter on in this rtileD we n write x 5 = x 3 nd therefore

x 7 = x 1 + 1F o tht nowX M 1 -I =       0 (p -1)/2 0 (p -1)/2 0 2 x 1 -1 x 2 x 3 x 4 0 x 2 x 3 x 4 x 1 + 2 2 x 3 x 4 x 1 -1 x 2 0 x 4 x 1 + 1 x 2 x 3      
he sum of line eing equl to p -1 y onstrutionD we get x 4 = p -2x 1 -x 2 -x 3 D reduing unknows to x 1 D x 2 nd x 3 F sing theorem IVD we then n ddress the primitive roots9 equtions for the loks9 reF por se PD p ≡ 3 mod 4D d = 2 nd therefore (p -1)/2 ≡ d/2 mod dD thus the vlue p -1 on the third position of the (rst line insted of the seondF he initil mtrix n then e written using property IQ se PX

M 1 =   1 0 p -1 2 x 1 x 2 0 x 3 x 1  
he sum of the omponents of eh line is the smeD we getX

M 1 -I =   0 0 p -1 2 x 1 -1 x 2 0 x 2 + 2 x 1 -1  
rving md = dD we n use property IS se P whih gives x 2 = x 1 + 1F hus we get the mtrix

M 1 =   1 0 p -1 2 x 1 x 1 -1 0 x 1 + 1 x 1  
feuse the sum of the omponents of eh line of M 1 is equl to pD we get the proposed resultF Theorem 34. Let us have M 2 the condensed cardinal matrix of x 4 2 . Then: Case 1a: Rank = 5. Lesser case p ≡ 1 mod 8.

M 2 =       1 p -1 0 0 0 4 x 1 -3 x 2 x 3 x 4 0 x 2 x 4 + 1 x 5 x 5 0 x 3 x 5 x 3 + 1 x 5 0 x 4 x 5 x 5 x 2 + 1      
where

x 3 = p-1 3 -x 1 3 x 4 = 2(p-1) 3 -2x 1 3 -x 2 x 5 = p-1 6 + x 1 3
and where, for u and v integers within the interval [0, (p -1)/4[,

x 1 = 4 + 4.#(u, v) \ g 0 ≡ g 4u + g 4v mod p x 2 = 4.#(u, v) \ g 1 ≡ g 4u + g 4v mod p x 3 = 4.#(u, v) \ g 2 ≡ g 4u + g 4v mod p x 4 = 4.#(u, v) \ g 3 ≡ g 4u + g 4v mod p
Case 1b: Rank = 5. Lesser case p ≡ 5 mod 8.

M 2 =       1 0 0 p -1 0 4 x 3 + 1 x 5 x 3 x 5 0 x 4 x 5 + 1 x 5 x 2 0 x 1 x 2 x 3 + 1 x 4 0 x 2 x 4 x 5 x 5 + 1      
where

x 3 = p-5 3 -x 1 3 x 4 = 2(p+1) 3 -2x 1 3 -x 2 x 5 = p-5 6 + x 1 3
and where, for u and v integers within the interval [0, (p -1)/4[,

x 3 = 4.#(u, v) \ g 0 ≡ g 4u + g 4v mod p x 4 = 4.#(u, v) \ g 1 ≡ g 4u + g 4v mod p x 1 = 4.#(u, v) \ g 2 ≡ g 4u + g 4v mod p x 2 = 4.#(u, v) \ g 3 ≡ g 4u + g 4v mod p
Case 2: Rank = 3.

M 2 =   1 0 p -1 2 (p -1)/2 (p -3)/2 0 (p + 1)/2 (p -1)/2  
ProofF " he vlues of the omponents for the (rst line nd (rst olumn re gin otined strightforwrdly thnks to theorem ISF por se ID d = md = 4D so tht the rdinl mtrix is the most ondensed possileF e n therefore use properties IQ nd ISF roperty IQ results in the trnsformtions r ≡ s mod 4 nd s ≡ r mod 4 s in this se (p -1)/2 ≡ 0 mod 4F herefore the loks9re of the ondensed mtrix is symmetril nd we n writeX

M 2 -I =       0 p -1 0 0 0 4 x 1 -4 x 2 x 3 x 4 0 x 2 x 5 x 6 x 7 0 x 3 x 6 x 8 x 9 0 x 4 x 7 x 9 x 10      
henD using property ISD the trnsformtions r ≡ -r mod 4 nd s ≡ -r + s mod 4 led to the equivlene of positions strting with index (0, 0) on the seond line nd olumn of the ondensed mtrixX

1 0 ≡ 3 3 , 2 0 ≡ 2 2 , 3 0 ≡ 1 1 , 2 1 ≡ 2 3 , 3 1 ≡ 1 2 , 3 2 ≡ 1 3 .
efter reindexing x 5 to x 6 D we get the following mtrixX

M 2 -I =       0 p -1 0 0 0 4 x 1 -4 x 2 x 3 x 4 0 x 2 x 4 x 5 x 5 0 x 3 x 5 x 3 x 5 0 x 4 x 5 x 5 x 2      
he sum of the omponents of eh line eing the sme nd equl to p -1 proE vides then the three dditionl equlities given ove reduing the numer of unknowns to x 1 nd x 2 F sing theorem IVD we then n ddress the primitive roots9 equtions for the loks9 reF eginD the exponent s in the theorem is equl to 2 whih provides the proposed resultF por the lesser se p ≡ 5 mod 8D (p -1)/2 ≡ 2 mod 4 ndD y property IQD equl omponents9 positions in the loks9 re re now given y trnsformE tions r ≡ s + 2 mod 4 nd s ≡ r + 2 mod 4F

0 0 ≡ 2 2 , 1 0 ≡ 2 3 , 3 0 ≡ , 0 1 ≡ 3 2 , 1 1 ≡ 3 3 , 1 2 ≡ .
his gives the mtrix

M 2 -I =       0 0 0 p -1 0 4 x 3 x 6 x 8 x 9 0 x 4 x 5 x 9 x 10 0 x 1 x 2 x 3 x 4 0 x 2 x 7 x 6 x 5      
henD using property ISD the trnsformtions r ≡ -r mod 4 nd s ≡ -r+s+2 mod 4 led to the equivlene of positionsX

0 1 ≡ 0 3 , 0 2 ≡ 0 0 , 1 1 ≡ , 1 3 ≡ 3 0 , 3 1 ≡ 1 0 .
his provides the mtrixX

M 2 -I =       0 0 0 p -1 0 4 x 3 x 5 x 3 x 5 0 x 4 x 5 x 5 x 2 0 x 1 x 2 x 3 x 4 0 x 2 x 4 x 5 x 5      
eginD the sum of the omponents of eh line eing the sme nd equl to pD we get the three former dditionl equlities reduing the numer of unknowns to twoF por se PD p ≡ 3 mod 4D d = 2 nd therefore we get the sme mtrix of rnk Q s erlier for the monomil x 2 1 F xow we n go k to theorem QI nd onstrut the mtries produts to solve our generl priedlnderEswnie equtionF e get the following sesX Theorem 35. Let us name M 0 the condensed matrix for variable -p, M1 the condensed matrix for variable x 2 1 , M2 the condensed matrix for variable x 4 2 and the column vector K as dened earlier. Then: Case 1:

p = 2. ##(0) ##(g u ) = 1 1
Case 2: p ≡ 3 mod 4.

  ##(0) ##(g 2u ) ##(g.g 2u )   = 1 p.(p -1)   p 2 -1 p 2 -p -1 p 2 -p -1   Case 3 : p ≡ 1 mod 4.       ##(0) ##(g 4u ) ##(g.g 4u ) ##(g 2 .g 4u ) ##(g 3 .g 4u )       = 1 p.(p -1)       (p -1) 2 p 2 -2 -4x 1 p 2 -4x 2 p 2 -2 -4x 3 p 2 -4x 4      
where

x 4 = p -2 -x 1 -x 2 -x 3
and where, for u and v integers within the intervals [0, (p -1)/2[ and [0, (p -1)/4[ respectively,

x 1 = 1 + 2.#(u, v) \ g 0 ≡ g 2u + g 4v mod p x 2 = 2.#(u, v) \ g 1 ≡ g 2u + g 4v mod p x 3 = 2.#(u, v) \ g 2 ≡ g 2u + g 4v mod p x 4 = 2.#(u, v) \ g 3 ≡ g 2u + g 4v mod p
ProofF " vet us nme M 0 the ondensed mtrix for vrile -pD M 1 the ondensed mtrix for vrile x 2 1 D M 2 the ondensed mtrix for vrile x 4 2 D eh one with pproprite rnkF vet us onsider lso the olumn vetor K s de(ned erlierF hen se ID p = 2 is otined y diret lultionX 

##(0) ##(g u ) = 1 p(p-1) M 0.M 1.M 2.Kto
  0 (p -1)/2 (p -1)/2 1 (p -3)/2 (p -1)/2 1 (p -1)/2 (p -3)/2     1 p + 1 p + 1   to the left to the left to the left void = 1 p.(p-1)   p 2 -1 p 2 -p -1 p 2 -p -1 
 to the left to the left to the left to the left to the left he reder is invited to rememered the distintive respetive de(nitions of x i in di'erent M j mtriesF henD for se QD p ≡ 1 mod 8D we getX

      ##(0) ##(g 4u ) ##(g.g 4u ) ##(g 2 .g 4u ) ##(g 3 .g 4u )       = 1 p.(p-1) M 0.M 1.M 2.Kto the left to the left to the left void = 1 p.(p-1) M 0.M 1.       1 p -1 0 0 0 4 x 1 -3 x 2 x 3 x 4 0 x 2 x 4 + 1 x 5 x 5 0 x 3 x 5 x 3 + 1 x 5 0 x 4 x 5 x 5 x 2 + 1             1 0 0 0 0      
to the left to the left to the

void = 1 p.(p-1) M 0       1 (p -1)/2 0 (p -1)/2 0 2 x 1 x 2 x 3 x 4 0 x 2 x 3 + 1 x 5 x 6 2 x 3 x 5 x 1 x 2 0 x 4 x 6 x 2 x 3 + 1             1 4 0 0 0      
to the left to the left to the 

            2p -1 2 + 4x 1 4x 2 2 + 4x 3 4x 4      
to the left to the le

void = 1 p.(p-1)       (p -1)(x 1 + x 2 + x 3 + x 4 + 1) (p -1)(x 1 + x 2 + x 3 + x 4 + 1) + 2p -3 -4x 1 (p -1)(x 1 + x 2 + x 3 + x 4 + 1) + 2p -1 -4x 2 (p -1)(x 1 + x 2 + x 3 + x 4 + 1) + 2p -3 -4x 3 (p -1)(x 1 + x 2 + x 3 + x 4 + 1) + 2p -3 -4x 4      
to the left to the left to the left

void = 1 p.(p-1)       (p -1) 2 p 2 -2 -4x 1 p 2 -4x 2 p 2 -2 -4x 3 p 2 -4x 4      
to the left to the left to the left to the left to the left hen we go k to theorem QQ se I for the primitive roots9 equtionsF por se QD p ≡ 5 mod 8D we getX

      ##(0) ##(g 4u ) ##(g.g 4u ) ##(g 2 .g 4u ) ##(g 3 .g 4u )       = 1 p.(p-1) M 0.M 1.M 2.
Kto the left to the left to the left he M 0 nd M 1 mtries re the sme s for se QF wtrix M 2 is now di'erentD ut the produt M 2.K is the sme olumn vetorX

      1 4 0 0 0      
herefore the produt will e the sme s for se QF fesides the primitive roots9 eqution s lso unhngedF rene the resultF Note. vet us oserve tht there is no need here for the full expression of the rdinl mtrix M 2 to solve the priedlnderEswnie equtionF roweverD this mtrix would e indispensle to ompre symptotillyD for exmpleD for di'erent trgets cD the numer of solutions of the spei( ring type eqution

p = x 4 1 + x 4 2 + ... + x 4 k + c
. sn this seD one would use the mtrix produt

M = M 0.M 2 k .
Theorem 36. Asymptotically, the ratio between the number of solutions of the Friedlander-Iwaniec equation with target c compared to the equation with target 0 is equal to:

p≡1 mod 4 i\{c≡g i mod 4 mod p} 1 + p-4(x i+1 + (i+1) mod 2 2 ) p(p-1) 1 -1 p p≡3 mod 4 1 -1 p(p-1) 1 + 1 p
ProofF " eording to theorem VD the rtio etween the numer of solutions of the hiophntine eqution with trget c ompred to the eqution with trget 0 is the rtio of the rdinl ftors f an(c)/f an(0)F he multiplitive ftors for p = 2 is 1 s indited in theorem QS nd therefore hs no e'etF hen using the other vlues otined in theorem QSD the in(nite produt of the ftors of f an(0) nd f an(c ̸ = 0) re respetively

p≡1 mod 4 1 - 1 p p≡3 mod 4 1 + 1 p nd p≡1 mod 4 i\{c≡g i mod 4 mod p} 1 + p -4(x i+1 + (i+1) mod 2 2 ) p(p -1) p≡3 mod 4 1 - 1 p(p -1)
sn the seond susriptD it is of ourse i whih hs to e dedued from cD p nd g t eh ourrene p ≡ 1 mod 4F egrouping the terms hving modulo 4 in ommonD we get the resultF eppendix i provides omputer progrm enling to lulte the dt resulting from theorem QSF st gets the dt fster thn the si progrm given previously in ppendix hF he priedlnderEswnie theorem ws re(ned y oger rethEfrown nd vi innn in PHIU 14F sn prtiulrD they proved tht the polynomil x 2 + p 4 represents in(nitely mny primes where the vrile p is required to e prime numersF ith the premises of our studyD we n immeditely get the generl enumertion9s result for the hiophntine eqution p = x 2 + y 4 -c for some trget c ompred with the enumertion of trget 0F ell we hve to do to get literl formul is to reple the previous M 2 mtries with M 2 -I nd to multiply the former normlizing ftor 1 p(p-1) y p p-1 D thus getting 1 (p-1) 2 F his leds strightforwrd toX Theorem 37. The enumeration of the Heath-Brown-Xiannan equation is pending on the three cases:

Case 1: p = 2. ##(0) ##(g u ) = 1 1
Case 2: p ≡ 3 mod 4.

  ##(0) ##(g 2u ) ##(g.g 2u )   = 1 (p -1) 2   p(p -1) p 2 -2p + 1 p 2 -2p -1   Case 3 : p ≡ 1 mod 4.       ##(0) ##(g 4u ) ##(g.g 4u ) ##(g 2 .g 4u ) ##(g 3 .g 4u )       = 1 (p -1) 2       (p -1)(p -2) p(p -1) -4x 1 p(p -1) -4x 2 p(p -1) -4x 3 p(p -1) -4x 4       where x 4 = p -2 -x 1 -x 2 -x 3
and where, for u and v integers within the intervals [0, (p -1)/2[ and [0, (p -1)/4[ respectively,

x 1 = 1 + 2.#(u, v) \ g 0 ≡ g 2u + g 4v mod p x 2 = 2.#(u, v) \ g 1 ≡ g 2u + g 4v mod p x 3 = 2.#(u, v) \ g 2 ≡ g 2u + g 4v mod p x 4 = 2.#(u, v) \ g 3 ≡ g 2u + g 4v mod p
ProofF " e operte s with the previous exmpleF 

por se IX ##(0) ##(g u ) = 1 (p-1) 2 M 0.M
  ##(0) ##(g 2u ) ##(g.g 2u )   = 1 (p-1) 2 M 0.M 1.(M 2 -I).
Kto the left to the left to the left to the left

void = 1 (p-1) 2 M 0.M 1.   0 0 p -1 2 (p -3)/2 (p -3)/2 0 (p + 1)/2 (p -3)/2     1 0 0   to the left to the left to the left void = 1 (p-1) 2 M 0   1 0 p -1 2 (p -1)/2 (p -3)/2 0 (p + 1)/2 (p -1)/2     0 2 0   to the left to the left to the left void = 1 (p-1) 2   0 (p -1)/2 (p -1)/2 1 (p -3)/2 (p -1)/2 1 (p -1)/2 (p -3)/2     0 p -1 p + 1   to the left to the left to the left void = 1 (p-1) 2   p(p -1) p 2 -2p + 1 p 2 -2p -1
  to the left to the left to the left to the left to the left por se QD p ≡ 1 mod 8D we getX

      ##(0) ##(g 4u ) ##(g.g 4u ) ##(g 2 .g 4u ) ##(g 3 .g 4u )       = 1 (p-1) 2 M 0.M 1.(M 2 -I).Kto the left to the left to the left void = 1 (p-1) 2 M 0.M 1.       0 p -1 0 0 0 4 x 1 -4 x 2 x 3 x 4 0 x 2 x 4 x 5 x 5 0 x 3 x 5 x 3 x 5 0 x 4 x 5 x 5 x 2             1 0 0 0 0      
to the left to the left to the left

void = 1 (p-1) 2 M 0       1 (p -1)/2 0 (p -1)/2 0 2 x 1 x 2 x 3 x 4 0 x 2 x 3 + 1 x 5 x 6 2 x 3 x 5 x 1 x 2 0 x 4 x 6 x 2 x 3 + 1             0 4 0 0 0      
to the left to the left to the

void = 1 (p-1) 2       0 (p -1)/4 (p -1)/4 (p -1)/4 (p -1)/4 1 (p -5)/4 (p -1)/4 (p -1)/4 (p -1)/4 1 (p -1)/4 (p -5)/4 (p -1)/4 (p -1)/4 1 (p -1)/4 (p -1)/4 (p -5)/4 (p -1)/4 1 (p -1)/4 (p -1)/4 (p -1)/4 (p -5)/4             2(p -1) 4x 1 4x 2 4x 3 4x 4       to the left to the l void = 1 (p-1) 2       (p -1)(x 1 + x 2 + x 3 + x 4 ) (p -1)(x 1 + x 2 + x 3 + x 4 ) + 2p -2 -4x 1 (p -1)(x 1 + x 2 + x 3 + x 4 ) + 2p -2 -4x 2 (p -1)(x 1 + x 2 + x 3 + x 4 ) + 2p -2 -4x 3 (p -1)(x 1 + x 2 + x 3 + x 4 ) + 2p -2 -4x 4      
to the left to the left to the left

void = 1 (p-1) 2       (p -1)(p -2) p(p -1) -4x 1 p(p -1) -4x 2 p(p -1) -4x 3 p(p -1) -4x 4      
to the left to the left to the left where x 1 D x 2 D x 3 nd x 4 re the vlues extrted from the primitive roots9 eqution of theorem QSF Theorem 38. Asymptotically the ratio between the number of solutions of the Heath-Brown-Xiannan equation with target c compared to the equation with target 0 is equal to:

p≡1 mod 4 i\{c≡g i mod 4 mod p} 1 + p-1-4x i+1 (p-1) 2 1 -1 p-1 p≡3 mod 4 i\{c≡g i mod 2 mod p} 1 -1-(-1) i (p-1) 2 1 + 1 p-1
ProofF " eording to V the rtio etween the numer of solutions of the hiophntine eqution with trget c ompred to the eqution with trget 0 is the rtio of the rdinl ftors f an(c)/f an(0)F he multiplitive ftors for p = 2 is 1 s indited in theorem QS nd therefore hs no e'etF hen using the other vlues otined in theorem QUD the in(nite produt of the ftors of f an(0) nd f an(c ̸ = 0) re respetively

p≡1 mod 4 1 - 1 p -1 p≡3 mod 4 1 + 1 p -1 nd p≡1 mod 4 i\{c≡g i mod 4 mod p} 1 + p -1 -4x i+1 (p -1) 2 p≡3 mod 4 i\{c≡g i mod 2 mod p} 1 - 1 -(-1) i (p -1) 2
sn the seond susriptsD it is of ourse i whih hs to e dedued from cD p nd gF por the ourrenes p ≡ 3 mod 4 where i = 0D we get 1 -(-1) i = 0 nd therefore the lol rdinl ftor is simply 1F egrouping the modulo 4 termsD we get the resultF Proposition 1. The Friedlander-Iwaniec and the Heath-Brown-Xiannan generalized equations have an innite number of solutions for any target c.

Partial proof. he rrdyEvittlewood twin prime onstnt is equl to

p>2 1 - 1 (p -1) 2 ≃ 0.6601061 ording to referene 8F herefore p>2 1 - 1 p(p -1) nd p>2 1 + 1 p(p -1) onverge s well s p≡1 mod 4 1 - 1 p(p -1) nd p≡3 mod 4 1 + 1 p(p -1)
he following iuler produt onverges nd is equl toX

p≡1 mod 4 1 - 1 p p≡3 mod 4 1 + 1 p = 4 π
ording to referene 8 using the veiniz formulF henX

p≡1 mod 4 1- 1 p -1 p≡3 mod 4 1+ 1 p -1 = 4 π p≡1 mod 4 1 -1 p-1 1 -1 p p≡3 mod 4 1 + 1 p-1 1 + 1 p esymptotilly 1 p -→ 0 nd thereforeX 1 -1 p-1 1 -1 p ≃ 1 - 1 p -1 + 1 p = 1 - 1 p(p -1) nd similrly 1 + 1 p-1 1 + 1 p ≃ 1 + 1 p(p -1)
his gives seond order orretion to the veiniz formul nd the in(nite produt with p -1 on the denomintorsD insted of pD will lso onverge @nd the orretion ftor is out IFHUVIAF he sme is true for the produt

p≡3 mod 4 i\{c≡g i mod 2 mod p} 1 - 1 -(-1) i (p -1) 2
leving us with the lst heks to e done on p=≡ mod 4 i\{c≡g i mod 4 mod p}

1 + p -4(x i+1 + (i+1) mod 2 2 ) p(p -1) p≡1 mod 4 i\{c≡g i mod 4 mod p} 1 + p -1 -4x i+1 (p -1) 2
e hve x 1 + x 2 + x 3 + x 4 = p -2D eh x i eing positive integerF hus x i is frtionl prt of pD written underneth f rac(p)F herefore the two previous expressions re iuler in(nite produts looking like

p≡1 mod 4 i\{c≡g i mod 4 mod p} 1 ± 3.f rac(p) (p -1) 2
he multiplitive ftor 3 in this expression will only multiply the onstnt vlue of the expression ompred with the result of ftor 1 s in this veiniz9 type formulD therefore not hnging the limit property @tht is onvergene or divergeneAF roweverD euse the sum of the reiprols of ll prime numers divergesD we need the sme proportion of + ndsigns @where we wrote ±A in order to get onvergent vlue hereD whih depends on the equl even nd odd proportions of i resulting from c ≡ g i mod 2 mod p equtionF iven slight di'erene will give divergent resultF sn this seD if the iuler produt diverges to +∞D the numer of solutions of the hiophntine eqution will e in(niteF sf on the ontrry it 4diverges4 to the 0 vlueD the numer of solutions my still e in(nite @it depends of the rte of onvergene towrds HAF elthough of no ritil sopeD the primitive roots9 eqution remins someE wht umersome to useF e 4simpler4 expression with fster dt proessing performne would e welomeF sn order to do thtD let us strt with the following theorem efore going furtherF void Theorem 39. Let us have g a primitive root of p. The numbers, respec-

tively n 1 and n 2 , of integer solutions #(u, v), u ∈ [0, p-1 2 [, v ∈ [0, p-1 2 [ to the equations n 1 = #(u, v) \ g 0 ≡ g 2u + g 2v mod p n 2 = #(u, v) \ g 1 ≡ g 2u + g 2v mod p is given by n 1 + 1 n 2 =   p-(-1) p-1 2 4 p-(-1) p-1 2 4  
ProofF " vet us use the rdinl mtrix of the monomil y 2 F sf p ≡ 1 mod 4D we refer to the property IQ se I to getX

  0 p -1 0 2 x 1 x 2 0 x 2 x 3  
herefore using property ISD the trnsformtions r ≡ -r mod 2 nd s ≡ -r + s mod 2 led to the equivlene of positions in the lok9s re @the positions eing referened s previouslyAX

1 0 ≡ 1 1 so tht we get the following mtrixX   0 p -1 0 2 x 1 x 2 0 x 2 x 2  
sing equlities to p -1 for eh lineD we end with the mtrixX

  0 p -1 0 2 (p -5)/2 (p -1)/2 0 (p -1)/2 (p -1)/2  
eording to theorem IVD the (rst olumn of the lok9s re gives the primitive roots9 equtions with ftor d orretion nd thereforeX

x 1 = (p -5)/2 x 2 = (p -1)/2 where x 1 = 2 • #(u, v) \ g 0 ≡ g 2u + g 2v mod p x 2 = 2 • #(u, v) \ g 1 ≡ g 2u + g 2v mod p nd where u ∈ [0, p-1 2 [D v ∈ [0, p-1
2 [F he se p ≡ 3 mod 4D hs lredy eing solve erlier using the sme toolsF he mtrix is equl toX

  0 0 p -1 2 (p -3)/2 (p -3)/2 0 (p + 1)/2 (p -3)/2   resulting in x 1 = (p -3)/2
x 2 = (p + 1)/2 he theorem follows then y tking n 2 = 1 2 x 2 D the orretion 1/2 oming from the primitive roots9 equtionD nd n 1 is dedued fterwrds in similr wyF Lemma 1. Let us have p = 1 mod 4 and g a primitive root of p. Then the numbers of integer solutions

#(u, v), u ∈ [0, p-1 2 [, v ∈ [0, p-1
4 [, to the underneath primitive roots' equations are as follows

p-1 4 = #(u, v) \ 0 ≡ g 2u + g 4v mod p, 0 = #(u, v) \ 0 ≡ g 2u+1 + g 4v+2 mod p.
ProofF " he (rst result is otined y writing g 2u ≡ -g 4v ≡ g 4v+(p-1)/2 mod pD so tht 2u ≡ 4v + (p -1)/2 mod p -1D whih is equivlent to u ≡ 2v + (p-1)/4 mod (p-1)/2D (p-1)/4 eing n integer ording to the hypothesisF he previous eqution is liner with the oe0ient of u equl to 1F hereforeD there is no onstrint on this prmeter to quire ny vlue provided y the seond memer if the equtionF yn tht side @pEIAGR is onstnt nd therefore n e ignored in numering solutionsF he oe0ient in front of v eing 2D the numer of vlues tken y u is the rdinl of the domin of de(nition of v divided y 2F rene the (rst resultF he seond result derives from g 2u+1 ≡ -g 4v+2 ≡ g 4v+2+(p-1)/2 mod pD so tht 2u + 1 ≡ 4v + 2 + (p -1)/2 mod p -1D equivlent to u + 1/2 = 2v + 1 + (p -1)/4 + k(p -1)/2 for some integer k whih is impossile s 1/2 is not n integer while the rest of the terms re y the hypothesisF rene the void setF Lemma 2. Let us have p = 1 mod 4 and g a primitive root of p. The numbers of integer solutions

#(u, v), u ∈ [0, p-1 2 [, v ∈ [0, p-1 4 [, to the equations n 1 = #(u, v) \ g k ≡ g 2u + g 4v mod p n 2 = #(u, v) \ g k ≡ g 2u+1 + g 4v+2 mod p are such that n 2 -n 1 = 0 if k ̸ = 0 mod 4 n 2 -n 1 = 1 if k = 0 mod 4
ProofF " vet us onsider A the set of integers {g 2u +g 4v mod p}∪{g 4w mod p} with (u, v) integers desriing one time the ross produt ([0, (p-1)/2[, [0, (p-1)/4[) nd w integers desriing one time [0, (p -1)/4[F sn the sme wyD let us hve the set B ′ of integers {g 2u + g 2 .g 4v mod p} ∪ {g 2 .g 4w mod p} with (u, v) in ([0, (p -1)/2[, [0, (p -1)/4[) nd w in [0, (p -1)/4[ to whih we remove the (p -1)/4 zeroEvlue elements {0, ..., 0} nd let us then ll the resulting set BF vemm I proves tht there re extly (p -1)/4 zeroes in the sets A nd B ′ F herefore B ontins no zeroesF xow B is the omplementry set of A in the set T omposed of (p -1)/4 times the integers {0, 1, ..., p -1}F vet us then hve the set C ′ of integers {g.g 2u + g 2 .g 4v mod p} with (u, v) in ([0, (p -1)/2[, [0, (p -1)/4[) nd C a C ′ ∪ {0, ..., 0} with (p -1)/4 zeroes in the seond memer of the unionF fy lemm ID there re no zeroes in the set C ′ nd therefore there re now extly (p -1)/4 zeroes in CF he set C is the omplementry set of B in T F herefore A nd C re the sme sets sumitted to some permuttion of the elements keeping the equl rdinlity propertyF he di'erene n 2 -n 1 is then gin onsequene of lemm I nd n e esily heked using either numeril exmple or the ove kind of rgumentsF Lemma 3. Let us have g a primitive root of p. The numbers, respectively

n 1 , n 2 , n 3 and n 4 , of integer solutions #(u, v), u ∈ [0, p-1 2 [, v ∈ [0, p-1 2 [, to the equations n 1 = #(u, v) \ g 0 ≡ g 2u + g 4v mod p n 2 = #(u, v) \ g 1 ≡ g 2u + g 4v mod p n 3 = #(u, v) \ g 2 ≡ g 2u + g 4v mod p n 4 = #(u, v) \ g 3 ≡ g 2u + g 4v mod p
is the numbers of solutions #(u, v) to the equation systems

n 1 = #(u, v) \ g 0 ≡ g 2u + g 2v mod p ∩ v = 0 mod 2 n 2 = #(u, v) \ g 1 ≡ g 2u + g 2v mod p ∩ v = 0 mod 2 n 3 = #(u, v) \ g 2 ≡ g 2u + g 2v mod p ∩ v = 0 mod 2 n 4 = #(u, v) \ g 3 ≡ g 2u + g 2v mod p ∩ v = 0 mod 2
ProofF " his is trivil resultF Note. e will soon see tht the ondition v even @nd its opposite v odd onditionA is of quite signi(nt importne nd the only purpose of this trivil lemm is to highlight tht pointF Theorem 40. The equation p = (2α) 2 + β 2 has a unique solution (α, β), α > 0, β > 0, β odd, p ≡ 1 mod 4. There is no solution to the previous equation if p ≡ 3 mod 4. ProofF " his is permt9s theorem on the sums of two squresF ee referene 15F e prime suh tht p ≡ 1 mod 4 is lled ythgoren primeF Theorem 41. The positive values of α and β are given by

a ≡ 1 4 ( p-1 2 )! ( p-1 4 )! 2 mod p b ≡ 1 2 ( p-1 2 )! (( p-1 4 )!) 2 mod p 2α = min(2a, p -2a) β = min(b, p -b)
ProofF " his is result y priedrih qussF ee referene 16F Lemma 4. The integer α is always a square modulo p.

ProofF " heorem RI shows oviously tht a is squreF woreover EI is squre euse -1 ≡ g (p-1)/2 mod p nd p ≡ 1 mod 4 implies (p -1)/2 ≡ 0 mod 2F Lemma 5. The integer β is square modulo p if and only if

1 2 p-1 2
! is a square.

ProofF " fy the quss formuls @theorem RIAD the rtio 2α β mod p is equl to p-1 2 ! mod pF hen lemm U llows to onludeF xote tht numeril veri(tion shows tht the previous result does not pply to the se p ≡ 3 mod 4F Lemma 9. The integer β is always a square modulo p.

ProofF " his is n immedite onsequene of lemms SD T nd VF Lemma 10. Let us have p ≡ 1 mod 4 and α, β the positive integer solutions of p = (2α) 2 + β 2 . Then p = 1 mod 8 ⇔ α ≡ 0 mod 2 p = 5 mod 8 ⇔ α ≡ 1 mod 2

ProofF " vet us onsider the squre of n odd integer X (1+2r) 2 = 1+4r(1+r)F he r(1+r) ftor is the produt of n even term y n odd term nd thereforeD β eing n odd numerD β 2 ≡ 1 mod 8F henD using (2α) 2 = p -β 2 D if p ≡ 1 mod 8 we get (2α) 2 ≡ 0 mod 8 nd if p ≡ 5 mod 8 we get (2α) 2 ≡ 4 mod 8D thus respetively 2α ≡ 0 mod 4 nd 2α ≡ 2 mod 4F rene the result fter division y 2 to get αF 

p ≡ 1 mod 16 ⇔ ∃ (u, v) ∈ I1 2 \ g 4u ≡ 2α mod p g 4v ≡ β mod p p ≡ 9 mod 16 ⇔ ∃ (u, v) ∈ I1 2 \ g 4u ≡ 2α mod p g 4v+2 ≡ β mod p {∅} ⇐ ∃ u ∈ I1 \ g 4u+2 ≡ 2α mod p p ≡ 5 mod 8 ⇔ ∃ (u, v) ∈ I2 2 \ g 2u-1 ≡ 2α mod p g 2v ≡ β mod p {∅} ⇐ ∃ v ∈ I2 \ g 2v-1 ≡ β mod p
ProofF " por some (r, s) ∈ N 2 D we n write g r ≡ 2α mod p nd g s ≡ β mod pF hen p = (2α) 2 + β 2 ≡ g 2r + g 2s ≡ 0 mod pF hus g 2r-2s + 1 ≡ 0 mod pD tht is g 2r-2s ≡ g (p-1)/2 mod pD so tht (nlly r -s ≡ (p -1)/4 mod (p -1)/2F ith the I1 nd I2 domins of de(nitionD we n ignore the mod (p -1)/2 frmework hnging eventully simultneously the sign of r nd s if neededF e get then p = 1 + 4(r -s)F rene the immedite sesX sf r ≡ 0 mod 4 nd s ≡ 0 mod 4 then p ≡ 1 mod 16F sf r ≡ 0 mod 4 nd s ≡ 2 mod 4 then p ≡ -7 mod 16 ≡ 9 mod 16F sf r ≡ 1 mod 2 nd s ≡ 0 mod 2 then p ≡ 5 mod 8F xowD in this two lst sesD the symmetri pirsD respetively (r ≡ 2 mod 4D s ≡ 0 mod 4) nd (r ≡ 0 mod 2, s ≡ 1 mod 2) re to e ddressedF his is veri(edD s well s the (rst void seD numerillyF fesidesD the lst void se is preisely lemm WF Theorem 42. Let us have a prime number p, such that p ≡ 1 mod 4, and its Pythagorean decomposition (2α) 2 + β 2 and g a primitive root of p. Then, up to p = 9973,

2α = | #v even -#v odd | \ g 1 ≡ g 2u + g 2v mod p β = | #v even -#v odd + 1 | \ g 0 ≡ g 2u + g 2v mod p
where || is the absolute value operator, u ∈ [0, p-1

1 [ and v ∈ [0, p-1 2 [.
ProofF " he proof is otined y diret numeril veri(tionF Note. he result is onjetured to e true for ny prime numer p suh tht p ≡ 1 mod 4F

Note. he sme result is of ourse found with the hoie of prmeter u

insted of v or smpling u ∈ [0, p-1 1 [ nd v ∈ [ p-1 2 , p-1
1 [F sn the (rst prt of ppendix qD the reder will (nd the exmple for p = 89D g = 3D α = 4D β = 5 of the solutions ofX eq1 : g 0 ≡ g 2u + g 2v mod p ∩ v ≡ 0 mod 2 eq2 : g 0 ≡ g 2u + g 2v mod p ∩ v ≡ 1 mod 2 eq3 : g 1 ≡ g 2u + g 2v mod p ∩ v ≡ 0 mod 2 eq4 : g 1 ≡ g 2u + g 2v mod p ∩ v ≡ 1 mod 2 es g p-1 = 1 mod pD the seond nd fourth qurters of the dt give redundnt vlues of v nd gps p-1 2 = 44 for the vlues of uF gounting even nd odd vlues for v providesX 

#(u, v), u ∈ [0, p-1 2 [, v ∈ [0, p-1 2 [ to the equations n 1 = #(u, v) \ g 0 ≡ g 2u + g 4v mod p n 2 = #(u, v) \ g 1 ≡ g 2u + g 4v mod p n 3 = #(u, v) \ g 2 ≡ g 2u + g 4v mod p n 4 = #(u, v) \ g 3 ≡ g 2u + g 4v mod p
is given for p ≡ 1 mod 4, up to p = 9973, by

    n 1 + 1 n 2 n 3 n 4     =     (p -3)/4 + signβ • β 2 (p -1)/4 + signα • α (p -3)/4 -signβ • β 2 (p -1)/4 -signα • α    
where

signα = sign(#v even -#v odd) \ g 1 ≡ g 2u + g 2v mod p signβ ′ = sign(#v even -#v odd + 1) \ g 0 ≡ g 2u + g 2v mod p signβ = if (sign(β ′ ) = 0, -1, sign(β ′ ))
and where

u ∈ [0, p -1 1 [, v ∈ [0, p -1 2 [.
ProofF " his is n immedite result of theorem RP s g 2v simply evolves to g 4v in the equtionsF wo implitions provide the key to the proess eqi ⇒ eqiCR where eq5 : g 0 ≡ g 2u + g 4v mod p eq6 : g 2 ≡ g 2u + g 4v mod p eq7 : g 1 ≡ g 2u + g 4v mod p eq8 : g 3 ≡ g 2u + g 4v mod p nd eqi re the equtions given here nd in the former prgrphF hese implitions reX

sf v ≡ 0 mod 2D g i ≡ g 2u + g 2v mod p ⇒ g i ≡ g 2u + g 4 v 2 mod p sf v = 1 mod 2D g i ≡ g 2u + g 2v mod p ⇒ g i+2 ≡ g 2(u+1) + g 4 v+1 2 mod p
Note. he result is onjetured to e true for ny prime numer p suh tht p ≡ 1 mod 4 s it ws for former theorem RPF he seond tle in ppendix q provides the solutions (u, v) to the equtions g i ≡ g 2u + g 4v mod p for p = 89D i = 0 to 3D nd the smpling u ∈ [0, p-1

1 [D v ∈ [0, p-1
2 [F he reder n hek the wy the (u, v) dt is modi(ed from its originl vluesD given in the (rst prt of the ppendixD to the vlues in the seond prt ordingly to the two previous implitionsF Theorem 44. The previous signs in front of the positive α and β, up to p = 9973, are given by

signα = if (i = 0, (#v even -#v odd)/(2α), 2 -i) signβ = (-1) -1+p mod 8 4 + β+1 
2
where i is the solution of g i mod 4 ≡ 2α mod p and where #v even and #v odd are evaluated by the number of solutions of g 1 ≡ g 2u + g 2v mod p within the domain of denition given in the previous theorem. ProofF " he proof is otined y diret numeril veri(tionF he reder my refer to ppendix r in tht intentF Note. yf ourse the theorem is onjetured to e true for ny primeF Note. por prmeter αD dding previous results on p mod 8 vluesD nd reminding tht the se i = 2 is n empty setD it is equivlent to the following tle X p mod 8 i #v even-#v odd 2α 1 0 or(1, -1)

1 2 {∅} 5 1 1 5 3 -1
rereD within the se p = 1 mod 8D up to p = 9973D we get

#v even-#v odd 2α = -1 when p is equl to either 97D 233D 281D 313D 401D 433D 521D 569D 593D 617D 673D 761D 769D 809D 857D 929D 977D 1009D 1033D 1097D 1153D 1193D 1217D 1289D 1433D 1553D 1657D 1697D 1753D 1777D 1889D 1993D 2017D 2089D 2137D 2161D 2273D 2393D 2441D 2473D 2609D 2617D 2633D 2689D 2713D 2729D 2753D 2801D 2857D 2953D 3041D 3121D 3137D 3169D 3257D 3449D 3593D 3761D 3881D 4177D 4241D 4273D 4337D 4409D 4441D 4457D 4481D 4729D 4793D 4801D 4937D 4969D 4993D 5009D 5113D 5273D 5393D 5417D 5441D 5641D 5657D 5689D 5801D 5849D 6089D 6121D 6217D 6257D 6337D 6353D 6481D 6521D 6553D 6569D 6673D 6737D 6793D 6833D 6857D 6961D 6977D 7121D 7193D 7297D 7321D 7369D 7457D 7529D 7561D7681D 7793D 7841D 7937D 8017D 8297D 8329D 8353D 8537D 8609D 8641D 8689D 8713D 9161D 9433D 9473D 9521D 9689D 9697D 9721D 9769D 9833D 9857F
Note. por the sign in front of βD the simpliity of the rule is likely the result of the trivil equivlene g 0 ≡ 1 mod p tht provides systemti well de(ned 4nhor4 c = 1 to the eqution g 0 ≡ g 2u + g 4v mod p @nd therefore indiretly to g 2 ≡ g 2u + g 4v mod pAF here is no possile onfusion etween the enumertion results to ttriute to g 0 ≡ g 2u + g 4v mod p nd those to his losely linked g 2 ≡ g 2u + g 4v mod p equtionF st is not the se for g 1 ≡ g 2u + g 4v mod p equtionD nd diretly linked g 3 ≡ g 2u + g 4v mod p equtionF por some di'erent hoie of gD the former two enumertion results my e swppedF he two lssesD mong the φ(φ(p)) primitive roots of some prime pD re deteted y verifying the g (p-1)/4 vlues @resulting from the ft of one lss for g 2.(p-1)/4 ≡ -1 mod p with its systemti -1 resultAF por exmpleD for p = 17D the two lsses for g re {3, 5, 12, 14} providing g (p-1)/4 = 13 mod p nd {6, 7, 10, 11} providing g (p-1)/4 = 4 mod pF his esy distintion however doesn9t provide n ttriuting proedure for ny literl formulF he reserhed 4nhor4 my then e provided y solving the eqution g i mod 4 ≡ 2α mod pF his method is suessful exept for g 0 mod 4 ≡ 2α mod pF st neessitted here oneEyEone sign djustment missing so fr some dditionl hrteristi reltionshipF Note. epling -1+p mod 8 4 with α within the literl expression of signβ will provide the sme result ording to lemm IHF Theorem 45. Let us have p ≡ 1 mod 4 and g a primitive root of p. The number of integer solutions

#(u, v), u ∈ [0, p-1 2 [, v ∈ [0, p-1 2 [ to the equations n 1 = #(u, v) \ g 0 ≡ g 4u + g 4v mod p n 2 = #(u, v) \ g 1 ≡ g 4u + g 4v mod p n 3 = #(u, v) \ g 2 ≡ g 4u + g 4v mod p n 4 = #(u, v) \ g 3 ≡ g 4u + g 4v mod p is given, up to p = 9973, by     n 1 + 1 n 2 n 3 n 4     =      (p -3)/4 + if (p ≡ 1 mod 8, signβ. 3β 2 , 1 + signβ. β 2 ) (p + 1)/4 + signα.2α -signβ. β 2 -if (p ≡ 1 mod 8, 1, 0) (p -3)/4 + if (p ≡ 1 mod 8, -signβ. β 2 , 1 -signβ. 3β 2 ) (p + 1)/4 -signα.2α -signβ. β 2 -if (p ≡ 1 mod 8, 1, 0)     
where we still have the same denitions of α, β and the signs in front of them. ProofF " he proof is otined y diret numeril veri(tionF Note. eginD the result is onjetured to e true for ny prime numer p suh tht p ≡ 1 mod 4F xowD s mentioned erlierD the impt of missing very simple literl forE muls for high vlues of p is totlly minor for su0iently preise numeril veri(tionsF here is need for results on only few instnes of p to get good trending vlues s the reder n sertin undernethF Numeric verication. The Friedlander-Iwaniec equation.

he following tle gives the nonEumultive rdinl ftors of the priedlnderEswnie equtionF 

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 2 1 1 1 1 1 1 1 1 1 1 3 1.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 293 
0.99659 0.99961 0.99996 0.99996 1.00041 0.99996 1.00041 0.99996 1.00006 1.00041 he rdinl ftors tend towrds 1 quite rpidly s the di'erene to I is typilly plus or minus the order of mgnitude of the inverse of the instne vlue pF he ten (rst instnes give lredy good prognosis of the umultive rdinl ftors in(nite produts s indites the underneth tleF 

p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 2 1 1 1 1 1 1 1 1 1 1 3 1.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 293 
1.26320 0.80058 0.66351 1.62966 0.91868 0.61372 1.22177 0.83498 1.02317 1.53646 f r c/0 1 0, 63377 0, 52526 1, 29010 0, 72726 0, 48585 0, 96720 0, 66100 0, 80998 1, 21632 he rtio f r c/0 t the lst line of the tle gives the rtio of the rdinl ftors for the trgets c ompred to tht of the trget 0F he e'etive numers of solutions of the priedlnderEswnie eqution x 2 1 + x 4 2 = p + cD suh tht p < p i D is indited in the underneth tleF hese enumertions re ville using ppendix pF he rtio r c/0 of numers of solutions for the trgets c ompred to the numer of solutions for the trget 0D orresponding to the se i = 3000000D is given t the lst line of the tleX xow we n ompre the rtios f r c/0 nd r c/0 whih re supposedly equl symptotillyX

i c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c =
p c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 f r c/0
1 0, 63377 0, 52526 1, 29010 0, 72726 0, 48585 0, 96720 0, 66100 0, 80998 1, 21632 r c/0 1 0.62688 0.53297 1.30197 0.72368 0.49627 0.97278 0.65868 0.82274 1.23518 -1, 09% 1, 47% 0, 92% -0, 49% 2, 14% 0, 58% -0, 35% 1, 58% 1, 55% set -0.107% -0.026% -0.127% -0.147% -0, 002% -0, 040% -0, 056% -0, 008% Note. sing eqution IQD the literl formul for ny vlue of c in Z of the priedlnderEswnie eqution isX

lim y-→+∞ #{y = x 2 1 + x 4 2 -c} = f an(c) Γ(1/2)Γ(5/4) 2 • Γ(7/4) • y 3/4
ln(y) where f an(c) is the rdinl ftor of cF 7. Broadening the picture he fous of our study hs een on the term tht usully is lled the 4fudge ftor4 of the literl formul giving the numer of solutions of hiophntine equtionF e len on lredy known results @here those for a HA to proeed for other trgetsF herefore it seems tht the whole rnge of evlutions n e extrted only if we know t lest one mong themF his is true if we seek mthemtil proof of literl formulF sn se we don9t dispose of n initil dtD our pproh remins however fully useful if we limit ourself to merely seeking wht this formul should eF sndeedD the method here relies on the seprtion of two evlutionsD the (rst one enling to get the fudge ftorsD the seond @not overed hereA ddressing the typil shpe of the hyperE volumes in whih the solutions to the proposed hiophntine prolem spredF xormliztionD s illustrted in this rtileD is the key to produe the relevnt fudge ftorsF sing lterntive methods to get the hyperEvolumes my then give ess to the generl formulF xot eing proof thenD it is nevertheless the 4only possile literl result4 one would expet fter the prolem a H @for exmpleA is properly solvedF he unsid premise @or xiomA hereD of ourseD is tht the spe @or hyperEvolumeA in whih the solutions develop for di'erent trgets isn9t physilF xumers re oneptsD therefore without weight le to distort their environment s does for exmple mss in the universeF peulting on suh possiility seems to us more outlndishD or nonEmthemtilD thn simply ignoring itF e few theorems issued t the end of this rtile remin dependent on numerE il veri(tions nd re therefore limited to (nite numer of prime numers of the p ≡ 1 mod 4 typeF elthough of no onsequene to the enumertion resultsD generl literl nswer would provide more thn empty stisftionF purther (ndings in tht diretion my well spred over the spei( requirement for monomils z 2 nd z 4 nd e ruil in more generl primitive roots9 equE tions sesF yne n ite for exmples primitive roots9 equtions linked to z 3 nd z 6 F he deompositions of pD there ginD hs previling roleF sndeed deE ompositions like p = r 2 + 3s 2 or p = ((t 1 + 2t 2 ) 2 + (t 1 -t 2 ) 2 + (-(2t 1 + t 2 )) 2 )/6 emerge on these osionsF viterl evlutions nevertheless re rpidly more omplex when z 12 or z 24 ses re ddressed nd prioritizing the evlution of the numer of primes equl to x 2 + xy + y 2 D or more generlly ux 2 + vxy + wy 2 to strt withD efore meddling with z 3 1 + z 2 1 z 2 + z 1 z 2 2 + z 3 2 D my e more pE tivting @if interestedD refer to 18 permt heet ixerise IHA thn the mere monomil sesF Appendix A. Cardinal matrices samples

x 2 g 0 g 1 g 4 g 2 g 9 g 5 g 11 g 3 g 8 g 10 g 7 g 6 1 2 3 4 5 6 7 8 9 10 11 12 0 0 2 0 2 2 0 0 0 0 2 2 0 2 g 0 1 1 2 0 2 2 0 0 0 0 2 2 0 g 1 2 2 1 2 0 2 2 0 0 0 0 2 2 g 4 3 0 2 1 2 0 2 2 0 0 0 0 2 g 2 4 2 0 2 1 2 0 2 2 0 0 0 0 g 9 5 2 2 0 2 1 2 0 2 2 0 0 0 g 5 6 0 2 2 0 2 1 2 0 2 2 0 0 g 11 7 0 0 2 2 0 2 1 2 0 2 2 0 g 3 8 0 0 0 2 2 0 2 1 2 0 2 2 g 8 9 0 0 0 0 2 2 0 2 1 2 0 2 g 10 10 2 0 0 0 0 2 2 0 2 1 2 0 g 7 11 2 2 0 0 0 0 2 2 0 2 1 2 g 6 12 0 2 2 0 0 0 0 2 2 0 2 1

x 2 D << mp >>= g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11 1 2 4 8 3 6 12 11 9 5 10 7 0 0 2 0 2 0 2 0 2 0 2 0 2 0 g 0 1 1 2 2 0 0 0 0 2 0 2 2 0 g 1 2 2 1 0 0 2 2 2 2 0 2 0 0 g 2 4 2 0 1 2 2 0 0 0 0 2 0 2 g 3 8 0 0 2 1 0 0 2 2 2 2 0 2 g 4 3 0 2 2 0 1 2 2 0 0 0 0 2 g 5 6 0 2 0 0 2 1 0 0 2 2 2 2 g 6 12 0 2 0 2 2 0 1 2 2 0 0 0 g 7 11 2 2 0 2 0 0 2 1 0 0 2 2 g 8 9 0 0 0 2 0 2 2 0 1 2 2 0 g 9 5 2 2 2 2 0 2 0 0 2 1 0 0 g 10 10 2 0 0 0 0 2 0 2 2 0 1 2 g 11 7 0 0 2 2 2 2 0 2 0 0 2 1

x 2 D mp = 6 0 g 0 g 6 g 1 g 7 g 2 g 8 g 3 g 9 g 4 g 10 g 5 g 11 0 1 12 2 11 4 9 8 5 3 10 6 7 0 0 1 2 2 0 0 2 2 0 0 2 2 0 0 g 0 1 2 1 0 2 2 2 0 0 2 0 2 0 0 g 6 12 2 0 1 2 2 0 2 2 0 2 0 0 0 g 1 2 0 2 2 1 2 0 0 0 2 2 0 2 0 g 7 11 0 2 2 2 1 0 0 2 0 0 2 0 2 g 2 4 2 2 0 0 0 1 0 2 2 2 0 0 2 g 8 9 2 0 2 0 0 0 1 2 2 0 2 2 0 g 3 8 0 0 2 0 2 2 2 1 2 0 0 0 2 g 9 5 0 2 0 2 0 2 2 2 1 0 0 2 0 g 4 3 2 0 2 2 0 2 0 0 0 1 0 2 2 g 10 10 2 2 0 0 2 0 2 0 0 0 1 2 2 g 5 6 0 0 0 2 0 0 2 0 2 2 2 1 2 g 11 7 0 0 0 0 2 2 0 2 0 2 2 2 1 equivlent to 0 g 0 g 6k g 1 g 6k g 2 g 6k g 3 g 6k g 4 g 6k g 5 g 6k 0 1.g 6k 2.g 6k 4.g 6k 8.g 6k 3.g 6k 6.g 6k 0 0 1 4 0 4 0 4 0 g 0 g 6k 1.g 6k 2 1 4 2 2 2 0 g 1 g 6k 2.g 6k 0 4 3 0 2 2 2 g 2 g 6k 4.g 6k 2 2 0 1 4 2 2 g 3 g 6k 8.g 6k 0 2 2 4 3 0 2 g 4 g 6k 3.g 6k 2 2 2 2 0 1 4 g 5 g 6k 6.g 6k 0 0 2 2 2 4 3

x 2 D mp = 4 g 0 g 4 g 8 g 1 g 5 g 9 g 2 g 6 g 10 g 3 g 7 g 11 1 3 9 2 6 5 4 12 10 8 11 7 0 0 2 2 2 0 0 0 2 2 2 0 0 0 g 0 1 1 0 0 2 0 2 2 0 2 0 2 0 g 4 3 0 1 0 2 2 0 2 2 0 0 0 2 g 8 9 0 0 1 0 2 2 0 2 2 2 0 0 g 1 2 2 2 0 1 2 2 0 2 0 0 2 0 g 5 6 0 2 2 2 1 2 0 0 2 0 0 2 g 9 5 2 0 2 2 2 1 2 0 0 2 0 0 g 2 4 2 2 0 0 0 2 1 0 0 2 0 2 g 6 12 0 2 2 2 0 0 0 1 0 2 2 0 g 10 10 2 0 2 0 2 0 0 0 1 0 2 2 g 3 8 0 0 2 0 0 2 2 2 0 1 2 2 g 7 11 2 0 0 2 0 0 0 2 2 2 1 2 g 11 7 0 2 0 0 2 0 2 0 2 2 2 1 equivlent to 0 g 0 g 4k g 2 g 4k g 1 g 4k g 3 g 4k 0 1.g 4k 4.g 4k 2.g 4k 8.g 4k 0 0 1 6 0 6 0 g 0 g 4k 1.g 4k 2 1 4 4 2 g 1 g 4k 2.g 4k 0 4 5 2 2 g 2 g 4k 4.g 4k 2 4 2 1 4 g 3 g 4k 8.g 4k 0 2 2 4 5

x 2 D mp = 2 X g 0 g 2 g 4 g 6 g 8 g 10 g 1 g 3 g 5 g 7 g 9 g 11 1 4 3 12 9 10 2 8 6 11 5 7 0 0 2 2 2 2 2 2 0 0 0 0 0 0 g 0 1 1 2 0 0 0 2 2 0 0 2 2 0 g 2 4 2 1 2 0 0 0 0 2 0 0 2 2 g 4 3 0 2 1 2 0 0 2 0 2 0 0 2 g 6 12 0 0 2 1 2 0 2 2 0 2 0 0 g 8 9 0 0 0 2 1 2 0 2 2 0 2 0 g 10 10 2 0 0 0 2 1 0 0 2 2 0 2 g 1 2 2 0 2 2 0 0 1 0 2 2 2 0 g 3 8 0 2 0 2 2 0 0 1 0 2 2 2 g 5 6 0 0 2 0 2 2 2 0 1 0 2 2 g 7 11 2 0 0 2 0 2 2 2 0 1 0 2 g 9 5 2 2 0 0 2 0 2 2 2 0 1 0 g 11 7 0 2 2 0 0 2 0 2 2 2 0 1 equivlent to H g 0 g 2k g 1 g 2k H 1.g 2k 2.g 2k 0 0 I 12 0 g 0 g 2k 1.g 2k P 5 6 g 1 g 2k 2.g 2k H 6 7

por equtionX p = x 2 + y 4 -cD x ∈ N D y ∈ P {mx a IQY GB hoose trgets9 rnge BG pmx a WUY GB hoose prime numers9 rnge BG print@4etor I X xoneEumultive rdinl ftor for a H to 4mxAY print@4etor P X gumultive rdinl ftor for a H to 4mxAY x a vetor@mxCIAY x a vetor@mxCIAY print@4p a P4AY for@ a HD mxD xCI a IFHAY printf@47FUf4D xAY print@44AY x a xY printf@47FUf4D xAY forprime@p a QD pmxD pmodR a p7RY print@44AY print@4p a 4pAY g a lift@znprimroot@pAAY if@pmodR aa QD for@ a HD mxD modp a 7pY if@modp aa HD x a pB@pEIAD gj a IY for@j a ID pEID gj a @gjBgA7pY if@gj aa modpD jg a j7@pEIAY jg a jg7PY rekAAY if@jg aa HD x a pBpEPBpCID x a pBpEPBpEIAAY xCI a xG@pEIAG@pEIACHFHAD nv a vetor@RAY gP a @gBgA7pY gQ a @gPBgA7pY gR a @gPBgPA7pY gPt a IY for@u a HD @pEIAGPEID gPt a gPBgPtY gRt a IY for@v a HD @pEIAGPEID gRt a gRBgRtY t a gPtCgRtY t a t7pY if@@tEIA7p aa HD nvI a nvICID if@@tEgA7p aa HD nvP a nvPCID if@@tEgPA7p aa HD nvQ a nvQCID if@@tEgQA7p aa HD nvR a nvRCIAAAAAAY nvI a nvICIY for@ a HD mxD modp a 7pY if@modp aa HD x a @pEIAB@pEPAD gj a IY for@j a ID pEID gj a @gjBgA7pY if@gj aa modpD jg a j7@pEIAY jg a jg7RY x a pB@pEIAERBnvjgCIAAAY xCI a xG@pEIAG@pEIACHFHAAY printf@47FUf4D xAY print@44AY for@ a HD mxD xCI a xCIBxCIAY printf@47FUf4D xAA} Appendix G. Primitive roots' solutions gse IX p = 89D g = 3D α = 4D β = 5F olutions ofX eq1 : g 0 ≡ g 2u + g 2v mod p ∩ v ≡ 0 mod 2 eq2 : g 0 ≡ g 2u + g 2v mod p ∩ v ≡ 1 mod 2 eq3 : g 1 ≡ g 2u + g 2v mod p ∩ v ≡ 0 mod 2 eq4 : g 1 ≡ g 2u + g 2v mod p ∩ v ≡ 1 mod 2

where u ∈ [0, 

  we ollet the olumn vetor [#(i)] vlues whih re the elements of the projetive rdinl imgeD i = 0 to m -1F Denition 4. vet us multiply ll the omponents of the stndrd irulnt rdinl mtrix y the sme onstnt suh tht its (rst olumn is equl to the normlized rdinl imgeF e ll the resulting mtrixD fter dividing it y 1/mD the normlized irulnt rdinl mtrix M

  terms my hve lrge vluesD tht is p k nd i p k D whih therefore my e messy hllenge for the enumertion gol s the size of the mtrix my rise to in(nityF o let us ddress (rst the 4i p k 4 hllengeF 4. Degree of stability e introdued in the previous setion the rdinl imge of some hosen funtion RD rdinl imge whih is giving the proportions of ourrenes ##c of R(...) = cD c = 0, 1, ..., m -1 in menvironmentX [##0, ##1, . . . , ##(m -1)]

  onF Denition 5. e ll i p k the degree of stilityD of the p k instneD when for ny lrger environment m = p i p k +r k D r = 1, 2, ..., +∞D the new normlized vlues ##c re otined y simple p ip k k trnsltions of the originl vlues in the p

  term hs the sme omponents nd the seond vry the result y 0 or 1F rene the resultF Theorem 23. When m -→ +∞, the ratio of the value of a component of the rst column of the matrix ([1] -[I]) n to the value of the rst row and column tends towards 1. ProofF " vet us use the previous nnottion X g(m) = mf (m) -f (m) ± 1 ∼ mf (m) -→ +∞ when m -→ +∞F es ll omponents just di'er y 0 or 1D the result followsF

2m

  [(0, 1)] Theorem 25. When m -→ +∞, the multiplication of ([1] -[I]) n by 2 m [(0, 1)] is equivalent to a multiplication by the scalar 1.

  -1)/4 (p -1)/4 (p -1)/4 (p -1)/4 1 (p -5)/4 (p -1)/4 (p -1)/4 (p -1)/4 1 (p -1)/4 (p -5)/4 (p -1)/4 (p -1)/4 1 (p -1)/4 (p -1)/4 (p -5)/4 (p -1)/4 1 (p -1)/4 (p -1)/4 (p -1)/4 (p -



  the left to the left to the left to the left to the left void = to the left to the left to the left to the left por se PD p ≡ 3 mod 4D we hve M 1 = M 2 nd the following lultionsX p-1) M 0.M 1.M 2.Kto the left to the left to the left to the left void = 1 p.(p-1) M 0.M 1. to the left to the left to the left void = 1 p.(p-1) M 0 -1)/2 (p -3)/2 0 (p + 1)/2 (p -1)/2 to the left to the left to the left void = 1 p.(p-1)

  -1)/4 (p -1)/4 (p -1)/4 (p -1)/4 1 (p -5)/4 (p -1)/4 (p -1)/4 (p -1)/4 1 (p -1)/4 (p -5)/4 (p -1)/4 (p -1)/4 1 (p -1)/4 (p -1)/4 (p -5)/4 (p -1)/4 1 (p -1)/4 (p -1)/4 (p -1)/4 (p -5)/4

  1.(M 2 -I).Kto the left to the left to the left to the left to the left void to the left to the left to the left to the left por se PD p ≡ 3 mod 4D we hve M 1 = M 2 nd the following lultionsX

Lemma 11 .

 11 Let us have p ≡ 1 mod 4 and (α, β) the positive integer solutions of p = (2α) 2 +β 2 . Then, for I1 = [0, (p-1)/4[ and I2 = [0, (p-1)/2[, and (u, v) integers, up to p = 9973,

  even odd ∆ even-odd eqI | eqP 12 + 6 12 + 12 -6 = -(β + 1) eqQ | eqR 10 + 16 10 + 8 8 = 2α Theorem 43. Let us have g a primitive root of p. The number of integer solutions

  g u.d .x g j .g u.d so tht trivillyy g i = c g i .g u.d .x 0 + p-1 j=0 c (g i .g u.d -g j .g u.d) .x g j .g u.d whih right memer is the de(nition of y g i .g u.d F Property 4. The equal values transfer property is true for any integer md multiple of d such that d ≤ md ≤ p -1.

  ≡ g 2u + g 4v mod p eq6 : g 2 ≡ g 2u + g 4v mod p eq7 : g 1 ≡ g 2u + g 4v mod p eq8 : g 3 ≡ g 2u + g 4v mod p

	gse PX p = 89D g = 3D a = 4D b = 5F		
	olutions ofX eq5 : g 0 where u ∈ [0, p-1 1 [D v ∈ [0, p-1 2 [D w = 2u + 4vF	
	p-1 1 [D v ∈ [0, p-1 eq5 eq6 2 [D w = 2u + 2vF u v w u v w u v eq7	w	eq8 u v	w
	eq1 1 1	6	eq2 3 1 10	eq3 13 12 74	eq4 25 7 78
	u v 3 5 26 w	u v 11 2 30 w	u v 5 17 78 w	u v 35 3 82 w
	1 2 19 3 50 6	2 1 7 10 54 6	13 24 74 39 6 102	24 13 74 13 20 106
	3 10 26 15 17 98	10 3 26 35 8 102	5 34 78 27 18 126	34 5 78 37 14 130
	6 50 21 21 126	6 19 50 43 11 130	39 12 102 35 15 130	12 39 102 31 18 134
	34 98 35 19 146	34 15 98 39 18 150	27 36 126	36 27 126
	42 126 45 1 94	42 21 126 47 1 98	35 30 130 57 12 162	30 35 130 69 7 166
	38 146 47 5 114	38 35 146 55 2 118	49 17 166	79 3 170
	2 94 63 3 138	46 1 94 51 10 142	57 24 162 83 6 190	68 13 162 57 20 194
	10 114 59 17 186	54 3 114 79 8 190	49 34 166 71 18 214	78 5 166 81 14 218
	6 138 65 21 214	50 19 138 87 11 218	83 12 190 79 15 218	56 39 190 75 18 222
	34 186 79 19 234	78 15 186 83 18 238	71 36 214	80 27 214
	42 214 8 11 60	86 21 214 10 13 72	79 30 218 16 11 76	74 35 218 8 13 68
	38 234 22 4 60	82 35 234 26 5 72	22 8 76	26 4 68
	8 22 60	9 25 68 24 22 136	16 22 76 2 21 88	7 25 64 32 21 148
	8 60	25 9 68 44 12 136	22 16 76 42 1 88	25 7 64 42 16 148
	36 18 144	23 43 132 30 21 144	2 42 88 8 22 104	31 41 144
			43 23 132 42 15 144	42 2 88 44 4 104	41 31 144
	36 144	29 41 140	8 44 104 26 14 108
			41 29 140	44 8 104 28 13 108
	52 11 148	54 13 160	26 28 108 60 11 164	52 13 156
	66 4 148	70 5 160	28 26 108 66 8 164	70 4 156
	22 148	53 25 156 68 22 224	60 22 164 46 21 176	51 25 152 76 21 236
	8 148	69 9 156 88 12 224	66 16 164 86 1 176	69 7 152 86 16 236
	80 18 232	67 43 220 74 21 232	46 42 176 52 22 192	75 41 232
			87 23 220 86 15 232	86 2 176 88 4 192	85 31 232
	36 232	73 41 228	52 44 192 70 14 196
			85 29 228	88 8 192 72 13 196
				70 28 196
				72 26 196

ProofF " his is n immedite onsequene of theorem RI with the sme rE gument pplied on -bF Lemma 6. The integer 2 is a square modulo p if p ≡ or(1, 7) mod 8 and is not if p ≡ or(3, 5) mod 8. ProofF " sing the vegendre symol 9D a p = a (p-1)/2 mod p for ny integer aD we pply the reltionshipD spei( to 2D 2 (p-1)/2 mod p ≡ 2 p = (-1) (p 2 -1)/8 = if (p ≡ ±1 mod 8, 1, -1)F vet us hve g primitive root of p so tht g i ≡ 2 mod p for some integer iF hen g i.(p-1)/2 = if (p ≡ ±1 mod 8, 1, -1) mod pF herefore i is even if p ≡ ±1 mod 8 nd i is odd if p ≡ ±3 mod 8F rene the result modulo 8F Lemma 7. The two integers 2α and β are linked by the relationship 2α ≡ g p-1 4 +or(0, p-1 2 ) .β mod p where g is a primitive root of p. ProofF " por some integers u nd vD we hve 2α = g u mod p nd β = g v mod pF hen p = (2α) 2 + β 2 implies g 2u + g 2v = g 2u .(1 + g 2(v-u) ) = 0 mod pF es g 2u ̸ = 0 mod pD we hve neessrily g 2(v-u) = -1 = g (p-1)/2 mod p nd therefore v -u = p-1 4 mod p-1 2 F he intervl ] -(p -1)/2, (p -1)/2] overing the whole domin of de(nition needed here to ddress vlues of u nd vD we get u -v = or(1, -1). p-1 4 with one of the two terms u nd v eventully negtiveF wore simplyD one n just write (2α) 2 + β 2 = 0 mod p = 1 + (-1) mod p = (1 + g 2.(p-1)/4 ) mod p giving the result y stright identi(tion of termsF yf ourseD similrly β ≡ or(1, -1).g p-1 4 .(2α) mod pF en lterntive writing to or(1, -1).g p-1 4 is then g p-1

4 +or(0, p-1

2 ) F Note. he g p-1 4 mod p vlue emerges here unsurprisinglyF enother wy to ring it forwrd is y writingX

where g is a primitive root of p.

Numeric verication. The Heath-Brown-Xiannan equation.

he following tle gives the nonEumultive rdinl ftors of the rethE frown-innn equtionF 

1.36198 1.07474 0.35320 1.79168 1.26721 0.33289 1.37582 0.88937 0.62004 1.99581 f r c/0 1 0, 78911 0, 25933 1, 31550 0, 93042 0, 24441 1, 01017 0, 65300 0, 45525 1, he e'etive numers of solutions of the rethEfrown-innn eqution x 2 + y 4 = p + c suh tht p < p i is indited in the underneth tleF hese enumertions re ville using ppendix p pending on the suggested modiE (tions of the progrmF

he rtio r c/0 of numers of solutions for the trgets c ompred to the numer of solutions for the trget 0D orresponding to the se i = 6000000 @i the index of p i AD is given t the lst line of the tleF gompring the rtios f r c/0 nd r c/0 whih re supposedly equl symptotillyD we getX

1 0, 78911 0, 25933 1, 31550 0, 93042 0, 24441 1, 01017 0, 65300 0, 45525 1, 46538 r c/0 1 0, 73643 0, 30669 1, 27658 0, 83272 0, 28795 0, 97378 0, 63913 0, 50166 1, 40710 -6, 68% 18, 26% -2, 96% -10, 50% 17, 81% -3, 60% -2, 12% 10, 19% -3, 98% he ovious omment tht n e mde here is tht the omprison is muh less stisftory thn in the priedlnderEswnie seF he explntion is not in some hidden grounds mking the rdinl ftors method defetiveF xor is the explntion in the lesser numers of solutions @out QFS timesA in omprison to the priedlnderEswnie seD or t lestD not extlyF he rel use is given y the following tleF e hek the evolution of the o'set etween the rel numers of solutions nd the smple t given step p < p i X he tle shows lrge disrepny for low vlues of iF here re often mny more or mny less solutions ner the origin thn expeted symptotillyF he sitution is thtD in order to redue the o'setsD we need lot more enumertion of the solutions for the rethEfrown-innn type equtions while we re limited on our lptop y memory over)owsF por ojetion to the still fr wy to the expeted resultsD let us just rememer tht this kind of enumertion evolution hs likely logrithmi trend nd thereforeD lthough rpid t the strtD will previl extremely slowly fterwrdsF he oserved trends suggest n i = 10 12 rnge requirementD t lestD to estlish less thn 1% devition for the ove trgets c = 2 or c = 5F

Appendix B. Equal values transfer property p = 13D 4periodiity of r in g r F Y = M XF fefore reEorderingF g 0 g 1 g 4 g 2 g 9 g 5 g 11 g 3 g 8 g 10 g 7 g 6 X Y 1 2 3 4 5 Appendix C. Eigenvectors, eigenvalues matrices' program his ppendix gives the eigenvetorsD eigenvlues mtries nd expression of some ondensed rdinl mtrixF here re four prmeters to e hosen y the rederF st su0es then to mke opy of the progrm on the riGgp online pplition @menu winD q in your rowserAF xote tht sometimes the exponentition sign ¢ won9t opy suessfully nd hs to e retyped mnully @lines IR nd IU of progrmAF {vi a IY GB hoose type of vrile @I for integersD H for prime numersA BG p a IQY GB hoose the prime numer instne BG n a PY GB hoose nturl numer power of vrile z BG rmd a QY GB hoose integer for rnk of rdinl mtrix r a rmdBdCI BG d a gd@nDpEIAY md a rmdBdY delt a @pEIAGmdCHFHY if@delt%I `b HD print@4gesyx X md must divide pEI4AY md a pEID if@md b pEID print@4gesyx X md must divide pEI4AY md a pEIAAY v a vetor@mdAY g a vetor@pEIAY sigm a vetor@mdCIAY gI a IY sigmI a pEICviY w a exp@PBsBiGpAY for@gg a PDpEPD gP a ggY for@i a QD pEID gia @giEIBggA%pY if@gi aa ID rekDii a iAAY if@ii aa pEID rekAAY for@i a HD mdEID sigmiCP a viCdBsum@j a HD @pEIAGdEID w¢@EgIC@iCdBjA%@pEIAAAAY sq a mtrix@mdCIDmdCIDiDjDif@j aa iDsigmiDHAAY for@i a HD mdEID viCI a sum@j a HD @pEIAGmdEID w¢@gIC@iCjBmdA%@pEIAAAAY v a mtrix@mdCIDmdCIDiDjDif@j aaIDIDif@i aa ID@pEIAGmdDv@iCjERA%mdCIAAAY g a onj@vAY ww a @IGpABvBsqBgY print@AY print@4iigenvetor mtrix rel prt of v4AY printf@4%FQf4Drel@vAAY print@AY print@4iigenvetor mtrix imginry prt of v4AY printf@4%FQf4Dimg@vAAY print@AY print@4iigenvlues mtrix rel prt of sq4AY printf@4%FQf4Drel@sqAAY print@AY print@4iigenvlues mtrix imginry prt of sq4AY printf@4%FQf4Dimg@sqAAY print@AY print@4gondensed rdinl mtrix ww4AY printf@4%FHf4Drel@wwAA} Appendix D. F-I-cardinal factors: Basic program his ppendix enles to get the normlized rdinl ftors for the priedlnderEswnie eqution @pEsEequtionA over rnge of trgets nd inE stnes @prime numersA with the online esGq pltformF yne n use it for other type of equtions with degree of stility equl to 1F st su0es to mke opy of the progrm on the riGgp online pplition @menu winD q in your rowserAF xote tht sometimes the exponentition sign ¢ won9t opy suessfully nd hs to e retyped mnully @line II of progrmAF {mx a 20Y GB hoose trgets rnge BG pmx a 97Y GB hoose prime numers rnge BG print@4pirst vetor X rdinl ftor for p4AY print@4eond vetor X produt of rdinl ftors from p a P to p4AY fn a vetor@mxCIAY for@j a ID mxCID fnj a IAY forprime@p a PD pmxD n a vetor@mxCIAY for@y a ID pEID for@xI a HD pEID for@xP a HD pEID a @EyCxI¢PCxP¢RA7pCIY if@ `a mxCID n a nCIFHAAAAY if@p `a mxD for@j a HD mxEpD k a mxEjY nkCI a nk7pCIAAY n a @IG@pB@pEIAAABnY print@44AY print@4p a 4 p4 a H to 4 mxAY printf@47FUf4D nAY for@j a ID mxCID fnj a fnjBnjAY print@44AY printf@47FUf4D fnAA} Appendix E. F-I-cardinal factors: Primitive roots' program his ppendix enles to get the normlized rdinl ftors for the priedlnderEswnie eqution over rnge of trgets nd instnes @prime numersAF st su0es to mke opy of the progrm on the riGgp online pplition @menu winD q in your rowserAF

{mx a 13Y GB hoose trgets9 rnge BG pmx a 97Y GB hoose prime numers9 rnge BG print@4etor IX xoneEumultive rdinl ftor for a H to 4mxAY print@4etor PX gumultive rdinl ftor for a H to 4mxAY x a vetor@mxCIAY x a vetor@mxCIAY print@4p a P4AY for@ a HD mxD xCI a IFHAY printf@47FUf4D xAY print@44AY x a xY printf@47FUf4D xAY forprime@p a QD pmxD pmodR a p7RY print@44AY print@4p a 4pAY if@pmodR aa QD for@ a HD mxD modp a 7pY if@modp aa HD x a pBpEID x a pBpEpEIAY xCI a xGpG@pEIACHFHAD g a lift@znprimroot@pAAY gP a @gBgA7pY gQ a @gPBgA7pY gR a @gPBgPA7pY nv a vetor@RAY gPt a IY for@u a HD @pEIAGPEID gPt a gPBgPtY gRt a IY for@v a HD @pEIAGPEID gRt a gRBgRtY t a gPtCgRtY t a t7pY if@@tEIA7p aa HD nvI a nvICID if@@tEgA7p aa HD nvP a nvPCID if@@tEgPA7p aa HD nvQ a nvQCID if@@tEgQA7p aa HD nvR a nvRCIAAAAAAY nvI a nvICIY for@ a HD mxD modp a 7pY if@modp aa HD x a @pEIAB@pEIAD gj a IY for@j a ID pEID gj a @gjBgA7pY if@gj aa modpD jg a j7@pEIAY jg a jg7RY jgpr a PBfr@jgGPAY if@jgpr aa HD x a pBpEPERBnvjgCIY rekD x a pBpERBnvjgCIY rekAAAAY xCI a xGpG@pEIACHFHAAY printf@47FUf4D xAY print@44AY for@ a HD mxD xCI a xCIBxCIAY printf@47FUf4D xAA} Appendix F. F-I-equation's exact number of solutions his ppendix enles to get the numer of solutions of the priedlnderE swnie eqution x 2 + y 4 = p + c over rnge of trgets c with the ondition p < p max F st su0es to mke opy of the progrm on the riGgp online pplition @menu winD q in your rowserAF xote tht sometimes the exponentition sign ¢ won9t opy suessfully nd hs to e retyped mnully @lines S nd W of progrmAF { ia IHHHHHY GB hoose i suh p max a p i BG pmx a primes@iAiY print@4i a 4iAY print@4p max a 4pmxAY limitI a f loor@pmx¢@IGPAAY limitP a f loor@pmx¢@IGRAAY for@ a ESD ISD s a HY for@x a HD limitID for@y a HD limitPD t a x¢PCy¢REY if@t `HD t a EtAY if@isprime@tAD if@t `pmxD sCCAAAAY print@4 a 44 nsol a 4sAA} void por the rethEfrown-innn equtionD the only thing to do is to reple 4for@y4 with 4forprime@y4 in line VF Appendix H. Sign rectications of α and β his ppendix enles to get the signs of the rtios |#v even -#v odd|/2α nd |#v even -#v oddCI|/beta s de(ned more preisely in the min text @tking spei( power of g in eh se in ountAF st su0es to mke opy of the progrm on the riGgp online pplition @menu winD q in your rowserAF {pmx a IHHHY forprime@p a QD pmxD g a lift@znprimroot@pAAY gP a @gBgA7pY gQ a @gBgPA7pY gR a @gPBgPA7pY if@p7R aa IDfor@j a ID pD a sqrt@pERBjBjAY if@Etrunte@A aa HD a jY a trunte@AY rekAAY rggP a HY wQ aIY for@u a ID @pEIAD wQ a @wQBgA7pY if@wQ aa PBD rg a uY rekAAY a @CIAGPC@EICp7VAGRY a IEPB@7PAY pp a @@pEIAGRA7PY if@pp aa HD pp a 4even4D pp a 4odd4AY rgR a rg7RY if@rgR aaQD a EID a IAY rgR a rg7RY gP a @gBgA7pY even a HY odd a HY even a HY odd a HY wI aIY for@u a ID @pEIAGID wI a @wIBgPA7pY wP aIY for@v a ID @pEIAGPD wP a @wPBgPA7pY t a wICwPY tt a t7pY pv a v7PY if@tt aa gD if@pv aa HD even a evenCID odd a oddCIAAY if@tt aa ID if@pv aa HD even a evenCID odd a oddCIAAAAY rI a @even EoddAG@PBABY rP a @even EoddCIAG@ABY print@4p a 4p4 @pEIAGR is 4pp4 g a 4g4 a 44 a 4 4 rI a 4rI4 rP a 4rP4 rgR a 4rgRAAA}