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Abstract. Parkinson’s disease (PD) is characterized by motor alter-
ations and associated with dopamine neurotransmitters degeneration,
affecting 3 % of the population over 65 years of age. Today, there is no
definitive biomarker for an early diagnosis and progression characteriza-
tion. Recently, oculomotor alterations have shown promising evidence to
quantify PD patterns. Current capture and oculomotor setups however
require sophisticated protocols, limiting the analysis to coarse measures
that poorly exploit alterations and restrict their standard use in clinical
environments. Computational based deep learning strategies today bring
a robust alternative by discovering in video sequences hidden patterns
associated to the disease. However, these approaches are dependent on
large training data volumes to cover the variability of patterns of inter-
est. This work introduces a novel strategy that exploits data geometry
within a deep Riemannian manifold, withstanding data scarcity and dis-
covering oculomotor PD hidden patterns. First, oculomotor information
is encoded as symmetric matrices that capture second order statistics
of deep features computed by a convolutional scheme. These symmet-
ric matrices then form an embedded representation, which is decoded
by a Riemannian network to discriminate Parkinsonian patients w.r.t a
control population. The proposed strategy, evaluated on a fixational eye
experiment, proves to be a promising approach to represent PD patterns.

Keywords: Oculomotor patterns - Parkinson’s Disease classification -
SPD pooling - Deep non-linear learning - Riemannian manifold

1 Introduction

Neurological diseases are currently the major cause of disability across the world
[5]. Parkinson’s disease (PD) is the second most common neurodegenerative dis-
order, affecting around 2-3 % of the global population over the age of 65. Actu-
ally, this disease reports a prevalence around 22%, being the neurological disor-
der of fastest growth world-around [16,5]. The PD is related to the disruption
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of the dopamine neurotransmitters that control voluntary movement, produc-
ing in consequence alterations in the patient’s movement. Currently, this disease
has no cure, but the early and personalized treatment planning is fundamental
to slow down motor symptoms and disabilities. Nonetheless, today there is no
definitive disease biomarker and the diagnosis is commonly subject to observa-
tional analysis, reporting errors up to 24% [16,19]. In the literature have been
done multiple efforts to characterize and measure motor disabilities correlated
with PD. However, the motion patterns related to tremor in hands, disabilities
during gait and trunk rigidity [22], are mostly captured at an advanced stage
of the disease. More recently, different studies have experimentally supported
the hypothesis of a strong correlation of oculomotor patterns with PD, even at
early stages [22,4,8]. These patterns, however, are collected from sophisticated
capture devices that simplify eye dynamic to global displacement trajectories,
making difficult to address the wide range of disease evolution.

Computational approaches have emerged as an alternative to support the
quantification of motor patterns directly from video analysis. More recently,
deep learning approaches have revealed determining advantages to discover hid-
den patterns and to characterize kinematic descriptors in the modelling of gait
videos, eye movement disorders, cerebrospinal data and tracking eye movement,
among many others [21,9]. These deep strategies however require a huge amount
of training information to deal with observation variability and the quantifica-
tion of proper hidden variables demand deeper architectures to discriminate the
data [13,21]. These requirements are rarely realistic in clinical scenarios with
large pattern variability, and where annotated examples are difficult to get,
above all in the task of discovering motor anomalies associated with PD. To
avoid such challenging training scheme, some works have used a collection of
convolutional responses extracted from the first layers of a Convolutional Neural
Network (CNN) architecture previously trained on a general natural image clas-
sification problem [17]. Subsequently, different works propose pooling methods
to compact these representations in low dimension descriptors using Symmetric
Positive Definite (SPD) matrices that summarize feature statistics [17,2]. How-
ever, these matrices belong to a Riemannian manifold, making it necessary to
design proper methods regarding the geometric structure [11,3]. Despite cur-
rent efforts, manifold learning methods still use shallow learning and machine
learning algorithms need been redesigned to take into account data geometry
[11].

This work introduces a novel digital biomarker that captures discriminatory
PD fixational eye patterns, following a Riemannian deep representation, that
compactly codes in symmetric matrices second order statistics of deep convolu-
tional features. For this purpose, each video sequence is transformed in spatio-
temporal slices that recover tiny tremor patterns, during ocular fixation experi-
ment. From this input, an end-to-end learning process is herein proposed through
a hybrid deep network, whose first layers are convolutional (CNN) and last layers
are Riemannian (SPDNet). The CNN module projects the input slices to deep
features, which are then summarized in symmetric positive embedding matrices,
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allowing to exploit feature correlations that are related to visual observations.
Hence, these embedding matrices feed the Riemannian module, that focus on
non-linear learning, while preserving geometry of input SPD data, achieving a
discrimination between Parkinsonian and control classes. The result is a method
able to discriminate between oculomotor patterns of patients diagnosed with the
disease and a control population.

2 Proposed Method

We hypothesize that symmetric positive embedding vectors are key to discover
new PD biomarkers from deep oculomotor patterns. In this work, we designed
an end-to-end Riemannian deep strategy (ConvSPD network) that uses spatio-
temporal slice observations of a fixational experiment. Each slice is overcom-
pletely represented by convolutional deep features, which in turn are summa-
rized in symmetric embedding vectors and finally exploited by a Riemannian
module to carry out the classification task. The proposed representation pre-
serves the Riemannian geometry of data and robustly discriminates Parkinson
patients from a control population. Figure 1 summarizes the proposed pipeline.

2.1 Convolutional Module and Symmetric Pooling Representation.

A convolutional scheme is here introduced as the first part of the proposed ap-
proach to represent slices of oculomotor sequences. More precisely, this CNN
module learns to extract early to mid-level (textural) features, to capture rele-
vant patterns in eye micro-movements during fixational experiment. The convo-
lutional representation is structured in several layers, hierarchically organized to
progressively increase the time x space receptive field, as well as the semantic
level w.r.t. Parkinsonian classification.

In the deepest layer, the corresponding D feature maps form a tensor X €
RP*WXH xwhere (W, H) are the dimensions of the feature maps, resulting from
the successive convolutional and pooling processes along the representation. This
embedding tensor X, is then summarized in a special symmetric positive embed-
ding matrix by computing second-order statistics from such description [2,20].
To this end, we implement a special pooling layer (SPDpool) that summarizes
the information from the last layer into a symmetric positive embedding matrix
(SPD matrix).

In general SPD matrices aim to compute second order statistics to recover
similarities among features. For instance, by taking the inner product of all pairs
of feature vectors, some works propose correlation volumes to compute visual
similarities between pixels [18]. In this work, if we suppose that (k — 1) is the
index of the last convolutional layer, we re-organize the embedding tensor X in
a matrix named X;_; with D rows and W x H columns. Then we compute the
outer product of Xj_; with itself. Then, the proposed SPDpool layer calculates:
Xk = fsrppoot(Xk—1) = w7 Xk_1 X} . This way, the (i,7) element of X}

WxH
is the inner product (correlation) between the i-th feature map and the j-th
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Fig. 1. Architecture of the proposed ConvSPD network.
ipeli Starting from a collection of
space X time slice images summarizing the oculomotor video sequence, a CNN module
first projects them to an overcomplete embedding of deep features. These features
are then flattened and compacted using a SPD pooling layer. Flattening—these-SPD
representations; The classification is finally performed by a Riemannian non-linear
SPDNet module.

feature map. This provides second order statistics, and has been used to measure
statistical discrepancy [14]. Here, the resultant symmetric positive embedding
D x D matrix allows to capture the most statistically relevant relationships in
the previous CNN module, with respect to the Parkinson classification task.

2.2 Riemmanian Module Structure

In the same way as the SPD Gram matrix was used in [6] and [7] to model texture
and pictorial style respectively, we may consider the Parkinsonian stage of the
patient as a stationary parameter, in the sense that it will affect the ocumolo-
tor action independently on the temporal position (phase) of the movement. In
short, the oculomotor task (fixation or tracking) represents the ”content” (lay-
out) of the input slices, whereas the stage of the disease represents their ”style”.
However, unlike [7], who use Gram matrices in their loss function, we choose
to go on working with stationary features that may be interpreted in terms of
distributions, by completing the CNN module by a Riemannian SPD network.

Then, once obtained the SPD embedding, we maintain the deep represen-
tation while taking into account the Riemmanian geometry of SPD matrices.
We then base the next processing layers on the SPDNet framework, that carries
out a deep non-linear representation [11]. This requires the codification of spe-
cial layers, such as: BiMap, ReFig, and LogEig. We now describe the respective
Riemmanian layers and their particular learning procedure.

The BiMap layer is a fully connected layer designed to generate a new bank of
more compact and discriminative SPD matrices by a bilinear mapping

Xp = Wi X W (1)
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Here, X;_1 € S ’“ ! is the input di_1 x dr_1 SPD matrix of the layer (k — 1),

and W), € R% <y is the transformation matrix (connection weight). Similarly
to the CNN, the sizes of the SPD matrices decrease from layer to layer, i. e dk <
dp—1, and the BiMap layer actually uses m different weight matrices {W A

in order to generate m SPD matrices {Xk )};’;1 in the k-th layer.

The ReFEig layer was inspired by rectified linear units (ReLU) of CNNs. It is
composed of a non-linear function to improve the training process by rectifying
the SPD matrices:

Xi = Up_ymax(el, Zp 1)UL,

where Uy_1 and Xk _1 come from the eigen decomposition X;_1 = Ug_1X%_1 U,g:l.
Here, e € R, is a rectification threshold, I is the identity matrix and X _; the
diagonal matrix of the eigenvalues of X;_1. This operation tunes up the eigen-
values avoiding non-positivenes and improving the discriminative performance.

The LogFEig layer results from the necessity to project SPD matrices back to
FEuclidean space where the classifiers are designed. In Riemannian manifolds we
can attach each point to a flat tangent space with a vector space structure. This
structure ease classic Euclidean computations. To map elements here is used the
Riemannian logarithm map. To facilitate the computing and work on the same
tangent space, we map the SPD matrix Xj_; onto the tangent space at the
identity by
Xy = log(Xg—1) = Ug—1log (Zk—1) UiL_;.

Thereafter, the output layers correspond to the classic final layers of neural
networks, e.g. a flatten layer or a fully connected layer, and the final output layer
should be a softmax operation.

Learning Scheme The proposed ConvSPD was trained following a classic
back-propagation in convolutional module, but for LogEig and ReEig Riemma-
nian layers was taken into account structured derivatives in propagation [12].
Besides, to learn weights of the BiMap layers (equation 1) it is necessary to con-
sider special optimization constraints. To generate consistent SPD matrices and
achieve a feasible optimization, connection weights are non squared, orthogonal,
and row full-rank matrices. That implies these weights matrices lie in a compact
Stiefel manifold St(dy,di—1) [11]. To calculate the gradient, in the equation (1)
the steepest descent direction with respect to Wy on the Stiefel manifold is given
by

VL), = VL), = VLG (W) W 2)

which is the tangent component obtained by subtracting the normal component
to the Euclidean gradient VL( ) Finally, the step of gradient descent for the

connection weights is

Witt = (Wk - onL(k)) (3)
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where I is a retraction operation to get back to the Stiefel manifold, and « is the
learning rate [11]. Given some £ in the tangent component, by the orthogonal
constrain, the retraction map is reduced to the calculus of the @ factor of the
polar decomposition of W} + £ [1].

3 Experimental Setup

3.1 Dataset Description

A total of 13 PD patients (average age of 72.3+7.4) and 13 control subjects (av-
erage age of 72.2 +6.1) were captured and analyzed for evaluating the proposed
approach. A camera with a temporal resolution of 60 fps was fixed in front of the
subjects to capture their upper face region. Participants were invited to sit and
observe a simple stimulus as illustrated in Figure 2(a). A single fixation period of
5 seconds was set and individual eyes were manually cropped to 210 x 140 pixels
by centering the first frame to the center of the pupil, to obtain the sequences of
interest. In total, 5 video sequences was obtained for each participant. Subjects
with different disease degree progression were selected to include inter-subjet
variability. With the help of a physical therapist, PD patients were categorized
into the Hoehn-Yahr rating scale. A total of five patients were categorized in
stage two, six patients on stage three, and two patients on stage four. The
dataset was approved by an Ethic Committee. Written informed consent was
obtained for every participant. After a search of public datasets, no more data
was found similar in the number of samples.

For spatio-temporal slice computation, each video being considered as a vol-
ume {I(x,y,t)}fcvz’ig\;,t:l, with spatial dimension W x H and N frames, we
choose 4 radial directions 6; € {0°,45°,90°,135°} around the center, and cut
the video volume along each direction as illustrated in Figure 2(a). The output
is then four 2d slice images Sy(x, t), each one recording subtle eye displacements,
capturing potential oculomotor alterations related with PD.

a)

-

I«5 sec—>

le——10sec —

Fig. 2. Dataset: (a) Ocular fixation task. (b) 2D Video slices representation of eye
movements.
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3.2 Network Configuration.

For the convolutional module, the weights were initialized from a pre-trained
ResNet-18 architecture [10], which has a total of 8 convolutional blocks. Re-
garding the Riemannian module, we implement BiRe blocks (a BiMap layer,
followed by a ReEig layer), which reduce the input dimension by half. A total of
four models were herein evaluated using the following architecture:

— A convolutional module using only the first N = {2,4,6,8} convolutional
blocks, which outputs 64, 128, 256 and 512 feature maps of size 53 x 75,
27 x 38, 14 x 19 and 7 x 10 respectively.

— A pooling layer using fspppooi-

— A Riemannian module with 3 BiRe blocks and a LogEig layer.

— Output layers: a flatten layer, a fully connected layer, and a softmax dedi-
cated to classification output.

We call this hybrid model a ConvSPD N-th block model, which is trainable
end-to-end starting from video slices while learning convolutional and Rieman-
nian structures.

A Leave one out cross validation scheme was carried out to evaluate the
performance of the proposed models. In such sense, each fold leaves one patient
for testing while the remaining are used for training, for a total of 26 experiments.

During training and validation, we also recover the resultant Riemmanian
representation, encoded in SPD embedding matrices. We compute distances
among these matrices, that represent points in the learned Riemmanian mani-
fold, to measure the discriminatory capability of such representation. We use the
Riemannian distance dr(z,y) = ||log,(y)||,, where z,y are embedding points,
log(+) is the Riemannian logarithm map and || - || an affine-invariant norm
[15]. With the class-labeled data, we consider two disjoint sets P (Parkinso-
nian) and C (control) in the manifold, respectively. Therefore we define the
separation metric as the Riemannian distance between P and C, as dg(P,C) =

1
W Z Z dr(,y).

zeP yel

4 FEvaluation and Results

In the proposed architecture, a deeper convolutional module produces more fea-
ture maps but with a smaller size. Therefore, a first validation of the proposed
approach was carried out varying the number of convolutional blocks previous to
the SPD pooling layer. Such validation was carried out according to the classifica-
tion task, measuring the sensitivity, specificity, precision, accuracy, and F1-Score
of each model respectively. Table 1 summarizes performance achieved from the
different configurations, achieving outstanding accuracy scores, above 90% for
all validations. In all metrics it is visible that intermediate and deep blocks aid
the network to achieve better results. This way, mid-level feature maps support
the ConvSPD 4th-Block model to accurately predict PD patients with an ac-
curacy of 97.7%. Moreover, the results of ConvSPD 4th-Block and 6th-Block
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enhance the trade-off between the size and the number of features, where small
features (ConvSPD 8th-Block) turn out to be statistically insufficient and few
features (ConvSPD 2nd-Block) limit the measurement of similarities. As compar-
ison with standard convolutional nets, we implement the complete ResNet-18
CNN, achieving only an accuracy of 94.26%, with a relative more complex archi-
tecture and a total of 11.7M parameters. As baseline comparison, we compared
with a machine learning approach that classifies SPD matrices constructed from
convolutional responses [17]. Under the same data validation conditions, this
approach reports an accuracy of 87.7%, 10% less than the proposed end-to-end
ConvSPD 4th-Block model.

Table 1. Classification results of the proposed ConvSPD N-th block models for
N =2,4,6,8.

Model ‘ Sen(%) ‘ Spe(%) ‘ Pr(%) ‘ Acc(%) ‘Fl(%) ‘ Parameters ‘ Time ‘

gt‘iﬂgfi 944 | 944 | 944 | 944 | 944 | 116M | 1.63s
g&%slfci 954 | 944 | 944 | 949 | 949 | 28M | 0.88s
f&gslfi 972 | 985 | 984 | 97.8 | 978 | 070M | 0.54s
SomSPD | 919 | 031 | 932 | 900 | 040 | o016M | 027
Train
1.00 0.95
0.95
L>; voo 5 0.90
g 0.85 g o
& 050 <080
0.75 —=— 2thblock  —+— 6th block 0.75 —s— 2thblock —e— 6th block
: 4th block  --=- 8th block ’ - 4th block  --=- 8th block
00— % 15 20 25 30 %% 5 5 1w 15 20 5 30
Epochs Epochs

Fig. 3. Convergence of the models

The convergence of the proposed approach was also analyzed to measure
the stability of the SPD component together with convolutional representation.
Figure 3shows the effective convergence performance for all models. Besides,
deeper models present a rapid and stable convergence as expected, thanks to the
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wide receptive field. On the other hand, since shallow models have feature maps
with less semantics, these results show the ability of the Riemannian module to
improve the networks generalization.

The inference time of the proposed descriptor is determinant to be imple-
mented in clinical scenarios, and routine validation of PD patients. For this
reason, the Table lalso reports the inference time and the total number of pa-
rameters, that requires each of the validated configurations. Inference time refers
to the time that takes the model to forward the video slices data and produce a
prediction. We can observe that the increasing between models is exponential,
the inference time almost doubles, and the number of parameters is quadrupled.
However, the ConvSPD 2nd-Block and ConvSPD 4th-Block are significantly
light models, and all models except ConvSPD 8th-Block compute the inference
in acceptable time (< 1 sec). From this, we can see how the ConvSPD 4th-
Block model with almost 20 times fewer parameters outperforms the complete
Convolutional model. The implementation of clinical routine requires a trade-off
between computational inference time, parameters of the representation to de-
fine computational architecture, but also sufficient precision to support diagnosis
and following.

a) First epoch Last epoch

— g

N
o
=]

N
b
n

N
B
o

b)

Riemannian Distance
N
w
0

i
N
w
o

0 10 20 30 40 50 60
Epochs

Fig. 4. Analysis of ConvSPD structures. We take sample activations extracted
from the ConvSPD 4th-Block model. a) Average activations from the second block of
the convolutional module on the first (left panel) and last (right panel) epoch. b) SPD
matrices from the third BiRe block of the Riemannian module on the first (left panel)
and last (right panel) epoch. ¢) Evolution of the average Riemannian distance between
Parkinson and Control subjects on the test sets.

As visual analysis, we recover the feature maps from PD patients of the
2nd-Block at first and last epoch. For this last experiment, instead of carry
out a cross validation, two random sub jects were chosen for each class,
and the rest was used for training a ConvSPD /4th-Block model one
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time.

Figure 4.a) is illustrated an average
of these maps, observing the evolution of the model to detect areas of interest
in the slice. Specifically, the model focus on the center of slices, indicating that
the ConvSPD use eye movement information for the quantification. Similarly,
in Figure 4.b) we illustrate the average of the SPD matrices extracted from the
third BiRe block. It is observed that the Riemannian module effectively enriches
the relationship between different features, while reducing the importance of
others. Finally, we measure the average Riemannian distance between the two
classes in the test set during training, see Figure 4 .c). Here can be seen a growing
trend of the distance, showing the ability of the network to learn Riemannian
mappings that separate the SPD matrices, which traduces in a discriminative
method. This result evidences the contribution of the Riemannian structures to
the discrimination between control and PD patients.

- In

5 Conclusions and Future Work

This paper introduced a Riemannian deep model with the capability to recover
Parkinsonian oculomotor patterns under a classificatin task scheme. For this pur-
pose, video sliced data was provided to represent ocular fixation abnormalities.
The whole deep representation integrates convolutional and Riemannian mod-
ules to effectively discriminate between Parkinson and Control population. In a
clinical scenario with few observations, the use of intermediate SPD representa-
tions produce stable results considering inter-patients variability. Furthermore,
the ConvSPD improves classification performance using SPD structures and re-
sults in a lightweight model able to accurately predict in a reasonable inference
time. Future works include new experiments with larger datasets and a backward
analysis to discover potential relationships that may explain the dissease.
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