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Abstract25

Grasslands are a source of goods and ecosystem services. It would therefore26

be helpful to monitor grass growth and estimate grass productivity indicators27

in order to optimize grassland management over time. Until today, farmers28

have had to cope with a lack of regular assessments of grass availability over29

time across the whole farm. In order to simplify and automate grass mea-30

surements, we propose to develop methods for estimating grassland biomass31

using remote sensing.32

The aim of this study is to assess the ability of Sentinel-2 remotely sensed33

data to estimate grassland height as measurements in order to provide farm-34

ers with information on the quantity of grass available per agricultural plot.35

We propose a generic data-driven methodology to identify 1) the set of fea-36

tures derived from Sentinel-2 remote sensing images and 2) a regression tech-37

nique, in order to yield the best performances in estimating grassland height.38

Before selecting a subset of features, we generated 1, 935 partly new but po-39

tentially meaningful features derived from the spectral indices available.40
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The study was conducted between 2017 and 2020 on 18 farms located in41

France. The model has been tested and evaluated using the data from 201742

to 2019. The average RMSE (resp. R2) is 1.78± 0.30 cm (resp. 0.70± 0.12)43

on the test set. The RMSE is lower than 10 percent of the range width of the44

predicted values, indicating a very good assessment of grassland height and45

this is consistent with the precision required for the grassland management46

support service.47

The model has also been evaluated on the data from 2020. The correlation

between measurements and estimations is encouraging with R2 = 0.56 and

RMSE = 2.1 cm. The majority of the differences are between −1 cm and

2 cm which are relevant according to grassland management.

Keywords: Data science, Regression, Feature engineering, Satellite images,48

Agriculture, Vegetation49

1. Introduction50

Grasslands, including natural and sown pasture, rangeland and fodder51

crops, are one of the largest ecosystems of the world, covering approximately52

25% of the earth’s terrestrial surface and 70% of the Earth’s agricultural53

area (Suttie et al., 2005; White et al., 2000). Grasslands are a source of54

goods and ecosystem services: many millions of people depend on grass-55

lands as they are an important feed source for livestock contributing to their56

livelihoods and food security (Lemaire et al., 2011). Moreover, they are57

important for environmental protection as they provide carbon storage and58

contribute to biodiversity and wildlife habitats, the regulation of water, ni-59

trogen and pollutant flows, and to water, air and soil quality (Peeters, 2009;60
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Soussana and Lüscher, 2007). However, grassland management and pres-61

sures are having an impact on the functions performed by grasslands and62

may lead to a reduction in their productivity and the ecosystem services63

they provide (Suttie et al., 2005). Moreover, climate change, with increasing64

temperatures and changes in precipitation amounts and yearly distribution,65

may have consequences on grassland productivity. Indeed, a reduction in the66

amount of grass available can be observed, particularly in the summer pe-67

riod, which can lead to difficulties in feeding livestock and thus to economic68

losses (Soussana, 2013).69

A grass-based production system could be helpful to protect the envi-70

ronment and it is the cheapest feed for livestock in farming systems. Yet71

grass productivity and quality, and thus farming production, are dependent72

on grassland management (and climatic and soil conditions) (Lemaire et al.,73

2011). It would therefore be helpful to monitor grass growth and estimate74

grass productivity through indicators in order to optimize grassland manage-75

ment over time. In particular, this information could help prioritize fields for76

grazing and/or identify mowing to provide winter fodder (Seuret et al., 2014;77

Lemaire et al., 2005). As grass growth can be fast depending on the season78

and as rotational grazing systems can be practiced, regular measurements of79

biomass and/or grass height are required to optimise the grasslands produc-80

tivity. However, a lot of time would be required to collect this information81

on all the fields of a farm, even visually by a simple estimation of the grass82

height, or with simple and non-destructive assessment equipment such as a83

plate meter (Herbomètre®) which measures the height and density of the84

grass (Welter and Le Bris, 1992).85
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To contribute for maintaining or even developing pastureland, a simplifi-86

cation and automation of grass measurements is necessary. Thus, methods87

for estimating grassland biomass using remote sensing acquisition tools will88

be developed and operational feasibility assessed in this paper.89

Grassland management varies in time and space according to the needs90

of the farm operators, the type of grass, soil and climate conditions. More-91

over, grasslands are very diverse, with a wide distribution in quite different92

situations (high or low, sloping or flat, dry or wet, natural or sown). So,93

to characterize and study them at different scales from a local to a regional94

scale, high spatial, temporal and spectral resolution remote sensing data are95

required to implement a weekly grass biomass estimation model and develop96

an innovative and operational management decision-support service (Kumar97

and Mutanga, 2017; Pottier et al., 2017; Grant et al., 2015).98

Recent major progress in satellite remote sensing, in terms of precision99

(spatial and spectral), revisit frequency and access to data, as the Sentinel100

missions from the European Space Agency1, offer interesting opportunities for101

precision farming and monitoring grassland vegetation biomass at a regional102

scale (Weiss et al., 2020; Reinermann et al., 2020).103

In the agricultural context, crops are regularly and precisely inventoried104

and monitored with remote sensing data and with well-established decision-105

support tools (Bégué et al., 2018). Grassland and pastures in agricultural106

production systems are still less studied mainly because grass production is107

not linear during the growing season: rather it is a dynamic system with108

1https://sentinel.esa.int/web/sentinel/home
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several growth periods dependent on grassland management that are highly109

diversified and changing throughout the season.110

Several studies show the benefits of remote sensing data for grassland111

monitoring (Ali et al., 2016; Zhang and Guo, 2008). Mainly, the normalized112

difference vegetation index (NDVI) is used to estimate pasture biomass and113

grass growth rate (Edirisinghe et al., 2012; Hill et al., 2004). Vegetation in-114

dices improve the spectral characteristics sensitive to plant properties while115

reducing the disturbances by combining certain spectral bands into an in-116

dex (Glenn et al., 2008; Clevers, 2014). Most of the conventional vegetation117

indices used in remote sensing are formed by the combination of two spec-118

tral bands (the red visible and near-infrared), as is the case for the NDVI119

index (Rouse et al., 1973). However, the common problem of these indices,120

based on the near-infrared spectral band, is the rapid saturation as the esti-121

mated or measured magnitudes increase, together with their insensitivity to122

changes over dense vegetation (Edirisinghe et al., 2011; Glenn et al., 2008;123

Gitelson et al., 2002). Research on hyperspectral data was conducted to124

identify alternative vegetation indices to overcome the saturation effect and125

to ensure better estimates and monitoring of photosynthetically active and126

senescent vegetation. Narrow bands in the red-edge and infrared domains127

have been identified as interesting to study vegetation (Mutanga et al., 2012;128

Gitelson et al., 2006; Mutanga and Skidmore, 2004a,b; Le Maire et al., 2004).129

Thus, some of these alternative vegetation indices for vegetation biomass as-130

sessment can be evaluated using Sentinel-2 data as it presents these spectral131

bands and they are yet under-used (Verrelst et al., 2015b; Delegido et al.,132

2011).133
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Therefore, the use of statistics based on vegetation indices is one of134

the most used and simplest methods to estimate biomass (Verrelst et al.,135

2015a). However, the accuracy of the estimation, based on these indices,136

depends strongly on the choice of the index formula and the spectral bands137

selected (Rivera et al., 2014). In order to determine spectral bands and in-138

dex formulas that perform well, Verrelst et al. (2015b) propose to calculate139

all possible band combinations according to different index formulas. Here,140

indices constructed from two or three spectral bands have been proposed to141

limit saturation problems (Verrelst et al., 2015a) and evaluate all Sentinel-142

2 bands (Verrelst et al., 2015b; Delegido et al., 2011; Wanga et al., 2013).143

Finding the Sentinel-2 bands thereof that are the most useful to accurately144

assess grassland biomass was thus an issue addressed in these studies.145

The aim of this study is to assess the ability of Sentinel-2 remotely sensed146

data to estimate dry grassland biomass (using grassland height as measure-147

ments) in order to provide users (agricultural organizations, farmers) with in-148

formation on the quantity of grass available per agricultural plot on a weekly149

basis. In this context, an operational spatial service for precision agricul-150

tural applications will be developed. This research is part of the CASDAR151

HERDECT project, funded by the French Ministry of Agriculture, Agri-Food152

and Forestry.153

In this paper, we present the work that led us to propose a grassland154

height assessment model. This model is based on a small-sized set of fea-155

tures derived from Sentinel-2 images and a regression model. One of the156

challenges addressed in the article is to set up a model that would yield ac-157

curate predictions. More specifically, we need both to identify the best set158
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of features and to select a suitable regression technique. We assume that the159

richness of the Sentinel-2 spectral bands (especially the Red-edge, Near Infra-160

Red and Short Wave Infra-Red bands) will allow for the correct estimation161

of grass height from standard regression methods.162

The contributions of this article are therefore twofold:163

• the proposal of a generic data-driven methodology to identify 1) the164

set of features derived from remote sensing images and 2) a regression165

technique, in order to yield the best performances in a regression task.166

• the application of this methodology to grassland height estimation.167

In the following, section 2 presents the data that have been collected and168

our data science processing chain to build a model. Section 3 presents results169

of the models learned and an application of one model on a new dataset.170

2. Material and methods171

2.1. Study sites and field data collection172

The study was conducted between 2017 and 2020 on 18 farms located173

in France. The farms are located in different parts of France (Figure 1),174

with different climates and soils, in order to cover different types and uses175

of grassland (grazing, mowing, suckling cattle, dairy cattle, sheep, different176

grazing severities, several botanical compositions and ages of the grasslands).177

A plate meter (Herbomètre®), a non-destructive technique for the es-178

timation of grassland biomass, was used due to its facility and reasonable179

accuracy (Seuret et al., 2014; Welter and Le Bris, 1992). The plate meter180

has a tray and a measuring ruler (Figure 1). To estimate the biomass of the181
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grassland, the tray is lowered into the grass along the ruler in the center. At182

the point where the tray is fully retained by the grass, the height of the grass183

can be measured on the ruler.184

As direct measurement of biomass is very costly in terms of sampling and185

processing time, the measurement of grass height, based on the plate meter,186

was used as a reference to estimate the biomass of grasslands.187

Each week between February and October, measurements were conducted188

in all the fields studied in the project to record grass height and density189

in order to obtain a more accurate estimation of dry matter yield. Thus,190

more than 2, 000 measurements were acquired during the project. Some191

of these measurements will ultimately not be used because no cloud-free192

satellite images will have been acquired at or close to the date. In total,193

738 ground measurements were thus used for the modelling in this study194

(acquired during 2017, 2018 and 2019, on 103 fields spread between 9 farms)195

and 473 measurements, acquired during 2020 (on 85 fields spread over the196

initial 9 farms and 9 other farms), were used for the evaluation of the model.197

Figure 2 shows the histogram of grass height measurements for the years198

2017 and 2018 (data used for the modelling). We have less data for 2018199

than for 2017 due to the less favorable conditions (less cloud-free image).200

This explains the differences in level between the two histograms, but we201

observe that the two distributions are similar. The values range from 2 to202

19.5 cm. The overall mean height is 8.26 ± 3.23 cm. The distribution fits203

a Gamma distribution well (Γ(k = 0.79, θ = 6.56)). The quality of fit is a204

good indicator of the dataset quality.205
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Figure 1: Study sites (a) and illustration of the plate meter used in this study to estimate

on-site grassland biomass (b). Each green dot locates a farm where measurements were

conducted over several fields.
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Figure 2: Histogram representing the grass height distribution in the dataset (for the years

2017 and 2018).

2.2. Sentinel-2 remote sensing data206

For this study, all Sentinel-2 images were acquired between the years 2017207

and 2020 during the grass growing season (between March and November).208

Sentinel-2 images were downloaded from the Theia website2. These Sentinel-209

2 images are composed of the three classic visible bands and a Near Infra-210

Red (NIR) band (B2, B3, B4, and B8, respectively) at a 10-meter spatial211

resolution and the six spectral bands at 20 meters, from the Red-edge (Re)212

and NIR spectral domains (B5, B6, B7 and B8a, respectively) to the Short213

Wave Infra-Red (SWIR) spectral domain (B11 and B12) (see Appendix A).214

First, the 20-meter bands of each image were subsampled to a 10-meter215

spatial resolution using the nearest neighbor approach. Cloud and cloud216

shadow masking was then applied on each image.217

From each cloud-free image, spectral bands were gathered at the pixel218

2https://www.theia-land.fr/
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scale. Pixel values, within each survey plot, were then averaged in order219

to characterize grassland productivity at plot scale. Thus, each data point220

in our dataset corresponds to a plot at a date for which we have both a221

cloud-free image and a ground measurement.222

The average difference between an image and its ground measurement is223

2 days over the entire study period (with a maximum of 9 days in February224

at the very beginning of the growth period) and 1.5 days during the period225

of rapid grass growth (with a maximum of 4 days).226

2.3. Feature engineering227

In this work, we investigated how to automatically identify a small subset228

of features suitable for a prediction task, e.g. the prediction of the quantified229

vegetation productivity. Before selecting a subset of features, we generated230

numerous potentially meaningful features derived from the spectral indices231

available.232

Firstly, 13 indices from the literature were calculated (Table 1). Some233

of them, the NDV I (or NDV I2) and the GNDV I, are widely known and234

commonly used for their relation with biomass (Gitelson et al., 2006, 2002).235

Moreover, as several studies show the important relationship between the236

Red-Edge reflectance and chlorophyll and nutrients present in the plant cell237

structure, other indices (NDI45, IRECI, NREDI1, NREDI2, NREDI3,238

PSRI, MTCI and MCARI), using the Red-edge spectral domains, were239

tested (Frampton et al., 2013; Delegido et al., 2011; Le Maire et al., 2004).240

Finally, two indices, the NDII and the MSI, used for their relation with241

vegetation water content and canopy water thickness were added (Yilmaz242

et al., 2008; Fang et al., 2017).243
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Index ∗ Formula and Original author

Sentinel-2 bands used

NDV I (RNIR −RR)/(RNIR + RR) Rouse et al. (1973)

(RB8 −RB4)/(RB8 + RB4)

NDV I2 (RNIR −RR)/(RNIR + RR)

(RB8a −RB4)/(RB8a + RB4)

GNDV I (RNIR −RG)/(RNIR + RG) Gitelson et al. (1996)

(RB8 −RB3)/(RB8 + RB3)

NDI45 (RRe −RR)/(RRe + RR) Delegido et al. (2011)

(RB5 −RB4)/(RB5 + RB4)

IRECI (RRe3 −RR)/(RRe1/RRe2) Frampton et al. (2013)

(RB7 −RB4)/(RB5/RB6)

NREDI1 (RRe2 −RRe1)/(RRe2 + RRe1) Gitelson and Merzlyak (1994)

(RB6 −RB5)/(RB6 + RB5)

NREDI2 (RRe3 −RRe1)/(RRe3 + RRe1)

(RB7 −RB5)/(RB7 + RB5)

NREDI3 (RRe3 −RRe2)/(RRe3 + RRe2)

(RB7 −RB6)/(RB7 + RB6)

PSRI (RR −RG)/RRe1 Merzlyak et al. (1999)

(RB4 −RB3)/RB5

MTCI (RNIR −RRe)/(RRe −RR) Dash and Curran (2004)

(RB8 −RB5)/(RB5 −RB4)

MCARI [(RRe −RR)− 0.2(RRe −RG)] ∗ (RRe −RR) Wu et al. (2009)

[(RB5 −RB4)− 0.2(RB5 −RB3)] ∗ (RB5 −RB4)

NDII (RNIR −RSWIR)/(RNIR + RSWIR) Hardisky et al. (1983)

(RB8 −RB11)/(RB8 + RB11)

MSI RSWIR/RNIR Hunt and Rock (1989)

RB11/RB8

Index ∗ : NDV I = Normalized Difference Vegetation Index, GNDV I = Green Normalized Difference

Vegetation Index, NDI45 = Normalized Difference Index, IRECI = Inverted Red-Edge Chlorophyll

Index, NREDI = Normalized Red-edge Index, PSRI = Plant Senescence Reflectance Index, MTCI =

Meris Terrestrial Chlorophyll Index, MCARI = Modified Chlorophyll Absorption in Reflectance Index,

NDII = Normalized Difference Infrared Index, MSI = Moisture Stress Index

Table 1: Vegetation indices calculated from Sentinel-2 images (R∗ = Sentinel-2 reflectance,

G = Green, R = Red, Re = Red-edge, NIR = Near Infra-Red, SWIR = Short Wave Infra-

Red) ; more information on the spectral bands in the table A.5
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Despite all these indices, some spectral bands are rarely or never tested.244

Also, some spectral bands are never used together. By testing and evaluating245

all possible band combinations according to formulas of common indices, it246

will become feasible to identify optimal band combinations among all avail-247

able Sentinel-2 bands (Verrelst et al., 2015b; Thenkabail et al., 2000). Thus,248

a large number of indices (or features) was generated based on two-band and249

three-band common types of published indices (Verrelst et al., 2015b; Xue250

and Su, 2017; Le Maire et al., 2004) as described in Table 2. We denote by251

(bi)i∈1..10 the spectral image bands. Two two-band indices were calculated:252

the Normalized Difference (ND) index and the Simple Ratio (SR) index,253

and four three-bands indices: the modified SR (mSR) index, the three-Band254

Spectral Index (3BSI), the three-Band Spectral Index Tian (3BSIT ian),255

and the Chlorophyll Vegetation Index (CV I). These indices were more or256

less correlated and influenced by canopy leaf area index, vegetation coverage257

or canopy leaf nitrogen concentration.258

The symmetries in the feature formula may generate linearly correlated259

variables (for instance, ND(bi, bj) = −ND(bj, bi) for all i ∈ [1, 10] and j ∈260

[1, 10]). The generation process prevents these redundant features from being261

generated. Table 2 also indicates the number of features generated by each262

formula (after removal of redundant features), totaling 1, 935 features.263

Finally, each ground measurement, i.e. a plot and a date, has its asso-264

ciated cloud-free image and associated features. It composes the dataset we265

analyzed for this study. The dataset is composed of 1, 211 points (a ground266

measurement associated with a cloud-free and usable image – 738 points for267
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Combination Formula Number of combinations

ND(bi, bj)
bi−bj
bi+bj

1
2
× 10!

(10−2)!
= 45

SR(bi, bj)
bi
bj

10!
(10−2)!

= 90

mSR(bi, bj, bk) bi−bk
bj−bk

1
2
× 10!

(10−3)!
= 360

3BSI(bi, bj, bk) bi−bk
bj+bk

10!
(10−3)!

= 720

3BSIT ian(bi, bj, bk)
bi−bj−bk
bi+bj+bk

1
2
× 10!

(10−3)!
= 360

CV I(bi, bj, bk) 1
2
× bi×bj

b2k

10!
(10−3)!

= 360

Table 2: Formulas to generate features from spectral bands. bi, bj and bk are three different

spectral bands among the 10 Sentinel-2 bands used. Factors 1
2 indicate symmetry breaking

to prevent linearly correlated features.

the model construction and 473 points for the application). Each row of268

the dataset, i.e. a plot and a date, is made of one ground measurement269

of grassland height and 1, 958 features computed by the average indices for270

all valid pixels of the plot (10 bands, 13 common indices and 1, 935 band271

combinations).272

2.4. Model construction273

This section presents the proposed methodology to fit a frugal but ac-274

curate regression model from large remote sensing features. In the above275

section, we describe how to create a large number of potentially interesting276

features, but a model using all these features does not match the needs for277

routine exploitation. We need a model requiring few features to be com-278

puted from images to propose a space- and time-efficient grassland height279

assessment service.280
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The model we propose is therefore both a subset of features and a regres-281

sion model built upon the selected features. The remainder of this section282

presents the proposed methodology to learn such a model. Note that this283

methodology does not rely on specific tools or implementation. The imple-284

mentation details are given at the beginning of Section 3.285

2.4.1. Overall methodology286

The input of this process is the dataset described in previous section. It287

is split into two subsets: a training set and a test set. The main steps of the288

methodology are illustrated in Figure 3 and are detailed in the following:289

1. All descriptive features (spectral bands, common indices and band com-290

binations) are z-normalized using the training data set. The target291

feature (height of grassland) is not normalized.292

2. Feature selection identifies different feature sets. The feature selection293

process is repeated several times on different subsets of the training set294

and the best model is selected.295

3. Different regression models are fitted from the dataset with selected296

features. Each model is trained using a leave-one-out procedure. The297

model with the lowest mean prediction error is the selected model.298

4. Fitted models (normalization model, feature selection model and pre-299

diction model) are evaluated on the test set.300

The prediction error is evaluated by two measurements: the root mean301

squared error (RMSE) and the coefficient of determination (R2). The whole302

process (steps 1 to 4) is repeated ten times to evaluate the whole learning303

chain (surrounded with dashed line in Figure 3) on random training sets.304
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Figure 3: Overall methodology for regression model learning and evaluation. The dashed

square illustrates the training phase to fit the regression model in two main steps. The

overall model is composed of: a selection of features (green square), the z-normalization

coefficients (blue square) and the regression model (red square). Rounded figures match

the step numbers detailed in the text.

The final model combines three elements: the scaling coefficients of the305

z-normalization, the subset of features and the regression model. It is ap-306

plied on the test set in three steps: select the features of the test set, apply307

the scaling for each feature and finally, apply the trained regression model.308

Features are filtered before scaling to prevent scaling features that are not309

used in the regression model.310

2.4.2. Feature set selection311

Too large a set of features can negatively impact the prediction perfor-312

mances of a model and lead to a lack of interpretability to qualitatively313

evaluate the model (Guyon and Elisseeff, 2003; Blum and Langley, 1997). In314

addition, a large number of features would lead to larger resource require-315

ments for our service. Our objective is therefore to select a small subset of316

features that leads to accurate target prediction. Feature selection is the pro-317
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cess that automatically selects the optimal subset of features for the machine318

learning task.319

For a regression task, there are three types of methodology for feature320

selection (Brownlee, 2020):321

• Filter method: select a subset of features based on the relationship322

with the target. Statistical test (F-test or Mutual Information) ranks323

features by the measured correlation with the target variable. Then, it324

selects the desired number of the most correlated variables as a feature325

subset. The major issue with this method is that the features are326

selected independently.327

• Wrapper method: search for well-performing subset of features. The328

recursive feature elimination recursively selects a feature to eliminate329

until the desired number of features is reached. The feature that is330

eliminated is the one for which the model trained without this feature331

is better. Thus, it takes into account the remaining features to select332

which one to discard. The progressive selection of features may miss333

subsets of features that are interesting together but not necessarily at334

the beginning of the elimination process.335

• Intrinsic: perform automatic feature selection during training. For336

instance, penalized regression models (e.g., Ridge, Lasso (Tibshirani,337

1996) or ElasticNet (Zou and Hastie, 2005)) have been proposed to338

train a model with a sparsity constraint. A sparsity constraint favors339

models with small (Ridge) or zero (Lasso) feature weights. Zero weights340

designate features to discard. Contrary to the previous methods, the341
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number of desired features can not be directly specified.342

We use ElasticNet (Zou and Hastie, 2005) to select features. Through343

optimization strategies, this technique enables us to identify cohesive subsets344

of features for optimizing regression performances. Such a cohesive subset of345

features is compatible with our objective of using this subset in a regression346

model thereafter. ElasticNet is a penalized linear regression method. It347

combines `1 and `2 penalties for learning a sparse model in which the number348

of non-zero weights can be controlled by the balance between penalties. The349

objective function to minimize is:350

min
w

1

2n
||Xw − y||22 + αλ||w||1 +

α(1− λ)

2
||w||22

where n is the number of samples in the dataset, w is the weights of the351

linear regression model, X is the dataset, y is the height of grassland and α,352

λ are the parameters of ElasticNet.353

ElasticNet parameters are fitted in a two-step process:354

1. the value of λ is set: ElasticNet is run on the training set with 10 values355

of λ ∈ [0, 1] and α ∈ [0, 1] chosen by cross-validation. The model with356

the closest number of features to the desired one designates the λ value357

for the next step.358

2. ElasticNet, set up with the λ value, is run several times with random359

subsets of 66% of the training set. Then, the error of each regression360

model is evaluated on the remaining part of the training set. The evalu-361

ation measurement is the coefficient of determination of each ElasticNet362

regression model computed on the test set.363
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The feature selection process may be sensitive to the training dataset.364

This justifies the cross-validation setting of feature selection. The evaluation365

of the selected features on a test set makes the results generalizable on new366

data. The repetition of the process reduces the dependency on the input367

dataset. The overall feature selection is thus more stable and reliable.368

2.4.3. Regression model learning369

At this stage of the process, a regression model is learned from a training370

dataset with only the selected features. We assume that the use of ElasticNet371

for feature selection is not necessarily the best approach to obtain an accu-372

rate regression model. Furthermore, there are plenty of different regression373

techniques that suit our problem. This stage of the process experimentally374

selects the best one.375

In this work, we compare the following regression techniques which have376

been selected for their diversity:377

• Linear regression: ElasticNet, Ridge, Lasso. The parameters of these378

models are selected by cross-validation.379

• Bayesian regression: BayesianRidge (BR). BR is a linear model. It380

assumes that the output is Gaussian distributed around the predicted381

value. The learning procedure is parameter-free.382

• Non-linear regression: we experiment with support vector regression383

(SVR) with a polynomial kernel of degree 2. Three penalty parameters384

C are evaluated: 10−3, 10−2 and 10−1.385

• Neural networks regression: a conventional neural network is also tested.386
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The architecture of the neural network is made of three fully connected387

layers with a ReLU activation function. The size of the input layer is388

the number of selected features, the hidden layer is of size 60 and the389

output layer is of size 1.390

3. Experiments and results391

This section presents the results we obtain by applying the method pro-392

posed in the previous section to the dataset of 1, 959 features. The objective393

is to identify a regression model based on a few features which can accurately394

estimate the ground height of grassland. The desired number of features is395

around 60. This number has been estimated to be both potentially represen-396

tative of the diversity of the whole set of features and low enough to ensure397

the memory and time-efficiency of a large scale operational service.398

The experiments were conducted on a desktop computer. Our implemen-399

tation is in Python and uses the sklearn library (Pedregosa et al., 2011) for400

machine learning algorithms and Keras/Tensor flow (Chollet et al., 2015)401

for neural networks.3 For the sake of reproducibility, we manually set up the402

random seed for the experiments presented in this section. With this setting,403

the overall process takes about 30 minutes to select the best feature sets and404

models. More details about requiring computing resources are provided in405

Appendix B. We use the R software to conduct statistical analysis.406

3Note that our methodological framework may be reimplemented and enhanced with

other data science tools, e.g. in R.
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Feature Best bands R2 RMSE

Spectral bands bi B7 0.45 2.45

Common indices NREDI3 0.54 2.23

ND(bi, bj) bi: B6, bj: B7 0.54 2.23

SR(bi, bj) bi: B6, bj: B7 0.54 2.23

mSR(bi, bj, bk) bi: B8a, bj: B3, bk: B11 0.54 2.25

3BSI(bi, bj, bk) bi: B7, bj: B11, bk: B6 0.58 2.13

3BSIT ian(bi, bj, bk) bi: B7, bj: B6, bk: B8 0.49 2.35

CV I(bi, bj, bk) bi: B7, bj: B8a, bk: B11 0.56 2.19

Table 3: Cross-validation results for the best performing feature per type and formulation

3.1. Correlation of grass height with individual spectral bands, common in-407

dices or band combinations408

Before presenting the experiments about our methodology, we provide409

some insights about the informativeness of generated features. In order to410

evaluate the correlation between features and the targeted height of grass, a411

regression was applied on all available S2 spectral bands (Table A.5), com-412

puted common indices (Table 1) and S2 band combinations (Table 2). Be-413

cause of the large number of features (10 spectral bands, 13 common indices,414

1, 935 band combinations) only the best performing feature per type and for-415

mulation is listed in Table 3 but several features per type and formulation416

may perform almost equally well.417
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Table 3 shows that band combinations perform slightly better than com-418

mon indices and spectral bands but R2 values are generally not very high419

(below 0.6). The selected spectral bands are encountered as well in other420

optimized features. The Red-edge B7 (Re3) spectral band has been selected421

in 5 of the 6 band combinations. The Red-edge B6 (Re2) spectral band422

has been selected in 4 of the 6 band combinations. Also, the Short Wave423

Infra-Red band B11 (SWIR1) has been selected in 3 of the 4 three-band424

combinations. The scatter plot of estimated versus measured grass height425

values using the best performing feature is shown in Figure 4. Saturation426

and underestimation can be observed at high grass height values, as well as427

a rather large dispersion around the regression line explaining the relatively428

low R2 (0.58).429

This result highlights the limited ability of the two- and three-band indices430

individually to precisely estimate vegetation cover.431

From the spectral signatures (Figure 5), organised by grass height classes,432

we can see an increase in the Red-edge and Near Infra-Red spectral band val-433

ues and a decrease in the Red spectral band values with increasing biomass.434

However, the distinctions can sometimes be quite small depending on the435

measurement points. Thus, mobilising a set of indices could allow a better436

estimation of the height of the grass. Finally, we can see a good distinction437

between plots with heights below 9 cm and plots with heights above 12 cm.438

However, within these two groups, similarities can be observed. Also we439

can see quite clearly the saturation of the infrared values as the grass height440

increases.441
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Figure 4: Measured versus estimated grass height values of the best performing feature
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3.2. Regression based on subsets of features442

3.2.1. Feature set analysis443

175 feature sets were generated by applying ElasticNet to random subsets444

of the training set and were tested on the remaining examples (35 runs of the445

process with 5 repetitions of feature selection). For one run of ElasticNet,446

66% of the training set is used to select features. The remaining examples447

are used to evaluate the regression model obtained by ElasticNet.448

To facilitate the reproducibility of the method and to limit the calculation449

time and storage, a limited number of indices is desired. Several tests have450

been performed by requesting around 10, 30, 60, 100 and 200 features (i.e. 1451

to 10% of the initially calculated feature set). On average, 50 to 60 indices452

are selected by requesting 10 to 100 features and then a hundred for a request453

of around 200. Moreover, the estimation errors are stable despite the increase454

in the number of features considered. Thus, the desired number of features455

is set at around 60 for this study and the average number of selected features456

is 58.75± 10.3.457

If the features were randomly drawn from the whole feature set, then458

they would have 58.75/1, 658 chances of being selected. This corresponds459

to an average number of selections of 6.20 times. This means that features460

that have been selected at most 6 times occur only marginally in the feature461

selections. This represents 1, 740 features (including 1, 501 features that have462

never been selected). The 60 most selected features have been selected in at463

least 34.2% of the feature sets.464

Figure 6, on the left, gives the distribution of numbers of features with465

respect to their number of selections. It illustrates that the majority of the466
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Figure 6: On the left, distribution of 421 features w.r.t. the number of selections. On the

right, average number of involvements of a spectral band in selected features.

features are selected less than 6 times and that few features are selected more467

than 120 times. This indicates that there is actually a core set of features468

that are more likely to be selected, but the majority of the features changes a469

lot with the subset of examples. Nonetheless, among the initial set of 1, 958470

features, the set of features effectively used (421) is relatively small: about471

four fifths of the features are discarded.472

The two features that appear the most are CV I B3 B8 B11 (174 times)473

and CV I B3 B7 B11 (170 times). A total of 421 features has been selected474

at least once.475

Figure 6, on the right, illustrates the average number of times a spectral476

band is used in selected features. The total number of band selections is above477

the average number of features because each generated feature involves 2 or478

3 different spectral bands.479

This figure shows that bands B4, B6, B7, B8 and B11 are the most480

used. B6 and B7 are new spectral bands for Sentinel-2. They correspond481

to the red-edge and are closely related to vegetation density. These bands482

are very interesting for accurately discriminating grassland biomass. B12483
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corresponds to short-wave infrared, a wavelength closely related to the water484

content present in the canopy. B4 and B8 are classic bands on satellite and485

correspond to the red and the near-infrared bands, respectively, of the visible486

spectrum. They are widely used to discriminate vegetation from the ground,487

thus they are also closely linked to the vegetation density.488

Then, the subset of features with the lowest RMSE on its test set is se-489

lected for the regression model selection phase. The average RMSE (resp. R2)490

is 1.61 ± 0.09 cm (resp. 0.74 ± 0.02). These values will be compared to the491

RMSE and R2 obtained by the regression models trained in the next step of492

the process.493

3.2.2. Analysis of regression model errors494

Figure 7, at the top, illustrates the RMSE and R2 for the six regression495

methods for one run of the model regression selection (step 3 of the processing496

chain). Table 4 gives mean values for RMSE (in cm) and the determination497

coefficients (R2).498

We first notice that linear regression models outperform non-linear models499

(Neural Networks and SVR with polynomial kernel). This can be explained500

by the feature selection step that is based on a linear regression model. How-501

ever, our three-layer Neural Network is surprisingly close to linear models502

and much better than a two-layer model. Moreover, the four linear regres-503

sion models perform equally well. Both RMSE and R2 are very close for the504

test set. In our experiments, Bayesian Ridge is more often selected as the505

best model. SVR has very poor performances. It is probably due to limited506

modelling capability of our SVR. In our experiments, we used polynomial507

kernels of degree 2 (and we evaluate different values of the C parameter).508
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the better). On the top-right: Boxplots of determination coefficients (R2) on the test sets

for best regression model (the higher, the better). Bottom: Critical difference diagram

comparing the different regression models.

This means that the function is locally approximated by a polynomial func-509

tion of 2nd degree. The modelling capability seems to not fit the data. Note510

that alternative kernels and setting may be investigated, but SVR is long to511

train and exploring all the possible setting seems not reasonable. For these512

different reasons, we prefer to not tune finely SVR, even if a better kernel513

choice may leads to better performances.514

To confirm these results, Figure 7 shows a critical difference diagram (Demšar,515

2006). A critical difference diagram represents the mean ranks of the meth-516

ods that have been obtained for each prediction of the test sets. The lower517

the rank, the better the method. In addition, the representation shows hori-518
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Table 4: Mean RMSE and R2 on test set with respect to the regression model

method RMSE (cm) R2

BayesianRidge 1.60± 0.16 0.75

ElasticNetCV 1.69± 0.21 0.73

KerasRegressor 2.03± 0.37 0.60

LassoCV 1.66± 0.15 0.73

RidgeCV 1.66± 0.20 0.72

SVR 3.33± 0.23 −0.03

zontal bars that group some methods. Within the same group, the methods519

are not statistically different according to the Nemenyi test. Figure 7 at the520

bottom shows that Bayesian Ridge has a better rank, but the four linear521

models are not significantly different. On the contrary, the SVR and Neural522

Network are significantly different.523

The average RMSE (1.60 cm) and R2 (0.75) values are comparable to524

those obtained by feature selection. These values are reasonably low, indi-525

cating a good assessment of grassland height. As a reminder, the measure-526

ments were between 2 cm and 19.5 cm. Thus, the RMSE is lower than 10527

percent of the range width of the predicted values. In addition, our R2 value528

is much higher than for the model developed by Cimbelli and Vitale (2017)529

(R2
Cimbelli = 0.63).530

Figure 8 illustrates regression errors (predicted value vs true value) and531

residuals (difference between the predicted and true value with respect to the532

true value) for four regression models. The residual indicates that the model533
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has difficulties in accurately estimating high grassland height values. This534

can be explained by the lack of examples for such values but also by possibly535

less accurate measurements. Plate meters are known to be less accurate when536

grass is high.537

Note that the scaling factor and selected features were computed from the538

dataset that was used to evaluate the RMSE of Figure 7. The next section539

presents an unbiased estimation of the RMSE of the best model on a separate540

test set.541

3.2.3. Comparisons with and without feature selection542

Figure 9 shows the RMSE and R2 achieved by the same regression models543

as before, but trained on a dataset with the whole set of features.544

3.2.4. Evaluation of the learning procedure545

Finally, each of the 35 models (scaling, best feature set and best regression546

model) is applied to the test set. This experiment evaluates our overall547

methodology in terms of its ability to build a model that generalizes the548

grassland assessment with new images or new grasslands. The difference549

with the previous setting is that in the previous setting the test set of the550

regression model is not independent of the feature selection step.551

The RMSE on the test set is 1.78 ± 0.30 cm and the R2 is 0.70 ± 0.12552

(see Figure 10). These average values are close to the values obtained on the553

training set (Figure 7) showing that our processing chain built a model that554

generalizes the training examples well. Compared to the approach of Cimbelli555

et al., with R2 = 0.63, our training procedure extracts linear regression556

models with lower prediction errors while keeping the number of features557
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Figure 8: From left to right: ElasticNet, Ridge, SVR and Neural Network. Top: prediction

vs actual value. Bottom: residual.
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Figure 10: From left to right: Boxplots of RMSE in cm, R2 computed on test set, predic-

tion error and residual on test set. The boxplots on the left give the RMSE (resp. R2)

with feature selection in red on the left and without feature selection in blue on the right.

low.558

Figure 10 on the left compares the RMSE and R2 obtained by our pipeline559

with or without feature selection. Without feature selection, the RMSE is560

1.73±0.05 cm and the R2 is 0.72±0.02. This shows that a model trained on561

selected features is slightly more accurate on average than a model trained562

on the complete set of features (although not significantly). It is interesting563

to note that Bayesian Ridge is also the most selected regressor by the process564

without feature selection. As a reminder, our objective is to propose a grass-565
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land height assessment model that is computationally light to be embedded566

in a practical pipeline. The less image pre-processing, the lighter the model567

will be. This comparison shows that a small subset of features is sufficient to568

achieve the same accuracy as a model requiring a large number of features.569

4. Application570

This section presents the results of an external evaluation: it applies the571

model trained on the 2017 and 2018 data to new data collected in 2020.572

The approach for the operational mapping of grassland productivity was573

applied to the 18 farms for the year 2020. Note that our objective is not574

to forecast the height of grassland, but to estimate grassland biomass from575

Sentinel-2 images in order to develop an operational spatial service for preci-576

sion agricultural applications. Grass heights estimated from satellite images577

were compared to field data in order to test the robustness of the grass growth578

estimation model. Note that 2020 field data were not integrated in the model579

construction. At the scale of the 18 farms monitored in 2020, 473 estimates580

of grass height from satellite images were coupled with heights measured in581

the field (only points with a delta of ± 3 days between the measurement and582

the estimation have been kept here). The data was organized by height class583

following discussions with the farmers. Indeed, for grassland management,584

only height class is required and not the precise height. We observe that585

the estimation model based on satellite images tends to underestimate grass586

heights (Figure 11a). 40% of the estimates show a difference of between −1587

and 1 centimeter with the ground measurements. More than 80% of these588

points belong to the two main height classes of 6 to 9 cm and 9 to 12 cm,589

32



which are key heights for optimal grazing management. 10% of the estimates590

show a difference between 1 and 2 cm and 9% of the points show a difference591

greater than 2 cm, while 20% of the points show a difference between −1592

and −2 cm and 21% of the points show a difference greater than −2 cm.593

The correlation between measurements and estimations is encouraging594

with R2 = 0.56 and RMSE = 2.1 cm (Figure 11b). The overall mean signed595

error between the estimates and the measurements is −0.56 cm which con-596

firms the underestimation of the heights by satellite (Figure 11c) compared597

to the plate meter estimates. For low grass heights (< 6 cm) we observe a598

slight overestimation by satellite (+0.64 cm on average). For heights between599

6 and 9 cm, we observe a very slight underestimation on average (−0.16 cm)600

as well as for heights between 9 and 12 cm (−0.76 cm). The underestimation601

increases slightly for heights between 12 and 15 cm (−1.16 cm on average)602

while it increases significantly to −3.14 cm for grass heights above 15 cm603

(Figure 11d).604

There are several possible explanations for these differences: firstly, the605

reliability of the model and secondly, the accuracy and representativeness606

of the height measurements taken with the plate meter. As can be seen607

in Figure 11, the greater the grass height, the more the satellite seems to608

underestimate it. However, beyond 14 − 15 cm measured with the plate609

meter, the comparison of estimated and measured heights must be qualified610

because the reliability of the plate meter measurements is lower. This trend611

of height underestimation using drone images was also highlighted in the612

publication of Surrault et al. (2018). Moreover, as illustrated in Figure 11,613

the 6 − 9 cm and 9 − 12 cm height classes are well represented while the614
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12 − 15 cm and > 15 cm height classes include little data. Two Gaussian615

curves are observed for the 6 − 9 cm and 9 − 12 cm classes, centered on a616

difference of between −1; 1 cm.617

The majority of the differences are between −1 cm and 2 cm, which618

indicates a certain relevance of the model. These estimates will be produced619

annually and sent to partner farmers. This will allow us to better quantify620

the errors and possibly refine the model after several years of estimations.621

5. Discussion & Perspectives622

Several prospects for improvement can be envisaged, notably on the basis623

of the work of Verrelst et al. (2015a). We have developed a method based on624

parametric regression methods and vegetation indices. Other non-parametric625

regression methods or methods based on physical models can be used.626

Machine learning algorithms can be cited for non-parametric regression627

algorithms. Presented by Verrelst et al. (2015a), one of the advantages here628

is that they use the spectral bands directly without calculating as many in-629

dices. It would be interesting to test this procedure, as it would appear to be630

less time- and storage-consuming and provide interesting results. It shows631

that most machine learning algorithms give better results than with para-632

metric regression based on vegetation indices (maximum R2 of 0.9 vs. 0.8633

respectively). Also, compared to vegetation index results, it seems that non-634

parametric regression methods are more stable with lower standard deviation635

results than parametric regression methods. Finally, this study presents sim-636

ilar results to ours concerning the most relevant spectral bands: the authors637

noted that the red-edge and the SWIR bands are the most prevalent in the638
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Figure 11: Difference between estimated and measured heights according to height classes

(a), correlation between heights measured in the field and estimated by satellite (b), box-

plot (c) and cloud point (d) of the difference between estimates and measurements.
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different models they were able to establish. This is in agreement with our639

results and other previous studies (Delegido et al., 2011; Rivera et al., 2014).640

Also, several studies have shown that biophysical variables seem to be in-641

teresting for monitoring grasslands (Reinermann et al., 2020; Dusseux et al.,642

2015; Asam et al., 2013; Darvishzadeh et al., 2008). For example, Punalekar643

et al. (2018) showed the ability of Sentinel-2 images to better capture grass-644

land dynamics and biomass from LAI (Leaf Area Index) than from NDVI.645

They also showed that, for the estimation of biophysical variables, the use of646

a physical model like a radiative transfer model is more efficient than using647

an empirical NDVI-based approach.648

However, the application and implementation of these models can be649

complicated. Also, Sentinel-2 and the Red-edge and Short Wave Infra-Red650

spectral bands are not yet widely used for grassland studies (Reinermann651

et al., 2020), so here we wanted to explore their richness and ability to es-652

timate grass height. Finally, the desire to make the methodology and the653

model re-applicable led us to stick to standard regression methods. We show654

that with the richness of the sentinel-2 spectral bands, standard methods can655

be used to obtain valuable results for grassland management.656

6. Conclusion657

This study demonstrated that Sentinel-2 images provide quantitative in-658

formation of the biomass status in grasslands. The results presented rela-659

tively accurate estimates of grass biomass. The Red-edge, Near Infra-Red660

and Short Wave Infra-Red spectral bands seem to be rich in information for661

the estimation of grassland biomass.662
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The assessment of grassland height with satellite images aims at providing663

access from the desktop and day by day to the grassland biomass/height as-664

sessment for each grassland plot or, in the future, monitoring and forecasting665

the growth of grasslands to determine optimal cutting dates.666

Beyond these new results on the estimate of height of grass, we also667

presented a generic methodology that can be applied to the estimation of any668

agro-ecological quantities from Sentinel-2 images. The classical approach in669

remote sensing uses a small collection of standard or advanced vegetation670

indices. This study points out that automatically generated features may671

lead to more accurate models. Our framework addresses the problem of672

finding a best subset of features and it is end-to-end. The user only has to673

select the desired number of features and it selects the best feature sets and674

the best regression model. It will be used in the future on a wide range of675

applications.676

7. Acknowledgements and funding677

The authors thank all technical partners (chamber of agriculture, exper-678

imental farm ...) for their rigorous contribution to the measurements and679

field expertise, the French Ministry of Agriculture for financial support and680

farmers who volunteered to participate in the project.681

This research is part of the CASDAR HERDECT project, funded by682

the French Ministry of Agriculture, Agri-Food and Forestry. Planned over683

three years, the HERDECT project involves the use of remote sensing to684

estimate grass biomass in order to improve grazing management on livestock685

farms. This project relies on highly involved technical partners in the field686

37



of grassland advisory services, experimental sites and scientific structures687

working with the remote sensing techniques that will allow the elaborated688

methods to be parameterized. Thanks to the diversity and plurality of the689

project partners, a large ground data set with a variety of observations to690

grasslands has been built up.691

References692

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., Green, S., 2016. Satellite remote693

sensing of grasslands: from observation to management – A review. Journal694

of Plant Ecology , rtw005.695

Asam, S., Fabritius, H., Klein, D., Conrad, C., Dech, S., 2013. Derivation696

of leaf area index for grassland within alpine upland using multi-temporal697

RapidEye data. International Journal of Remote Sensing 34, 8628–8652.698

Blum, A.L., Langley, P., 1997. Selection of relevant features and examples699

in machine learning. Artificial intelligence 97, 245–271.700

Brownlee, J., 2020. Data preparation for machine learning: data cleaning,701

feature selection, and data transforms in Python. Machine Learning Mas-702

tery.703
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écosystèmes et territoires. Editions Quae.825

Soussana, J.F., Lüscher, A., 2007. Temperate grasslands and global atmo-826

spheric change: a review. Grass and Forage Science 62, 127–134.827

Surrault, F., Barre, P., Escobar-Gutierrez, A., Roy, E., 2018. Le drone, un828
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Appendix A. Sentinel-2 remote sensind data870

Satellite images from the Sentinel-2 mission were used. This mission,871

conducted by the European Space Agency and the European Commission,872

was launched in June 2015 with the aim of monitoring variability in land873

surface conditions. The Sentinel-2 mission is composed of a constellation of874

two satellites (Sentinel-2A and Sentinel-2B) with sun-synchronous orbit, 13875

spectral bands with various spatial resolutions (10, 20 and 60 m) and a high876

revisit time (10 days with one satellite and 5 days with the two satellites)877

(Table A.5).878

For this study, all Sentinel-2 images were acquired between the years 2017879

and 2020 during the grass growing season (between March and November).880

Sentinel-2 images were downloaded from the Theia website4, the French land881

data center, that provides Sentinel-2 images at level 2A (orthorectified prod-882

uct with top of canopy reflectance), with cloud and cloud shadow masking.883

These Sentinel-2 images are composed of the three classic visible bands and884

a Near Infra-Red (NIR) band (B2, B3, B4, and B8, respectively) at a 10-885

4https://www.theia-land.fr/
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Spectral bands Band Central Bandwidth Spatial

number wavelength resolution

S2A / S2B S2A / S2B

(nm) (nm) (m)

Aerosols B1 442.7 / 442.3 21 60

Water vapour B9 945.1 / 943.2 20 / 21

Cirrus detection B10 1373.5 / 1376.9 31 / 30

Blue (B) B2 492.4 / 492.1 66 10

Green (G) B3 559.8/ 559 36

Red (R) B4 664.6 / 665 31

Near Infra-Red (NIR) B8 832.8 / 833 106

Red-edge (Re1) B5 704.1 / 703.8 15 / 16 20

Red-edge (Re2) B6 740.5 / 739.1 15

Red-edge (Re3) B7 782.8 / 779.7 20

Near Infra-Red narrow (NIR n) B8a 864.7 / 864 21 / 22

Short Wave Infra-Red (SWIR1) B11 1613.7 / 1,610.4 91 / 94

Short Wave Infra-Red (SWIR2) B12 2,202.4 / 2,185.7 175 / 185

Table A.5: Characteristics of Sentinel-2 images
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meter spatial resolution and the six spectral bands at 20 meters, from the886

Red-edge (Re) and NIR spectral domains (B5, B6, B7 and B8a, respectively)887

to the Short Wave Infra-Red (SWIR) spectral domain (B11 and B12). The888

three spectral bands of the Red-edge (B5, B6 and B7) and the NIR narrow889

(B8a) are new information proposed by Sentinel-2. They are important and890

very interesting for the study of vegetation, especially for the retrieval and891

monitoring of biophysical parameters such as indicators of vegetation health,892

canopy structure and functioning parameters, and biomass estimation.893

Appendix B. Computing resources894

In this machine learning problem, the most critical computing resource895

is time. The framework demands a reduced amount of memory and memory896

requirements does no constrain it uses on a standard desktop computer. The897

long execution time is required due to the repetition of each step of the898

process. As illustrated in Figure 3, two steps are repeated: features selection899

and learning of each model. Remind that the overall objective if the process900

is to select the best combination of a features set and a regression model.901

To automatically select the best in the sound way, we need to repeat the902

experiment on several subsets of the data.903

This particular process is time demanding but can easily be parallelized.904

The computing time depends on the number of step repetitions and the time905

of each step. On the other side, all step repetitions are independent from906

each other. It can be parallelized easily and with a high speedup.907

In practice, we use 4 cores of our CPUs to parallelize the independent908

steps. The the mean computing times of each individual steps are detailed909
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Process step Time (s)

Feature selection ≈ 290

Model training SVR ≈ 1.27

- Ridge ≈ 1.89

- Lasso ≈ 3.36

- Bayesian Ridge ≈ 1.90

- ElasticNet ≈ 1.12

Table B.6: Time (in seconds) of the main processes of our framework. The time for model

training correspond to 100 trainings and evaluations (Leave One Out evaluation).

in Table B.6. We repeat feature selection 5 times and we repeat 100 times910

the training of each model (Leave One Out on 100 random samples). With911

this setting, the overall running time (user time) is about 30 minutes.912
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• A generic approach is proposed to identify a subset of new features11

derived from the spectral indices.12

• The predicted grassland height average RMSE is 1.78±0.30 cm on the13

test set.14

• The model trained on the data collected from 2017 to 2019 achieves15

similar accuracy with data from 2020.16




