
HAL Id: hal-03833721
https://hal.science/hal-03833721

Submitted on 19 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Algorithm for Reasoning over OWL EL
Ontologies with Nominal Schemas
David Carral, Joseph Zalewski, Pascal Hitzler

To cite this version:
David Carral, Joseph Zalewski, Pascal Hitzler. An Efficient Algorithm for Reasoning over OWL EL
Ontologies with Nominal Schemas. Journal of Logic and Computation, 2022, 33 (1), pp.exac032.
�10.1093/logcom/exac032�. �hal-03833721�

https://hal.science/hal-03833721
https://hal.archives-ouvertes.fr

An Efficient Algorithm for Reasoning over OWL EL
Ontologies with Nominal Schemas

David Carral · Pascal Hitzler · Joseph
Zalewski

July 2021

Abstract Nominal schemas have been proposed as an extension to Descrip-
tion Logics (DL), the knowledge representation paradigm underlying the Web
Ontology Language (OWL). They provide for a very tight integration of DL
and rules. Nominal schemas can be understood as syntactic sugar on top of
OWL. However, this naive perspective leads to inefficient reasoning proce-
dures.

In order to develop an efficient reasoning procedure for the language ELV++,
which results from extending the OWL profile language OWL EL with nominal
schemas, we propose a transformation from ELV++ ontologies into Datalog-
like rule programs that can be used for satisfiability checking and assertion
retrieval. The use of this transformation enables the use of powerful Datalog
engines to solve reasoning tasks over ELV++ ontologies. We implement and
then evaluate our approach on several real-world, data-intensive ontologies,
and find that it can outperform state-of-the-art reasoners such as Konclude
and ELK. As a lesser side result we also provide a self-contained description
of a rule-based algorithm for EL++ which does not require a normal form
transformation.

The second and third author acknowledges funding by the National Science Foundation
under award 2033521.

David Carral
LIRMM, Inria, University of Montpellier, CNRS
E-mail: david.carral@inria.fr

Joseph Zalewski
Data Semantics Laboratory, Kansas State University
Department of Computer Science, 1701D Platt St., Manhattan, KS 66506, USA
E-mail: jzalewski@ksu.edu

Pascal Hitzler
Data Semantics Laboratory, Kansas State University
Department of Computer Science, 1701D Platt St., Manhattan, KS 66506, USA
+1-785-532-6350, E-mail: hitzler@ksu.edu

2 David Carral et al.

Keywords Knowledge Representation · Reasoning · Description Logics ·
Datalog · OWL EL · Nominal Schemas

1 Introduction

Nominal schemas have been introduced in [29] based on preliminary ideas from
[26,27]. Nominal schemas are essentially a syntactic extension to the Web On-
tology Language (OWL) [13] which is based on Description Logics (DL) [2].
The primary purpose of nominal schemas is to allow DLs to behave more
like rules, the primary alternative formalism to DLs in the ontology world.
(We will fully introduce one standard rule language, Datalog, in this paper.)
Nominal schemas can be understood as a generalization of the idea of DL-safe
rules [15,25,33], a restricted type of rules permitting rule reasoning and de-
scription logic reasoning to be performed “simultaneously”, for many standard
DLs, without introducing undecidability. As such, nominal schemas make it
possible to create OWL expressions equivalent to rules, covering a wide range
of desirable kinds of rule, and therefore enable a very tight integration of the
OWL and rule paradigms [23]. Essentially, nominal schemas are a variable ver-
sion of nominals, or classes semantically constrained to have only one element,
which is given an individual name; they are variables which can be bound to
known individuals only, that is, individual names used in the knowledge base
at hand. (This is convenient because there are finitely many of those.) For
example, if a knowledge base contains 3 named individuals a, b, c, represented
by nominals {a}, {b}, {c}, the axiom (∃R.{x} ⊑ ∃S.{x}) ({x} is the nominal
schema in this axiom) makes the assertion that whatever is related by R to
a, b or c is also related to the same by S; however, it makes this assertion only
regarding a, b, c. It does not say anything about items that are merely related
by R to some thing. The following axiom, which is taken from [25] and is
expressed in DL syntax, is a typical example for the use of nominal schemas.

∃hasReviewAssignment.({x} ⊓ ∃hasAuthor.{y} ⊓ ∃atVenue.{z}) ⊓
∃hasSubmittedPaper.(∃hasAuthor.{y} ⊓ ∃atVenue.{z})
⊑ ∃hasConflictingAssignedPaper.{x}.

In natural language, this axiom says: “Whoever has a review assignment x,
with author y, at venue z, and has submitted a paper with author y at venue
z, has conflicting assigned paper x”, except of course it does not quite say
that, it only asserts that this is true when the values of x, y, and z are indi-
viduals named somewhere in the knowledge base which has this axiom. One
can think of the three nominal schemas {x}, {y} and {z} as mere placeholders
for actual nominals. In fact, calling the number of named individuals in the
knowledge base k, this axiom can be translated into k3 axioms without nom-
inal schemas by fully grounding the axiom, which is to say, creating k3 new
axioms by replacing the three nominal schemas by the k nominals in all possi-
ble combinations (see [25]). This translation perfectly preserves the semantics
of the original axiom, and can be used as the intuition for its precise meaning,

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 3

as defined later. Full grounding eliminates nominal schemas and thus can be
used, in principle, for reasoning over knowledge bases with nominal schemas.
However, fully grounding an axiom with ℓ different nominal schemas results
in the inclusion of kℓ new axioms without nominal schemas and the size of
knowledge base often becomes unmanageable for current algorithms [8,9].

The motivation for introducing nominal schemas lies in bridging the gap
between DL-based and rule-based approaches for ontology modelling [15,23,
25]. Often logical constraints which are easy to capture in one formalism are
hard or impossible to capture in the other, and so it is considered desirable to
have the “best of both worlds” by being able to systematically translate rules
into DL axioms (or vice versa). Indeed, the example above arises from the rule

hasReviewAssignment(w, x) ∧ hasAuthor(x, y) ∧ atVenue(x, z) ∧
hasSubmittedPaper(w, v) ∧ hasAuthor(v, y) ∧ atVenue(v, z)

→ hasConflictingAssignedPaper(w, x)

if x, y and z are considered to be DL-safe variables [27]; that is, variables
that bind only to named individuals present in the knowledge base and do not
match to terms introduced during the reasoning process to satisfy existential
restrictions.

1.1 Summary Of Related Work

In [29] it was shown that DL-safe binary Datalog is completely subsumed by
nominal-schema-extended DL, and in [23] this was lifted to n-ary DL-safe Dat-
alog. This means that nominal schemas allow for the incorporation of DL-safe
SWRL [17,33] into the DL paradigm. It was also shown in [23] that the use
of nominal schemas together with autoepistemic operators yields a DL which
encompasses most of the major paradigms in non-monotonic logic program-
ming and in local-closed-world-extended DL (see also [22]), thus constituting
a major step towards establishing a unifying logic for major Semantic Web
languages around the W3C standards OWL [13] and RIF [21].

It was shown in [29] that extending SROIQ with nominal schemas does
not result in an increase of worst-case complexity, and it was also shown that
a tractable fragment can be obtained which encompasses both OWL EL and
the DL-safe version of OWL RL [13] (and, more generally, Datalog under the
Herbrand semantics provided there is a bound on the number of variables
per rule). The complexities of different DL languages extended with nominal
schemas are studied in [30]. However, despite this, first attempts to arrive at
an efficient reasoning algorithm with nominal schemas have had limited suc-
cess: [24] reported on a corresponding extension of tableaux algorithms, while
[42] reported on a resolution-based algorithm for the tractable fragment—but
neither of these algorithms looked promising enough in terms of scalability to
even attempt an implementation. However, an adaptation of the reasoning op-
timization technique known as absorption has led to a significantly improved

4 David Carral et al.

reasoning algorithm with nominal-schema-extended SROIQ [37,38]; that is,
the logic underlying the OWL DL language.

1.2 Contributions

In this paper, we present an efficient approach to solve assertion retrieval and
satisfiability checking over OWL EL ontologies with nominal schemas. More
precisely, we present a transformation from OWL EL ontologies into Datalog
programs that preserves assertion entailment. Using this transformation, we
can solve assertion retrieval over OWL EL ontologies using the following two-
step approach.

1. Given an ontology O, we compute the Datalog program PO using the
transformation presented in Section 4. Note that, for every assertion α,
we have that O |= α if and only if PO entails a translation of α (see
Theorem 2).

2. We use an efficient Datalog engine to compute all of the inferences of PO,
which allows us to obtain all the assertions entailed by O.

Furthermore, there is a particular fact which is derivable from PO iff O is
unsatisfiable.

We also report on an implementation of the above two-step approach, which
makes use of VLog [40,41] as a Datalog engine; and on a corresponding exper-
imental evaluation, which shows that our approach is indeed rather efficient.
Namely, we compare the performance of our approach on several real-world
ontologies and find that our implementation can outperform the DL reasoner
Konclude [39]—considered as one of the leading DL reasoners [35]—and the
OWL EL reasoner ELK [20].

In summary, our main contributions are the following.

– We introduce and prove correctness of a worst-case reasoning procedure
for ELV++ ontologies based on a translation into Datalog.

– We implement a prototype based on this algorithm.
– We conduct an empirical evaluation that shows performance gains over

state-of-the-art DL reasoners.
– We introduce a rule-based reasoning algorithm for EL++ not using normal

form transformation.

The paper is structured as follows.

– Section 2: we introduce the DL languages EL++ and ELV++, and Datalog.
– Section 3: we present a translation from normalised ontologies without

nominal schemas into Datalog programs and show that this translation
preserves assertion entailment.

– Section 4.1: we introduce grounding [29], which is a naive reasoning proce-
dure for nominal schemas.

– Section 4.2: leveraging results from Sections 3 and 4.1, we define a transla-
tion from (possibly not normalised) ontologies with nominal schemas into
Datalog programs that preserves assertion entailment.

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 5

– Section 5: we comment on an evaluation of our reasoning approach.
– Section 6: we elaborate about further work.

This paper is a very significantly extended and revised version of [9].

2 Preliminaries

2.1 Description Logics

We summarize basic notions from DL used in this paper. We assume some
familiarity with the topic and otherwise refer the reader to the literature for
further details: for a thorough theoretical introduction see [2]; an extended in-
troduction to DL and Semantic Web technologies and standards is provided in
[14], where also the relationships between DL and the different OWL standards
are explained in detail.

We formally introduce the DL languages EL++ [3] and ELV++ [29]. Al-
though the focus of this paper is on reasoning over ELV++, we make use of
the language EL++ in some of our formal arguments.

Let an ELV++ signature be a tuple (C, R, I, N) where C, R, I, N are
pairwise disjoint countably infinite sets. We will call the elements of C concept
names, and likewise those of R roles, I individuals and N nominal variables,
respectively. Let C contain two distinguished elements ⊤ and ⊥. Next we
define expressions and axioms over a signature - from now on, the signature
may not be explicitly mentioned. The set E of ELV++ concept expressions (or
simply expressions) over (C, R, I, N) is defined by the following grammar

E ::= (E ⊓E) | ∃R.E | ∃R.Self | Dom(R) | Ran(R) | C | {a} | {x}

where C ∈ C, R ∈ R, a ∈ I, and x ∈ N. Let C1 ⊓ . . . ⊓Ck be an abbreviation
for C1 ⊓ (C2 ⊓ (. . . Ck) . . .). Note the inclusion of nominal schemas in E; that
is, concept expressions of the form {x} with x ∈ N.

An (ELV++) terminological axiom is a syntactic expression given by the
grammar

TA ::= E ⊑ E | E ≡ E | R1 ◦ ... ◦Rn ⊑ S | R ≡ S | Ref(R) | Tran(R)

with Ri, R, S ∈ R. An (ELV++) assertion (or assertional axiom) is a syntactic
expression given by

AA ::= E(a) | ¬E(a) | R(a, b) | ¬R(a, b) | a ≈ b | a ̸≈ b

where R ∈ R, a, b ∈ I. An (ELV++) axiom is a terminological axiom or an
assertion. See Table 1 for reference.

An EL++ axiom is an axiom without occurrences of nominal variables.
Consider a set S of ELV++ axioms. Then, we define ⊑∗

S as the minimal
transitive and reflexive relation over roles such that R ⊑∗

S S if R ⊑ S, R ≡ S,
or S ≡ R are in S. A role R is simple with respect to S iff, for every S where

6 David Carral et al.

Concept Expression Syntax Semantics

Primitive Concept Name A AI

Conjunction C1 ⊓ C2 CI
1 ∩ CI

2

Existential Restriction ∃R.C {d | ∃e[(d, e) ∈ RI , e ∈ CI]}
Self Restriction ∃R.Self {d | (d, d) ∈ RI}
Domain Restriction* Dom(R) {d | (d, e) ∈ RI}
Range Restriction Ran(R) {d | (e, d) ∈ RI}
Nominal {a} {aI}
Nominal Schema {x} {Z(x)I}
Top ⊤ ∆I

Bottom ⊥ ∅

Axiom Syntax Semantics

Concept Inclusion C ⊑ D CI ⊆ DI

Concept Equivalence* C ≡ D CI = DI

Role Inclusion R1 ◦ . . . ◦Rn ⊑ S (R1 ◦ . . . ◦Rn)I ⊆ SI

Role Equivalence* R ≡ S RI = SI

Reflexivity* Ref(R) {(t, t) | t ∈ ∆I} ⊆ RI

Transitivity* Tran(R) (R ◦R)I ⊆ RI

Concept Assertion C(a) aI ∈ CI

Negative C. Assertion ¬C(a) aI /∈ CI

Role Assertion R(a, b) (aI , bI) ∈ RI

Negative R. Assertion ¬R(a, b) (aI , bI) /∈ RI

Equality Assertion a ≈ b aI = bI

Inequality Assertion a ̸≈ b aI ̸= bI

Table 1 ELV++ Syntax and Semantics. A ∈ C \ {⊤,⊥}, C(i), D ∈ E, R(i), S ∈ R, a, b ∈ I,
and x ∈ N.

* marks redundant constructs.

S ⊑∗
S R, there are no axioms in S of the form (i) Tran(S) or (ii) S1◦. . .◦Sk ⊑ S

with k > 1.
An ELV++ ontology O is a set of ELV++ axioms that additionally satisfies

all the following conditions.

1. For all R ∈ R, if Ref(R) ∈ O or the expression ∃R.Self occurs in O, then
R is simple with respect to O.

2. If R1 ◦ . . . ◦Rk ⊑ S ∈ O, k > 1, and S ⊑∗
O R, and Ran(R) ⊑ B ∈ O, then

Ran(Rk) ⊑ B ∈ O.

An EL++ ontology O is an ELV++ ontology containing only EL++ axioms;
that is, an ELV++ ontology without occurrences of nominal schemas.

Condition (1) is considered in existing definitions of the EL++ language
[28] and is in place to preserve decidability. An undecidability proof for EL++

without this restriction can be easily produced along the lines of the proofs
presented in Section 2.5.1 of [19]. Dropping (2) was shown to lead to undecid-
ability in [4], which is also where this condition was initially introduced.

We do not consider any structural restrictions regarding role regularity
[18] in our definition of ELV++ even though some of these apply to OWL EL

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 7

[32]. These restrictions, which are in place to make OWL EL a strict subset of
OWL DL in terms of expressivity, are not necessary for preserving termination
or tractability of ELV++ reasoning algorithms. Consequently, they are not
considered in this publication.

Let the size of a concept (resp. an axiom, an ontology) be the total number
of symbols in it.

The semantics of an ELV++ ontology O is given through the definition
of interpretations and nominal variable assignments. An interpretation I is a
pair (∆I , ·I) where ∆I is a set and ·I is a function that maps each individual
occurring in an axiom in the ontology to an element of ∆I , and likewise each
concept name in the ontology to a subset of ∆I , and each role name in the
ontology to a subset of ∆I ×∆I (a binary relation). Also, an interpretation
must have ⊤I = ∆I and ⊥I = ∅. This is shown in Table 1 for convenience.
A nominal variable assignment Z is a function Z : N → IO, where IO is the
set of individual names appearing in O. Given Z, an interpretation I can be
extended in a canonical way to map all concept expressions over the individual,
class and role names used in the ontology to subsets of ∆I . This extension
with respect to Z is defined recursively. {x}I is defined as {Z(x)I} for any
nominal-schema expression {x} occurring in O, and otherwise the extension
of I is made in the usual way per description logic conventions: ⊤I is defined
to be ∆I , ⊥I to be the empty set, (C1 ⊓ C2)

I to be CI
1 ∩ CI

2 , and so on; see
Table 1 for reference. We will sometimes write the extension of I with respect
to Z as just I, when it is clear from context which Z is intended.

An interpretation I and a nominal variable assignment Z satisfy an ELV++

axiom α, written I,Z |= α, if the corresponding condition shown in the lower
part of Table 1 holds. For instance, I,Z |= C ⊑ D if CI ⊆ DI . An inter-
pretation I satisfies α, written I |= α, if I,Z |= α for all nominal variable
assignments Z. For EL++ axioms α, obviously I,Z |= α for all Z iff I,Z |= α
for some Z, since EL++ concepts do not contain nominal variables. So we will
write I |= α for EL++ axioms with the understanding that Z is irrelevant.

An interpretation I satisfies an ontology O, written I |= O, if I |= α for
every α ∈ O. If this is the case, we say that I is a model of O. An ontology O is
satisfiable if and only if there exists some model for O. An ontology O entails
an axiom α, written O |= α, if I |= α for every model I of O. Note: Many of
the axiom constructs in Table 1 are redundant; they can be considered aliases
for some set of other axioms combined with expression constructors, because
the axiom and its corresponding set of axioms entail each other (or, they are
logically equivalent). These are included only for convenience, so the reader
versed in description logic (or the OWL standard, in which all of them are
indeed primitives) can quickly see which of the standard DL axiom types are
expressible in ELV++. The redundant constructs (marked with asterisks in
Table 1) are: Concept Equivalence - C ≡ D is equivalent to {C ⊑ D,D ⊑ C},
Role Equivalence - R ≡ S is equivalent to {R ⊑ S, S ⊑ R}, Reflexivity - Ref(R)
is equivalent to ∃R.Self ≡ ⊤, Transitivity - Tran(R) is equivalent to R◦R ⊑ R.
The concept expression Dom(R) is also redundant; Dom(R)I = (∃R.⊤)I for
every I,Z.

8 David Carral et al.

It has been shown in [30] that description logics with nominal schemas be-
have quite similarly if nominal variable assignments are allowed to take values
in the infinite set I rather than IO, but we use the more classical semantics.

The main reasoning task in DL is satisfiability checking ; that is, checking
if there exists at least one model for a given ontology. Besides satisfiability
checking, we focus on solving assertion retrieval ; that is, computing all of the
assertions that follow from an ontology.

2.2 Datalog

Our reasoning algorithm for ELV++ is based on the rule language Datalog
extended with function symbols, which is briefly introduced in this section.
Moreover, we introduce the chase, a bottom up materialisation procedure that
can be used to compute all of the facts that follow from a Datalog theory. As
with DL, we assume that the reader is familiar with the topic, and otherwise
we refer her to the literature [1].

Let a Datalog signature be a tuple (P, F, V) where P, F, V are pairwise
disjoint countably infinite sets (call the elements of P predicates, likewise F
function symbols and V variables) together with an assignment of some non-
negative integer arity, ar(s), for each symbol s ∈ P ∪ F, and a distinguished
element ≈ ∈ P with ar(≈) = 2. The set of constants O (over a given Data-
log signature; again we may omit explicit mention of signatures later) is the
set of all function symbols of arity 0. We inductively define the set of terms
T as follows: O ∪ V ⊆ T and, for every function symbol f with ar(f) ≥ 1
and every sequence of terms t1, . . . , tar(f), we have that the syntactic expres-
sion f(t1, . . . , tar(f)) ∈ T. An atom is an expression p(t1, . . . , tk) with p ∈ P,
ar(p) = k and ti ∈ T for all i = 1, . . . , k. As is customary, we slightly abuse
notation and write t ≈ u instead of ≈(t, u) for atoms defined over the special
equality predicate ≈.

A rule is a formula of the form B → H where B and H are conjunctions
of atoms with H ̸= ∅. We refer to B and H as the body and the head of the
rule, respectively. We often identify conjunctions of atoms, such as B and H,
with sets. Note that we have adopted a rather liberal definition of Datalog: we
allow for multiple atoms in the head of a rule, function symbols, and variables
occurring in the head that do not occur in the body. However, our rules are
not existential rules; variables occurring only in the head are to be read as
“universally quantified”, as implied by Definition 1 below. A program is a set of
rules. A ground rule (respectively, ground atom, ground term) is a rule (atom,
term) in which no variables appear. A fact is a ground rule with an empty
body. As is customary, we simply write p(c1, . . . , ck) instead of → p(c1, . . . , ck)
when dealing with facts.

A substitution is a partial function mapping variables to terms. The ap-
plication of a substitution σ to a formula φ of atoms, written φσ, is the
formula that results from replacing all syntactic occurrences of every vari-
able x in the domain of σ with σ(x) if the latter is defined. For instance,

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 9

given the substitution σ = {(x, a)} and the atom A(x, f(x)), we have that
A(x, f(x))σ = A(a, f(a)). Call a substitution ground if all its values are ground
terms.

Definition 1 Consider a rule ρ = B → H, a set of facts F , and a program
P. Then, let ρ(F) be the fact set containing Hσ for every ground substitution
σ such that σ is defined on all variables in ρ and Bσ ⊆ F , and let P(F) =⋃

ρ∈P ρ(F). The chase sequence of P is the sequence P0,P1, . . . of fact sets

such that P0 = ∅ and Pi = P(Pi−1) for all i ≥ 1. The chase of P is the set
Ch(P) =

⋃
i≥0 Pi. We say that the chase of P terminates if Ch(P) is finite;

that is, if there is some i ≥ 0 with Pj = Pi for all j ≥ i.

Note that, since we consider Datalog programs with function symbols, it is
indeed possible that the chase does not terminate because an infinite number
of terms is introduced during its computation.

Rules (resp. atoms, conjunctions of atoms) r and s are isomorphic if there
exists a bijective substitution σ with rσ = s. Let the size of an atom (resp., a
rule, a program) be the total number of symbols in it.

In subsequent sections we define mappings from ontologies to Datalog pro-
grams and show that that the latter can be used to solve reasoning tasks over
the former. To appropriately define these ontology-to-program mappings, let
(C,R,I,N) be an ELV++ signature; we define a corresponding Datalog signa-
ture (P,F,V). P = C∪R∪{Named}, where Named is a symbol not occurring
in (C,R,I,N). Let ⋆ be another symbol not occurring in our ELV++ signature.
For a C ∈ E, we define C⋆ as the concept expression that results from replac-
ing every syntactic occurrence of any individual or nominal variable in C by ⋆.
For each R ∈ R, C ∈ E, let fRC⋆

be a fresh function symbol unique for R and
C⋆, with arity equal to the number of (not necessarily distinct) individuals
and nominal variables occurring in C. Now F = I ∪ {fRC⋆

|R ∈ R, C ∈ C}.

Example 1 Let C be the description logic expression ∃R.({u}⊓∃S.({u}⊓{v})).
C⋆ is the term ∃R.({⋆} ⊓ ∃S.({⋆} ⊓ {⋆})).
For each role T , our Datalog signature will include a fresh function symbol
fT [∃R.({⋆}⊓∃S.({⋆}⊓{⋆}))], which has arity 3.

Definition 2 Given ∃R.C ∈ E with R ∈ R and C ∈ E, let f(∃R.C) =
fRC⋆

(t1, . . . , tk), where t1, . . . , tk is the sequence of all (not necessarily distinct)
individuals and nominal variables occurring in C sorted by the order in which
they syntactically appear.

Example 2 Reusing the expression from Example 1, f(∃R.({u} ⊓ ∃S.({u} ⊓
{v}))) = fR[({⋆}⊓∃S.({⋆}⊓{⋆}))](u, u, v).

Example 3 If C is an expression with no nominal variables, like ∃R.(A ⊓ {a})
for individual name a, f(C) will be a ground term:
f(C) = fR[A⊓{⋆}](a).

10 David Carral et al.

For a while, we will be dealing with f(∃R.C) only for classes C containing
no nominal variables, and in this case we will write the ground term f(∃R.C)
as fRB . We may informally refer to it as a “constant.” V = N∪V’, where V’
is an infinite set disjoint from all others mentioned so far, which will be used
to obtain “fresh” variables during translation into Datalog.

Let ar(C) = 1 for all C ∈ C, ar(R) = 2 for all R ∈ R, ar(Named) = 1,
ar(⊤) = 1, ar(⊥) = 0, ar(a) = 0 for a ∈ I, and ar(fRC) be the number of
occurrences of nominals and nominal schemas in C.

The function symbols fRC are used to introduce distinct functional terms
during the reasoning process to satisfy existential restrictions enforced by con-
cept expressions of the form ∃R.C with C a concept expression containing
nominal schemas.

⊥ is made 0-ary because it will be used as a “failure signal”, which indicates
unsatisfiability if it can be deduced; it does not matter which specific elements
are deduced to be in ⊥.

3 A Reasoning Algorithm for Normalized EL++ Ontologies

In this section, we define a normal form for EL++ ontologies and a Datalog-
based algorithm to reason over normalized EL++ ontologies. This preliminary
algorithm is used in later sections to prove correctness of other reasoning
procedures which do not require a preliminary normalization step.

The reasoning algorithm presented in this section is similar to the one in
[28]; the main difference being that, in [28], a fixed set of rules is used for
reasoning, while EL++ axioms are translated into facts. A fixed set of rules
is sufficient in this case because EL++ can be cast into a very limited normal
form; however, we did not find a similarly limited normal form for ELV++. Our
final reasoning algorithm for EL++, as presented in this section, disposes of the
need for such a normal form by providing a translation of TBox axioms into
rules and ABox axioms into facts. This will give us the additional flexibility
to extend the algorithm to ELV++ in subsequent sections of this paper.

Definition 3 An EL++ ontology is in normal form if it only contains ax-
ioms in the forms, A1 ⊓ . . . ⊓ An ⊑ B, ∃R.A ⊑ B, ∃R.Self ⊑ B,Ran(R) ⊑
B,⊤ ⊑ B,A ⊑ ∃R.B,A ⊑ ∃R.Self, A ⊑ {a}, A ⊑ ⊥, R ⊑ S,R1 ◦ . . . ◦ Rk ⊑
S,A(a),¬A(a), R(a, b),¬R(a, b), a ≈ b, a ̸≈ b; that is, those appearing on the
left side of figure 1.

Various normal form transformations for EL++ exist in the literature, for
example a satisfiability-perserving one in [28]. Our normal form transformation
is a conservative extension:

Proposition 1 For an EL++ ontology O, there is another EL++ ontology O′

in normal form such that O |= α if and only if O′ |= α for every axiom α
containing only predicates and constants occurring in O.

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 11

A1 ⊓ . . . ⊓An ⊑ B 7→ {A1(x) ∧ . . . ∧An(x) → B(x)} (1)

∃R.A ⊑ B 7→ {R(x, y) ∧A(y) → B(x)} (2)

∃R.Self ⊑ B 7→ {RSelf(x) → B(x)} (3)

Ran(R) ⊑ B 7→ {R(y, x) → B(x)} (4)

⊤ ⊑ B 7→ {⊤(x) → B(x)} (5)

A ⊑ ∃R.B 7→ {A(x) → R(x, fRB) ∧B(fRB)} (6)

A ⊑ ∃R.Self 7→ {A(x) → RSelf(x)} (7)

A ⊑ {a} 7→ {A(x) → a ≈ x} (8)

A ⊑ ⊥ 7→ {A(x) → ⊥} (9)

R ⊑ S 7→ {R(x, y) → S(x, y), RSelf(x) → SSelf(x)} (10)

R1 ◦ . . . ◦Rk ⊑ S 7→ {R1(x0, x1) ∧ . . . ∧Rk(xk−1, xk) → S(x0, xk)} (11)

A(a) 7→ {A(a)} (12)

¬A(a) 7→ {A(a) → ⊥} (13)

R(a, b) 7→ {R(a, b)} (14)

¬R(a, b) 7→ {R(a, b) → ⊥} (15)

a ≈ b 7→ {a ≈ b} (16)

a ̸≈ b 7→ {a ≈ b → ⊥} (17)

Listing 1 Function δ. In the above, A(i), B ∈ C \ {⊤,⊥}, R(i), S ∈ R, a, b ∈ I, and k > 1.

Proof Given an EL++ ontology O, let O1, . . . ,Ok be a sequence of ontologies
such that O1 = O and, for every i ≥ 1, Oi+1 is the ontology that results
from replacing every axiom α ∈ Oi not in normal form by the axioms in
NF(α) with NF the function from Listing 2. It is clear that only a linear
number of such replacements is necessary to arrive at Ok, which is an EL++

ontology in normal form. This is indeed the case, as none of the restrictions
defined for EL++ ontologies is violated during the construction of the sequence
O1, . . . ,Ok. In particular, note the use of the fresh concept name XD when
normalizing axioms of the form Ran(R) ⊑ B.

For every pair of ontologies Oi and Oi+1 in the sequence the relation ob-
served in Proposition 1 is true: any interpretation satisfyingOi can be extended
to an interpretation of Oi+1 by interpreting every (possibly introduced) fresh
concept name as the least set of domain elements to satisfy every axiom in
Oi+1 (using the original interpretation for all other symbols). Conversely, any
interpretation that satisfies Oi+1 necessarily satisfies Oi. Since these observa-
tions are easily verified for each pair of ontologies Oi and Oi+1 in the sequence,
the proposition follows by induction. ⊓⊔

Hence, given some EL++ ontology O, there is always some normalized
ontology O′ that can alternatively be used to solve reasoning tasks over O.

12 David Carral et al.

C ≡ D 7→ {C ⊑ D,D ⊑ C} (1)

dom(R) ⊑ D 7→ {∃R.⊤ ⊑ D} (2)

ran(R) ⊑ D 7→ {ran(R) ⊑ XD, XD ⊑ D} (3)

R ≡ S 7→ {R ⊑ S, S ⊑ R} (4)

Ref(R) 7→ {⊤ ⊑ ∃R.Self} (5)

Trans(R) 7→ {R ◦R ⊑ R} (6)

E ⊑ F 7→ {E ⊑ X,X ⊑ F} (7)

A ⊑ D1 ⊓ . . . ⊓Dn 7→ {A ⊑ D1, . . . , A ⊑ Dn} (8)

A ⊑ ∃R.D 7→ {A ⊑ ∃R.X,X ⊑ D} (9)

A ⊑ ⊤ 7→ ∅ (10)

C1 ⊓ . . . ⊓ Ck ⊑ B 7→ {C1 ⊑ X1, . . . , Ck ⊑ Xk, X1 ⊓ . . . ⊓Xk ⊑ B} (11)

∃R.C ⊑ B 7→ {C ⊑ X, ∃R.X ⊑ B} (12)

⊥ ⊑ B 7→ ∅ (13)

{a} ⊑ B 7→ {B(a)} (14)

C(a) 7→ {X(a), X ⊑ C} (15)

¬C(a) 7→ {C ⊑ X,¬X(a)} (16)

Listing 2 Function NF. In the above, A,B ∈ C \ {⊤,⊥}, C(i), D(j) ∈ E, E,F ∈ (E \ C),
all X(i) are fresh concept names, and XD is a fresh concept name unique for D.

3.1 The Translation

An explanation is in order before we present the form of our rule transforma-
tion. It may appear that the rules we derive from an ontology O are meant to
axiomatize the behavior of elements in a model of O. For instance, an axiom
A ⊑ B becomes a rule A(x) → B(x), and indeed a model M of this axiom,
treated as a set of facts, is closed under the chase of the rule AM (x) → BM (x)
(the rule is “true”). Similar considerations seem to explain most parts of our
translation. However, this appearance is deceptive. Our true intention is that
Datalog constants represent small subsets of a model of O, the individual-
name constants being single-point subsets, but other constants (fRB) poten-
tially having several elements. A Datalog atom A(t) is to be read as “t is a
subset of AM”, and R(t, u) as “u is a subset of the range of R, and contains all
R-successors of t”; RSelf(t) is read “t is a subset of (∃R.Self)M”. This kind of
translation leads to a very direct (although heavy with trivial inductive cases)
proof of the soundness direction of the main Theorem 1 below. The above
should all be taken as intuition; now we will define the translation purely by
cases. However, the intuition will return in a precise way in the proof just
mentioned.

Definition 4 Given an ELV++ ontology O, let AuxO be the union of the sets
of rules EqO, TopO, SelfO, NamedO, and BottomO described in Listing 3.

The sets of rules EqO, TopO, and SelfO are used to axiomatize the meaning
of the equality predicate, the top predicate and the self constructor, respec-

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 13

EqO = {x ≈ y → y ≈ x, x ≈ y ∧ y ≈ z → x ≈ z} ∪
{A(x) ∧ x ≈ y → A(y) | A ∈ CO \ {⊥}} ∪
{R(x, y) ∧ x ≈ z → R(z, y), R(x, y) ∧ y ≈ z → R(x, z) | R ∈ RO} ∪
{⊤(x) → x ≈ x}

TopO = {A(x) → ⊤(x) | A ∈ CO} ∪ {R(x, y) → ⊤(x) ∧ ⊤(y) | R ∈ RO}
SelfO = {R(x, x) ∧ Named(x) → RSelf(x), RSelf(x) → R(x, x) | R ∈ RO}

NamedO = {Named(a),⊤(a) | a ∈ IO}
BottomO = {⊥ → A(t) | A ∈ CO}

Listing 3 Auxiliary Rules. In the above, CO, RO, and IO are sets of all concept names,
roles and individuals occurring in O.

tively. The predicate Named, employed in the set NamedO, will be used to
label the terms corresponding to individuals from the ontology O (as opposed
to the constants fRC) which, in turn, is necessary to correctly axiomatize the
meaning of nominal schemas. Note that the rules SelfO do not treat anony-
mous reflexive pairs (fRC , fRC) the same as named ones. This is consistent
with the intuitive meaning of the translation: if t is not a singleton, RM (t, t)
does not imply t ⊆ (∃R.Self)M .

Definition 5 Consider an EL++ ontology O in normal form and the function
δ from Listing 1. Then, let QO =

⋃
α∈O δ(α) ∪ AuxO.

Theorem 1 Consider some EL++ ontology O in normal form. Then, O is
unsatisfiable if and only if ⊥ ∈ Ch(QO). Provided O is satisfiable, O |= α if
and only if δ(α) ∈ Ch(QO) for any non-negated assertion α.

Proof We will prove the theorem in two parts. First, consider a normalized
EL++ ontology O. If ⊥ ∈ Ch(QO), O is unsatisfiable. Moreover, for any non-
negated assertion α such that δ(α) ∈ Ch(QO), O |= α.

Let the function κ map a constant t to a concept expression, as follows: if
t is of the form fRD, κ(t) = Ran(R) ⊓D; if t = a ∈ IO, κ(t) = {a}. In a given
model of O, this concept expression becomes the set of model elements that t
“represents”, according to the intuitive meaning of the rule translation.

We make use of an inductive argument on the chase sequence Q0
O, Q1

O, . . .
of QO to establish the following claims.

1. If ⊥ ∈ Qi
O, we have that O is unsatisfiable.

2. For all A(t) ∈ Qi
O, we have that O |= κ(t) ⊑ A.

3. For all R(t, u) ∈ Qi
O, we have that O |= κ(t) ⊑ ∃R.κ(u).

4. For all R(t, u) ∈ Qi
O and Ran(S) ⊑ A ∈ O with R ⊑∗

O S, we have that
O |= κ(u) ⊑ A.

5. For all RSelf(t) ∈ Qi
O, we have that O |= κ(t) ⊑ ∃R.Self.

6. For all t ≈ u ∈ Qi
O, we have that O |= κ(t) ≡ κ(u).

7. For all t ∈ T occurring in Qi
O, we have that κ(t)I ̸= ∅ for all I |= O.

14 David Carral et al.

The result follows from claims (1-3); the additional statements are used to
properly establish the inductive step. The base case of the induction is straight-
forward as we have that Q0

O = ∅. Most of the cases to be considered for the
proof of the induction step are trivial, and therefore we do not include them
in the following case by case analysis.

We verify that (4) holds in the induction step. Let R(t, u) ∈ Qi
O, (Ran(S) ⊑

A) ∈ O and R ⊑∗
O S for some R,S ∈ R and some t, u ∈ T. Since R(t, u) ∈ Qi

O,
then one of the following cases must hold.

– R(t, u) ∈ Qi−1
O . By induction hypothesis (IH) (4), O |= κ(u) ⊑ A.

– (→ R(t, u)) ∈ QO. So t, u are not of the form fRD and R(t, u) ∈ O. Thus
κ(u) = {u},O |= {u} ⊑ Ran(R), R ⊑ S, and thusO |= κ(u) ⊑ Ran(S) ⊑ A.

– The constant u is of the form fRB , there is a rule of the form C(x) →
R(x, fRB) ∧ B(fRB) ∈ QO and C(t) ∈ Qi−1

O . By definition, κ(u) = B ⊓
Ran(R). Since R ⊑∗

O S, O |= κ(u) ⊑ Ran(S). Therefore, O |= κ(u) ⊑ A.
– V (x, y) → R(x, y) ∈ QO for some V ∈ R, and so V ⊑ R ∈ O. Thus

V ⊑∗
O S. Now V (t, u) ∈ Qi−1

O , so by IH (4), O |= κ(u) ⊑ A.
– There is a rule of the form R1(x0, x1)∧. . .∧Rk(xk−1, xn) → R(x0, xk) ∈ QO

with k > 1 and there are some terms v0, . . . , vk such that {R1(v0, v1), . . .,
Rk(vk−1, vk)} ⊆ Qi−1

O , v0 = t and vk = u. Then Ran(Rk) ⊑ A ∈ O by
the restrictions defined in Section 2.1 for ELV++ ontologies. By IH (4),
O |= κ(u) ⊑ A.

– RSelf(x) → R(x, x) ∈ QO, RSelf(t) ∈ Qi−1
O and t = u. By IH (5), O |=

κ(t) ⊑ ∃R.Self. Therefore, O |= κ(u) ⊑ Ran(R). Since R ⊑∗
O S, O |=

κ(u) ⊑ Ran(S). Therefore, O |= κ(u) ⊑ A.
– {R(t, v), v ≈ u} ⊆ Qi−1

O for some v. By IH (4) and (6), O |= {κ(v) ⊑
A, κ(v) ≡ κ(u)}. Hence, O |= κ(u) ⊑ A.

– {R(v, u), v ≈ t} ⊆ Qi−1
O for some v. By IH (4), O |= κ(u) ⊑ A.

We will also show that IH (7) holds in the inductive step. If t ∈ I, then the
claim holds since κ(t) = {t}. Hence, we only need to consider the cases where
t /∈ I.

– t ∈ Qi−1
O . Then κ(t)I ̸= ∅ by IH (7).

– The term t is of the form fRD, there is a rule of the form A(x) →
R(x, fRB) ∧ B(fRB) ∈ QO, and A(u) ∈ Qi−1

O for some u ∈ T. Then,
A ⊑ ∃R.B ∈ O and κ(t) = ran(R) ⊓ B. By IH (2), O |= κ(u) ⊑ A. By IH
(7), κ(u)I ̸= ∅ for all I |= O. Therefore, AI is non-empty as well for all
I |= O, so ∃R.BI is non-empty, and therefore so is (Ran(R)⊓D)I = κ(t)I .

Now to the second part: consider a normalized EL++ ontology O. If O is
unsatisfiable, ⊥ ∈ Ch(QO). Moreover, if O is satisfiable and O |= α for any
non-negative assertion α, then δ(α) ∈ Ch(QO).

If ⊥ ∈ Ch(QO), then the above claim trivially holds since O is unsatisfiable
by the first part of the proof, above. Therefore, we assume that ⊥ /∈ Ch(QO).
To show that the claim holds in this case, we construct a modelM = (∆M, ·M)
for O such that,

(a) if A(a) /∈ Ch(QO), then aM /∈ AM (and hence O ̸|= A(a)); and

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 15

(b) if R(a, b) /∈ Ch(QO), then (aM, bM) /∈ RM (and hence O ̸|= R(a, b)).

The model M = (∆M, ·M) is defined as follows:

– Let ∆∗ be the set containing every individual in IO and every term of the
form fRB which occurs in Ch(QO).

– Let ∆∗∗ be the set of equivalence classes of the relation ≡ on ∆∗ × ∆∗

which is defined by {(a, b) | a ≈ b ∈ Ch(QO)}. That this is an equivalence
relation follows from the rules in EqO. Also note that we can safely abuse
the notation “A(t) ∈ Ch(QO)” for an element t ∈ ∆∗∗ to mean “A(t′) ∈
Ch(QO) for some t′ ∈ t”, because the substitution rules in EqO guarantee
that any one element t′ of the equivalence class t has A(t′) ∈ Ch(QO) iff
all elements do, and likewise for binary predicates; that is to say, ≡ is a
congruence in Ch(QO). Recall our earlier decision with regard to reflexive
pairs (x, x) - we use a special class RSelf for each role R to track where
they are. But in the ruleset SelfO, we cautiously chose never to assume any
reflexives exist except between named individuals, since other constants
represent sets, potentially full of indistinguishable members, and even when
such a set is “related to itself by R”, it may be that none of its members are
individually so related to themselves. So now we are faced with a chase set
constructed by this very conservative assumption; we need a model M that
justifies it. Therefore we will ensure that each non-named constant really
corresponds to a subset of ∆M with at least 2 elements, with no reflexive
connection between them by any simple role. This is done by “exploding”
each non-named constant t into two, t and t∗, such that if S(t, t) holds in
the chase, S will connect t to t∗ and vice versa, but not t to t or t∗ to t∗.
Now the semantics of EL++ are still capable of forcing some roles in M to
contain reflexive pairs - if, e.g., S ◦S ⊑ R were an axiom of O. But such R
would not be simple, and ∃R.Self would not be defined. Simple roles thus
serve to prevent an undesirable interaction between role chains and the Self
construct. More precisely: let X ⊆ ∆∗∗ be the set of singleton ≡-classes
of the form {fRB}. We just state the following fact: for all t ∈ ∆∗∗, either
t ∈ X or (exclusive “or”) t contains some individual (∈ I). To see that
this is true, notice the ways in which ≈ atoms involving non-individuals
can be introduced by our rules. Now the model will be constructed using
the set ∆M = (∆∗∗ \ X) ∪ (X × {0, 1}). For t ∈ ∆M, let its projection
ιt be defined by [fRB]≡ if t = ({fRB}, i) ∈ X, and by t otherwise. For
t = ({fRB}, i) ∈ X, let t∗ = ({fRB}, 1− i).

– The function ·M is defined as follows:
1. For all a ∈ I, aM = [a]≡.
2. For all A ∈ C, AM = {t | A(ιt) ∈ Ch(QO)}.
3. For all simple S ∈ R, SM = {(t, t) | SSelf(ιt) ∈ Ch(QO)} ∪ {(t, u) |

S(ιt, ιu) ∈ Ch(QO) and t ̸= u}.
4. For all non-simple R ∈ R, RM = {(t, u) | R(ιt, ιu) ∈ Ch(QO)}.

By (1), ⊤M = ∆M since ⊤(c) ∈ Ch(QO) for every constant c occurring in
Ch(QO) (note that TopO ⊆ QO). Since ⊥ is a null-ary symbol in our Datalog

16 David Carral et al.

signature, no ⊥(t) ∈ Ch(QO), so ⊥M = ∅. Therefore, M is indeed an inter-
pretation. Moreover, condition (a) above is satisfied, since if A(a) ̸∈ Ch(QO),
[a]≡ ̸∈ AM. For condition (b), let R(t, u) ̸∈ Ch(QO) for individuals t, u; if
R is non-simple then ([t]≡, [u]≡) ̸∈ RM immediately; whereas if R is simple,
this is immediate if [t]≡ ̸= [u]≡, that is, t ≈ u ̸∈ Ch(QO), t ̸= u. Other-
wise, (tM, uM) ∈ RM means RSelf(t) ∈ Ch(QO), from which would follow
R(t, t) ∈ Ch(QO) by a rule from SelfO, which implies RM(tM, tM), a contra-
diction. So condition (b) holds as well.

To show that M is a model, one verifies that M satisfies every axiom
α ∈ O. We show this for the axiom shapes corresponding to lines 3, 6, 10, 11,
and 15 in Listing 1.

– Let ∃S.Self ⊑ B ∈ O and (t, t) ∈ SM. Then, S is simple by the definition of
an EL++ ontology and hence, SSelf(ιt) ∈ Ch(QO). Since SSelf(x) → B(x) ∈
QO, B(ιt) ∈ Ch(QO) and hence, t ∈ BM.

– Let A ⊑ ∃R.B ∈ O and t ∈ AM. Then, A(ιt) ∈ Ch(QO). Since A(x) →
R(x, fRB) ∧ B(fRB) ∈ QO, R(ιt, [fRB]≡), B([fRB]≡) ∈ Ch(QO). We con-
sider the following cases:
– t = [fSB]≡ and this set is not a singleton: Then [fSB]≡ contains an

individual a, and ιt = t. Named(t),SelfR(t) ∈ Ch(QO), so regardless of
whether R is simple, (t, t) ∈ RM.

– t ∈ X: Then regardless of whether R is simple, (t, t∗), (t∗, t) ∈ RM , and
t, t∗ ∈ BM .

– t ̸= [fRB]≡: Then, (t, fSB) ∈ SM by definition.
– Let S ⊑ R ∈ O and (t, u) ∈ SM. Then {SSelf(x) → RSelf(x), S(x, y) →

R(x, y)} ⊆ QO. The following cases arise:
– S is non-simple and S(ιt, ιu) ∈ Ch(QO). Then, R is also non-simple.

Also, R(ιt, ιu) ∈ Ch(QO) and hence, (t, u) ∈ RM.
– S is simple and t ̸= u, and S(ιt, ιu) ∈ Ch(QO). Then, R(ιt, ιu) ∈

Ch(QO) and (t, u) ∈ RM.
– S is simple, SSelf(t) ∈ Ch(QO) and t = u. Then, RSelf(ιt), R(ιt, ιt) ∈

Ch(QO) and so regardless of whether R is simple (t, t) ∈ RM.
– Let R1◦. . .◦Rm ⊑ S ∈ O withm > 1, (v0, v1) ∈ RM

1 , . . ., and (vm−1, vm) ∈
RM

m . Then, R1(x0, x1)∧ . . .∧Rm(xm−1, xm) → S(x0, xm) ∈ QO, S is com-
plex, and R(ιv0, ιv1), . . . , R(ιvm−1, ιvm) ∈ Ch(QO). Hence, S(ιv0, ιvm) ∈
Ch(QO) and (v0, vm) ∈ SM.

– Let ¬R(a, b) ∈ O. Then R(a, b) → ⊥ ∈ QO. Moreover, by assumption,
⊥ /∈ Ch(QO) and hence R(a, b) /∈ Ch(QO). We consider the following cases:
– R is complex or a ̸= b. Then, R(a, b) /∈ Ch(QO) implies (aM, bM) /∈

RM.
– R is simple and a = b. Note that RSelf(a) /∈ Ch(QO) as this would

imply that R(a, b) /∈ Ch(QO) since RSelf(x) → R(x, x) ∈ QO. Hence
(aM, bM) /∈ RM.

⊓⊔

It follows from Theorem 1 that we can use the chase over the Datalog
program QO to solve reasoning tasks over a normalized ontology O in the

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 17

obvious way. In particular, we can also decide whether O entails a negated
assertion ¬α, by constructing the chase Ch(QO′) where O′ = O∪{α}. O |= ¬α
iff this chase contains ⊥.

Most of the mappings performed by δ, depicted in Listing 1, are well-known
translations from DL axioms into first-order predicate logic (FOL) formulas
(with universal quantifiers implicit). The main exceptions are the axioms of
the form A ⊑ ∃R.B and axioms featuring occurrences of the Self constructor.
Instead of introducing fresh constants or using function symbols with non-zero
arity, we reuse the same constant fRB to “satisfy” all existential restrictions
enforced by axioms of the form A ⊑ ∃R.B.

4 A Datalog Algorithm for ELV++ Ontologies

4.1 Nominal Schemas and Grounding

So far, we have provided an algorithm to reason over normalized EL++ ontolo-
gies. Theoretically, this procedure can be used to reason over ELV++ ontologies
since nominal schemas can be normalized away using nominals [29]. That is,
an axiom in an ontology featuring nominal schemas such as

∃hasReviewAssignment.(({x} ⊓ ∃hasAuthor.{y}) ⊓ ({x} ⊓ ∃atVenue.{z}))
⊓ ∃hasSubmittedPaper.(∃hasAuthor.{y} ⊓ ∃atVenue.{z})
⊑ ∃hasConflictingAssignedPaper.{x}

can be substituted by all of the axioms in the set

{∃hasReviewAssignment.(({a} ⊓ ∃hasAuthor.{b}) ⊓ ({a} ⊓ ∃atVenue.{c}))
⊓ ∃hasSubmittedPaper.(∃hasAuthor.{b} ⊓ ∃atVenue.{c})
⊑ ∃hasConflictingAssignedPaper.{a} | a, b, c ∈ IO}

yielding an ontology which entails the same assertions, so it can be used in
place of the original ontology for both our reasoning tasks, satisfiability and
assertion retrieval.

Definition 6 Recall that IO denotes the set of all individuals occurring in
an ontology O. Given an axiom α, αg is the set of all axioms that can be
constructed by uniformly replacing all occurrences of each nominal schema in
α with some individual from IO. Given an ontology O, let Og =

⋃
α∈O αg.

Lemma 1 An ontology O entails an axiom α if and only if Og |= α.

Proof We prove the equivalent claim that O and Og have the same models I.
We take it as evident that if αZ is the axiom formed from α by replacing each
nominal variable v with Z(v), I,Z |= α iff I,Z∗ |= α′ for all nominal variable
assignments Z∗ (the satisfaction of α′ not depending on any assignment of
nominal variables). Let I |= O, so I,Z |= O for all Z. Let α′ ∈ Og. Then α′

18 David Carral et al.

is clearly αZ for some Z and α ∈ O and thus since I,Z |= α, I,Z∗ |= α′ for
all Z∗, so I |= α′. Conversely: Let α ∈ O, I |= Og, and Z be any assignment.
Then for all Z∗, I,Z∗ |= αZ , since αZ ∈ Og. Therefore I,Z |= α. ⊓⊔

Unsurprisingly, grounding all axioms containing nominal schemas does not
result in a very efficient procedure [8]. Note that, for some axiom α in an
ontology O, |αg| = |IO|n with n the number of different nominal schemas in
α. Even if the growth in the number of axioms resulting from the grounding
of an ELV++ is polynomial (since there is an upper bound n on the number
of different nominal schemas per axiom) the number of new axioms in Og in-
creases substantially for real-world, data-intensive ontologies that may contain
millions of individuals. To circumvent this issue, in the following section we
introduce an algorithm that does not make use of grounding.

4.2 The Translation

We present a function that maps (possibly not normalized) ELV++ axioms to
Datalog rules. As in Section 3, we make use of this function to map ELV++

ontologies to Datalog programs that can be used to solve satisfiability and
assertion retrieval. Foregoing the need for an intermediate normalization step
was necessary for us since we could not find an efficient way to normalize
ELV++ axioms similar to what is usually done with EL++. Recall the definition
of f(∃R.C) from section 2.2, which defines a term from an existential concept
expression. The resulting term, fRC∗ (⃗t), where t⃗ is the vector of individuals
and nominal variables in C, has been ground up to now; now we consider
ELV++ and so class expressions for which this term will not be ground (recall
nominal variables in a DL signature are re-used as variables in our Datalog
signature.)

Definition 7 Given some ELV++ ontology O, let PO =
⋃

α∈O γ(α) ∪ AuxO
with γ the function from Listing 4 and AuxO the rule set defined in Listing 3.

Example 4 Let α be the DL axiom containing nominal schemas presented in
Section 4.1. Then, γ(α) is the singleton set containing the following rule.

hasReviewAssignment(w,w1) ∧ w1 ≈ x ∧ Named(x) ∧
hasAuthor(w1, w2) ∧ w2 ≈ y ∧ Named(y) ∧

atVenue(w1, w3) ∧ w3 ≈ z ∧ Named(z) ∧
hasSubmittedPaper(w,w4) ∧ hasAuthor(w4, w5) ∧ w5 ≈ y ∧
atVenue(w4, w6) ∧ w6 ≈ z → hC(w, f∃hC.{⋆}(x)) ∧ f∃hC.{⋆}(x) ≈ x

In the above, hC is a shortcut for the role hasConflictingAssignedPaper

We proceed with an intermediate result that illustrates how the program
PO may be used to solve reasoning tasks over EL++ ontologies.

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 19

C ≡ D 7→ γ(C ⊑ D) ∪ γ(D ⊑ C)

C ⊑ D 7→ {γl(C,w) ∪ Named(C) ∪ Named(D) → γr(D,w)}
Dom(R) ⊑ D 7→ γ(∃R.⊤ ⊑ D)

Ran(R) ⊑ D 7→ {{R(x,w)} ∪ Named(D) → γr(D,w)}
Ref(R) 7→ {⊤(x) → RSelf(x)}
R ≡ S 7→ γ(R ⊑ S) ∪ γ(S ⊑ R)

R ⊑ S 7→ {R(x, y) → S(x, y), RSelf(x) → SSelf(x)}
R1 ◦ . . . ◦Rn ⊑ S 7→ {R1(x0, x1) ∧ . . . ∧Rn(xn−1, xn) → S(x0, xn)}

Tran(R) 7→ {R(x, y) ∧R(y, z) → R(x, z)}
C(a) 7→ {Named(C) → γr(C, a)}

¬C(a) 7→ {Named(C) ∪ γl(C, a) → ⊥}
R(a, b) 7→ {R(a, b)}

¬R(a, b) 7→ {R(a, b) → ⊥}
a ≈ b 7→ {a ≈ b}
a ̸≈ b 7→ {a ≈ b → ⊥}

γ∗(C1 ⊓ . . . ⊓ Cn, t) 7→ γ∗(C1, t) ∪ . . . ∪ γ∗(Cn, t) γ∗(A, t) 7→ {A(t)}
γr(∃R.C, t) 7→ R(t, f(∃R.C)) ∪ γr(C, f(∃R.C)) γ∗(⊥, t) 7→ {⊥}
γl(∃R.C, t) 7→ {R(t, w)} ∪ γl(C,w) γ∗({o}, t) 7→ {o ≈ t}

γ∗(∃R.Self, t) 7→ {RSelf(t)}

Listing 4 Functions γ, γl, and γr. In the above, A ∈ C \ {⊥}; C(i), D ∈ E; R(i), S ∈ R;
a, b ∈ I; o ∈ I ∪ N; f(·) is the function from Definition 2; Named(α) = {Named(v) | v ∈
N occurring in α} for any concept expression α; x(i), y, z and w are globally fresh variables;
n > 1; and ∗ ∈ {r, l}. Recall that sets of atoms indicate conjunctions.

Lemma 2 An EL++ ontology O is unsatisfiable if and only if ⊥ ∈ Ch(PO).
If O is satisfiable, then for any assertion α, O |= α if and only if α ∈ Ch(PO).

Proof Let NF be the function from Listing 2. Given an EL++ ontology O, let
O1, . . . ,On be a sequence of ontologies such that On is a normalized ontology,
O1 = O and, for all i = 1, . . . , n − 1, Oi+1 is the ontology that results from
substituting some axiom α ∈ Oi not in normal form by the axioms in NF(α).
Moreover, let A(Oi) be the smallest set of facts containing ⊥ and every asser-
tion that can be defined using the predicates and individuals in Oi. Lemma 2
follows from the following claims:

1. For all α ∈ A(On), On |= α if and only if α ∈ Ch(POn
) or ⊥ ∈ Ch(POn

).
2. For all i = 2, . . . , n and α ∈ A(Oi−1), Oi−1 |= α if and only if Oi |= α.
3. For all i = 2, . . . , n and α ∈ A(Oi−1), α ∈ Ch(POi−1) iff α ∈ Ch(POi).

Claim (1) holds by Theorem 1, which can be applied to an ontology On in
normal form (note that, QOn

is equal to POn
up to renaming of the variables

in the rules, and hence, Ch(QOn
) = Ch(POn

)). Claim (2) follows directly from
Proposition 1. Claim (3) can be verified by showing that, for any i = 2, . . . , n,

20 David Carral et al.

the defined condition holds. Let Oi be the ontology that results from replacing
an axiom α ∈ Oi−1 of the form (j) as defined in Listing 2 by the axioms in
the set NF(α). One can proceed with a case by case analysis to show that,
irrespective of the type of axiom (j), claim (3) holds for Oi−1 and Oi.

– Let j ∈ {1, 2, 4, 5, 6, 10, 13}. Then, POi−1
= POi

.
– Let j ∈ {3, 7, 9, 11, 12, 15, 16}. In this case, a set of axioms including some

fresh concept names X(ℓ) are introduced in Oi. Ch(POi−1
) is identical to

the restriction of Ch(POi) to those facts not using fresh predicates, up to
replacement of some constants fRD by fresh constants fRX . Since the fRD

do not occur in assertions, the claim holds.
– Let j = {8, 14}. In this case, Ch(POi−1

) = Ch(POi
)

⊓⊔

Applying the previous result, we verify that the program PO can be used
to solve reasoning tasks over the ELV++ ontology O.

First it will be necessary to develop some more technical properties of the
translation γ.

If C is a concept expression and σ a substitution defined on the nominal
variables of C and mapping to individuals, let Cσ be the concept expression
C with each nominal variable v replaced by σ(v). The key property of the
functional term f(∃R.D) is that if f(∃R.D) = fRD∗ (⃗t), then f(∃(R.D)σ) =
fRD∗ (⃗tσ). It will be invoked to prove Lemmas 4 and 5.

Lemma 3 For any ELV++ concept expression C, term t over only nominal
variables and ground substitution σ defined only on nominal variables and de-
fined on all nominal variables in C and t, γr(C, t)σ = γr(Cσ, tσ), and contains
no fresh variables.

Proof Strategy By induction on the 6 cases in the definition of γr.

Lemma 4 For any ELV++ concept expression C and ground substitution σ
defined only on nominal variables and defined on all nominal variables in C,
γ∗(C, t)σ ∼= γ∗(Cσ, u) for any fresh (non-nominal) variables t, u, by an iso-
morphism that maps t to u.

Proof By induction on the seven cases in the definition of γ∗. Most cases are
easy.

(1): C = ⊓iCi. γ∗(⊓i, t)σ =
∧

i γ∗(Ci, t)σ. By inductive hypothesis, for each
i, γ∗(Ci, t)σ ∼= γ∗(Ciσ, u) by an isomorphism taking t to u. Furthermore, by
the standard assumption about fresh variable introduction, the γ∗(Ci, t)σ have
no fresh variables in common, and neither do the γ∗(Ciσ, t), and none of these
contain any nominal variables because σ annihilates them. So, the separate
isomorphisms can be combined to yield one i :

∧
i γ∗(Ci, t)σ ∼=

∧
i γ∗(Ciσ, u)

as required.
(2): C is of the form ∃R.C, ∗ = r. So, γr(∃R.C, t)σ = [R(t, fRC⋆

(v⃗) ∧
γr(C, fRC⋆

(v⃗))]σ = R(t, fRC⋆
(v⃗σ)) ∧ γr(C, fRC⋆

(v⃗))σ. Using lemma 3, this is

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 21

= R(t, fRC⋆(v⃗σ))∧γr(Cσ, fRC⋆(v⃗σ))
∼= R(u, fRC⋆(v⃗σ))∧γr(Cσ, fRC⋆(v⃗σ)) cer-

tainly, because by lemma 3 no part of these conjunctions contains a fresh vari-
able other than the single occurrence of t or u; and this last is = γr(∃R.Cσ, u).

(3): C is of the form ∃R.C, ∗ = l. So, γl(∃R.C, t)σ = [R(t, w) ∧ γl(C,w)]σ
and, since w is not a nominal variable, this = R(t, w)∧ γl(C,w)σ. Meanwhile,
γl(∃R.Cσ, u) = R(u,w′)∧γl(Cσ,w′). Now by induction γl(C,w)σ ∼= γl(Cσ,w′)
by an isomorphism mapping w to w′; and by the standard assumption about
fresh variable introduction, the former does not contain t nor does the latter
contain u, so this isomorphism can be extended with the mapping t 7→ u to
obtain the required isomorphism.

The remaining cases are not shown. ⊓⊔

Lemma 5 For any ELV++ axiom α, and substitution σ defined on exactly the
nominal variables in α, such that σ(v) is an individual for all such variables v,
let ασ denote α with all nominal variables x replaced by xσ. For a rule B → H,
let r(B → H) denote the rule B′ → H where B′ is the subset of B containing
atoms that are not over the predicate Named. Then (r(γ(α)))σ ∼= γ(ασ).

Proof This proof also requires many cases, one for each line in the definition
of γ. Throughout this proof we use N to denote any conjunction of “Named”
atoms. The most important case is

(2): α = (C ⊑ D). (r(γ(C ⊑ D)))σ = (r(γl(C, t) ∧ N → γr(D, t)))σ =
γl(C, t)σ → γr(D, t)σ ∼= γl(Cσ, u) → γr(Dσ, u) = γ((C ⊑ D)σ), as required.
The isomorphism comes from lemma 4. There is no N in γ((C ⊑ D)σ) because
(C ⊑ D)σ contains no nominal variables. Most of the other cases require no
induction at all and are immediate; cases 1,3,4,6,10,11 follow from Lemma 4
similarly to case 2.

Lemma 6 For any ELV++ ontology O, Ch(POg) = Ch(PO).

Proof We show first that Ch(PO) ⊆ Ch(POg), via induction on the chase se-
quence of PO; namely, we verify that Pi

O ⊆ Ch(POg) for all i ≥ 0. The base
case of the induction trivially holds, since P0

O = ∅. We proceed with the proof
of the induction step.

Let α be a fact in Pi
O. Then, there must be some rule R = B → H ∈ PO

and some substitution σ with Bσ ⊆ Pi−1
O and α ∈ Hσ. Note that, for every

nominal schema x in R, σ(x) is an individual since Named(x) ∈ B and, for
every term t, Named(t) ∈ Ch(PO) iff t ∈ IO. Suppose the rule R is γ(β) for
some axiom β ∈ O. Let σ′, σ′′ be the restrictions of σ to nominal variables
and non-nominal variables respectively. Then βσ′ is an axiom of Og, and so
γ(βσ′) ∈ POg , and by Lemma 5, (r(γ(β)))σ′ ∼= γ(βσ′). Call the isomorphism
ι.

Now σ′′ maps the body of γ(β)σ′ into PO
i−1 ⊆ Ch(POg), and so also the

smaller body of (r(γ(β)))σ′, so σ′′◦ι−1 maps the body of γ(βσ′) into Ch(POg),
and so also the head, since Ch(POg) is closed under the application of γ(βσ′).
Now (σ′′ ◦ ι−1) ◦ ι maps the head of (r(γ(β)))σ′ into Ch(POg), and that is to
say σ maps the head of γ(β) into Ch(POg), thus α ∈ Ch(POg).

22 David Carral et al.

There remains the case that R is not γ(β) for some axiom β, but is in
AuxO. Then R is in POg as well, so α ∈ Ch(POg).

Second, we prove that Pi
Og

⊆ Ch(PO) for all i ≥ 0. The base case is again
trivial. Inductive step:

Let α be some fact occurring in Pi
Og
. Then, there must be some rule R =

B → H ∈ POg and some substitution σ with Bσ ⊆ Pi−1
O and α ∈ Hσ.

Suppose R is of the form γ(δ) for some axiom δ of Og. Then there is an axiom
β ∈ O and a substitution σ′ defined exactly on the nominal variables of β
such that βσ′ = δ, and σ′’s range consists of individuals. There is by Lemma
5 an isomorphism ι : (r(γ(β)))σ′ ∼= γ(βσ′). Since σ maps the body of γ(βσ′)
into Ch(PO), σ ◦ ι maps the body of (r(γ(β)))σ′ into Ch(PO) and in fact the
body of γ(β))σ′ as well, since Ch(PO) contains the ground atoms Named(a)
for all a. Then, since Ch(PO) is closed under the application of the rule γ(β),
σ ◦ ι maps the head of γ(β)σ′ into Ch(PO) and so (σ ◦ ι) ◦ ι−1 = σ, the head
of γ(βσ′); and thus α ∈ Ch(PO). Again if R is instead in AuxO the proof is
trivial. ⊓⊔

Theorem 2 An ELV++ ontology O is unsatisfiable if and only if ⊥ ∈ Ch(PO).
If O is satisfiable, O |= α if and only if α ∈ Ch(PO) for every assertion α.

Proof If O is satisfiable, O |= α iff Og |= α iff α ∈ Ch(POg) iff α ∈ Ch(PO),
by Lemmas 1, 2, and 6, respectively. O is unsatisfiable iff Og is unsatisfiable
iff ⊥ ∈ Ch(POg) iff ⊥ ∈ Ch(PO).

We conclude the section by showing that, given some ontology O with no
more than n nominal variables per rule, the chase of PO can be computed in
polynomial time (in the size of O, holding n fixed). This is not a completely
straightforward conclusion given that we do include function symbols in our
definition of Datalog, and rules produced by the function γ may include rules
with an arbitrarily large number of variables. Nevertheless, the following holds.

Lemma 7 Fix an ELV++ signature and the Datalog signature S derived from
it. For any ELV++ concept expression C with no more than n nominal vari-
ables, there is a set of rules tr(C) of polynomial size, containing fresh pred-
icates, but no function symbols, and there is a fresh predicate C ′, such that
for any Datalog program P not containing the fresh predicates of tr(C), for
any substitution σ taking values in the terms of P ’s signature, and v⃗ being the
nominal variables of C, if γl(C, x)σ ⊆ Ch(P) then C ′(x, v⃗)σ ∈ Ch(P ∪ tr(C)),
and if C ′(x, v⃗)σ ∈ Ch(P ∪ tr(C)), then for some substitution σ′ agreeing with
σ on x and v⃗, γl(C, x)σ

′ ⊆ Ch(P).

Proof By induction on the definition of γl. The most interesting case is C =
∃R.D for a role R:

Let γl(∃R.D, x)σ ⊆ Ch(P). So R(xσ,wσ) ∈ Ch(P), γl(D,w)σ ⊆ Ch(P).
By inductive hypothesis, D′(w, v⃗) ∈ Ch(P ∪ tr(D)), where v⃗ is the vector
of nominal variables of D, which are also all those of C. So we let tr(C) =
tr(D) ∪ {R(x,w) ∧D′(w, v⃗) → C ′(x, v⃗)}. Now C ′(xσ, v⃗σ) ∈ Ch(P ∪ tr(C)), as

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 23

required. For the converse, let C ′(xσ, v⃗σ) ∈ Ch(P ∪ tr(C)). Since C ′ occurs in
the head of just one rule in tr(C), and never in a rule body, it follows that
R(xσ, u)∧D′(u, v⃗σ) ∈ Ch(P∪tr(D)) for some u. Let σ′′ be the substitution that
is equal to σ except that wσ′′ = u. Then by the inductive hypothesis, there is a
substitution σ′′′ equal to σ′′ on v⃗ and w such that γl(D,w)σ′′′ ⊆ Ch(P). Now x
does not occur in γl(D,w) by the fresh variable assumption, so let σ′ = σ′′′ = σ
on v⃗ and = σ on x, and γl(D,x)σ′ ⊆ Ch(P) as required. Finally, assume as
an inductive hypothesis that the size of tr(C) is bounded by a polynomial
function p of the size of C, for all formulas of depth less than that of C, and
that p has sufficiently large positive slope. We will prove that p bounds the
size of tr(C) as well. Now |tr(C)| = |tr(D)| + k, k a constant depending on
the fixed variable count n. |C| = |D| + 3. Without loss of generality assume
the bounding polynomial p has slope at least k/3 everywhere. Then |tr(C)| =
|tr(D)|+k ≤ p(|D|)+k ≤ p(|D|+3) = p(|C|), as required. Each other inductive
case is similar, requiring some lower bound s(n) on the slope of p, but we can
assume without loss of generality that the slope of p is everywhere greater
than all the s(n). If we do so, it follows by induction that p(|C|) ≥ |tr(C)| for
all C. ⊓⊔

Theorem 3 For each n, given an ELV++ ontology O with no more than n
nominal variables, we can compute Ch(PO) in PTime with respect to the size
of O.

Proof Let Og be the ontology described in Definition 6. Then, according to
Lemma 6 we have that Ch(POg) = Ch(PO). Therefore, it suffices to show
that Ch(POg) can be computed in polynomial time to show the theorem. By
assumption, there are at most n different nominal schemas per axiom in O
and hence, Og is polynomial in O.

We can obtain a conservative extension P ′
Og

of POg in polynomial time in
which rules contain a fixed number of variables, due to lemma 7, by replacing
each γl(C, t) in the definition of γ with C ′(t), using the predicate C ′ of that
lemma, and adding the polynomial ruleset tr(C) to the program. Note that
γr(C, t) never contains more than one variable when C contains no nominal
schemas. So now there are no rules left in P ′

Og
with more than two variables

except those derived from role-chain axioms, which can be conservatively nor-
malized to rules containing 3 variables in the usual way. Moreover, note that
only a polynomially large number of terms may occur in Ch(P ′

Og
) since, for

every term of the form f(t1, . . . , tk) in P ′
Og

and every i = 1, . . . , k, ti ∈ I.

Therefore, the number of facts in Ch(P ′
Og
) is also polynomially bounded, since

the arity of predicates in P ′
Og

is bounded. We hence conclude that the chase

sequence of a program P ′
Og

contains at most polynomially many elements and,

since the rules in P ′
Og

only contain a fixed amount of variables, every step of
the chase can be computed in polynomial time. ⊓⊔

The above result indicates that the proposed reasoning approach is worst-
case optimal in one sense, since assertion retrieval over EL++ ontologies is
PTime-hard with respect to logspace [10].

24 David Carral et al.

5 Evaluation

In this section we present some experiments in which we compare the per-
formance of an implementation of the algorithm from Section 4 with that of
other state-of-the-art reasoners. We first describe the ontologies used in our
experiments (Section 5.1) and the reasoners considered (Section 5.2), and then
present and discuss the results of our experiments (Section 5.3).

5.1 Ontologies

We consider three different ontologies in our evaluation; one benchmark and
two real-world knowledge bases.

– LUBM is a widely-used benchmark [12] that models information about
the academic domain. LUBM includes a set of TBox axioms and a data
generator which can be used to generate ABox assertions for k universi-
ties where k is an arbitrary parameter passed on to the generator. For
more information about this benchmark, see http://swat.cse.lehigh.

edu/projects/lubm/.
– Reactome and Uniprot are real-world ontologies developed by the European

Bioinformatics Institute (EBI) (see https://www.ebi.ac.uk/). These on-
tologies are particularly interesting, as their data is realistic and is used
in a number of applications. Moreover, both ontologies contain an expres-
sive set of TBox axioms and a very large amount of ABox assertions. For
more information about these ontologies, see https://reactome.org/ and
https://www.uniprot.org/, respectively.

We preprocessed all of the above ontologies in the following manner: First,
we remove all non-ELV++ axioms. Then, we add some hand-crafted, DL-
safe rules to each ontology. We added DL-safe rules instead of axioms with
nominal schemas as only the former can be processed by Konclude—one of
the reasoners considered in the evaluation. Note that, DL-safe rules can be
faithfully expressed using axioms with nominal schemas [7]. For instance, we
can replace the DL-safe rule

Student(x) ∧ takesCourse(x, z) ∧ Course(z) ∧ advisor(x, y) ∧
Faculty(y) ∧ teacherOf(y, z) → taughtBy(x, y)

with the DL axiom

{x} ⊓ Student ⊓ ∃takesCourse.({z} ⊓ Course)

⊓ ∃advisor.({y} ⊓ Faculty ⊓ ∃teacherOf.{z}) ⊑ {x} ⊓ ∃taughtBy.{y}

preserving the outcome of all reasoning tasks.
The DL-safe rules added to LUBM, Reactome, and Uniprot are presented

in Listings 5, 6, and 7, respectively. We have created the rules for LUBM
ourselves. The rules for Reactome and Uniprot have been constructed from
queries obtained in the evaluation of [43] (see https://www.cs.ox.ac.uk/

isg/tools/PAGOdA/2015/jair/ for more information).

http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/
https://www.ebi.ac.uk/
https://reactome.org/
https://www.uniprot.org/
https://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/
https://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 25

GradStudent(x) ∧ UndergraduateDegreeFrom(x, y) ∧ University(y) ∧
MemberOf(x, z) ∧ Dept(z) ∧ SubOrganizationOf(z, y) → MemberOf(x, y)

Student(x) ∧ TakesCourse(x, y) ∧ Course(y) ∧ TeacherOf(z, y) → WorksFor(x, z)

Student(x) ∧MemberOf(x, y) ∧ Dept(y) ∧ SubOrganizationOf(y, z) → HasAlumnus(x, z)

Student(x) ∧ TakesCourse(x, z) ∧ Course(z) ∧
Advisor(x, y) ∧ Faculty(y) ∧ TeacherOf(y, z) → GradStudent(x) ∧

Chair(x) ∧WorksFor(x, y) ∧ Dept(y) ∧ SubOrganizationOf(y, z) → WorksFor(x, z)

Student(x) ∧ TakesCourse(x, z) ∧ Course(z) ∧MemberOf(x,w) ∧
TeacherOf(y, z) ∧ Faculty(y) ∧WorksFor(y, w) ∧ Dept(w) → MemberOf(x,w)

Faculty(x) ∧ DegreeFrom(x, y) ∧ University(y) ∧MemberOf(x, z) ∧ Dept(z) ∧
SubOrganizationOf(z, y) → AffiliateOf(x, y)

PublicationAuthor(w, z) ∧ Professor(z) ∧MemberOf(z, x) ∧ Dept(x) ∧
PublicationAuthor(w, v) ∧ Professor(v) ∧MemberOf(v, y) ∧ Dept(y) → MemberOf(w, y)

Listing 5 DL-Safe Rules added to LUBM.

Pathway(x) ∧ PathwayComponent(x, y) ∧ BiochemicalReaction(y) ∧ Participant(y, z) ∧
Complex(z) → R1(x)

Pathway(x) ∧ PathwayComponent(x, y) ∧ BiochemicalReaction(y) ∧ Participant(y, z) ∧
Protein(z) ∧ entityReference(z, w) → R2(x)

Stoichiometry(x) ∧ PhysicalEntity(x, y) ∧ PhysicalEntity(y) ∧ cellularLocation(y, z) ∧
CellularLocationVocabulary(z) → R3(x)

Pathway(x) ∧ PathwayComponent(x, y) ∧ Participant(y, z) ∧ Protein(z) ∧
PathwayComponent(x,w) ∧ Participant(w, z) → R4(x)

FeatureLocation(x, y) ∧ SequenceIntervalBegin(y, z) ∧ SequenceSite(z) ∧
FeatureLocation(x,w) ∧ SequenceIntervalBegin(w, z) → R5(x)

ParticipantStoichiometry(x, y) ∧ PhysicalEntity(y, z) ∧ ParticipantStoichiometry(x,w) ∧
PhysicalEntity(w, z) → R6(x)

Listing 6 DL-Safe Rules added to Reactome.

5.2 Reasoners

We consider three different reasoners in our evaluation, which we describe in
detail across the following paragraphs.

– ELVLog is our proprietary implementation of the reasoning algorithm dis-
cussed in Section 4. Roughly, this implementation works in the follow-
ing manner: First, we use the OWLAPI [16] to process and transform
EL++ ontologies into Datalog programs as described in Definition 7. Then,
we use the rule engine VLog [40,41] to compute the chase of the result-

26 David Carral et al.

Protein(x) ∧ annotation(x, y) ∧ TransmembraneAnnotation(y) ∧ Range(y, z) → R1(x)

TransmembraneAnnotation(x) ∧ range(x, y) ∧ range(x, z) → R2(y, z)

Protein(x) ∧ organism(x, y) ∧ annotation(x, z) → R3(x, z)

locatedIn(x,w) ∧ cellularComponent(w, z) ∧ cellularComponent(z, y) ∧
CellularComponent(y) → R4(x, z)

source(x, y) ∧ source(w, y) ∧ database(y, z) → R5(x,w)

attribution(w, x) ∧ source(x, y) ∧ database(y, z) → R6(x, y)

translatedFrom(w, x) ∧ locatedOn(x, y) ∧ database(x, z) → R7(x, y)

Listing 7 DL-Safe Rules added to Uniprot.

ing programs. This implementation is available at https://github.com/
dcarralma/ELVLog.

– Konclude [39] is a full-fledged OWL 2 reasoner. It is implemented in C++
and uses a reasoning technique that is based on a highly optimized tableau
algorithm assisted by a completion-based saturation procedure. Konclude
has proven itself as one of the most efficient OWL 2 reasoners in the Ontol-
ogy Reasoning Evaluation (ORE) Workshop 2015 [35]. Moreover, Konclude
has been shown to significantly outperform other existing tools such as
Hermit 1.3.7 [34] and Pellet [36] when it comes to solve reasoning tasks
over ontologies featuring DL-safe rules [38]. For more information, see
http://derivo.de/produkte/konclude/.

– ELK [20] is a profile-specific reasoner for the OWL 2 EL profile, which
is implemented in Java. As Konclude, ELK has proven to be quite com-
petitive at the ORE competition in 2015 [35]. Unfortunately, ELK sup-
ports neither DL-safe rules nor nominal schemas. Nevertheless, we include
it in our evaluation, to verify that ELVLog not only outperforms full-
fledged DL reasoners, such as Konclude, but is also competitive when com-
pared against this profile-specific tool. For more information, see https:

//github.com/liveontologies/elk-reasoner.

5.3 Results

We conduct two different experiments in which we compare ELVLog to Kon-
clude and ELK, separately.

– ELVLog vs Konclude: in this experiment, we task Konclude and ELVLog
with solving assertion retrieval over LUBM, Reactome, and Uniprot. Specif-
ically, we used the Realization service provided by Konclude. Recall that
assertion retrieval means computing all of the assertions entailed by a
knowledge base - that is, an input ontology together with input set of
assertions. Note that the ontologies we used were supplemented with the
DL-safe rules presented in Tables 5, 6, and 7. To evaluate the scalability

https://github.com/dcarralma/ELVLog
https://github.com/dcarralma/ELVLog
http://derivo.de/produkte/konclude/
https://github.com/liveontologies/elk-reasoner
https://github.com/liveontologies/elk-reasoner

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 27

Sec

3.4M 6.8M 10.1M 13.4M

0

1,000

2,000

Number of assertions

LUBM

Sec

3.9M 7M 9.1M 10.5M

200

400

600

Number of assertions

Reactome

Sec

13.3M 26.3M 38.7M 50.1M

0

2,000

4,000

6,000

8,000

Number of assertions

Uniprot

Fig. 8 Solving Assertion Retrieval with ELVLog (orange) and Konclude (black); Konclude
did not finish LUBM with 10.1M assertions and Uniprot with 50.1M in less than 8 hours

Sec

3.4M 6.8M 10.1M 13.4M

50

100

Number of assertions

LUBM

Sec

3.9M 7M 9.1M 10.5M

50

100

150

Number of assertions

Reactome

Sec

13.3M 26.3M 38.7M 50.1M

200

400

600

Number of assertions

Uniprot

Fig. 9 Solving Assertion Retrieval with ELVLog (orange) and ELK (black); ELK runs out
of memory when reasoning over Uniprot with 26.3M assertions

of both tools, we varied the size of the input assertion set for each of the
three ontologies. For LUBM, sets of assertions of different sizes were gener-
ated using the data generator of the LUBM benchmark. For Reactome and
Uniprot, we obtained these employing a data sampling algorithm [31].

– ELVLog vs ELK : this experiment is analogous to the previous one, but
using ELK instead of Konclude. Note that the considered ontologies in
this case do not contain DL-safe rules since ELK cannot deal with this
type of OWL axiom.

The results for both experiments are presented in Tables 8 and 9, respectively.
All experiments were performed on a MacBook Pro with 16GB of RAM and a
2,2 GHz Intel Core i7 processor. We set up a time-out for the experiments of 6
hours—that is, 21600 seconds. In the above tables, we indicate time-outs and
out of memory errors by not including a bar for the corresponding ontology,
ABox, and tool (for instance, when running LUBM with 10.1M assertions
and Konclude, we obtained one such error). All of the files used in these
experiments are available at https://github.com/dcarralma/ELVLog.

Because the considered ontologies contain a relatively small amount of
TBox axioms, the time spent computing the corresponding Datalog programs
by ELVLog is very low (for all cases, it took less than 2 seconds). Note, that

https://github.com/dcarralma/ELVLog

28 David Carral et al.

the results in Tables 8 and 9 for ELVLog include the time taken by this
transformation.

The experiment presented in Table 8 shows that ELVLog is significantly
more efficient than Konclude; in many cases, our implementation is up to an
order of magnitude faster than Konclude. We believe that this is because VLog
is way more efficient than Konclude in the presence of large amounts of data;
an insight that has been confirmed by previous experiments [5,6,11].

Even though ELK is somewhat more efficient than ELVLog for both LUBM
and Reactome, the latter tool can solve assertion retrieval for Uniprot with
up to 50.1M assertions in less than 10 minutes, whilst the former runs out
of memory with only 26.3M assertions (see Table 9). Therefore, we believe
that ELVLog can also be a useful tool when it comes to reasoning with EL++

ontologies (i.e., without DL-safe rules or nominal schemas).

6 Conclusions and Future Work

We define and prove correctness of a worst-case optimal procedure for rea-
soning over EL++ ontologies extended with nominal schemas. We implement
this algorithm and show that it is quite efficient: it not only improves upon
the OWL 2 reasoner Konclude, but furthermore shows better performance in
some cases than the OWL EL profile reasoner ELK.

As for future work, we intend to extend our approach to more expressive
DL languages. More specifically, we intend to extend the algorithms presented
in [5] and [6] to develop efficient algorithms for the DL languages Horn-SRIQ
and Horn-ALCHOIQ, respectively, that can deal with nominal schemas.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, second edn. (2007)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P., Saffiotti,
A. (eds.) Proc. of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005). pp. 364–369. Professional Book Center (2005)

4. Baader, F., Lutz, C., Brandt, S.: Pushing the EL envelope further. In: Clark, K., Patel-
Schneider, P. (eds.) Proc. of the 4th OWLED Workshop on OWL: Experiences and
Directions. CEUR Workshop Proceedings, vol. 496 (2008)

5. Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answering
in Horn-ALCHOIQ. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proc. of the 16th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2018). pp. 339–348. AAAI Press (2018)

6. Carral, D., González, L., Koopmann, P.: From Horn-SRIQ to Datalog: A data-
independent transformation that preserves assertion entailment. In: Proc. of the 33rd
AAAI Conference on Artificial Intelligence (AAAI 2019). pp. 2736–2743. AAAI Press
(2019)

7. Carral, D., Hitzler, P.: Extending description logic rules. In: Simperl, E., Cimiano, P.,
Polleres, A., Corcho, Ó., Presutti, V. (eds.) Proc. of the 9th Extended Semantic Web
Conference (ESWC 2012). Lecture Notes in Computer Science, vol. 7295, pp. 345–359.
Springer (2012)

An Efficient Algorithm for Reasoning over EL Ontologies with Nominal Schemas 29

8. Carral, D., Krisnadhi, A., Maier, F., Sengupta, K., Hitzler, P.: Reconciling OWL and
rules. Tech. rep., Wright State University, Dayton, Ohio, U.S.A. (2011), available from
http://www.pascal-hitzler.de/ under the “Publications” tab

9. Carral, D., Wang, C., Hitzler, P.: Towards an efficient algorithm to reason over De-
scription Logics extended with nominal schemas. In: Faber, W., Lembo, D. (eds.) Proc.
of the 7th International Conference on Web Reasoning and Rule Systems (RR 2013).
Lecture Notes in Computer Science, vol. 7994, pp. 65–79. Springer (2013)

10. Cuenca Grau, B.: Owl 2 web ontology language tractable fragments (second edition).
Available at: https://www.w3.org/2007/OWL/wiki/Tractable_Fragments (2021/07/10)

11. Feier, C., Carral, D., Stefanoni, G., Grau, B.C., Horrocks, I.: The combined approach
to query answering beyond the OWL 2 profiles. In: Yang, Q., J. Wooldridge, M. (eds.)
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJ-
CAI 2015). pp. 2971–2977. AAAI Press (2015)

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.
J. of Web Semantics 3(2-3), 158–182 (2005)

13. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P., Rudolph, S. (eds.): OWL 2Web
Ontology Language: Primer (Second Edition). W3C Recommendation (11 December
2012), available at http://www.w3.org/TR/owl2-primer/

14. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

15. Hitzler, P., Parsia, B.: Ontologies and rules. In: Staab, S., Studer, R. (eds.) Handbook
on Ontologies, pp. 111–132. International Handbooks on Information Systems, Springer
(2009)

16. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies. J. of
Semantic Web 2(1), 11–21 (2011)

17. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A Semantic Web Rule Language. W3C Member Submission (21 May 2004), see http:

//www.w3.org/Submission/SWRL/
18. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. of the

10th International Conference on Principles of Knowledge Representation and Reason-
ing (KR 2006). pp. 57–67. AAAI Press (2006)

19. Kazakov, Y.: Saturation-Based Decision Procedures for Extensions of the Guarded Frag-
ment. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (March 2006)

20. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial proce-
dures to efficient reasoning with EL ontologies. J. of Automated Reasoning 53(1), 1–61
(2014)

21. Kifer, M., Boley, H. (eds.): RIF Overview (Second Edition). W3C Working Group Note
(2013), available at http://www.w3.org/TR/rif-overview/

22. Knorr, M., Carral, D., Hitzler, P., Krisnadhi, A., Maier, F., Wang, C.: Recent advances
in integrating OWL and rules (technical communication). In: Krötzsch, M., Straccia,
U. (eds.) Proc. of the 6th International Conference on Web Reasoning and Rule Sys-
tems (RR 2012). Lecture Notes in Computer Science, vol. 7497, pp. 225–228. Springer,
Heidelberg (2012)

23. Knorr, M., Hitzler, P., Maier, F.: Reconciling OWL and non-monotonic rules for the
Semantic Web. In: De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P.,
Heintz, F., Lucas, P. (eds.) Proc. of the 20th European Conference on Artificial Intel-
ligence (ECAI 2012). Frontiers in Artificial Intelligence and Applications, vol. 242, pp.
474–479. IOS Press, Amsterdam (2012)

24. Krisnadhi, A., Hitzler, P.: A tableau algorithm for description logics with nominal
schema. In: Krötzsch, M., Straccia, U. (eds.) Proc. of the 6th International Conference
on Web Reasoning and Rule Systems (RR 2012). Lecture Notes in Computer Science,
vol. 7497, pp. 234–237. Springer (2012)

25. Krisnadhi, A., Maier, F., Hitzler, P.: OWL and rules. In: Polleres, A., d’Amato, C.,
Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reason-
ing Web. Semantic Technologies for the Web of Data. 7th International Summer School
2011, Tutorial Lectures. Lecture Notes in Computer Science, vol. 6848, pp. 382–415.
Springer, Heidelberg (2011)

26. Krötzsch, M.: Description Logic Rules, Studies on the Semantic Web, vol. 008. IOS
Press/AKA (2010)

http://www.pascal-hitzler.de/
https://www.w3.org/2007/OWL/wiki/Tractable_Fragments
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/rif-overview/

30 David Carral et al.

27. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth, A.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
Proc. of the 7th International Semantic Web Conference (ISWC 2008). Lecture Notes
in Computer Science, vol. 5318, pp. 649–664. Springer (2008)

28. Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: Walsh, T. (ed.) Proc. of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011). AAAI
Press/IJCAI (2011), 2668–2673

29. Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for OWL: Nomi-
nal schemas for integrating rules and ontologies. In: Proc. of the 20th International
Conference on World Wide Web (WWW 2011). pp. 645–654. ACM (2011)

30. Krötzsch, M., Rudolph, S.: Nominal schemas in Description Logics: Complexities clari-
fied. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Proc. of the 14th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI
Press (2014)

31. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Eliassi-Rad, T., Ungar,
L.H., Craven, M., Gunopulos, D. (eds.) Proc. of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 631–636. ACM (2006)

32. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (2009), available at http:

//www.w3.org/TR/owl2-profiles/

33. Motik, B., Sattler, U., Studer, R.: Query answering for OWL DL with rules. J. of Web
Semantics 3(1), 41–60 (2005)

34. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for Description Logics. J.
of Artificial Intelligence Research 36(1), 165–228 (2009)

35. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. of Automated Reasoning 59(4),
455–482 (2017)

36. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL DL
reasoner. J. of Web Semantics 5(2), 51–53 (2007)

37. Steigmiller, A., Glimm, B., Liebig, T.: Nominal schema absorption. In: Rossi, F. (ed.)
Proc. of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013).
IJCAI/AAAI (2013)

38. Steigmiller, A., Glimm, B., Liebig, T.: Reasoning with nominal schemas through ab-
sorption. J. of Automated Reasoning 53(4), 351–405 (2014)

39. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. of Web Seman-
tics 27, 78–85 (2014)

40. Urbani, J., Jacobs, C.J.H., Krötzsch, M.: Column-oriented datalog materialization for
large knowledge graphs. In: Schuurmans, D., Wellman, M.P. (eds.) Proc. of the 30th
AAAI Conference on Artificial Intelligence (AAAI 2016). pp. 258–264. AAAI Press
(2016)

41. Urbani, J., Krötzsch, M., Jacobs, C.J.H., Dragoste, I., Carral, D.: Efficient model con-
struction for horn logic with vlog – system description. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) Proc. of the 9th International Joint Conference on Automated
Reasoning (IJCAR 2018) Held as Part of the Federated Logic Conference (FloC 2018).
Lecture Notes in Computer Science, vol. 10900, pp. 680–688. Springer (2018)

42. Wang, C., Hitzler, P.: A resolution procedure for Description Logics with nominal
schemas. In: Takeda, H., Giu, Y., Mizoguchi, R., Kitamura, Y. (eds.) Proc. of the 2nd
Joint International Conference on Semantic Technology (JIST 2012). Lecture Notes in
Computer Science, vol. 7774, pp. 1–16. Springer, Heidelberg (2012)

43. Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: PAGOdA: Pay-as-
you-go ontology query answering using a Datalog reasoner. J. of Artificial Intelligence
Research 54, 309–367 (2015)

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

	Introduction
	Preliminaries
	A Reasoning Algorithm for Normalized EL++ Ontologies
	A Datalog Algorithm for ELV++ Ontologies
	Evaluation
	Conclusions and Future Work

