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Abstract. Personal data are increasingly disseminated over the Web
through mobile devices and smart environments, and are exploited for
developing more and more sophisticated services and applications. All
these advances come with serious risks for privacy breaches that may
reveal private information wanted to remain undisclosed by data pro-
ducers. It is therefore of utmost importance to help them to identify
privacy risks raised by requests of service providers for utility purposes.
In this paper, we first formalize privacy risks by privacy queries expressed
(and kept secret) by each data producer to specify the data they do not
want to be disclosed. Then, we develop a formal approach for detecting
incompatibility between privacy and utility queries expressed as temporal
aggregate conjunctive queries. The distinguishing point of our approach
is to be data-independent and to come with an explanation based on the
query expressions only. This explanation is intended to help data pro-
ducers understand the detected privacy breaches and guide their choice
of the appropriate technique to correct it.

Keywords: Temporal aggregated conjunctive queries · Utility queries ·
Privacy queries

1 Introduction

Personal data are increasingly disseminated over the Internet through mobile
devices and smart environments, and are exploited for developing more and more
sophisticated services and applications. All these advances come with serious
risks for privacy breaches that may reveal private information wanted by users to
remain undisclosed. It is therefore of utmost importance to help data producers
to keep the control on their data for their privacy protection while preserving
the utility of disclosed data for service providers.

In this paper, we approach the problem of utility-aware privacy preservation
in the setting of applications where service providers request collecting data from
data producers in order to perform aggregate data analytics for optimization or

⋆ Partially supported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003), PERSYVAL-
Lab (ANR-11-LABX-0025-01) and TAILOR, a project funded by EU Horizon 2020
research and innovation programme under GA No 952215
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recommendation purposes. The approach that we promote to face the privacy
versus utility dilemma in this setting can be summarized as follows:

- Data producers specify by a set of privacy queries (kept secret) the (possibly
aggregated) data that they do not want to disclose.

- Data consumers make explicit by a set of utility queries the data that they
request from each data producer for offering them services in return.

- The compatibility between privacy and utility queries is automatically ver-
ified, and in case of incompatibility data producers get an explanation that can
be exploited later to help them find an acceptable privacy-utility trade-off.
Our contribution is twofold. First, we handle the temporal aspect in the definition
of privacy and utility by expressing privacy and utility queries as temporal
aggregate queries. Taking into account the temporal aspect for privacy protection
is very important since many applications handle dynamic data (e.g., electrical
consumption, time series, mobility data) for which temporal data are considered
as sensitive and aggregates on time are important for data analytics. Second,
we formally define and automatically verify incompatibility between privacy and
utility queries based on their query expressions only, and thus independently of
the data. Incompatibility proofs come with explanations which can be exploited
subsequently for helping data producers choose an appropriate defence strategy
while limiting the utility loss. This can be done by applying to their data existing
anonymization techniques based on differential privacy [9] or k-anonymity [14].
The paper is organized as follows. Section 2 provides an illustrative scenario of
our approach. Section 3 formally defines the queries that we consider. Section
4 is dedicated to checking incompatibility between privacy and utility queries.
Section 5 presents related work, and Section 6 concludes our paper.

2 Illustrative Scenario

We consider a use-case related to smart power grids, in which the data producers
are customers with smart meters in their home. A service provider has a cata-
log of energy efficiency products (including energy efficient insulation, windows,
appliances) and requests collecting data from all the customers to adapt the
proposed services to the profile of each of them based on some personal data.

We assume that the service provider and the customers understand each
other through a common vocabulary using a a simple ontology such as the one 1

that we have extracted from the ISSDA dataset, a real world power grid dataset
provided by the Irish Social Science Data Archive (ISSDA) Commission for
Energy Regulation (CER)2. This shared vocabulary allows service providers to
specify their data needs in a precise way through a set of utility queries, that
can then be compared to a set of privacy queries used by each data producer to
state the data that they not want to be disclosed directly or indirectly.
Let us suppose that the service provider has the following data needs:

1 available at https://raw.githubusercontent.com/fr-anonymous/puck/main/

issda_schema.ttl
2 https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

https://raw.githubusercontent.com/fr-anonymous/puck/main/issda_schema.ttl
https://raw.githubusercontent.com/fr-anonymous/puck/main/issda_schema.ttl
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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(1) for each identifier of customers that are owners of their home, their yearly
income if it is more than 75000;

(2) for each identifier of customers, their smart meter number;
(3) for each smart meter number, the sum of consumptions computed every

hour over the meter readings of the previous 3 hours.
These needs can be translated into the utility queries shown below by using
SPARQL-like query language that will be explained in Section 3.

The utility queries into SPARQL-like query language

UQ1: SELECT ?o ?y

WHERE { ?o issda:yearlyIncome ?y . ?o issda:own ?s.

FILTER (?y > 75000)}

UQ2: SELECT ?sm ?o

WHERE { ?sm issda:associatedOccupier ?o .

?o issda:nbOfPersons ?n }

UQ3: SELECT ?sm ?timeWindowEnd SUM(?c)

WHERE {(?sm issda:consumption ?c, ?ts)}

GROUP BY ?sm ?timeWindowEnd

TIMEWINDOW (3h, 1h)

Now, suppose that a given customer, possibly with the help of privacy officer or
tool, states that, among the data they accept to transmit, they want to prevent:

- the association between their smart meter number and their yearly income;
- the disclosure of their energy consumption measurements aggregated over

intervals of 6 hours.
This can be translated into the following privacy queries for which no answer
should be transmitted or inferred by any external data consumer.

The privacy queries of a given customer

PQ1: SELECT ?sm ?y

WHERE {?sm issda:associatedOccupier ?o .

?o issda:yearlyIncome ?y}

PQ2: SELECT ?timeWindowEnd SUM(?c)

WHERE {(?sm issda:consumption ?c , ?ts)}

GROUP BY ?timeWindowEnd

TIMEWINDOW (6h, 6h)

With our approach, as it will be explained in Section 4, we can automatically
detect that the above utility and privacy queries are incompatible, and provide
the following privacy diagnosis:
1) The first privacy risk is due to the possible violation of the privacy query PQ1
by the combination of answers to the utility queries UQ1 and UQ2.
2) The second privacy risk is due to the possible violation of the privacy query
PQ2 by answers to the utility query UQ3 because:

a) PQ2 and UQ3 compute the same aggregate under the same conditions;
b) groups of UQ3 are partitions of groups of PQ2;
c) and finally, all time windows of PQ2 can be obtained as disjoint unions of

some time windows of UQ3.
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Based on the above explanations, the data producer could, for example, inform
the service provider that:

- they will refuse to answer at least one the utility queries UQ1 or UQ2;
- they could accept to answer UQ3 if the time window is changed , for instance

by modifying the step between each consumption computation.

3 Formal Background

We first define temporal aggregate conjunctive queries (TACQ) with a SPARQL-
like syntax extended with time windows for capturing aggregate on time. Then,
we define the compatibility problem between utility and privacy TACQs.
To simplify the exposition, we will only consider aggregate queries with a sin-
gle aggregation term. In most cases, queries with several aggregate terms are
equivalent to the unions of queries with same body and a single aggregate [2]. In
particular, AV G can be computed by the union of two queries, one for computing
SUM and the other one for computing COUNT .
Definition 1 relies on the notion of temporal graph pattern that is an extension of
the standard notion of graph pattern in SPARQL in which we allow to associate
timestamp variables to triple patterns involving dynamic properties. Through
homomorphisms from temporal graph patterns to temporal data graphs, times-
tamp variables can only be assigned to timestamps appearing in timestamped
RDF triples instantiating the dynamic properties.

Definition 1 (Temporal aggregated conjunctive query). A TACQ is:
SELECT x̄, agg(y)
WHERE {GP . FILTER}
GROUP BY x̄
TIMEWINDOW (Size, Step)

where:
- GP is a temporal graph pattern;
- FILTER is a conjunction of atomic comparisons of the form t θ t′ where

t and t′ are variables of GP or literals (numbers, strings or dates) and θ ∈ {<>
,<,<=,=, >=, >};

- x̄ is a tuple of variables called the output (or grouping) variables;
- when the aggregate term agg(y) is present, y (called the aggregate variable)

is not in x̄ and agg is an aggregate function that produces a single value when
applied to a set of values assigned to y;

- Size and Step are time durations (i.e. differences between timestamps).

The general syntax can be simplified as follows for capturing particular cases:
- when either x̄ is empty or there is no aggregate term, we can omit the GROUP
BY clause;
- when Size = ∞ (Step = 0), the TIMEWINDOW clause can be omitted;
- the FILTER clause can be omitted when the corresponding boolean expression
is TRUE (called empty FILTER).
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Note however, that when TIMEWINDOW is specified, FILTER always contains
the implicit following constraints for each timestamp variable ?ts:

?ts ≤ ?timeWindowEnd ∧ ?ts > ?timeWindowsEnd− Size.
where ?timeWindowEnd is a specific timestamp variable that will be mapped
successively to the upper bound of each time window computed from the times-
tamp at which the query is executed.
Given a TACQ defined in Definition 1, its evaluation over a temporal data graph
G is defined in terms of filtered homomorphisms (Definition 2) and groups (Def-
inition 3) for obtaining its answer set.

Definition 2 (Filtered homomorphisms). Let M be the set of homomor-
phisms from GP to G. The filtered set of homomorphisms is the subset of M of
homomorphisms µ such that µ(FILTER) = TRUE.

Definition 3 states that there are as many groups as filtered homomorphisms
allowing to match the tuple x̄ with tuples of values v̄ multiplied by the number
of time intervals defined by values of k as: ]now−k×Step−Size, now−k×Step]
where now denotes the timestamp at which the query is executed.

Definition 3 (Groups). Let FM be the set of filtered homomorphisms from
GP to G. Groups are defined for each tuple v̄ and each time interval k as follows:
Groupk(v̄) = {µ(y) | µ ∈ FM, µ(x̄) = v̄, and for each timestamp variable
µ(?ts) ∈ ]now− k×Step−Size, now− k×Step]) and µ(?timeWindowEnd) =
now − k × Step}.

It is important to note that if there is no aggregate term, there is only one time
window (i.e., ]−∞, now]) and there are as many groups as distinct tuples v̄.
For each group Groupk(v̄), an answer is either the tuple v̄ if there is no aggregate
term, or the tuple (v̄, r) obtained by concatenating the tuple v̄ with the result r
of the aggregation function applied to the values in the group.
The answer set of a query Qwindow:

SELECT x̄ agg(y) WHERE {GP . FILTER}
GROUP BY x̄ TIMEWINDOW (Size, Step)

is the union of the answer sets resulting of the evaluation over each time window
of Qwindow of the query Q:

SELECT x̄ agg(y) WHERE {GP . FILTER} GROUP BY x̄
By interpreting GP as the logical conjunction of atomic formulas, Definition
4 defines the logical signature of an answer to a query as the logical formula
characterizing all the (unknown) temporal data graphs leading to this answer
for this query.

Definition 4 (Logical signature of answers). For an answer (ā, r) to a
query Q, let µā the mapping assigning each grouping variable x in x̄ to the
corresponding constant a in ā. The logical signature of (ā, r) and Q, denoted
σ((ā, r), Q), is the formula:

(∃y∃z̄ µā(GP ) ∧ µā(FILTER)) ∧ agg({y|∃z̄, µā(GP ) ∧ µā(FILTER)}) = r
where z̄ is the (possibly empty) subset of variables in GP non including the ag-
gregate variable y.
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When there is no aggregate variable, the logical signature is reduced to the for-
mula: (∃y∃z̄ µā(GP ) ∧ µā(FILTER)) .

The logical signatures of the respective answers (sm1031, 75000) and (sm1031,
2020-07-14T03:30:00, 88) to the (simple conjunctive) privacy query PQ1 and
the TACQ utility query UQ3 used in the scenario of Section 2, are given below:

Logical signature of the answer (sm1031, 75000) of PQ1

∃ ?o, sm1031 issda:associatedOccupier ?o
∧ ?o issda:yearlyIncome 75000

Logical signature of the answer (sm1031, 2020-07-14T03:30:00, 88) of UQ3

∃ ?c ∃ ?ts (sm1031 issda:consumption ?c,?ts)
∧ ?ts ≤ 2020 -07 -14 T03 :30:00 ∧ ?ts > 2020 -07 -14 T00 :30:00

∧ SUM {?c | ∃ ?ts (sm1031 issda:consumption ?c, ?ts)
∧ ?ts ≤ 2020 -07 -14 T03 :30:00 ∧ ?ts > 2020 -07 -14 T00 :30:00 } = 88

Definition 5 formalizes incompatibility as the possibility of inferring answers of
a privacy query from answers of utility queries on the same data graph without
necessarily knowing it.

Definition 5 (Incompatibility between privacy and utility queries). A
privacy query is incompatible with a set of utility queries if the logical signature of
an answer to the privacy query is entailed by a conjunction of logical signatures
of answers to some utility queries.

4 Incompatibility Detection

The privacy queries are specific to, and kept secret by, each data producer.
Then, the detection of incompatility is done by algorithms launched by each data
producer, given the set of utility queries they receive from a data consumer.

In this section, we provide a characterization of incompatibility by distinguishing
the cases where privacy queries are without aggregate (Theorem 1) or with
aggregate (Theorem 2 , Theorem 3 and Theorem 4 ).

Without loss of generality, by renaming variables within each query, we consider
that queries have no variable in common. We will use the following notations:

Privacy query Qp:
SELECT x̄p aggp(yp) WHERE {GPp. FILTERp}
GROUP BY x̄p TIMEWINDOW (Sizep, Stepp)

Utility query Qui
:

SELECT x̄ui
aggui

(yui
) WHERE {GPui

. FILTERui
}

GROUP BY x̄ui
TIMEWINDOW (Sizeui

, Stepui
)

For a TACQ in its general form, we will often rely on its conjunctive part, and
also on its plain variant without aggregate.
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Definition 6 (Conjunctive part and plain variant of a query). Let Q be
a TACQ of the form:

SELECT x̄ agg(y)
WHERE {GP . FILTER}
GROUP BY x̄
TIMEWINDOW (Size, Step)

The conjunctive part of Q, noted Conj(Q), is the simple conjunctive query:
Conj(Q) : SELECT x̄ WHERE {GP}

The plain variant of Q, noted Plain(Q), is the query without aggregate that is
evaluated before computing the aggregate function:

Plain(Q) : SELECT x̄ y WHERE {GP . FILTER}

Theorem 1 provides a full characterization of incompatibility of a privacy query
Qp without aggregate and a set of n utility queries Qu1

, ..., Qun
. It relies on

evaluating the privacy query on all the (small) data graphs that are representa-
tive of the different ways of joining answers of utility queries. Each of these data
graph is obtained by freezing (Definition 7) the variables in the union of graph
patterns in the utility queries, in a way that allows to replace distinct output
variables with a same constant (in order to mimic possible joins between output
variables coming from different utility queries).

Definition 7 (Freezing of graph patterns). Let GP a temporal graph pat-
tern and X a subset of its variables. A freezing of X in GP , denoted Frozen(GP,
X), is the graph pattern obtained from GP by replacing each occurrence of x ∈ X
by a constant, such that every variable in X that is not an output variable is re-
placed by a distinct constant.

Theorem 1 (Incompatibility of privacy queries without aggregate). A
privacy query Qp without aggregate is incompatible with a set of utility queries
Qu1

, ..., Qun
if and only if there exists a freeze of the variables in

⋃
i∈[1..n] GPui

,

and an answer c̄ = h(x̄) of the conjunctive part of Qp over freeze(
⋃

i∈[1..n] GPui
)

and ifQp has a FILTER condition: freeze(
∧

i∈[1..n] FILTERui) |= h(FILTERp)

Proof. If Qp is incompatible with the utility queries, it means by definition that
there exists tuples of constants ā, ā1, ..., ān such that:

∃z̄1 ...∃z̄n µā1
(GPu1

)∧µā1
(FILTERu1

)∧ ...∧ µān
(GPun

)∧µān
(FILTERun

)
|= ∃z̄ µā(GPp) ∧ µā(FILTERp).

Since the sets of variables in each query are pairwise disjoint, the entailment
is only possible if there exists an homomorphism h from the variables in z̄
to the variables or constants in the left hand side so that all the atoms in
h(µā(GPp)) appear in the union of the atoms in µā1

(GPu1
) ∧ ... ∧ µān

(GPun
),

and h(µā(FILTERp)) is entailed by µā1
(FILTERu1

) ∧... ∧ µān
(FILTERun

).
Let Frozen be the result on

⋃
i∈[1..n] GPui

of the freezing freeze that replaces

each output variable xui by µāi(xui). The homomorphism h∪µā from the graph
pattern GPp to Frozen allows to show that ā is an answer of the conjunc-
tive part of Qp when evaluated over Frozen, and: freeze(

∧
i∈[1..n] FILTERui

)

|= (h ∪ µā)(FILTERp).
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For the converse way of the proof, let us consider Frozen the result on⋃
i∈[1..n] GPui

of a freezing freeze of the output variables such that there exists
an answer c̄ of Qp when evaluated over Frozen with a support homomorphism
h such that h(x̄) = c̄ and freeze(

∧
i∈[1..n] FILTERui) |= h(FILTERp).

The homomorphism h allows to show the entailment between the formulas ϕ1:
∃z̄u Frozen ∧freeze(

∧
i∈[1..n] FILTERui

) and ϕ2: ∃z̄ hc̄(GPp)∧hc̄(FILTERp)
where GPp and Frozen are interpreted as the conjunction of their respective
triple patterns seen as logical atoms, and hc̄ is the restriction of h to the output
variables of Qp. In fact, ϕ1 and ϕ2 are respectively the conjunction of logical
signatures of the answers freeze(x̄ui

) of each Qui
, and the logical signature of

the answer c̄ of Qp. Therefore, the privacy query Qp is incompatible with the
utility queries. □

Example 1. Let us consider the following privacy and utility queries PQ1, UQ1

and UQ2, corresponding respectively to the first privacy query and the first two
utility queries (up to variable renaming) of the scenario illustrated in Section 2:
PQ1: SELECT ?sm ?y WHERE {?sm issda:associatedOccupier ?o .

?o issda:yearlyIncome ?y}
UQ1: SELECT ?x1 ?y1 WHERE { ?x1 issda:yearlyIncome ?y1 .

?x1 issda:owns ?z1 . FILTER (?y1 > 75000)}
UQ2: SELECT ?x2 ?y2

WHERE { ?x2 issda:associatedOccupier ?y2. ?y2 issda:nbOfPersons ?n }
The following Frozen and Frozen′ are different freezing of the variables in the
union of the utility graph patterns, where the constants corresponding to the
freezing of output variables are denoted by constants oci:
Frozen = {oc1 issda:yearlyIncome oc2 . oc1 issda:owns c3.

oc4 issda:associatedOccupier oc5 . oc5 issda:nbOfPersons c6}
obtained by the freezing: { ?x1/oc1, ?y1/oc2, ?z1/c3, ?x2/oc4, ?y2/oc5, ?n/c6}
Frozen′ = {oc1 issda:yearlyIncome oc2 . oc1 issda:owns c3 .

oc4 issda:associatedOccupier oc1 . oc1 issda:nbOfPersons c6}
obtained by a freezing in which ?x1 and ?y2 that are output variables in each of
the utility queries are frozen to the same constant oc1.

Ans(PQ1, F rozen) is empty but Ans(PQ1, F rozen′) = {(oc4, oc2)}.
This proves that PQ1 is incompatible with the utility policy composed by the
two utility queries UQ1 and UQ2. The corresponding freezing allows to exhibit
the encountered privacy risk: an answer (for instance (oc4, oc2) ) to the privacy
query PQ1 is disclosed each time answering UQ1 and UQ2 return answers where
the first element of an answer to UQ1 is equal to the second element of an answer
to UQ2 (for instance (oc1, oc2) and (oc4, oc1)) , thus violating any privacy policy
containing PQ1. It is important to note that PQ1 is not incompatible with each
of the utility queries taken in isolation.

Worst-case complexity: In the worst case, checking compatibility using The-
orem 1 requires to evaluate the conjunctive part of the privacy query over the
frozen graph patterns resulting from all the possible freezing of the output vari-
ables of the utility queries. The evaluation of the conjunctive part of privacy
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query over a frozen graph pattern is polynomial in the size of the utility queries
but the number of possible freezing is 2OVu where OVu is the number of output
variables of the utility queries. Handling privacy queries with FILTER conditions
requires to check in addition logical entailment of conjunction of comparison
atoms, which can be done using a constraint solver.

In practice: In fact, a freezing can be obtained from the initial most gen-
eral freezing, which assigns each output variable to a distinct fresh constant,
by equating a subset of these constants. The choice of constants to equate is
constrained by the join variables within the privacy query to obtain an answer.
We have exploited those constraints in our implementation3.

We consider now the case of checking incompatibility of a privacy query with
aggregate with a set of utility queries. In this case, we have to consider separately
the utility queries with aggregates from the utility queries without aggregate.
First, we check the incompatibility of the privacy query with the set of the
utility queries without aggregate. For doing so, since groups are computed from
the results obtained by evaluating first the query without aggregate, we just
have to check incompatibility of the plain variant of Qp (see Definition 6) with
the utility queries without aggregate. This can be done using Theorem 1. Then,
we check the incompatibility of the privacy query with the utility queries with
aggregate.

Theorem 2 establishes the results when aggregates in the privacy query and a
given utility query are defined over the same time window.

Theorem 2 (Incompatibility with aggregates). Let us consider a privacy
query Qp and an utility query Qu with the same aggregate function on a same
time window. Qp is incompatible with Qu if there exists a (possibly empty) freez-
ing fp of output variables in GPp with constants of GPu, or a (possibly empty)
freezing fu of output variables in GPu with constants in GPp such that fp(GPp)
and fu(GPu) are isomorphic. When Qp and Qu have no FILTER conditions,
they are incompatible if and only if the above condition is satisfied.

Proof. Based on Definition 4, an answer (ā, r) of an aggregate query Qp can
be inferred from a set of answers {(āu, ru)} only if the group Groupp(ā) =
{yp|∃z̄, µā(GPp) ∧ µā(FILTERp)} can be obtained as a group, or the union of
groups, of Qu, i.e., unions of {yu|∃z̄u, µāu(GPu) ∧ µāu(FILTERu)}.

Based on [2], this situation is true only if (if and only if, when there is no
FILTER conditions) either µā(GPp) and (GPu) are isomorphic, or if there exists
an answer āu of GPu such that µā(GPp) and µāu

(GPu) are isomorphic, i.e, GPp

(or one of its freezing of output variables by constants in GPu) is isomorphic to
GPu (or to one of its freezing of output variables by constants in GPp). □

Example 2. Let us consider the following privacy query Qp and the following
utility query Qu:

3 Our code is available at https://github.com/fr-anonymous/puck

https://github.com/fr-anonymous/puck
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Qp: SELECT ?building AVG(?nb)
WHERE {?sm issda:associatedBuilding ?b . ?b rdf:type ?building .

?sm issda:associatedOccupier ?o . ?o issda:nbOfPersons ?nb .
?o issda:yearlyIncome ?y}

GROUP BY ?building
Qu: SELECT ?y’ AVG(?nb’)

WHERE {?sm’ issda:associatedBuilding ?b’ . ?b’ rdf:type issda:Apartment.
?sm’ issda:associatedOccupier ?o’ . ?o’ issda:nbOfPersons ?nb’ .
?o’ issda:yearlyIncome ?y’}

GROUP BY ?y’
Freezing the ?building variable of Qp with the constant issda:Apartment appear-
ing in Qu results in:

Frozen = {?sm issda:associatedBuilding ?b . ?b rdf:type issda:Apartment .
?sm issda:associatedOccupier ?o . ?o issda:nbOfPersons ?nb .
?o issda:yearlyIncome ?y}

which is isomorphic with the graph pattern of Qu. Since, Qp and Qu have the
same aggregate function, Qp is incompatible with Qu.

Let us consider now the case where Qp and Qu have different time windows:
we have to check if time windows of Qp can be built from time windows of
Qu. Computing an aggregate on a time window I1 from the results of the same
aggregate on different time windows I2 and I3 is only possible if I1 can be built
from I2 and I3 by union or difference. As shown in Figure 1, I1 can be obtained
by union of I2 and I3, but I3 can also be obtained by difference between I1 and
I2, and I2 can be built by difference between I1 and I3. Therefore, testing if a
time window can be built by difference amounts to testing if an union is possible.
From now on, we thus focus, without loss of generality, on checking incompati-
bility by testing whether time windows of a privacy query can be built as unions
of time windows of utility queries.
Theorem 3 provides a characterization of the incompatibiity between a privacy
queryQp and a single utility queryQu based on the values of Sizep , Stepp, Sizeu
and Stepu defining the time windows considered in Qp and Qu respectively. It
relies on identifying how to build a time window of Qp as union of some time
windows of Qu, as illustrated in Figure 2.

I2

Size2

I1

Size1

I3

Size3

Fig. 1. Building a time window from other ones
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Iu4

Iu3

Iu2

Iu1

Sizeu Stepu

Ip

Sizep

Fig. 2. Union of time windows from a single utility query

Theorem 3 (Incompatibility between a privacy query and a single util-
ity query with aggregates on different time windows ). Let us consider
a privacy query Qp and a utility query Qu computing the same aggregate Agg
on different time windows, and such that Q′

p and Q′
u obtained from Qp and Qu

by removing their TIMEWINDOW clauses are incompatible. Qp is incompatible
with Qu using union if and only if the following two conditions are satisfied:

(1) ∃m ∈ N such as Sizep = Sizeu +m× Stepu
(2) If Agg is Sum or Count, ∃n ∈ N+ and ∃α ∈ N such as Sizeu = n×Stepu

and m = α× n.

Proof. Computing an aggregate of Qp from aggregates coming from Qu is only
possible if at least one time window Ip of Qp can be built by union of m time
windows Iux

of Qu as shown in Figure 2. The following conditions have thus to
be satisfied: (a) the union of m time windows of Qu have the same size than a
single time window of Qp; (b) a time window of Qu and a time window of Qp

ends at the same time; (c) the union must be disjoint for Sum and Count (e.g.
union of Iu1

and Iu4
in red in Figure 2). This is captured by the equations:

Sizep = Sizeu + (m− 1)× Stepu (1)
kp × Stepp = ku × Stepu (2)
Sizeu = n× Stepu for Sum and Count (3.1)
Sizep = α× Sizeu for Sum and Count (3.2)

where kp and ku are unknown integers, Sizep, Stepp, Sizeu and Stepu are con-
stant integers, and m, n and α are strictly positive constant integers.

Equation (2) has obviously always solutions (e.g. kp = ku = 0) and can be
discarded. Combining equation (1) and equation (3.2), we obtain:Sizep = Sizeu + (m− 1)× Stepu (1)

Sizeu = n× Stepu for Sum and Count (3.1)
(α− 1)× Sizeu = (m− 1)× Stepu for Sum and Count (3.2)

The necessary and sufficient conditions of incompatibility are obtained by com-
bining equation (3.1) and equation (3.2). □
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Iu1

Iu2

Sizeu1 Sizeu2

Ip

Sizep

(a) For Sum or Count

Iu1

Iu2

Sizeu1

Sizeu2

Ip

Sizep

(b) For Min or Max

Fig. 3. Union of time windows from two utility queries

This theorem allows to prove the incompatibility between the privacy query PQ2
and the utility UQ3 of the scenario in Section 2. Indeed, the size of the time
window of PQ2 (equal to 6) is a multiple of the size of the time window of UQ3
(equal to 3), which is also a multiple of its step (equal to 1).
This latter condition would not be satisfied if the step of the time window clause
of the utility query is replaced by 2 for instance. In this case, the same theorem
would allow to infer that PQ2 is compatible with the modified utility query.

When a privacy query is compatible with all utility queries, it remains to check
whether it can be incompatible with combinations of utility queries. Based on
Theorem 2, this can only occur by combining utility queries whose graph patterns
are isomorphic with the graph pattern of the privacy query.
Theorem 4 checks incompatibility of Qp with two utility queries Qu1 and Qu2

by testing if it is possible to build a time window of Qp by the union of time
windows of Qu1

and Qu2
as illustrated in Figure 3.

Theorem 4 (Incompatibility between a privacy query and two util-
ity queries with same aggregates and different time windows ). Let
us consider a privacy query Qp and two utility queries Qu1

and Qu2
comput-

ing the same aggregate on different time windows, and such that Qp without its
TIMEWINDOW clause is incompatible with both Q′

u1
and Q′

u2
obtained from

Qu1 and Qu2 by removing their TIMEWINDOW clauses.
Qp is incompatible with the pair (Qu1

, Qu2
) using union if and only if the fol-

lowing two conditions are satisfied:
(a) Sizep = Sizeu1 + Sizeu2 for SUM or COUNT aggregates
or Sizep ≤ Sizeu1

+ Sizeu2
for MIN or MAX aggregates

(b) Sizep − Sizeu1
is a multiple of gcd(Stepu1

, σp × Stepu2
)

where σp =
Stepp

gcd(Stepp,Stepu2
)

Proof. Computing an aggregate of Qp from aggregates coming from a two dif-
ferent utility queries Qu1

and Qu2
is possible if at least one time window Ip of

Qp can be built by union of a time window Iu1
of Qu1

and a time window Iu2

coming from Qu2
as shown in Figure 3. Sum and Count necessitate that Iu1
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and Iu2
are disjoint to avoid double counting of an overlap (a), Min and Max

support overlapping time windows (b).
The following conditions have to be satisfied (Qu1 and Qu2 can be inverted): (a)
the union of a time window of Qu1 and a time window of Qu2 have the same
size than a single time window of Qp; (b) a time window of Qu1

starts when a
time window of Qp starts; (c) a time window of Qu2

ends when the same time
window of Qp ends. This is captured by the following equations:Sizep = Sizeu1 + Sizeu2 (a) or Sizep ≤ Sizeu1 + Sizeu2 (b) (1)

k1 × Stepu1 + Sizeu1 = kp × Stepp + Sizep (2)
kp × Stepp = k2 × Stepu2

(3)

where k1, k2 and kp are unknown integers and Stepp, Sizep, Stepu1
, Sizeu1

,
Stepu2 and Sizeu2 are constant integers.

The positive integer solutions of equation (3) are of the form:{
kp = κ× σu2 (3.1)
k2 = κ× σp (3.2)

with κ ∈ N+

where σp =
Stepp

gcd(Stepp,Stepu2
) and σu2 =

Stepu2

gcd(Stepp,Stepu2
) .

Injecting solutions of equation (3) into equation (2), we obtain:
Sizep = Sizeu1

+ Sizeu2
(a) or Sizep ≤ Sizeu1

+ Sizeu2
(b) (1)

k1 × Stepu1 − κ× σp × Stepu2 = Sizep − Sizeu1 (2)
kp = κ× σu2 (3.1)
k2 = κ× σp (3.2)

Equations (3.1) and (3.2) are always satisfied and can be discarded. According
to Bachet-Bézout theorem, the Diophantine equation (2) has a solution if and
only if Sizep − Sizeu1 is a multiple of gcd(Stepu1 , σp × Stepu2). □

Example 3. Let us consider the privacy query PQ2 of the scenario in Section 2
and the following utility queries:
Qu1

: SELECT ?timeWindowEnd SUM(?cons)
WHERE {(?sm issda:consumption ?cons, ?ts)}
GROUP BY ?timeWindowEnd
TIMEWINDOW (4h, 2h)

Qu2
: SELECT ?timeWindowEnd SUM(?cons’)
WHERE {(?sm’ issda:consumption ?cons’, ?ts’)}
GROUP BY ?timeWindowEnd
TIMEWINDOW (2h, 1h)

As Sizep = 6 and Sizeu1 + Sizeu2 = 6, the condition (a) of the theorem is
satisfied.
As Stepp = 6, Stepu1

= 2 and Stepu2
= 1, we get: σp = 6 gcd(Stepu1

, σp ×
Stepu2

) = 2, and Sizep − Sizeu1
= 2, thus making the condition (b) of the

theorem also satisfied. So PQ2 is incompatible with Qu1
and Qu2

.
If we replace the TIMEWINDOW of Qu1 by (3h, 2h), the condition (a) of the
theorem is not satisfied and PQ2 is compatible with the new Qu1 and Qu2 .
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5 Related Work

A rich variety of privacy models have been proposed, ranging from k-anonymity
[14] and l-diversity [12] to t-closeness [11] and ϵ-differential privacy [6]. All these
approaches are based on changing the exposed data either by adding noise in
the data or by applying generalization operations on sensitive data. Our data-
independent approach is complementary and should be used beforehand for de-
tecting privacy breaches. It comes with explanations that can help choose the
privacy model to apply to the data concerned by the detected privacy breaches.

Data security is also an important topic for which secure protocols based on
encryption has been proposed that enable to do some computations on encrypted
outsourced data. In contrast with our work, each protocol may be specific to the
target computations to be feasible in practice like in [1].

An alternative approach for protecting against privacy breaches consists in
applying access control methods to RDF data [13,15,10]. However, all these
works do not handle utility queries.

A query-based logical framework for RDF data has been introduced in [7,8],
where sensitive information is expressed as SPARQL queries whose results must
not disclose sensitive information of individual. It has been extended to han-
dling utility queries in [4,5]. These approaches however are restricted to simple
conjunctive queries. They do not consider aggregates and they cannot apply to
temporal data.

6 Conclusion and Future Work

In this paper we have proposed a data-independent framework for a formal
specification and verification of compatibility between privacy and utility policies
expressed as temporal aggregate conjunctive queries.

This framework is well suited for helping data producers to keep the control
on the protection of their data in many real-world situations where sensitive data
are collected by mobile personal devices or smart environments. When a privacy
query turns out to be incompatible with utility queries, several solutions can be
applied, such as ciphering the exposed data made explicit by the explanation
built from the incompatibility proof, anonymize them [3], or use differential
privacy [9].

Based on the implementation of this framework, we plan to design and im-
plement a negotiation mechanism that will be triggered in this case. New relaxed
utility queries will be automatically computed to restore compatibility with the
privacy policy of a given data producer. They will be the formal basis of a di-
alogue between each data producer and the service provider in order to find a
acceptable trade-off in terms of utility while guaranteeing privacy preservation
for each data producer.

We also plan to extend our framework to take into account ontological knowl-
edge in the possible inference of answers of privacy queries by answers of utility
queries. This will bring stronger constraints on compatibility between privacy
and utility policies.
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