Hira Asghar

Christophe Bobineau

Marie-Christine Rousset

Identifying Privacy Risks raised by Utility Queries ⋆

Keywords: Temporal aggregated conjunctive queries, Utility queries, Privacy queries

Personal data are increasingly disseminated over the Web through mobile devices and smart environments, and are exploited for developing more and more sophisticated services and applications. All these advances come with serious risks for privacy breaches that may reveal private information wanted to remain undisclosed by data producers. It is therefore of utmost importance to help them to identify privacy risks raised by requests of service providers for utility purposes. In this paper, we first formalize privacy risks by privacy queries expressed (and kept secret) by each data producer to specify the data they do not want to be disclosed. Then, we develop a formal approach for detecting incompatibility between privacy and utility queries expressed as temporal aggregate conjunctive queries. The distinguishing point of our approach is to be data-independent and to come with an explanation based on the query expressions only. This explanation is intended to help data producers understand the detected privacy breaches and guide their choice of the appropriate technique to correct it.

Introduction

Personal data are increasingly disseminated over the Internet through mobile devices and smart environments, and are exploited for developing more and more sophisticated services and applications. All these advances come with serious risks for privacy breaches that may reveal private information wanted by users to remain undisclosed. It is therefore of utmost importance to help data producers to keep the control on their data for their privacy protection while preserving the utility of disclosed data for service providers.

In this paper, we approach the problem of utility-aware privacy preservation in the setting of applications where service providers request collecting data from data producers in order to perform aggregate data analytics for optimization or recommendation purposes. The approach that we promote to face the privacy versus utility dilemma in this setting can be summarized as follows:

-Data producers specify by a set of privacy queries (kept secret) the (possibly aggregated) data that they do not want to disclose.

-Data consumers make explicit by a set of utility queries the data that they request from each data producer for offering them services in return.

-The compatibility between privacy and utility queries is automatically verified, and in case of incompatibility data producers get an explanation that can be exploited later to help them find an acceptable privacy-utility trade-off. Our contribution is twofold. First, we handle the temporal aspect in the definition of privacy and utility by expressing privacy and utility queries as temporal aggregate queries. Taking into account the temporal aspect for privacy protection is very important since many applications handle dynamic data (e.g., electrical consumption, time series, mobility data) for which temporal data are considered as sensitive and aggregates on time are important for data analytics. Second, we formally define and automatically verify incompatibility between privacy and utility queries based on their query expressions only, and thus independently of the data. Incompatibility proofs come with explanations which can be exploited subsequently for helping data producers choose an appropriate defence strategy while limiting the utility loss. This can be done by applying to their data existing anonymization techniques based on differential privacy [START_REF] Hassan | Differential privacy techniques for cyber physical systems: A survey[END_REF] or k-anonymity [START_REF] Sweeney | k-anonymity: A model for protecting privacy[END_REF]. The paper is organized as follows. Section 2 provides an illustrative scenario of our approach. Section 3 formally defines the queries that we consider. Section 4 is dedicated to checking incompatibility between privacy and utility queries. Section 5 presents related work, and Section 6 concludes our paper.

Illustrative Scenario

We consider a use-case related to smart power grids, in which the data producers are customers with smart meters in their home. A service provider has a catalog of energy efficiency products (including energy efficient insulation, windows, appliances) and requests collecting data from all the customers to adapt the proposed services to the profile of each of them based on some personal data.

We assume that the service provider and the customers understand each other through a common vocabulary using a a simple ontology such as the one1 that we have extracted from the ISSDA dataset, a real world power grid dataset provided by the Irish Social Science Data Archive (ISSDA) Commission for Energy Regulation (CER)2 . This shared vocabulary allows service providers to specify their data needs in a precise way through a set of utility queries, that can then be compared to a set of privacy queries used by each data producer to state the data that they not want to be disclosed directly or indirectly. Let us suppose that the service provider has the following data needs:

(1) for each identifier of customers that are owners of their home, their yearly income if it is more than 75000;

(2) for each identifier of customers, their smart meter number;

(3) for each smart meter number, the sum of consumptions computed every hour over the meter readings of the previous 3 hours. These needs can be translated into the utility queries shown below by using SPARQL-like query language that will be explained in Section 3. Now, suppose that a given customer, possibly with the help of privacy officer or tool, states that, among the data they accept to transmit, they want to prevent:

-the association between their smart meter number and their yearly income; -the disclosure of their energy consumption measurements aggregated over intervals of 6 hours. This can be translated into the following privacy queries for which no answer should be transmitted or inferred by any external data consumer. With our approach, as it will be explained in Section 4, we can automatically detect that the above utility and privacy queries are incompatible, and provide the following privacy diagnosis: 1) The first privacy risk is due to the possible violation of the privacy query PQ1 by the combination of answers to the utility queries UQ1 and UQ2.

2) The second privacy risk is due to the possible violation of the privacy query PQ2 by answers to the utility query UQ3 because: a) PQ2 and UQ3 compute the same aggregate under the same conditions; b) groups of UQ3 are partitions of groups of PQ2; c) and finally, all time windows of PQ2 can be obtained as disjoint unions of some time windows of UQ3.

Based on the above explanations, the data producer could, for example, inform the service provider that:

-they will refuse to answer at least one the utility queries UQ1 or UQ2; -they could accept to answer UQ3 if the time window is changed , for instance by modifying the step between each consumption computation.

Formal Background

We first define temporal aggregate conjunctive queries (TACQ) with a SPARQLlike syntax extended with time windows for capturing aggregate on time. Then, we define the compatibility problem between utility and privacy TACQs. To simplify the exposition, we will only consider aggregate queries with a single aggregation term. In most cases, queries with several aggregate terms are equivalent to the unions of queries with same body and a single aggregate [START_REF] Cohen | Containment of aggregate queries[END_REF]. In particular, AV G can be computed by the union of two queries, one for computing SU M and the other one for computing COU N T . Definition 1 relies on the notion of temporal graph pattern that is an extension of the standard notion of graph pattern in SPARQL in which we allow to associate timestamp variables to triple patterns involving dynamic properties. Through homomorphisms from temporal graph patterns to temporal data graphs, timestamp variables can only be assigned to timestamps appearing in timestamped RDF triples instantiating the dynamic properties. -GP is a temporal graph pattern; -F ILT ER is a conjunction of atomic comparisons of the form t θ t ′ where t and t ′ are variables of GP or literals (numbers, strings or dates) and θ ∈ {<> , <, <=, =, >=, >}; -x is a tuple of variables called the output (or grouping) variables; -when the aggregate term agg(y) is present, y (called the aggregate variable) is not in x and agg is an aggregate function that produces a single value when applied to a set of values assigned to y; -Size and Step are time durations (i.e. differences between timestamps).

The general syntax can be simplified as follows for capturing particular cases:

-when either x is empty or there is no aggregate term, we can omit the GROUP BY clause; -when Size = ∞ (Step = 0), the TIMEWINDOW clause can be omitted; -the F ILT ER clause can be omitted when the corresponding boolean expression is TRUE (called empty F ILT ER).

Note however, that when TIMEWINDOW is specified, FILTER always contains the implicit following constraints for each timestamp variable ?ts: ?ts ≤ ?timeW indowEnd ∧ ?ts > ?timeW indowsEnd -Size. where ?timeW indowEnd is a specific timestamp variable that will be mapped successively to the upper bound of each time window computed from the timestamp at which the query is executed. Given a TACQ defined in Definition 1, its evaluation over a temporal data graph G is defined in terms of filtered homomorphisms (Definition 2) and groups (Definition 3) for obtaining its answer set.

Definition 2 (Filtered homomorphisms). Let M be the set of homomorphisms from GP to G. The filtered set of homomorphisms is the subset of M of homomorphisms µ such that µ(FILTER) = TRUE. Definition 3 states that there are as many groups as filtered homomorphisms allowing to match the tuple x with tuples of values v multiplied by the number of time intervals defined by values of k as:]now -k ×Step-Size, now -k ×Step] where now denotes the timestamp at which the query is executed.

Definition 3 (Groups)

. Let F M be the set of filtered homomorphisms from GP to G. Groups are defined for each tuple v and each time interval k as follows:

Group k (v) = {µ(y) | µ ∈ F M, µ(x) = v, and for each timestamp variable µ(?ts) ∈]now -k × Step -Size, now -k × Step]) and µ(?timeW indowEnd) = now -k × Step}.
It is important to note that if there is no aggregate term, there is only one time window (i.e.,] -∞, now]) and there are as many groups as distinct tuples v. For each group Group k (v), an answer is either the tuple v if there is no aggregate term, or the tuple (v, r) obtained by concatenating the tuple v with the result r of the aggregation function applied to the values in the group. The answer set of a query Q window : SELECT x agg(y) WHERE {GP . F ILT ER} GROUP BY x TIMEWINDOW (Size, Step) is the union of the answer sets resulting of the evaluation over each time window of Q window of the query Q:

SELECT x agg(y) WHERE {GP . F ILT ER} GROUP BY x By interpreting GP as the logical conjunction of atomic formulas, Definition 4 defines the logical signature of an answer to a query as the logical formula characterizing all the (unknown) temporal data graphs leading to this answer for this query.

Definition 4 (Logical signature of answers)

. For an answer (ā, r) to a query Q, let µ ā the mapping assigning each grouping variable x in x to the corresponding constant a in ā. The logical signature of (ā, r) and Q, denoted σ((ā, r), Q), is the formula:

(∃y∃z µ ā(GP) ∧ µ ā(F ILT ER)) ∧ agg({y|∃z, µ ā(GP) ∧ µ ā(F ILT ER)}) = r
where z is the (possibly empty) subset of variables in GP non including the aggregate variable y.

When there is no aggregate variable, the logical signature is reduced to the formula:

(∃y∃z µ ā(GP) ∧ µ ā(F ILT ER)) .
The logical signatures of the respective answers (sm1031, 75000) and (sm1031, 2020-07-14T03:30:00, 88) to the (simple conjunctive) privacy query PQ1 and the TACQ utility query UQ3 used in the scenario of Section 2, are given below:

Logical signature of the answer (sm1031, 75000) of PQ1 ∃ ?o, sm1031 issda : associatedOccupier ?o ∧ ?o issda : yearlyIncome 75000 Logical signature of the answer (sm1031, 2020-07-14T 03:30:00, 88) of UQ3 ∃ ?c ∃ ?ts (sm1031 issda : consumption ?c,?ts) ∧ ?ts ≤ 2020 -07 -14 T03 :30:00 ∧ ?ts > 2020 -07 -14 T00 :30:00 ∧ SUM {?c | ∃ ?ts (sm1031 issda : consumption ?c, ?ts) ∧ ?ts ≤ 2020 -07 -14 T03 :30:00 ∧ ?ts > 2020 -07 -14 T00 :30:00 } = 88 Definition 5 formalizes incompatibility as the possibility of inferring answers of a privacy query from answers of utility queries on the same data graph without necessarily knowing it.

Definition 5 (Incompatibility between privacy and utility queries). A privacy query is incompatible with a set of utility queries if the logical signature of an answer to the privacy query is entailed by a conjunction of logical signatures of answers to some utility queries.

Incompatibility Detection

The privacy queries are specific to, and kept secret by, each data producer. Then, the detection of incompatility is done by algorithms launched by each data producer, given the set of utility queries they receive from a data consumer. In this section, we provide a characterization of incompatibility by distinguishing the cases where privacy queries are without aggregate (Theorem 1) or with aggregate (Theorem 2 , Theorem 3 and Theorem 4). Without loss of generality, by renaming variables within each query, we consider that queries have no variable in common. We will use the following notations: Definition 7 (Freezing of graph patterns). Let GP a temporal graph pattern and X a subset of its variables. A freezing of X in GP , denoted Frozen(GP, X), is the graph pattern obtained from GP by replacing each occurrence of x ∈ X by a constant, such that every variable in X that is not an output variable is replaced by a distinct constant.

Privacy
Theorem 1 (Incompatibility of privacy queries without aggregate). A privacy query Q p without aggregate is incompatible with a set of utility queries Q u1 , ..., Q un if and only if there exists a f reeze of the variables in i∈[1.

.n] GP ui , and an answer c = h(x) of the conjunctive part of Q p over f reeze(i∈[1.

.n] GP ui) and if Q p has a FILTER condition:

f reeze(i∈[1..n] F ILT ER ui) |= h(F ILT ER p)
Proof. If Q p is incompatible with the utility queries, it means by definition that there exists tuples of constants ā, ā1 , ..., ān such that:

∃z 1 ... ∃z n µ ā1 (GP u1) ∧ µ ā1 (F ILT ER u1) ∧ ...∧ µ ān (GP un) ∧ µ ān (F ILT ER un) |= ∃z µ ā(GP p) ∧ µ ā(F ILT ER p).
Since the sets of variables in each query are pairwise disjoint, the entailment is only possible if there exists an homomorphism h from the variables in z to the variables or constants in the left hand side so that all the atoms in h(µ ā(GP p)) appear in the union of the atoms in µ ā1 (GP u1) ∧ ... ∧ µ ān (GP un), and h(µ ā(F ILT ER p)) is entailed by µ ā1 (F ILT ER u1) ∧... ∧ µ ān (F ILT ER un). Let F rozen be the result on i∈ [1..n] GP ui of the freezing f reeze that replaces each output variable x ui by µ āi (x ui). The homomorphism h ∪ µ ā from the graph pattern GP p to F rozen allows to show that ā is an answer of the conjunctive part of Q p when evaluated over F rozen, and:

f reeze(i∈[1..n] F ILT ER ui) |= (h ∪ µ ā)(F ILT ER p).
For the converse way of the proof, let us consider F rozen the result on i∈ [1..n] GP ui of a freezing f reeze of the output variables such that there exists an answer c of Q p when evaluated over F rozen with a support homomorphism h such that h(x) = c and f reeze(i∈ [1..n] F ILT ER ui) |= h(F ILT ER p).

The homomorphism h allows to show the entailment between the formulas ϕ 1 :

∃z u F rozen ∧ f reeze(i∈[1..n] F ILT ER ui) and ϕ 2 : ∃z h c(GP p) ∧ h c(F ILT ER p)
where GP p and F rozen are interpreted as the conjunction of their respective triple patterns seen as logical atoms, and h c is the restriction of h to the output variables of Q p . In fact, ϕ 1 and ϕ 2 are respectively the conjunction of logical signatures of the answers f reeze(x ui) of each Q ui , and the logical signature of the answer c of Q p . Therefore, the privacy query Q p is incompatible with the utility queries. □ Example 1. Let us consider the following privacy and utility queries P Q 1 , U Q 1 and U Q 2 , corresponding respectively to the first privacy query and the first two utility queries (up to variable renaming) of the scenario illustrated in Section 2: P Q 1 : SELECT ?sm ?y WHERE {?sm issda:associatedOccupier ?o .

?o issda:yearlyIncome ?y} U Q 1 : SELECT ?x1 ?y1 WHERE { ?x1 issda:yearlyIncome ?y1 .

?x1 issda:owns ?z1 . FILTER (?y1 > 75000)} U Q 2 : SELECT ?x2 ?y2 WHERE { ?x2 issda:associatedOccupier ?y2. ?y2 issda:nbOfPersons ?n } The following F rozen and F rozen ′ are different freezing of the variables in the union of the utility graph patterns, where the constants corresponding to the freezing of output variables are denoted by constants oc i : F rozen = {oc 1 issda:yearlyIncome oc 2 . oc 1 issda:owns c 3 . oc 4 issda:associatedOccupier oc 5 . oc 5 issda:nbOfPersons c 6 } obtained by the freezing: { ?x1/oc 1 , ?y1/oc 2 , ?z1/c 3 , ?x2/oc 4 , ?y2/oc 5 , ?n/c 6 } F rozen ′ = {oc 1 issda:yearlyIncome oc 2 . oc 1 issda:owns c 3 . oc 4 issda:associatedOccupier oc 1 . oc 1 issda:nbOfPersons c 6 } obtained by a freezing in which ?x1 and ?y2 that are output variables in each of the utility queries are frozen to the same constant oc 1 .

Ans(P Q 1 , F rozen) is empty but Ans(P Q 1 , F rozen ′) = {(oc 4 , oc 2)}. This proves that P Q 1 is incompatible with the utility policy composed by the two utility queries U Q 1 and U Q 2 . The corresponding freezing allows to exhibit the encountered privacy risk: an answer (for instance (oc 4 , oc 2)) to the privacy query P Q 1 is disclosed each time answering U Q 1 and U Q 2 return answers where the first element of an answer to U Q 1 is equal to the second element of an answer to U Q 2 (for instance (oc 1 , oc 2) and (oc 4 , oc 1)) , thus violating any privacy policy containing P Q 1 . It is important to note that P Q 1 is not incompatible with each of the utility queries taken in isolation.

Worst-case complexity: In the worst case, checking compatibility using Theorem 1 requires to evaluate the conjunctive part of the privacy query over the frozen graph patterns resulting from all the possible freezing of the output variables of the utility queries. The evaluation of the conjunctive part of privacy query over a frozen graph pattern is polynomial in the size of the utility queries but the number of possible freezing is 2 OVu where OV u is the number of output variables of the utility queries. Handling privacy queries with FILTER conditions requires to check in addition logical entailment of conjunction of comparison atoms, which can be done using a constraint solver. In practice: In fact, a freezing can be obtained from the initial most general freezing, which assigns each output variable to a distinct fresh constant, by equating a subset of these constants. The choice of constants to equate is constrained by the join variables within the privacy query to obtain an answer. We have exploited those constraints in our implementation 3 .

We consider now the case of checking incompatibility of a privacy query with aggregate with a set of utility queries. In this case, we have to consider separately the utility queries with aggregates from the utility queries without aggregate. First, we check the incompatibility of the privacy query with the set of the utility queries without aggregate. For doing so, since groups are computed from the results obtained by evaluating first the query without aggregate, we just have to check incompatibility of the plain variant of Q p (see Definition 6) with the utility queries without aggregate. This can be done using Theorem 1. Then, we check the incompatibility of the privacy query with the utility queries with aggregate. Theorem 2 establishes the results when aggregates in the privacy query and a given utility query are defined over the same time window.

Theorem 2 (Incompatibility with aggregates). Let us consider a privacy query Q p and an utility query Q u with the same aggregate function on a same time window. Q p is incompatible with Q u if there exists a (possibly empty) freezing f p of output variables in GP p with constants of GP u , or a (possibly empty) freezing f u of output variables in GP u with constants in GP p such that f p (GP p) and f u (GP u) are isomorphic. When Q p and Q u have no FILTER conditions, they are incompatible if and only if the above condition is satisfied.

Proof. Based on Definition 4, an answer (ā, r) of an aggregate query Q p can be inferred from a set of answers {(ā u , r u)} only if the group Group p (ā) = {y p |∃z, µ ā(GP p) ∧ µ ā(F ILT ER p)} can be obtained as a group, or the union of groups, of Q u , i.e., unions of {y u |∃z u , µ āu (GP u) ∧ µ āu (F ILT ER u)}.

Based on [START_REF] Cohen | Containment of aggregate queries[END_REF], this situation is true only if (if and only if, when there is no FILTER conditions) either µ ā(GP p) and (GP u) are isomorphic, or if there exists an answer āu of GP u such that µ ā(GP p) and µ āu (GP u) are isomorphic, i.e, GP p (or one of its freezing of output variables by constants in GP u) is isomorphic to GP u (or to one of its freezing of output variables by constants in GP p Let us consider now the case where Q p and Q u have different time windows: we have to check if time windows of Q p can be built from time windows of Q u . Computing an aggregate on a time window I 1 from the results of the same aggregate on different time windows I 2 and I 3 is only possible if I 1 can be built from I 2 and I 3 by union or difference. As shown in Figure 1, I 1 can be obtained by union of I 2 and I 3 , but I 3 can also be obtained by difference between I 1 and I 2 , and I 2 can be built by difference between I 1 and I 3 . Therefore, testing if a time window can be built by difference amounts to testing if an union is possible. From now on, we thus focus, without loss of generality, on checking incompatibility by testing whether time windows of a privacy query can be built as unions of time windows of utility queries. Theorem 3 provides a characterization of the incompatibiity between a privacy query Q p and a single utility query Q u based on the values of Size p , Step p , Size u and Step u defining the time windows considered in Q p and Q u respectively. It relies on identifying how to build a time window of Q p as union of some time windows of Q u , as illustrated in Figure 2. Theorem 3 (Incompatibility between a privacy query and a single utility query with aggregates on different time windows). Let us consider a privacy query Q p and a utility query Q u computing the same aggregate Agg on different time windows, and such that Q ′ p and Q ′ u obtained from Q p and Q u by removing their TIMEWINDOW clauses are incompatible. Q p is incompatible with Q u using union if and only if the following two conditions are satisfied:

(1) ∃m ∈ N such as

Size p = Size u + m × Step u (2) If Agg is Sum or Count, ∃n ∈ N + and ∃α ∈ N such as Size u = n×Step u and m = α × n.
Proof. Computing an aggregate of Q p from aggregates coming from Q u is only possible if at least one time window I p of Q p can be built by union of m time windows I ux of Q u as shown in Figure 2. The following conditions have thus to be satisfied: (a) the union of m time windows of Q u have the same size than a single time window of Q p ; (b) a time window of Q u and a time window of Q p ends at the same time; (c) the union must be disjoint for Sum and Count (e.g. union of I u1 and I u4 in red in Figure 2). This is captured by the equations: This theorem allows to prove the incompatibility between the privacy query PQ2 and the utility UQ3 of the scenario in Section 2. Indeed, the size of the time window of PQ2 (equal to 6) is a multiple of the size of the time window of UQ3 (equal to 3), which is also a multiple of its step (equal to 1). This latter condition would not be satisfied if the step of the time window clause of the utility query is replaced by 2 for instance. In this case, the same theorem would allow to infer that PQ2 is compatible with the modified utility query.

       Size p = Size u + (m -1) × Step u (1) k p × Step p = k u × Step u (2
When a privacy query is compatible with all utility queries, it remains to check whether it can be incompatible with combinations of utility queries. Based on Theorem 2, this can only occur by combining utility queries whose graph patterns are isomorphic with the graph pattern of the privacy query. Theorem 4 checks incompatibility of Q p with two utility queries Q u1 and Q u2 by testing if it is possible to build a time window of Q p by the union of time windows of Q u1 and Q u2 as illustrated in Figure 3.

Theorem 4 (Incompatibility between a privacy query and two utility queries with same aggregates and different time windows). Let us consider a privacy query Q p and two utility queries Q u1 and Q u2 computing the same aggregate on different time windows, and such that Q p without its TIMEWINDOW clause is incompatible with both Q ′ u1 and Q ′ u2 obtained from Q u1 and Q u2 by removing their TIMEWINDOW clauses. Q p is incompatible with the pair (Q u1 , Q u2) using union if and only if the following two conditions are satisfied: Proof. Computing an aggregate of Q p from aggregates coming from a two different utility queries Q u1 and Q u2 is possible if at least one time window I p of Q p can be built by union of a time window I u1 of Q u1 and a time window I u2 coming from Q u2 as shown in Figure 3. Sum and Count necessitate that I u1 and I u2 are disjoint to avoid double counting of an overlap (a), M in and M ax support overlapping time windows (b). The following conditions have to be satisfied (Q u1 and Q u2 can be inverted): (a) the union of a time window of Q u1 and a time window of Q u2 have the same size than a single time window of Q p ; (b) a time window of Q u1 starts when a time window of Q p starts; (c) a time window of Q u2 ends when the same time window of Q p ends. This is captured by the following equations:

   Size p = Size u1 + Size u2 (a) or Size p ≤ Size u1 + Size u2 (b) (1) k 1 × Step u1 + Size u1 = k p × Step p + Size p (2) k p × Step p = k 2 × Step u2 (3)
where k 1 , k 2 and k p are unknown integers and Step p , Size p , Step u1 , Size u1 ,

Step u2 and Size u2 are constant integers.

The positive integer solutions of equation (3) are of the form:

k p = κ × σ u2 (3.1) k 2 = κ × σ p (3.2) with κ ∈ N + where σ p = Stepp gcd(Stepp,Stepu 2) and σ u2 = Stepu 2 gcd(Stepp,Stepu 2) .
Injecting solutions of equation (3) into equation (2), we obtain: A rich variety of privacy models have been proposed, ranging from k-anonymity [START_REF] Sweeney | k-anonymity: A model for protecting privacy[END_REF] and l-diversity [START_REF] Machanavajjhala | L-diversity: Privacy beyond k -anonymity[END_REF] to t-closeness [START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF] and ϵ-differential privacy [START_REF] Dwork | Differential privacy[END_REF]. All these approaches are based on changing the exposed data either by adding noise in the data or by applying generalization operations on sensitive data. Our dataindependent approach is complementary and should be used beforehand for detecting privacy breaches. It comes with explanations that can help choose the privacy model to apply to the data concerned by the detected privacy breaches.

       Size p = Size u1 + Size u2 (a) or Size p ≤ Size u1 + Size u2 (b) (1) k 1 × Step u1 -κ × σ p × Step u2 = Size p -Size u1 (2) k p = κ × σ u2 (3.1) k 2 = κ × σ p (3
Data security is also an important topic for which secure protocols based on encryption has been proposed that enable to do some computations on encrypted outsourced data. In contrast with our work, each protocol may be specific to the target computations to be feasible in practice like in [START_REF] Ciucanu | Goose: A secure framework for graph outsourcing and sparql evaluation[END_REF].

An alternative approach for protecting against privacy breaches consists in applying access control methods to RDF data [START_REF] Oulmakhzoune | Privacy policy preferences enforced by SPARQL query rewriting[END_REF][START_REF] Villata | An access control model for linked data[END_REF][START_REF] Kirrane | Access control and the resource description framework: A survey[END_REF]. However, all these works do not handle utility queries.

A query-based logical framework for RDF data has been introduced in [START_REF] Grau | Logical foundations of privacy-preserving publishing of linked data[END_REF][START_REF] Grau | Logical foundations of linked data anonymisation[END_REF], where sensitive information is expressed as SPARQL queries whose results must not disclose sensitive information of individual. It has been extended to handling utility queries in [START_REF] Delanaux | Query-based linked data anonymization[END_REF]5]. These approaches however are restricted to simple conjunctive queries. They do not consider aggregates and they cannot apply to temporal data.

Conclusion and Future Work

In this paper we have proposed a data-independent framework for a formal specification and verification of compatibility between privacy and utility policies expressed as temporal aggregate conjunctive queries.

This framework is well suited for helping data producers to keep the control on the protection of their data in many real-world situations where sensitive data are collected by mobile personal devices or smart environments. When a privacy query turns out to be incompatible with utility queries, several solutions can be applied, such as ciphering the exposed data made explicit by the explanation built from the incompatibility proof, anonymize them [START_REF] Delanaux | Query-Based Linked Data Anonymization[END_REF], or use differential privacy [START_REF] Hassan | Differential privacy techniques for cyber physical systems: A survey[END_REF].

Based on the implementation of this framework, we plan to design and implement a negotiation mechanism that will be triggered in this case. New relaxed utility queries will be automatically computed to restore compatibility with the privacy policy of a given data producer. They will be the formal basis of a dialogue between each data producer and the service provider in order to find a acceptable trade-off in terms of utility while guaranteeing privacy preservation for each data producer.

We also plan to extend our framework to take into account ontological knowledge in the possible inference of answers of privacy queries by answers of utility queries. This will bring stronger constraints on compatibility between privacy and utility policies.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Building a time window from other ones

) 1)Fig. 3 .

 13 Fig. 3. Union of time windows from two utility queries

 (a) Size p = Size u1 + Size u2 for SU M or COU N T aggregates or Size p ≤ Size u1 + Size u2 for M IN or M AX aggregates (b) Size p -Size u1 is a multiple of gcd(Step u1 , σ p × Step u2) where σ p = Stepp gcd(Stepp,Stepu 2)

= 6 and

 6 Size u1 + Size u2 = 6, the condition (a) of the theorem is satisfied. As Step p = 6, Step u1 = 2 and Step u2 = 1, we get: σ p = 6 gcd(Step u1 , σ p × Step u2) = 2, and Size p -Size u1 = 2, thus making the condition (b) of the theorem also satisfied. So PQ2 is incompatible with Q u1 and Q u2 . If we replace the T IM EW IN DOW of Q u1 by (3h, 2h), the condition (a) of the theorem is not satisfied and P Q 2 is compatible with the new Q u1 and Q u2 .

 query Q p : SELECT xp agg p (y p) WHERE {GP p . F ILT ER p } GROUP BY xp TIMEWINDOW (Size p , Step p) Utility query Q ui : SELECT xui agg ui (y ui) WHERE {GP ui . F ILT ER ui } GROUP BY xui TIMEWINDOW (Size ui , Step ui)For a TACQ in its general form, we will often rely on its conjunctive part, and also on its plain variant without aggregate. The conjunctive part of Q, noted Conj(Q), is the simple conjunctive query:Conj(Q) : SELECT x WHERE {GP }The plain variant of Q, noted P lain(Q), is the query without aggregate that is evaluated before computing the aggregate function:P lain(Q) : SELECT x y WHERE {GP . F ILT ER}Theorem 1 provides a full characterization of incompatibility of a privacy query Q p without aggregate and a set of n utility queries Q u1 , ..., Q un . It relies on evaluating the privacy query on all the (small) data graphs that are representative of the different ways of joining answers of utility queries. Each of these data graph is obtained by f reezing (Definition 7) the variables in the union of graph patterns in the utility queries, in a way that allows to replace distinct output variables with a same constant (in order to mimic possible joins between output variables coming from different utility queries).

	Definition 6 (Conjunctive part and plain variant of a query). Let Q be
	a TACQ of the form:
	SELECT x agg(y)
	WHERE {GP . F ILT ER}
	GROUP BY	x
	TIMEWINDOW (Size, Step)

). □ Example 2. Let us consider the following privacy query Q p and the following utility query Q u : Freezing the ?building variable of Q p with the constant issda:Apartment appearing in Q u results in: F rozen = {?sm issda:associatedBuilding ?b . ?b rdf:type issda:Apartment . ?sm issda:associatedOccupier ?o . ?o issda:nbOfPersons ?nb . ?o issda:yearlyIncome ?y} which is isomorphic with the graph pattern of Q u . Since, Q p and Q u have the same aggregate function, Q p is incompatible with Q u .

	Q p : SELECT ?building AVG(?nb)
	WHERE {?sm issda:associatedBuilding ?b . ?b rdf:type ?building .
	?sm issda:associatedOccupier ?o . ?o issda:nbOfPersons ?nb .
	?o issda:yearlyIncome ?y}
	GROUP BY ?building
	Q u : SELECT ?y' AVG(?nb')
	WHERE {?sm' issda:associatedBuilding ?b' . ?b' rdf:type issda:Apartment.
	?sm' issda:associatedOccupier ?o' . ?o' issda:nbOfPersons ?nb' .
	?o' issda:yearlyIncome ?y'}
	GROUP BY ?y'

 Size p -Size u1 is a multiple of gcd(Step u1 , σ p × Step u2). □

	.2)
	Equations (3.1) and (3.2) are always satisfied and can be discarded. According
	to Bachet-Bézout theorem, the Diophantine equation (2) has a solution if and
	only if Example 3. Let us consider the privacy query PQ2 of the scenario in Section 2
	and the following utility queries:
	Q u1 : SELECT ?timeWindowEnd SUM(?cons)
	WHERE {(?sm issda:consumption ?cons, ?ts)}
	GROUP BY ?timeWindowEnd
	TIMEWINDOW (4h, 2h)
	Q u2 : SELECT ?timeWindowEnd SUM(?cons')
	WHERE {(?sm' issda:consumption ?cons', ?ts')}
	GROUP BY ?timeWindowEnd
	TIMEWINDOW (2h, 1h)
	As Size p

available at https://raw.githubusercontent.com/fr-anonymous/puck/main/ issda_schema.ttl

https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

Our code is available at https://github.com/fr-anonymous/puck

⋆ Partially supported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003), PERSYVAL-Lab (ANR-11-LABX-0025-01) and TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215