
HAL Id: hal-03833525
https://hal.science/hal-03833525v1

Submitted on 13 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Higher-Spin Self-Dual Yang-Mills and Gravity from the
twistor space

Yannick Herfray, Kirill Krasnov, Evgeny Skvortsov

To cite this version:
Yannick Herfray, Kirill Krasnov, Evgeny Skvortsov. Higher-Spin Self-Dual Yang-Mills and Gravity
from the twistor space. JHEP, 2023, 2023, pp.158. �10.1007/JHEP01(2023)158�. �hal-03833525�

https://hal.science/hal-03833525v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


J
H
E
P
0
1
(
2
0
2
3
)
1
5
8

Published for SISSA by Springer

Received: October 31, 2022
Revised: January 10, 2023

Accepted: January 14, 2023
Published: January 27, 2023

Higher-spin self-dual Yang-Mills and gravity from the
twistor space

Yannick Herfray,a Kirill Krasnovb and Evgeny Skvortsovc,1,2
aInstitut Denis Poisson UMR 7013, Université de Tours,
Parc de Grandmont, 37200 Tours, France

bSchool of Mathematical Sciences, University of Nottingham,
Nottingham, NG7 2RD, U.K.

cService de Physique de l’Univers, Champs et Gravitation, Université de Mons,
20 place du Parc, 7000 Mons, Belgium
E-mail: yannick.herfray@univ-tours.fr,
kirill.krasnov@nottingham.ac.uk, evgeny.skvortsov@umons.ac.be

Abstract: We lift the recently proposed theories of higher-spin self-dual Yang-Mills
(SDYM) and gravity (SDGR) to the twistor space. We find that the most natural room for
their twistor formulation is not in the projective, but in the full twistor space, which is the
total space of the spinor bundle over the 4-dimensional manifold. In the case of higher-spin
extension of the SDYM we prove an analogue of the Ward theorem, and show that there is
a one-to-one correspondence between the solutions of the field equations and holomorphic
vector bundles over the twistor space. In the case of the higher-spin extension of SDGR we
show show that there is a one-to-one correspondence between solutions of the field equa-
tions and Ehresmann connections on the twistor space whose horizontal distributions are
Poisson, and whose curvature is decomposable. These data then define an almost complex
structure on the twistor space that is integrable.

Keywords: Higher Spin Symmetry, Higher Spin Gravity, Integrable Hierarchies

ArXiv ePrint: 2210.06209

1Research Associate of the Fund for Scientific Research — FNRS, Belgium.
2Also on leave from Lebedev Institute of Physics, Moscow, Russia.

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2023)158

mailto:yannick.herfray@univ-tours.fr
mailto:kirill.krasnov@nottingham.ac.uk
mailto:evgeny.skvortsov@umons.ac.be
https://arxiv.org/abs/2210.06209
https://doi.org/10.1007/JHEP01(2023)158


J
H
E
P
0
1
(
2
0
2
3
)
1
5
8

Contents

1 Introduction 1

2 Higher-spin self-dual Yang-Mills in twistor space 3
2.1 HS-SDYM equations: spacetime equations 3
2.2 Geometrical realisation in twistor space 5

2.2.1 Higher-spin Yang-Mills fields on twistor space 6
2.2.2 Holomorphic bundle interpretation 6

2.3 A higher-spin Ward correspondence 8
2.3.1 Correspondence 8
2.3.2 Proof 8

3 Higher-spin self-dual gravity in twistor space 9
3.1 HS-SDGR equations: spacetime equations 9

3.1.1 HS-SDGR equations Λ 6= 0 9
3.1.2 Gauge invariance 10

3.2 Geometrical realisation in twistor space 10
3.2.1 Higher-spin fields as a connection on the twistor space 10
3.2.2 Field equations 12
3.2.3 Gauge transformations 14

3.3 A higher-spin non-linear graviton correspondence 16

1 Introduction

Despite the abundance of no-go theorems against theories with massless higher-spin fields
(Higher spin gravities or HiSGRA) there are several examples that bypass these pitfalls:
3d models with topological (partially-)massless and conformal higher-spin fields [1–8]; Chi-
ral HiSGRA [9–13]; higher-spin extensions of 4d conformal gravity [14–16]; IKKT-based
theories [17–19]; collective dipole [20, 21].1 Chiral HiSGRA can be of interest as the only
perturbatively local field theory with propagating massless fields, which makes it an inter-
esting playground where the usual QFT and AdS/CFT methods apply. This is especially
in view of the recent developments such as one-loop UV-finiteness [12, 13, 22] as well as
fully covariant equations of motion of Chiral HiSGRA [23–26]. However, as is customary
for self-dual theories, the interactions are complex in Minkowski signature. Nevertheless,
Chiral HiSGRA should be a consistent truncation of the holographic dual of Chern-Simons
matter theories [25]. Therefore, all solutions and amplitudes of Chiral theory should carry
over to the complete theory.

1The latter two are strictly speaking not local field theories. Nevertheless, they come equipped with
well-defined prescriptions to compute e.g. holographic correlators.
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Chiral HiSGRA admits two simple consistent truncations where either Yang-Mills or
gravitational interactions are retained and the scalar field is dropped, which was shown
in [27] in the light-cone gauge. These two truncations can be thought of as higher-spin
extensions of the self-dual Yang-Mills (SDYM) and self-dual Gravity (SDGR) theories, HS-
SDYM and HS-SDGR, respectively. In [28] two of the present authors have constructed the
covariant formulations of these HS-SDYM and HS-SDGR. The question left unanswered
was whether there exist a twistor space description of these theories. An attempt in this
direction using the standard projective twistor space was made in [18]. Another attempt
at a twistor description of higher spins is a recent paper [29], where a twistor description of
the full chiral higher-spin gravity is contemplated. For applications of twistor techniques
to conformal HiSGRA see [30, 31].

This work is a natural continuation of [28] in that it gives an answer to the question of
the twistor space description of self-dual higher-spin theories. Our main new insight is that
the appropriate room for the higher-spin (self-dual) theories is not in the projective twistor
space, but rather in the full spinor bundle over the four-dimensional manifold in question.
The usual SDYM and SDGR then arise as the subsectors of the higher-spin extensions that
descend to the projective twistor space.

In the case of HS-SDYM we provide both a description of the twistor space lift of the
theory, as well as a statement in the opposite direction, i.e. an analog of the Ward theorem.
Our main statement can be formulated as the following theorem.

Let S′ π−→ S4 be the bundle of (primed) spinors on S4, the twistor space T = (C4)∗ π−→ S4

is obtained by deleting from S′ the zero section. Let U be an open set of S4 and let
V = π∗(U) be the corresponding open set of T.

Theorem A. There is a one-to-one correspondence between solutions of the higher-spin
self-dual Yang-Mills equations on U ⊂ S4 (up to a gauge) and holomorphic bundles E → V

such that the restriction of E along each of the fibres of V → U is trivial.

This theorem can be viewed as the higher-spin analogue of the Ward theorem.
In the case of HS-SDGR we have the following statement. Let S′ π−→ M4 be the

bundle of (primed) 2-component spinors on a 4-manifold M4, the twistor space T π−→M4 is
obtained by deleting from S′ the zero section. Let V ⊂ TT be the vertical distribution. Let
U be an open set of M4 and let V = π∗(U) be the corresponding open set of T . We define
the horizontal distributions on TV to be those in the kernel of the projection P : TT → V

P = τA
′ ∂

∂πA′
+ τ̂A

′ ∂

∂π̂A′
, τA

′ := dπA
′ +AA′(x, π, π̂) .

These are parametrised by the Ehresmann connection AA′(x, π, π̂). Here A′ is the 2-
component spinor index, πA′ is the fibre coordinate and π̂A

′ is constructed by πA′ using
the hat operation that is available in the Euclidean signature and squares to minus the
identity (see section 2 for more details). The connection AA′(x, π, π̂) is a one-form on M4.
The twistor space naturally is a Poisson manifold with Poisson structure

εB
′A′ ∂

∂πA′
∂

∂πB′
+ εB

′A′ ∂

∂π̂A′
∂

∂π̂B′
, (1.1)

where εA′B′ is the inverse of the volume form on the (C2)∗ fibres.
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Theorem B. For horizontal distributions that are infinitesimal symmetries of the Pois-
son structure (1.1) the Ehresmann connection AA′ has a potential: AA′ = −εA′B′∂B′A,
where A = A(x, π). In particular, the Ehresmann connection AA′ of Poisson horizontal
distributions is independent of π̂. Furthermore, its curvature 2-form has also a potential
FA′ = −εA′B′∂B′F , where F = F (x, π) = dA+(1/2){A,A} and {·, ·} is the Poisson bracket
given by (1.1). There is a one-to-one correspondence (up to a gauge) between solutions of
the higher-spin self-dual gravity equations on U and Poisson horizontal distributions on
TV whose curvature potential F is decomposable F ∧F = 0. What is more, the two simple
factors of F define, together with the 1-forms τA′, an almost complex structure on V that
is integrable.

In both the cases of HS-SDYM and HS-SDGR we explain the geometric origin of
the subtle invariances that the field equations possess. These are seen to come from the
diffeomorphisms of the twistor space.

The organisation of this paper is very simple: in sections 2 and 3 we discuss (higher-spin
extensions) of self-dual Yang-Mills theory and self-dual gravity, respectively.

2 Higher-spin self-dual Yang-Mills in twistor space

Let P → S4 be a GL(N,C)-principal bundle and let E → S4 be some associated bundle.

2.1 HS-SDYM equations: spacetime equations

We follow [28] in this subsection. The “Higher-spin YM potential” is a (formal) sum of Lie
algebra-valued one-forms with different numbers of primed spinor indices

A =
∞∑
s=1

AA
′(2s−2) = A+AA

′(2) +AA
′(4) + . . . (2.1)

where all fields take values in the Lie algebra of GL(N,C) and are also one-forms. The
first term in the sum on the right-hand side is the usual Yang-Mills gauge potential — a
Lie algebra-valued one-form. The notation A′(n) is standard in the higher-spin literature,
and denotes n different primed indices that are symmetrized. Thus,

A′(n) ≡ (A′1 . . . A′n) .

For any

ξ =
∞∑
s=1

ξA
′(2s−2) = ξ + ξA

′(2) + ξA
′(4) + . . . (2.2)

taking values in gl(N,C), the “higher-spin gauge transformations” are

δξA =
∞∑
s=1

dξA
′(2s−2) +

∞∑
s=1

∞∑
s̃=1

([A, ξ])A′(2s+2s̃−4) . (2.3)

It is useful to write the first couple of terms in this series explicitly

δξA = (dξ + [A, ξ]) + (dξA′(2) + [A, ξA′(2)] + [AA′(2), ξ]) + (2.4)
(dξA′(4) + [A, ξA′(4)] + [AA′(4), ξ] + [AA′(2), ξA

′(2)]) + . . .

– 3 –



J
H
E
P
0
1
(
2
0
2
3
)
1
5
8

The first term in this sum is the usual gauge transformation of Yang-Mills field. It is
important to note that in the last term in the second line the spinor indices of AA′(2) and
ξA
′(2) are assumed to be symmetrized, so that only the terms with totally symmetric spinor

indices arise. This can easily be implemented by defining generating functions

A(π) =
∞∑
s=1

AA
′(2s−2) πA′ . . . πA′ , ξ(π) =

∞∑
s=1

ξA
′(2s−2)πA′ . . . πA′

with the help of an auxiliary commuting variable πA′ .
The corresponding “field strength” is defined as

F =
∞∑
s=1

dAA
′(2s−2) +

∞∑
s=1

∞∑
s̃=1

1
2 [A ∧A]A

′(2s+2s̃−4) . (2.5)

Again, the spinor indices in a product expression are always symmetrized to produce only
the terms with totally symmetric spinor indices. Restricting to the first terms in the above
sum we recover the usual Yang-Mills curvature.

The higher-spin self-dual Yang-Mills equations are

F
∣∣
ASD

= 0 (2.6)

where “ASD” stands means that the curvature is restricted to its anti self dual part. To
give this more concrete meaning we recall that the anti self dual (ASD in what follows)
projection of a 2-form is computed by converting the spacetime indices into the spinor ones
µ→MM ′. A 2-form B is then split into its SD and ASD parts as follows

BMM ′NN ′ = 1
2B(ME′N)

E′εM ′N ′ + 1
2BE(M ′

E
N ′)εMN . (2.7)

(By convention the primed indices cannot be mixed with the unprimed ones. This has the
effect that their relative positions are irrelevant. For example, it does not matter whether
or not the parenthesis denoting the symmetrization encompass a single primed index). The
second terms is the ASD part of the 2-form B. Thus, in (2.6) there is a pair of primed
spinor indices coming from the projection of the 2-form onto its ASD part, as well as the
primed spinor indices that are labels of the different summands in F . It is assumed that
all the primed spinor indices are symmetrized in (2.6). Let us write down the first few
equations contained in (2.6) explicitly. Thus,

dE
(A′1AEA

′
2) + 1

2[AE(A′1 , AEA
′
2)] = 0 (2.8)

is the usual SDYM equation. The next equation has four free primed spinor indices
and reads

dE
(A′1AEA

′
2A
′
3A
′
4) + [AE(A′1 , AEA

′
2A
′
3A
′
4)] = 0 . (2.9)

Because the spinor index that comes from the one-form index is always symmetrized
with the other primed spinor indices in the above equations, the arising equations enjoy
an extra gauge invariance under shift symmetry:

δA = dxBB
′
∞∑
s=2

δB′
A′ηB

A′(2s−4) = dxB(A′1η
A′2)
B + . . . (2.10)
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As opposed to the “higher-spin gauge transformations”, which reduce to usual gauge
transformations when restricted to the s = 1 terms, the shift invariance is a genuine
new feature of the higher-spin equations and is another type of gauge symmetry that the
equations enjoy.

2.2 Geometrical realisation in twistor space

Let S′ π−→ S4 be the bundle of (primed) spinors on S4. We will denote the primed spinor
that is a coordinate along the fibre by πA′ . The twistor space T = (C4)∗ is obtained by
deleting from S′ the zero section. The Euclidean spinors admit a hat operator. This is an
anti-linear operator that maps primed spinors to primed spinors and squares to minus the
identity. The existence of this operator follows from the fact that Euclidean spinors are
SU(2) spinors and therefore posses both an invariant hermitian inner product hA′Ā′ and
an invariant volume form εA′B′ . The hat operator is then simply obtained by

πA
′ 7→ π̂A

′ := εA
′B′hB′B̄′(π

∗)B̄′ , (2.11)

(where the star indicates the usual complex conjugation). We will make extensive use of
the following identities:

πB′ π̂
A′ − π̂B′πA

′ = 〈ππ̂〉 δB′A
′
, (2.12)

where we introduced
(
πD′ π̂

D′
)

:= 〈ππ̂〉 . (2.13)

The complex structure on T that we use is as follows. The basis of (0, 1) 1-forms is given by

dπ̂A
′
, π̂A′dx

AA′ , (2.14)

with dual vector fields

∂

∂π̂A′
, −π

A′∂AA′

〈ππ̂〉
. (2.15)

Altogether the corresponding Dolbeault operator is

∂̄ = dπ̂A
′ ∂

∂π̂A′
− π̂C′dxAC

′ πB
′
∂AB′

〈ππ̂〉
. (2.16)

Making use of the identity (2.12), the projection of AAA′dxAA
′ on its (1, 0) and (0, 1)

parts are

AAA′dx
AA′

∣∣
1,0 = AAA′ π̂

A′

〈ππ̂〉
dxAB

′
πB′ , AAA′dx

AA′
∣∣
0,1 = −AAA

′πA
′

〈ππ̂〉
dxAB

′
π̂B′ .

– 5 –
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2.2.1 Higher-spin Yang-Mills fields on twistor space

The higher-spin Yang-Mills potential (2.1) that was introduced as a formal sum of Lie
algebra-valued one-forms with a different number of spinor indices naturally arises from
the following field on the twistor space,

A(x, π) :=
∞∑
s=1

A(x)A′(2s−2)πA′(2s−2). (2.17)

This reinterprets the connection as a gauge potential in the pullback bundle π∗E → T,
which is a gauge bundle where the base is now the full twistor space T, and not just
its projectivised version as in the standard construction. One can then readily see that,
modulo the terms involving dπA′ , the higher-spin gauge transformations (2.3) coincide with
the usual gauge transformations in the twistor space

δξA = dξ + [A, ξ] ,

and the higher-spin field strength (2.5) coincides with the usual curvature 2-form

F = dA+ 1
2[A,A] ,

again modulo the terms involving dπA′ . In turn, the HS-SDYM field equations are clearly
related to

F
∣∣
0,2 = 0 ,

again modulo the terms along the fibre direction. We now develop a holomorphic bundle
interpretation that clarifies all these issues.

2.2.2 Holomorphic bundle interpretation

Just as in the usual Ward correspondence one can introduce the (0, 1) part of the gauge
field

a := −
∞∑
s=1

(
AA
′(2s−2)πA′(2s−2)

) ∣∣∣
0,1

= dxAB
′
π̂B′

〈ππ̂〉

∞∑
s=1

AA
A′(2s−1)πA′(2s−1) . (2.18)

Note that 2s−2 of the primed indices on AAA
′(2s−1) are those that existed already in (2.1),

while an additional primed index arises when the one-form index of the gauge potential is
converted into a pair of unprimed and primed spinors.

Note that the projection onto the part of the higher-spin gauge potential (2.1) that
is invariant under (2.10) has already occurred here, because the primed spinor index that
came from the one-form index became symmetrized with the other primed indices of the
gauge potentials. Indeed, under the shift symmetry (2.10) the higher-spin potential (2.17)
is shifted by a (1, 0) term and therefore (2.18) is invariant.

Recall that A is a connection on the associated bundle E → S4. Then (2.18) defines a
differential operator on the pull-back bundle π∗E → T via

D :
∣∣∣∣∣Γ [π∗E] → Ω0,1 (T, π∗E)

Φ 7→
(
∂̄ + a

)
Φ ,

– 6 –
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which maps sections of the bundle π∗E into (0, 1) forms on T valued in the space of sections.
The HS-SDYM field equations are then the conditions for π∗E → T to be holomorphic:

∂̄a+ 1
2[a, a] = 0 . (2.19)

Seeing this is an exercise. Some key steps of this computation, which illustrate how it
works, are as follows. First, we have

d

(
dxAB

′
π̂B′

〈ππ̂〉

)
= −dx

AB′ ∧ dπ̂B′
〈ππ̂〉

− d〈ππ̂〉 ∧ dx
AB′ π̂B′

〈ππ̂〉2
. (2.20)

We need to project it onto the (0, 2) part. This is done by inserting the identity (2.12) in
the first term, and then keeping only the πdπ̂ part in the second term. This gives

d

(
dxAB

′
π̂B′

〈ππ̂〉

) ∣∣
0,2 = dxAB

′
π̂B′ ∧ πC

′
dπ̂C′

〈ππ̂〉2
− πC′dπ̂C

′ ∧ dx
AB′ π̂B′

〈ππ̂〉2
= 0 . (2.21)

Thus, applying the exterior derivative to the potential (2.18) and keeping the projection
onto the (0, 2) part gives

ΣB′C′ π̂B′ π̂C′

〈ππ̂〉2
∞∑
s=1

∂A
D′AAA

′(2s−1)πA′(2s−1)πD′ (2.22)

where we used

(dxAB′ π̂B′) ∧ (dxBC′ π̂C′) = εABΣB′C′ π̂B′ π̂C′ , ΣB′C′ := 1
2dxA

B′ ∧ dxAC′ . (2.23)

Similarly, taking the [a, a] we get

[a, a] = ΣB′C′ π̂B′ π̂C′

〈ππ̂〉2
∞∑
s=1

∞∑
s̃=1

[AAA
′(2s−1), AAA

′(2s̃−1)]πA′(2s−1)πA′(2s̃−1) . (2.24)

Making use of this and of the explicit form (2.16) of the Dolbeault operator, one gets
that (2.19) coincides with the higher-spin SDYM equations

∂A
A′AAA

′(2s−1) + 1
2

∞∑
s=1

∞∑
s̃=1

[AAA
′(2s−1), AAA

′(2s̃−1)] = 0 . (2.25)

Let us make a final important remark: while (2.17) clearly receives the interpretation
of a connection on the whole of π∗E → S′ (not just on π∗E → T), one however sees
from (2.18) that, for every fixed x, a(x, λπ) does not have a well defined limit as |λ| → 0
and thus does not continuously extend on S′. This stems from the fact that there is no
complex structure defined along the zero section of S′ → S4: the projection

AAA′dx
AA′

∣∣
0,1 = −AAA

′πA
′

πD′ π̂D
′ dxAB

′
π̂B′ .

can only be continuous at π = 0 if AAA′ = 0. So, it is important to remove the zero section
from the total bundle of spinors to be able to give the twistor interpretation to the whole
construction.

– 7 –
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2.3 A higher-spin Ward correspondence

2.3.1 Correspondence

Let S′ π−→ S4 be the bundle of spinors on S4, the twistor space T = (C4)∗ π−→ S4 is obtained
by deleting from S′ the zero section. Let U be an open set of S4 and let V = π∗(U) be the
corresponding open set of T.

Theorem 2.1. There is a one-to-one correspondence between solutions of the higher-spin
self-dual Yang-Mills equations on U ⊂ S4 (up to a gauge) and holomorphic bundles E → V

such that the restriction of E along each of the fibres of V → U is trivial.

This theorem should be understood as a “higher-spin Ward theorem”, generalizing the
classical work [32] to higher spins: Holomorphic bundles on twistor space T correspond to
higher-spin self-dual Yang-Mills solutions. The geometrical restriction to bundles which
descend to projective twistor space PT amounts to restricting the higher-spin fields to the
usual self-dual Yang-Mills.

2.3.2 Proof

Let E → V be a holomorphic bundle satisfying the requirements of the theorem. It can
equivalently be represented by a differential operator

D :
∣∣∣∣∣Γ [E ] → Ω0,1 [E ]

Φ 7→
(
∂̄ + a

)
Φ

with vanishing “curvature”

D
2 = ∂̄a+ 1

2 [a, a] = 0 .

In a local patch, we can write

a = aA dx
AB′ π̂B′ + ãA′ dπ̂

A′ ,

and the curvature then is

D
2 =

(
∂

∂π̂A′
ãB′ + 1

2 [ãA′ , ãB′ ]
)
dπ̂A

′ ∧ dπ̂B′ (2.26)

+
(

∂

∂π̂A′
aA + πA′

〈ππ̂〉
aA + πC

′

〈ππ̂〉
∂AC′ ãA′ + [ãA′ , aA]

)
dπ̂A

′ ∧ dxAB′ π̂B′

+
(
− πC

′

〈ππ̂〉
∂AC′aB + 1

2 [aA, aB]
)
dxAA

′
π̂A′ ∧ dxBB

′
π̂B′ .

The vanishing of the first line means that the restriction of E → V along each of the (C2)∗

fibres is holomorphic. This is because the restriction of D to the fibres is

dπ̂A
′
(

∂

∂πA′
+ ãA′

)
.

– 8 –
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By hypothesis this bundle is trivial, therefore one can choose2 a trivialisation such that
ãA′ = 0. Within this assumption, and introducing

AA (x, π) := 〈ππ̂〉aA,

the second line of the curvature (2.26) is found to be equivalent to

∂

∂π̂A′
AA = 0 .

Therefore AA is a holomorphic function along the (C2)∗ fibres of V → U . However, by
Hartogs’s extension theorem there do not exist isolated singularities in complex dimension
n ≥ 2 and therefore for every x ∈ U , AA(x, π) can be holomorphically extended to the
whole of the C2 fibres. In particular we must have

AA (x, π, π̂) =
∞∑
s=1

AA
A′(2s−1)(x)πA′(2s−1).

Strictly speaking, we should sum over all spins in the above sum, both integers and half-
integers. However, one can easily restrict the sum to integer spins only by requiring A to
be invariant under parity on C2. This reproduces the ansatz for the connection (2.17). The
vanishing of the third line (2.26) is then equivalent to the higher-spin self-dual Yang-Mills
equations.

3 Higher-spin self-dual gravity in twistor space

Let P → M4 be a SU(2)-principal bundle on M4. Let S′ π−→ M be the bundle of spinors,
defined as the associated bundle for the fundamental representation of SU(2). The twistor
space T is obtained by deleting from S′ the zero section.

3.1 HS-SDGR equations: spacetime equations

3.1.1 HS-SDGR equations Λ 6= 0

The “Higher-spin gravity potential” is best described using its generating functional, as
in [28]. We define

A =
∞∑
n=2

1
n!A

A′(n)πA′1 . . . πA′n , (3.1)

where every term is one-form valued. It is assumed that the sum here is taken over
even spins only, which is easily imposed by requiring the potential to be invariant under
πA′ → −πA′ .

The “field strength” is defined by

F := dA+ 1
2{A,A}, (3.2)

2Note that as opposed to the usual SDYM correspondence where one can always make this choice of
gauge, this here really makes use of the first of the field equations (2.26).
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where we introduced the Poisson bracket of functions of πA′

{f(π), g(π)} = ∂C
′
f∂C′g =

∑
n

1
n!

∑
k+m=n

n!
k!m!f

A′(k)C′gB
′(m)

C′πA′1 . . . πA′kπB
′
1
. . . πB′m .

(3.3)

The higher-spin self-dual gravity equations are

F ∧ F = 0. (3.4)

This, in particular, implies that F is a decomposable 2-form, fact which will be of impor-
tance below. Restricting to the first terms in the above sums we recover respectively, an
su(2)-valued connection AA′B′ , its curvature FA′B′ and Λ 6= 0 self-dual gravity equations
F (A′B′∧FC′D′) = 0. For more information about the spin-2 case we refer the reader to [33],
see also [34] for a thorough discussion on how the field equations F (A′B′ ∧FC′D′) = 0 relate
to the Mason-Wolf twistor action [35].

3.1.2 Gauge invariance

These equations enjoy several gauge symmetries. First, for any

ξ =
∞∑
n=2

1
n!ξ

A′(n)πA′1 . . . πA′n

we have the “higher-spin gauge transformations”

δξA = dξ + {A, ξ} (3.5)

and for any

ηµ =
∞∑
n=0

1
n!η

µA′(n)πA′1 . . . πA′n

the “higher-spin generalised diffeomorphisms”

δηA = dxν ηµFµν . (3.6)

The first terms in these sums (i.e. the terms corresponding to the spin two case) respectively
give standard su(2) gauge transformations δξA = dAξ and Lie derivatives (up to a gauge
transformation): δηA = ιηF = LηA− dA (ιηA).

3.2 Geometrical realisation in twistor space

3.2.1 Higher-spin fields as a connection on the twistor space

Let
(
x, πA

′
)

be local coordinates on T → M . It will here be crucial that the fibers
are equipped with a preferred volume form εA′B′ and that the twistor space is therefore
equipped with the Poisson structure

εB
′A′ ∂

∂πA′
∂

∂πB′
+ εB

′A′ ∂

∂π̂A′
∂

∂π̂B′
. (3.7)
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We will start by considering the following 1-form on the twistor space

τA
′
∂A′ =

(
dπA

′ +A(x, π, π̂)A′
) ∂

∂πA′
. (3.8)

This object receives the following geometric interpretation: at every point p ∈ T

P = τA
′ ∂

∂πA′
+ τ̂A

′ ∂

∂π̂A′

defines a projector Pp : TpT → Vp on the vertical tangent bundle. This splits the tangent
bundle as

TpT = Vp +Hp

where Hp is the kernel of Pp. The corresponding “horizontal” distribution H on TS′ →M

is a connection in the sense of Ehresmann. A general horizontal vector field is one of the
form ξ = V µ(x, π, π̂)Dµ with

Dµ = ∂µ −AA
′

µ (x, π, π̂)∂A′ − ÂA
′

µ (x, π, π̂)∂̂A′ . (3.9)

We have the following proposition:

Proposition 3.1. A general horizontal vector field ξ is an infinitesimal symmetry of the
Poisson structure

Lξ
(
εA
′B′ ∂

∂πA′
∂

∂πB′
+ εA

′B′ ∂

∂π̂A′
∂

∂π̂B′

)
= 0 (3.10)

if and only if ∂A′V µ = ∂̂A′V
µ = 0 and

∂̂B′AA
′
µ = 0, ∂[B′AA′]µ = 0. (3.11)

(together with the corresponding equations for the “hatted” connection field). These can
always be solved locally as

A(x, π)A′ := −εA′B′∂B′A(x, π), (3.12)

for some A(x, π).

Proof is by a computation. We have

Lξ
(
εA
′B′ ∂

∂πA′
∂

∂πB′

)
= εA

′B′
[
ξ,

∂

∂πA′

]
⊗ ∂

∂πB′
+ εA

′B′ ∂

∂πA′
⊗
[
ξ,

∂

∂πB′

]
, (3.13)

and[
ξ,

∂

∂πA′

]
= −(∂A′V µ)(∂µ −AC

′
µ ∂C′ − ÂC

′
µ ∂̂C′) + V µ(∂A′AC

′
µ ∂C′ + ∂A′ÂC

′
µ ∂̂C′). (3.14)

The absence of the ∂µ⊗ ∂A′ terms in the Lie derivative implies ∂A′V µ = 0, and the similar
reasoning for the ∂µ ⊗ ∂̂A′ terms implies ∂̂A′V µ = 0. On the other hand, the ∂A′ ⊗ ∂B′
terms in the Lie derivative are

εB
′A′V µ∂A′AC

′
µ ∂C′ ⊗ ∂B′ + εB

′A′∂A′ ⊗ V µ∂B′AC
′

µ ∂C′ = V µ(∂A′AB′µ )(∂A′ ⊗ ∂B′ − ∂B′ ⊗ ∂A′),
(3.15)
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and so indeed the absence of such terms in the Lie derivative implies ∂[A′AB′] = 0. The
absence of the ∂A′⊗ ∂̂B′ terms directly implies ∂A′ÂB′ = 0, which is equivalent to ∂̂A′AB′ =
0. Thus (3.12) is a necessary and sufficient condition for the horizontal vector field to be
a Poisson symmetry.

We are thus led to consider Ehresmann connections A(x, π)A′ given by a derivative
of the higher-spin field (3.1) (just as for the Yang-Mills case, this is really making use of
Hartogs’s extension theorem which allows to extend the holomorphicity from (C2)∗ to the
whole of C2). Explicitly, in terms of the higher-spin fields

A(x, π)A′ =
∞∑
n=2

1
(n− 1)!A(x)A′A′(n−1)πA′1 . . . πA′(n−1)

. (3.16)

In particular, restricting oneself to the case of linear connections (and thus to a con-
nection in the more usual sense of principal bundles),

τA
′
∂A′ =

(
dπA

′ +A(x)A′B′πB′
) ∂

∂πA′

amounts to going from higher spins to the spin-2 field.
At every point p ∈ T , curvature of this connection is given by the 2-form

Fp

∣∣∣∣∣Hp ×Hp → Vp
(X,Y ) 7→ P ([X,Y ])

where [, ] is the usual Lie Bracket on vector fields, and P is the above projector on the
vertical vector fields. This definition makes manifest the fact that curvature of a connection
is the obstruction to the integrability of the corresponding horizontal distribution.

It is clear that the required projection on the vertical distribution can be computed as

−τ0′ ∧ τ1′ ∧ FA′= −τ0′∧ τ1′ ∧ dτA′ = τ0′ ∧ τ1′ ∧
(
∂A
′
dxA+ dπB

′
∂B′∂

A′A
)

(3.17)

= τ0′∧ τ1′ ∧
(
∂A
′
dxA+ (τB′ + ∂B

′
A)∂B′∂A

′
A
)

= τ0′∧ τ1′
(
∂A
′
dxA+ ∂B

′
A∂A

′
∂B′A

)
= τ0′∧ τ1′∂A

′
(
dxA+ 1

2∂
B′A∂B′A

)
= τ0′∧ τ1′∂A

′
F.

Here we denoted by dx the exterior derivative with respect to the coordinates on the base.
We thus see the appearance of the field strength (3.2). Here, to pass to the last line we used
the fact that dπA′ can be replaced by ∂A′A on the kernel of τA′ . Thus the “higher-spin
field strength” (3.2) genuinely is the curvature of the “higher-spin potential” (3.1) when
the later is properly understood as an Ehresmann connection (3.8).

3.2.2 Field equations

The field equations (3.4) imply that the 2-form F is decomposable, and thus of the form
F = θ0 ∧ θ1. We now define the following 4-form

Ω := τC
′ ∧ τC′ ∧ F. (3.18)
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This form is factorisable
Ω = 2τ0′ ∧ τ1′ ∧ θ0 ∧ θ1. (3.19)

We can now define an almost complex structure by requiring
(
τ0′ , τ1′ , θ0, θ1

)
to be the

basis of (1, 0)-forms. Thus, we define T ∗(1,0)T := Span
(
τ0′ , τ1′ , θ0, θ1

)
. The next step is to

see whether the HS-SDGR field equations make the almost complex structures defined in
this way integrable.

Let J be an almost complex structure, let
(
θi
)
i∈{1...4} be a basis of (1, 0)-forms and

let Ω be the (4, 0)-form given by Ω = θ1 ∧ θ2 ∧ θ3 ∧ θ4. The Nijenhuis tensor is defined as
N i := dθi

∣∣
(0,2). It can be computed as

θi ∧ dΩ = N i ∧ Ω ,

however, we shall evaluate the components of this tensor directly, in order to better under-
stand the meaning of the equations arising.

Let us start by computing dτA′ . We have

dτA
′ = d(dπA′ − ∂A′A) = dx∂

A′A+ dπB
′ ∧ ∂B′∂A

′
A = (3.20)

= ∂A
′
dxA+ (τB′ + ∂B

′
A) ∧ ∂B′∂A

′
A = ∂A

′
F + τB

′ ∧ ∂B′∂A
′
A.

A piece of the Nijenhuis tensor of the almost complex structure is obtained by taking the
(0, 2) component in dτA′ . The last term in (3.20) has a (1, 0) τB′ factor, and so does not
survive the projection to (0, 2). Therefore, a necessary condition for the almost complex
structure to be integrable is

∂A
′
F
∣∣∣
(0,2)

= 0. (3.21)

This equation indeed follows by differentiating (3.4). Indeed, we get

(∂A′F ) ∧ F = 0, (3.22)

which is equivalent to (3.21): From the definition (3.18) of the almost complex structure,
equation (3.21) is equivalent to τ0′ ∧ τ1′ ∧ F ∧ (∂A′F ) = 0 but since ∂A′F is “horizontal”
(as can be seen e.g. from (3.17)) this is equivalent to (3.22). Thus, there is no obstruction
to integrability from dτA

′ .
To compute the other components of the Nijenhuis tensor we need to compute the

exterior derivative of the decomposable 2-form F . We have

dF = dxF + dπB
′
∂B′F. (3.23)

The first term here can be simplified

dxF = dx

(
dxA+ 1

2{A,A}
)

= {dxA,A} = {F,A}, (3.24)

which is effectively the Bianchi identity for F . The second term can be transformed by
replacing dπB′ = τB

′ + ∂B
′
A. We get

dF = {F,A}+ (τB′ + ∂B
′
A)∂B′F

= {F,A}+ {A,F}+ τB
′
∂B′F = τB

′
∂B′F (3.25)
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We want to show that there is no (1, 2) component here. However, given that τB′ is (1, 0),
this is equivalent to showing that ∂B′F does not have the (0, 2) part. As we know from
the discussion following (3.21), this follows from the field equations by differentiation with
respect to π. Thus, the almost complex structure is integrable, in exact parallel with the
spin-2 case.

3.2.3 Gauge transformations

As we will see, the invariance of the HS-SDGR equations under “higher-spin gauge trans-
formations” (3.5) is essentially equivalent to their invariance under diffeomorphisms of the
twistor space.

Higher-spin gauge transformations infinitesimally. Let ξ = ξA
′(x, π, π̂)∂A′ +

ξ̂A
′(x, π, π̂)∂̂A′ be a real vector field along the fibres of T . The action of the Lie derivative

on the Ehresmann connection is

Lξ
(
τA
′
∂A′
)

= (dξA′ − ξB′∂B′∂A
′
A)∂A′ − τA

′ [ξ, ∂A′ ] (3.26)

=
(
dxξ

A′ + dπ̂C
′
∂̂C′ξ

A′ + ∂B
′
A∂B′ξ

A′ − ξB′∂B′∂A
′
A
)
∂A′+

(
τA
′
∂A′ ξ̂

C′
)
∂̂C′ .

(3.27)

Now, ξ is a symmetry of the Poisson structure if and only if

ξA
′(x, π, π̂) = ∂A

′
ξ(x, π) (3.28)

i.e. if and only if it is hamiltonian and holomorphic. We get in this case

Lξ
(
τA
′
∂A′
)

=
(
dx∂

A′ξ + ∂B
′
A∂B′∂

A′ξ − ∂B′ξ∂B′∂A
′
A
)
∂A′ = ∂A

′(dxξ + {A, ξ}) ∂A′ .

This last expression corresponds to the “higher-spin gauge transformations” (3.5) which
therefore correspond to infinitesimal vertical (Poisson) diffeomorphisms in twistor space.

Non-linear realisation of higher-spin gauge transformations. As we just saw,
higher-spin gauge transformations can be interpreted as the action of the Lie derivative
along the fibres. This suggests to consider the non-linear action of vertical automorphisms
of the bundle

f

∣∣∣∣∣ T → T
(xµ, πA′) 7→ (xµ, fA′(x, π))

which are Poisson symmetries

f∗
(
εA
′B′∂A′∂B′ + εA

′B′ ∂̂A′ ∂̂B′
)

= εA
′B′∂A′∂B′ + εA

′B′ ∂̂A′ ∂̂B′ (3.29)

We now want to show that these vertical Poisson diffeomorphisms act on the space of
connections (3.8) satisfying (3.12) and thus provide a non-linear realisation of the “higher-
spin gauge transformations”.

In order to prove this let us consider the horizontal distribution Dµ given by (3.9) and
its push-forward f∗(Dµ) under a vertical Poisson diffeomorphism. As we know from (3.1),
f∗(Dµ) defines a connection satisfying (3.12) if and only if

[f∗
(
Dµ
)
, εA

′B′∂A′∂B′ + εA
′B′ ∂̂A′ ∂̂B′ ] = 0 .
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We then have

[f∗
(
Dµ
)
, εA

′B′∂A′∂B′ + εA
′B′ ∂̂A′ ∂̂B′ ] = [f∗

(
Dµ
)
, f∗
(
εA
′B′∂A′∂B′ + εA

′B′ ∂̂A′ ∂̂B′
)
]

= f∗
(
[Dµ, ε

A′B′∂A′∂B′ + εA
′B′ ∂̂A′ ∂̂B′ ]

)
(3.30)

= 0 ,

where the first equality uses that f is a Poisson symmetry, the second follows from the
identity f∗[X,Y ] = [f∗X, f∗Y ] and the third from our assumptions on Dµ. Thus, indeed
vertical Poisson diffeomorphisms act on the space of connections satisfying (3.12) and
provide the non-linear realisation of the higher-spin gauge symmetry.

In order to see the action of these diffeomorphisms on the field equations we need to
see how it acts on the curvature. However FA′ = ∂A

′
F = L∂A′F is the curvature of τA′

and thus a tensorial object. It follows that F is simply a 2-form.
The invariance of the field equations under the higher-spin gauge transformations di-

rectly follows from their invariance under the vertical Poisson diffeomorphisms.

Generalised diffeomorphisms. The situation with generalised diffeomorphisms is more
subtle, as it is not easy to provide them with a clear geometrical interpretation. In fact, we
shall see that these transformations are in general not diffeomorphisms, and so it would be
better to call the symmetry of the field equations that they generate “the shift symmetry”
rather than “generalised diffeomorphisms”.

We start by verifying that these transformations are indeed a symmetry of the field
equations. Let us consider horizontal vector fields of the form η = η (x, π)µ ∂µ and the shift
symmetry

δA = ηyF . (3.31)

In order to prove the (on-shell) invariance of the field equation

δη (F ∧ F ) = 2δηF ∧ F = 0 (3.32)

we will need to rewrite the variation as

δηF = dx(ηyF ) + {ηyF,A}

= d(ηyF )− dπA′∂A′(ηyF ) + ∂A
′(ηyF )∂A′A

= d(ηyF )− τA′L∂A′ (ηyF ) (3.33)

= LηF − ηydF − τA
′((L∂A′η)yF ) + (ηy(L∂A′F )

)
= LηF − τA

′(L∂A′η)yF + ηy
(
−dF + τA

′
∂A′F

)
= LηF − τA

′(L∂A′η)yF

where to get to the line before last we exchanged the insertion of η with τA′ and thus got
an additional minus sign, and to get to the last line we used the identity (3.25). It follows
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that

δηF ∧ F =
(
LηF − τA

′(L∂A′η)yF
)
∧ F

= 1
2Lη (F ∧ F )− 1

2τ
A′(L∂A′η)y (F ∧ F ) (3.34)

= 0 .

Where in the last step we used the field equation.
However, as noted already in [28], generalised diffeomorphisms do not coincide with

the Lie derivative in the direction of the vector field η. The disagreement is by terms
containing the derivative of ηµ(x, π) with respect to π. Indeed, we consider the vector field
ηµDµ = ηµ(∂µ + ∂A

′
Aµ∂A′). We have

L(ηµDµ)
(
τA
′
∂A′
)

= −ηµ(∂µ∂B
′
A)∂B′ − ηµ(∂B′Aµ)(∂B′∂A

′
A)∂A′

+ d(ηµ∂A′Aµ)∂A′ − (dηµ)(∂A′Aµ)∂A′ + τA
′ [ηµDµ, ∂A′ ] (3.35)

= −(ηy∂A′F )∂A′ − τA
′(∂A′ηµ)Dµ

= −∂A′(ηyF )∂A′ + (∂A′η)yF∂A′ − τA
′(∂A′ηµ)Dµ ,

where we have used

(ηy∂A′F )ν = ηµ∂µ∂
A′Aν − ηµ∂ν∂A

′
Aµ + ηµ∂B

′
∂A
′
Aµ∂B′Aν − ηµ∂B

′
∂A
′
Aν∂B′Aµ . (3.36)

The first term in (3.35) is the desired generalised diffeomorphism

δη(τA
′
∂A′) = −∂A′(ηyF )∂A′ .

The remaining terms all contain ∂A′η
µ. So, in general the generalised diffeomorphism

does not coincide with the Lie derivative by terms containing ∂A′η
µ. A similar type of

an obstruction appeared in [28], cf. (3.39) in [28] with (3.35). Therefore, as we already
anticipated, the generalised diffeomorphisms represent a gauge symmetry of the equations,
but they cannot in general be identified with genuine diffeomorphisms.

3.3 A higher-spin non-linear graviton correspondence

The discussion above can be summarised as the following theorem.
Let S′ π−→M4 be the bundle of spinors on M4, the twistor space T π−→M4 is obtained

by deleting from S′ the zero section. Let U be an open set of M4 and let V = π∗(U) be
the corresponding open set of T . We define the horizontal distributions on TV to be those
in the kernel of the projection P : TT → V

P = τA
′ ∂

∂πA′
+ τ̂A

′ ∂

∂π̂A′
, τA

′ := dπA
′ +AA′(x, π, π̂) .

They are parametrised by Ehresmann connection AA′(x, π, π̂).
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Theorem 3.1. For horizontal distributions that are infinitesimal symmetries of the Pois-
son structure (3.7) the Ehresmann connection AA′ is potential: AA′ = −εA′B′∂B′A,
where A = A(x, π). In particular, the Ehresmann connection AA′ of Poisson horizon-
tal distributions is independent of π̂. Furthermore, its curvature 2-form is also potential
FA′ = −εA′B′∂B′F , where F = F (x, π) = dA+ (1/2){A,A}. There is a one-to-one corre-
spondence (up to a gauge) between solutions of the higher-spin self-dual gravity equations
on U , with A(x, π) as the generating function (3.1), and Poisson horizontal distributions
on TV that have decomposable F ∧ F = 0 curvature potential F . Together with τA′, the
two simple factors of F define an almost complex structure on V that is integrable.

Acknowledgments

Y.H. and E.S. are glad to acknowledge scientific exchanges with Tim Adamo. The work
of Y.H. and E.S. was partially supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 101002551).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1),
Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

[2] E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms and Higher
Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

[3] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of
three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007
[arXiv:1008.4744] [INSPIRE].

[4] M. Henneaux and S.-J. Rey, Nonlinear W∞ as Asymptotic Symmetry of Three-Dimensional
Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

[5] C.N. Pope and P.K. Townsend, Conformal Higher Spin in (2 + 1)-dimensions, Phys. Lett. B
225 (1989) 245 [INSPIRE].

[6] E.S. Fradkin and V.Y. Linetsky, A Superconformal Theory of Massless Higher Spin Fields in
D = (2 + 1), Mod. Phys. Lett. A 4 (1989) 731 [INSPIRE].

[7] M. Grigoriev, I. Lovrekovic and E. Skvortsov, New Conformal Higher Spin Gravities in 3d,
JHEP 01 (2020) 059 [arXiv:1909.13305] [INSPIRE].

[8] M. Grigoriev, K. Mkrtchyan and E. Skvortsov, Matter-free higher spin gravities in 3D:
Partially-massless fields and general structure, Phys. Rev. D 102 (2020) 066003
[arXiv:2005.05931] [INSPIRE].

[9] R.R. Metsaev, Poincaré invariant dynamics of massless higher spins: Fourth order analysis
on mass shell, Mod. Phys. Lett. A 6 (1991) 359 [INSPIRE].

– 17 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/0264-9381/6/4/005
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C6%2C443%22
https://doi.org/10.1007/BF02108779
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C128%2C213%22
https://doi.org/10.1007/JHEP11(2010)007
https://arxiv.org/abs/1008.4744
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.4744
https://doi.org/10.1007/JHEP12(2010)007
https://arxiv.org/abs/1008.4579
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.4579
https://doi.org/10.1016/0370-2693(89)90813-7
https://doi.org/10.1016/0370-2693(89)90813-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB225%2C245%22
https://doi.org/10.1016/0003-4916(90)90253-K
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C198%2C293%22
https://doi.org/10.1007/JHEP01(2020)059
https://arxiv.org/abs/1909.13305
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.13305
https://doi.org/10.1103/PhysRevD.102.066003
https://arxiv.org/abs/2005.05931
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.05931
https://doi.org/10.1142/S0217732391000348
https://inspirehep.net/search?p=find+J%20%22Mod.Phys.Lett.%2CA6%2C359%22


J
H
E
P
0
1
(
2
0
2
3
)
1
5
8

[10] R.R. Metsaev, S matrix approach to massless higher spins theory. 2: The Case of internal
symmetry, Mod. Phys. Lett. A 6 (1991) 2411 [INSPIRE].

[11] D. Ponomarev and E.D. Skvortsov, Light-Front Higher-Spin Theories in Flat Space, J. Phys.
A 50 (2017) 095401 [arXiv:1609.04655] [INSPIRE].

[12] E.D. Skvortsov, T. Tran and M. Tsulaia, Quantum Chiral Higher Spin Gravity, Phys. Rev.
Lett. 121 (2018) 031601 [arXiv:1805.00048] [INSPIRE].

[13] E. Skvortsov, T. Tran and M. Tsulaia, More on Quantum Chiral Higher Spin Gravity, Phys.
Rev. D 101 (2020) 106001 [arXiv:2002.08487] [INSPIRE].

[14] A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212]
[INSPIRE].

[15] A.A. Tseytlin, On limits of superstring in AdS5 × S5, Theor. Math. Phys. 133 (2002) 1376
[hep-th/0201112] [INSPIRE].

[16] X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02
(2011) 048 [arXiv:1012.2103] [INSPIRE].

[17] M. Sperling and H.C. Steinacker, Covariant 4-dimensional fuzzy spheres, matrix models and
higher spin, J. Phys. A 50 (2017) 375202 [arXiv:1704.02863] [INSPIRE].

[18] T. Tran, Twistor constructions for higher-spin extensions of (self-dual) Yang-Mills, JHEP
11 (2021) 117 [arXiv:2107.04500] [INSPIRE].

[19] H.C. Steinacker and T. Tran, A twistorial description of the IKKT-matrix model, JHEP 11
(2022) 146 [arXiv:2203.05436] [INSPIRE].

[20] R. de Mello Koch, A. Jevicki, K. Suzuki and J. Yoon, AdS Maps and Diagrams of Bi-local
Holography, JHEP 03 (2019) 133 [arXiv:1810.02332] [INSPIRE].

[21] O. Aharony, S.M. Chester and E.Y. Urbach, A Derivation of AdS/CFT for Vector Models,
JHEP 03 (2021) 208 [arXiv:2011.06328] [INSPIRE].

[22] E. Skvortsov and T. Tran, One-loop Finiteness of Chiral Higher Spin Gravity, JHEP 07
(2020) 021 [arXiv:2004.10797] [INSPIRE].

[23] E. Skvortsov and R. Van Dongen, Minimal models of field theories: Chiral higher spin
gravity, Phys. Rev. D 106 (2022) 045006 [arXiv:2204.10285] [INSPIRE].

[24] A. Sharapov, E. Skvortsov, A. Sukhanov and R. Van Dongen, Minimal model of Chiral
Higher Spin Gravity, JHEP 09 (2022) 134 [arXiv:2205.07794] [INSPIRE].

[25] A. Sharapov and E. Skvortsov, Chiral higher spin gravity in (A)dS4 and secrets of
Chern-Simons matter theories, Nucl. Phys. B 985 (2022) 115982 [arXiv:2205.15293]
[INSPIRE].

[26] A. Sharapov, E. Skvortsov and R. Van Dongen, Chiral Higher Spin Gravity and Convex
Geometry, arXiv:2209.01796 [INSPIRE].

[27] D. Ponomarev, Chiral Higher Spin Theories and Self-Duality, JHEP 12 (2017) 141
[arXiv:1710.00270] [INSPIRE].

[28] K. Krasnov, E. Skvortsov and T. Tran, Actions for self-dual Higher Spin Gravities, JHEP 08
(2021) 076 [arXiv:2105.12782] [INSPIRE].

[29] T. Tran, Toward a twistor action for chiral higher-spin gravity, arXiv:2209.00925 [INSPIRE].

– 18 –

https://doi.org/10.1142/S0217732391002839
https://inspirehep.net/search?p=find+J%20%22Mod.Phys.Lett.%2CA6%2C2411%22
https://doi.org/10.1088/1751-8121/aa56e7
https://doi.org/10.1088/1751-8121/aa56e7
https://arxiv.org/abs/1609.04655
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.04655
https://doi.org/10.1103/PhysRevLett.121.031601
https://doi.org/10.1103/PhysRevLett.121.031601
https://arxiv.org/abs/1805.00048
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00048
https://doi.org/10.1103/PhysRevD.101.106001
https://doi.org/10.1103/PhysRevD.101.106001
https://arxiv.org/abs/2002.08487
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08487
https://doi.org/10.1016/S0550-3213(03)00368-7
https://arxiv.org/abs/hep-th/0207212
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0207212
https://doi.org/10.1023/A:1020646014240
https://arxiv.org/abs/hep-th/0201112
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0201112
https://doi.org/10.1007/JHEP02(2011)048
https://doi.org/10.1007/JHEP02(2011)048
https://arxiv.org/abs/1012.2103
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.2103
https://doi.org/10.1088/1751-8121/aa8295
https://arxiv.org/abs/1704.02863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.02863
https://doi.org/10.1007/JHEP11(2021)117
https://doi.org/10.1007/JHEP11(2021)117
https://arxiv.org/abs/2107.04500
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.04500
https://doi.org/10.1007/JHEP11(2022)146
https://doi.org/10.1007/JHEP11(2022)146
https://arxiv.org/abs/2203.05436
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.05436
https://doi.org/10.1007/JHEP03(2019)133
https://arxiv.org/abs/1810.02332
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02332
https://doi.org/10.1007/JHEP03(2021)208
https://arxiv.org/abs/2011.06328
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06328
https://doi.org/10.1007/JHEP07(2020)021
https://doi.org/10.1007/JHEP07(2020)021
https://arxiv.org/abs/2004.10797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.10797
https://doi.org/10.1103/PhysRevD.106.045006
https://arxiv.org/abs/2204.10285
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2204.10285
https://doi.org/10.1007/JHEP09(2022)134
https://arxiv.org/abs/2205.07794
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.07794
https://doi.org/10.1016/j.nuclphysb.2022.115982
https://arxiv.org/abs/2205.15293
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.15293
https://arxiv.org/abs/2209.01796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2209.01796
https://doi.org/10.1007/JHEP12(2017)141
https://arxiv.org/abs/1710.00270
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.00270
https://doi.org/10.1007/JHEP08(2021)076
https://doi.org/10.1007/JHEP08(2021)076
https://arxiv.org/abs/2105.12782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.12782
https://arxiv.org/abs/2209.00925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2209.00925


J
H
E
P
0
1
(
2
0
2
3
)
1
5
8

[30] P. Hähnel and T. McLoughlin, Conformal higher spin theory and twistor space actions, J.
Phys. A 50 (2017) 485401 [arXiv:1604.08209] [INSPIRE].

[31] T. Adamo, P. Hähnel and T. McLoughlin, Conformal higher spin scattering amplitudes from
twistor space, JHEP 04 (2017) 021 [arXiv:1611.06200] [INSPIRE].

[32] R.S. Ward, On Selfdual gauge fields, Phys. Lett. A 61 (1977) 81 [INSPIRE].

[33] K. Krasnov, Self-Dual Gravity, Class. Quant. Grav. 34 (2017) 095001 [arXiv:1610.01457]
[INSPIRE].

[34] Y. Herfray, Pure Connection Formulation, Twistors and the Chase for a Twistor Action for
General Relativity, J. Math. Phys. 58 (2017) 112505 [arXiv:1610.02343] [INSPIRE].

[35] L.J. Mason and M. Wolf, Twistor Actions for Self-Dual Supergravities, Commun. Math.
Phys. 288 (2009) 97 [arXiv:0706.1941] [INSPIRE].

– 19 –

https://doi.org/10.1088/1751-8121/aa9108
https://doi.org/10.1088/1751-8121/aa9108
https://arxiv.org/abs/1604.08209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.08209
https://doi.org/10.1007/JHEP04(2017)021
https://arxiv.org/abs/1611.06200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.06200
https://doi.org/10.1016/0375-9601(77)90842-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CA61%2C81%22
https://doi.org/10.1088/1361-6382/aa65e5
https://arxiv.org/abs/1610.01457
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.01457
https://doi.org/10.1063/1.5012268
https://arxiv.org/abs/1610.02343
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02343
https://doi.org/10.1007/s00220-009-0732-5
https://doi.org/10.1007/s00220-009-0732-5
https://arxiv.org/abs/0706.1941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.1941

	Introduction
	Higher-spin self-dual Yang-Mills in twistor space
	HS-SDYM equations: spacetime equations
	Geometrical realisation in twistor space
	Higher-spin Yang-Mills fields on twistor space
	Holomorphic bundle interpretation

	A higher-spin Ward correspondence
	Correspondence
	Proof


	Higher-spin self-dual gravity in twistor space
	HS-SDGR equations: spacetime equations
	HS-SDGR equations Lambda=0
	Gauge invariance

	Geometrical realisation in twistor space
	Higher-spin fields as a connection on the twistor space
	Field equations
	Gauge transformations

	A higher-spin non-linear graviton correspondence


