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Abstract

We study the surface defect in N' = 2* U (N) gauge theory in four dimensions and its relation to quantum
Hall states in two dimensions. We first prove that the defect partition function becomes the Jack polynomial
of the variables describing the brane positions by imposing the Higgsing condition and taking the bulk
decoupling limit. Further tuning the adjoint mass parameter, we may obtain various fractional quantum
Hall states, including Laughlin, Moore-Read, and Read-Rezayi states, due to the admissible condition of
the Jack polynomial.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The relation of low-energy physics of supersymmetric gauge theory and integrable system has
been an active research for decades [1-3]. One of the best-known stories is the Seiberg-Witten
curve of the N' = 2 supersymmetric gauge theories can be identified as the spectral curve of the
integrable systems. This correspondence was later extended to the quantum level by Nekrasov
and Shatashivilli in [4,5], with the gauge theories subjected to the 2-deformation. This defor-
mation introduces two parameters (g1, &2) associated to the rotation on the two orthogonal plane
in R* = C2. The partition function Z and BPS observables can be computed exactly by local-
ization technique for a variety of gauge theories [6]. In the limit (g1, &2) — (0, 0), the classical
integrable system is recovered. The Nekrasov-Shatashivilli limit (NS-limit for short) 1 — 7 and
& — 0 results in an N = (2, 2) supersymmetry being preserved in the fixed plane. One expects
to get the quantum integrable system.

From gauge theory to integrable model

One is naturally to ask the question of computing the wavefunction of the integrable system. The
stationary state wave functions, in the context of Bethe/gauge correspondence, are the vacua of
the two-dimensional N = (2, 2) theory. In order to get the stationary wavefunction, we compute
the expectation value of a special observable in the two-dimensional theory - a surface defect
in the four-dimensional theory [7—12]. It turns out that induction of co-dimensional two surface
defect provides a powerful tool in the study of Bethe/gauge correspondence. The parameter of
the defect becomes the coordinates that the wavefunction depends on. The four-dimensional
theory with a co-dimensional two surface defect can be realized as a theory on an orbifold. The
localization computations extend so as to compute the defect partition function and expectation
value of BPS observables.
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Our scope is on the class of gg-characters observable in the gauge theory [6]. The main
statement in [13] proves certain vanishing conditions for the expectation values of the gg-
observables, both with or without defects. These vanishing conditions, called non-perturbative
Dyson-Schwinger equations, can be used to construct KZ-type equations [ 14] satisfied by the par-
tition function [15,16]. In the NS-limit, the KZ-equations becomes a Schrodinger-type equation
satisfied by the partition function.

Jack polynomial and quantum Hall state

The Laughlin wavefunction has provided a key to understand the quantum Hall effect (QHE).
It models the simplest abelian FQH and is the building blocks of model wavefunction of
more general states, both abelian and non-abelian such as Moore-Read and Read-Rezayi state.
The wavefunctions of such models, aside from the Gaussian factor which we will drop, are
conformally-invariant multivariable polynomials. All three of Laughlin, Moore-Read, and Read-

1
Rezayi state wavefunctions are proven to be special cases of the Jack polynomial Jif with the
Jack parameter « taking negative rational value [17-19].

Summary and organization

In this paper we will establish the relations between three objects: the surface operator in the
4-dimensional N/ = 2* theory, the Jack polynomials, and fractional quantum Hall states. The
main end-result is to realize the fractional quantum Hall states as instanton partition function of
4-dimensional N = 2* gauge theory with the presence of full-type surface defect in the following
simultaneous limits

(i) Nekrasov-Shatashivili limit gy — 0,
(ii) Bulk-decoupling limit q = €2™% — 0,
(iii) Higgsing the Coulomb moduli parameters {a,} to sum of adjoint mass m and -
deformation parameter &1,
(iv) Tuning the ratio between the adjoint mass m and &; to control the filling factor of the
quantum Hall states.

The paper is organized as follows:

o In section 2 we will review the instanton partition function of A" = 2* and prove that in the
Nekrasov-Shatashivili limit &, — 0 (i) the defect partition function is the eigenfunction of
the elliptic Calogero-Moser system.

e In section 2.3, we will show that in the trigonometric limit T — ioo (ii) the Calogero-Moser
Hamiltonian becomes the Laplace-Beltrami operator after a canonical transformation. The
Jack polynomials are the eigenfunction of the Laplace-Beltrami operator.

e In section 3 we will review some basic property of Jack polynomials.

e In section 4 we will impose Higgsing condition (iii) to the A/ = 2* supersymmetric gauge
theory. The Higgsing truncates the infinite summation of the instanton partition function. By
using the Young Tableaux representation of the instanton configuration, we prove that the
defect partition function becomes the Jack polynomial after Higgsing.

e In section 5 we recover both the Laughlin and Moore-Read quantum Hall states from the
defect partition function with a file tuning of the adjoint mass m (iv). We also discuss about
the admissible condition satisfied by the Jack polynomial.

e We end this paper with discussion about potential future work in section 6.
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2. Four-dimensional A = 2* gauge theory

We consider N = 2* U (N) gauge theory in four dimensions with adjoint mass m. The vacuum
of the theory is characterized by Coulomb moduli parameters a = (ay, ..., ay) and exponenti-
ated complex gauge coupling

4ri 12
=

— eZm'r

q 2.1

) gz E
The instanton partition function can be calculated via supersymmetric localization computation
in the presence of an 2-background, whose deformation parameters are (£1, €2). The instanton
configuration is labeled by a set of Young diagrams A = (A(D, ..., A(V)) A () = (kg‘y), )»gy), o))
satisfying
() (o)
A Zhi 20 2.2)

which denotes the number of boxes on each row in the Young diagrams. We define the formal
sum of the exponentials

N N
N= Zeaa’ K= Z Z elati=De1+(j=Dea (2.3)
a=1

a=1 (i, j)er®

The pseudo-measure associated to the instanton configuration is defined using the index functor
[ that converts the additive Chern class character to multiplicative class

l_[ x;, " (rational)
a

E |:Z nana] — 1_[(1 —e %)™ (trigonometric) 2.4)

a

1_[9(@7’(“; p)~ " (elliptic)
a

where n, € Z is the multiplicity of the Chern root x,. 6(z; p) is the theta function defined in

. . 0 .
(A.8). We remark the hierarchical structure, 6 (e™*; p) Pl —e ¥ =x + O(x?). In this paper,
we mostly apply the rational convention, which corresponds to four-dimensional gauge theory.
The pseudo-measure associated to the instanton configuration A is computed by:

ZIM=E[(1 — ¢")(NK* + ¢142N*K — P P,KK")]. 2.5)

q; = €% are the exponentiated Q2-deformation parameters with P; = 1 — g;. Given a virtual char-
acter X =), nge** we denote by X* =) n,e * its dual virtual character.

The supersymmetric localization equates the supersymmetric partition function of the -
deformed Kg U (N) theory of the grand canonical ensemble

Zinsi(a,m, & 9) =) qMZ (@, m, &M (2.6)
A

The pseudo-measure Z[A] can be expressed in terms of products of I'-functions

4
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r —1 L L r —loo o
Z[A] = l—[ (82 (jclat XBj £1)) % Ef2° (Xqi i xﬁ]))
(ai)A(B)) F(Sz (xozi - xﬂj)) F(Sz (-x(){i - xﬂ] - 81))

T(ey " (xai — xpj —m)) XF@;%zu—fm—ﬂn—a»

— — - , 2.7
T(e5 ' (xai — xgj —m — €1)) L(ey (fai —Xgj —m))
with definition of the following parameters
Xai =ag + (i — e + ?»,(»a)sz, Xoi =aq + (I — 1ey. (2.8)
The 1-loop contribution to the partition function can be expressed in terms of x by
T(ey ' (Rai — %pj — 1)) T(e) ' (Rai — %gj —m))
Ziow= |] 2 el 2P 2 Vel A (2.9)

(ai)#(B)) F(Sgl(iai - )%ﬁj)) 1"(82*1()%0”_ - )%/3] —m— 81)) .

The product of the 1-loop and the instanton contribution has the x terms completely canceled

LT e TP LTS TP
Zl—loopZD»] _ l_[ F(Ez (Xai — xgj — €1)) % F(82 (Xai — xpj —m)) (2.10)

@ty L€ Gai —xg))  T(ey (xai —xpj —m—e1))
2.1. Introducing surface defect

Recent developments in BPS/CFT correspondence [6,7,11] notice differential equations of
two-dimensional conformal field theories, such as KZ-equation [7,16,20] and KZB-equations can
be verified by adding a regular surface defect in the supersymmetric gauge theory. These confor-
mal equations become eigenvalue equations of the integrable model in the Nekrasov-Shatashivilli
limit (NS-limit for short) e — 0. See also [21,22] for a relation to the (g-)hypergeometric func-
tion. Moreover, the surface defect is also used to discuss non-perturbative aspects in N = 2*
theory [23-26], and its relation to the isomonodromic system [27,28].

The co-dimensional two surface defect is introduced in the form of an Z; orbifolding acting
on R* = C| x C, by (z1,22) — (21, {2) with ¢/ = 1. The orbifold modifies the ADHM con-
struction, generating a chainsaw quiver structure [29]. Such defect is characterized by a coloring
function ¢ : [N] — Z, that assigns the representation R of Z; to each coloro =1,..., N.
Here and below R, denotes the one-dimensional complex irreducible representation of Z;,
where the generator ¢ is represented by the multiplication of exp (2”%) for w = w+1. In general
one can consider Z; orbifold of any integer /. A surface defect is called full-type/regular surface
defect if | = N and the coloring function ¢ bijective. Hereafter, we consider this case with the
coloring function of the form

cl@)=a —1. 2.11)

In the presence of surface defect, the complex instanton counting parameter q fractionalizes
to N coupling (qw)a]\)/:_o1

q=49qoq1---qdN-1, Yo+N = Jo- (2.12)

The coupling q,, is assigned to the representation R, of the quiver. We also define the fractional
variables, z,, o =1,..., N, by

Zw+1
Jo—1 = i, Zo+N = Y20- (2.13)
Zw
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From string theory point of view, these variables {z,}u=1
nentiated) brane positions, whereas the couplings {q«}w=0
between the branes.

The defect instanton partition function is an integration over the Z y-invariant fields

Zgetect(a, m, g, EI? qQ = Z 1_[ CII;‘“ Zaetect[A]
A o

.....

,,,,,

, (2.14)
A A A A A A A A N
Zaeral M = [ (1 = ") QK" + 314, NK — A HRK] ™

Here
ko =#Ky, Ky = [(a, (i, ) aelN], (,j)er®, a4 j—1=wmod N} (2.15)

denotes the number of squares in a colored Young diagram that is in the R, representation of
7.y orbifold.
For the convenience of later calculation, we scale gy — %2 and define the shifted moduli

&2 -
ay — ﬁc(a) =de(a) (2.16)

which are neutral under orbifolding. All the ADHM data can now be written in terms of the
shifted moduli

N-1
NZ ZquZﬁRw, Na)= Z eaw;
w=0

c(a)=w
v o 2.17)
R=Y KR Ko=3*Y Y giad.
w=0 o J=0 (,j)er®
cla)+j—1=w+NJ
and
1 N A 1
dg1=q1Ro, 2=4q5 R1, PI=(—-q1)Ro, L,=Ro—q, Ri1. (2.18)

The expectation value of the defect partition function Zgefect in the NS-limit £ — 0 has the
asymptotic [30,31]

1

W(a,m,q,& RN
Zdefect = €2 (@ a.5) (ZSurface(a, m, ¢, q) + 0(82)) (2.19)

with the singular part is identical to the bulk instanton partition function (2.6)

W = lim &) log Zingt. (2.20)

e—0

The leading order contribution Zgyface i the surface partition function [10], with

N-2 N—-1
Y et Fo(Fur1 — Fo)
Zartace = Y _ | | ak [(1—&”) = ‘”P*‘” “ 2.21)
A w=0 1
where
Fo,=Ny—1—PIKy_1+q@2PIKy_1, o=1,...,N. (2.22)

6
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2.2. qq-character and eigenvalue equation

As we have stated previously, differential equations from conformal field theories such as
KZ-equation and KZB equations can be verified with the introduction of regular surface defect.
The key of these verifications relies on an observable called gg-character [6]. The fundamental
qq-character of N = 2* (//fo quiver) U (N) gauge theory is given by [6-8]

Y(x+si5—m)Y(x +si53+m+¢e4)
XA =Y +e y:; L ! 2.23
M =Y(x+e1) ) a* Blul H P TP Toy 150 (223)
H iL.jen
with e = &1 + &;. The definition of Y-function is
Y] =E[-e"(N — P P,K)*]. (2.24)
W is a single Young diagram p = (1, U2, ...) obeying
Wi > pitr, i=1,2,.... (2.25)

One may realize p as a “dual” instanton configuration in the eight-dimensional gauge origami
construction [32]. Each square in u is labeled by

sii=0—Dm—(—D@m+ey). (2.26)
Let us define

Blpl= [] Bu(hjm+ajes). B =1+
(ijeun

£1&

Here a;j = pi — j denotes the “arm” associated to a given box (i, j) in the Young diagram u, the
lij= MJT — i for the leg of the same box. We also define A;j = ajj + i + 1.

The gg-character X' (x)[A] is a Laurent polynomial in Y (x) with shifted arguments defined on
a specific instanton configuration A. The most important property of the gg-character is that its
expectation value

Al
(X (x)) = 2.9 ZZ[_”X(X)W (2.28)
1nst

is a degree N polynomial in x [6].

In the presence of a regular surface defect, the argument x is assigned to the R, representation
of the orbifold and shifted to x + %&2. The fractional gg-character

Yort1—j (X + ij — m) Yorp1—j1 (x + 555 +m + &
Xw(x)ZZBZ 1—[ w+1 J(x Sij m)Yy i1 J+1(x Sjj —m +) (2.29)
m wien Yor1-j(x + sij) Yor1—j+1(x + sij + e4)
is build from the fractional Y -function

Yo(x) =E[-¢'(Ny — PiKo+ PiKo-1)], i=1,....,N—1

. (2.30)
Yo(x) =E[—€*(No — PIKo+ 2 PIKy_1)].
The factor B is the orbifolded version of q'“‘ Blul:
€1
B/ = ]‘[ Qo1 [1 + mhij]. (2.31)

(.jen
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We denote the ensemble over all dual partition u of each w as

81), Ly
Bom2 = 2 l_[(, D! <_) v 232

2 lo,J1,e-sIN—120 0'=0

The fractional gg-character X,,(x) share the same property as the bulk gg-character, whose
expectation value defined through

Zx KXo () [A] Zdefect[A]
Zdefect

(Ko (X)) defect = (2.33)

is a degree one polynomial in x. We expand the RHS in the large x limit and denote [x ~/]X,, (x),
I=1,2,...,asthe coefficient of the x ! term in the Laurant expansion of X, (x). The following
equation

([x*’] Xw(x)>defect =0, 1=1,2,... (2.34)

can be translated to differential equations acting on the defect partition function Zgefec. See [7]
for detail. For our interest, we will look at I =1 case. The large x expansion of Y, (x) is

~ &1 £1&2 €1
Vo) = (v = ) exp (vt + gkt + 3 @01 — )+ ) (2.35)
x Nx X
where k&, is defined in (2.15) and
2! ~ . .
Vo =ko = Kort1, 0 = ke + Z o+ (i — D1+ (j — Dea. (2.36)
(@i, )Xo

The summation in K, (2.15) runs through the colored squares in the Young diagram that is in
the R,, representation of the Zy orbifold. The large x expansion of the fractional gg-character
X, (x) is equal to

1T 1 i a &
= [x ]] X (x) zi(glvw - aw+1)2 — el + —ko+0u— 0pt1

B, 2 N

N—1 2.37)
—m Z [(m + 8+)V(?)/ + (e1ve — gla)+l)v(i/] log B,
'=0
Here we define the differential operator forw =0,..., N — 1
a a
— . _ _ q
Vg_qw%, V;—zw@—vw 2=V, 1 (2.38)

By summing over w and take the expectation value, we obtain a second order differential equation
for the defect partition function Zgefect

N-1 . 1
0= 8182q8—+ Z(elvw+2 aw_H) +81Na)Vw+2 2“w+1

(2.39)

N—1 N—-1
—m Y (V5 10gB)(e1VE, | —dwr1) —mm+eq) Y (Valog B)} Zaefect
=0 w=0
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z _ w2
where VwH\, = Vi and

N-l - 2 *erTgl M
B = l_[ B, = [®AN1(Z; r)Z”ql’L} = QTl (2.40)
w=0

with v = ;”—1 being the ratio between the adjoint mass and 2-deformation parameter 1. The
function Q is defined in (A.20). Here ©4,,_,(z; T) is the rank N — 1 theta function defined as a
product of Jacobi theta functions:

011(za/285T)

Ouy GO =1V ] o (2.41)
a>f n
o is the Weyl vector of SU (N) root system, whose entries are given as
N N
- N+1 ~0 » NWN--1)
P=(p1- s PN): o=@ = ———: [p] => r T [z
w=1 w=1
(2.42)

See Appendix A for definitions of theta function and eta function. By using the heat equation
for Q in (A.22) to rewrite the V. -derivative term in (2.39) to VZ-derivative. The defect partition
function now obeys

N—-1
. ) 1.
0= |:81£2q8—q + 5 E (81V§)+2 —aw_H)Z +31ﬁ“)vfu+2 — an-H
=0

N-—1
—e1w+1) Y (Vi logQ)(e1VE, | — dwi1) (2.43)
w=0

1
— a0+ D+ Der+¢2) (Az logQ — Xw:(vf, IOgQ)Z)} Zgefect

In the NS-limit &, — 0, the shifted moduli approaches to the bulk moduli @, — a4. Eq. (2.39)
becomes an eigenvalue equation in the NS-limit

HYU=EW (2.44)
with
N Agy—1
— 2= +(+1)pw
=[]z " Zefect. (2.45)
w=1
The Hamiltonian takes the form
R 1 N 5 N
gt=3 (VI + 41D (Vilog®ay_,) Vi
a=1 a=1
N
(v+1)2
—> [((V)210g®4,,) + (VilogOay_)?] (2.46)
a=1
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with the eigenvalue

N 2 2
1 aw a, @W+1)° ,
R R Y L 2.47
e 0q | 22 2 fe 47

The differential operator on the right hand side of eigenvalue equation (2.44) can be rewritten
as the elliptic Calogero-Moser (¢CM) Hamiltonian after a canonical transformation,

N
. 1
eom=D_ S (VO +v(v+ 1) Y 9 a/zpi0)- (2.43)

a=1 a>p

The complexified gauge coupling T = % + % plays the role of the elliptic modulus. This is the
Bethe/gauge correspondence between the elliptic Calogero-Moser system and four-dimensional
Ay U (N) supersymmetric gauge theory in the presence of regular surface defect [7,33]. See
also [34,35] for more geometric interpretation. The coupling constant v is identified as the ratio
between the adjoint mass of the gauge group and the 2-deformation parameter
v=—. (2.49)
&1
The parameter matching between the gauge theory and the Calogero-Moser integrable system
is summarized in the following table:

Parameter ~ Gauge Theory Calogero-Moser System
o Fractional coupling  Particle coordinate

ay Moduli parameter Rapidity

m Adjoint mass Coupling constant

€1 Q-deformation Planck constant

2.3. Bulk decoupling limit

For the purpose of this paper, we will focus on the trigonometric Calogero-Moser system in-
stead of the elliptic version. We have shown the complex gauge coupling acts as the complex
modulus of the elliptic function. From this point of view, the bulk decoupling limit g]—z — 00
(Im 7 — o0; ¢ — 0) corresponds to the trigonometric limit of the gp-function. The elliptic
Calogero-Moser Hamiltonian (2.48) becomes the trigonometric Calogero-Moser (tCM) Hamil-
tonian

.\ 1 1
Hom=) S (V)2 +vv+1) )
o o ﬂ

2.
— (2a —2p)? 230

On the gauge theory side, the bulk decoupling limit ¢ — 0 becomes ¢qx_1 — 0 in the presence
of regular surface defect. The bulk instanton, which now labeled by the R y_; representation of
the Z y orbifold and counted by qy_1, only has the trivial (no instanton) configuration counted
toward the ensemble in (2.6) in the bulk. It gives a vanishing superpotential

Zint=1 = W=0. (2.51)

Even though the bulk instanton now becomes trivial, there can be non-trivial instanton con-
figuration on the surface. The defect partition function consists of now solely the surface defect
contribution

10
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Zdefect = Zsurface T O(£2). (2.52)

The width of the colored partition 2@ s limited to N — ¢(«), that is

WO SN—cl@), Vi=1,2,... = 2y =0 (2.53)

For later convenience, let us take a transpose on all Young diagrams labeling the instanton con-
figurations,

3@ _y 3 T@) (2.54)

Now the value Al@ denotes the number of squares in the colored Young diagram counted by
de(a)+i—1- The height is limited by

)\’(Ol)

¥ @ =0 (2.55)

The defect Nekrasov instanton partition function consists of only the surface defect term,
which is

Z l—looszurface

N—1 . *
_ Z l_[ Z((a)<w w— z‘(a)]E |:( m) Zw:l Fw(Fa)+l Fw) } (256)

P*
A w=l 1

_ r (ym,a*)’a)ﬂ*m> r ()’w+1.a*)’w‘ﬂ)
=2 H A )| - .

c(@).c(B)<w r (Ym,ot;ya),ﬂ) c@<otl, c(B)<w r (}’erl,cx;Iyw.ﬁ*m)

where we have defined

N (@)
N = Zeaa’ Z eaaq M p—e@) Z O Yy g = dy +)‘w (@l (2.57)
a=1

cla)<w a=w

Here we multiplied by the one loop factor Zj_j00p({aa}, £1)

Zioop= | ] ﬁ (2.58)
l§a<ﬁ§Nr<W>

to simplify the expression in (2.56).
In the bulk decoupling g — 0 limit, the theta function is reduced to the trigonometric function

e 0= 122 11(/3-2)

>p

The second order differential operator Hin (2.46) in the decoupling limit becomes

e VA1 Za + 28
lim F== S (vi)2 + o« L (VZ—VZ . 2.60
q—0 2;( oc) 2 (xgﬁ Za — 2B o ﬁ) ( )

We identify H as half of the Laplace-Beltrami operator:

11
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N
Topt) =Y (Vi) 4 Y et (Vi-v3). 2.61)

a=1 a>f Ta 2P

with the following identification of the parameter

k=v+1. (2.62)

We identify the defect partition function (with suitable pre-factor) as an eigenfunction of the
Laplace-Beltrami operator

a>  ,N(N?-1)
— K.

Hig¥=EVY, E=
LB 8% B

(2.63)

2.4. Two particles case

2.4.1. Center of mass frame
In a two body system, the center of mass frame can be separated. The Laplace-Beltrami oper-
ator can be rewritten in a variable 72 = z, /z1 and a center of mass variable u?=z122:

74z
PRilihan

) PRPICERN ey :
Hiple) = 3 (V' + 3 (V92 4 xSt v (2.64)

The wave function W(u, z) takes the separated variable form

W(u,z) =u’ f(2) (2.65)

with a constant b € C. After decoupling the center of mass, we denote z = ¢*, the Laplace-
Beltrami operator becomes

1 d? coshx d  b?

i = - il 2.66
B2 T Simhx ax T2 (2:60)

acting on f(x). We consider the following test function
fa.p(x) = (2sinhx)? (2 coshx)® (2.67)

to find the eigenfunction f(x) of the Laplace-Beltrami operator. The ansatz is chosen such that
it takes the form of a polynomial in z; and z».

1 cosh? x sinh? x
Hifa.B(X)=fa,8(X)5| A(A—=1+2)———+B(B—-1) 3
2 sinh® x cosh” x
+(A+ B)>+2B«k +b2}
b2
= [EA,B + ?:| faBXx). (2.68)

In order for f4 5(x) to be an eigenfunction, we will choose A =0, 1 — 2« and B =0, 1 that
cosh? x

o )
annihilates the <=5+ and _Slnhzx
sinh” x cosh” x

of j‘fLBZ

terms. There are four cases when f4 p(x) is an eigenfunction

12
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A =0, B=0: V= fjo(x)=1is the trivial constant solution with eigenvalue Eg o= 0.

A=0,B=1:V=ufy1(x)=Ja(z1,22) = 21 + 22 is Jack polynomial defined on a single

partition of integer 1, with its eigenvalue Eg ; =« + %

e A=1-2, B=0: W =u'"2f_5.0(x) = (z1 — 20)' 7% is the Laughlin state, with its
eigenvalue E1_2. 0= % —K.

e A=1-2«k,B=1: fi_2c1(x)= f2/721(,0(x)' Its eigenvalue is E1_2,,1 =2 — 2k.

Here we choose b such that W is a polynomial in z1 and z».

2.4.2. Defect partition function
The defect instanton configuration is given by a single column Young diagrams, A1) = (k).
Let us recall that we have chosen the coloring function c(¢) =« — 1 in (2.11).

Fi=egl, Fy=e" 4. (2.69)
The defect instanton partition function (2.56) takes the form

]

k. .
Je&1t+tmay—ax+ jer+m
Zdefect = g - -
efect lg)qog jer a1—a2+181

=2F1(K;x+“‘_“2;1+“‘_“Z;Z—z) (2.70)
&1 &1 21

where 5 F is the hypergeometric function. The eigenfunction W in (2.45) is given by

K K
. —dg+ —a1—3 —@t;
W(ag,ar,kiz1,22) = [ 22 ™ Zactea =2, 225 ° Zdefect- .71)
a=1,2

As we have proven before, the eigenvalue is given by (2.63):

2 2 2

+

Hpw= (122 -2 )w 2.72)
€] 2

It is obvious that W is not a polynomial in z; nor z5.

In the context of gauge theory, it’s natural to consider the positive adjoint mass v = ;”—1 > 0.
One may also consider the limit v — 0, which is the limit that the A/ = 2* gauge theory recovers
the V' =4 symmetry. In such a case, all instanton configurations share the same pseudo-weight

in the ensemble, giving

= 1
Zgefect = qu = 1_2
k=0 21
-y -Bep % -2 @73)
oy 7, o 7.z, "
-2 2z 2
! 2 21
The eigenvalue can be found by
2 2
ay+a 1
HigW¥ = [% — E:| v, 2.74)
1

13
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An interesting case we would like to investigate is the v = —1 case. By the identification
of k = v 4+ 1 =0, the Laplace-Beltrami operator (2.61) is nothing but the Hamiltonian of free
particles. On the gauge theory side, we notice that the only instanton configuration with non-
vanishing pseudo-measure is the no-instanton configuration.

— £ j—lai—ax+je — &1
Zgefect = Y ¢ . — =1 (2.75)
eleet ,;) Ojljl J ay—ax+jei

The wave function W is indeed of free particles

_a @
W(z1,22) =2, "2, " (2.76)
with the eigenvalue being nothing but the kinetic energy
24 .2
ay+a
E=-1-2 (2.77)

€]

The hypergeometric function in (2.70) can be truncated when x € Z . The defect partition
function Zgefecr becomes a degree —« polynomial in qg = 2—?

3. Jack polynomial

In this section we collect some facts about the Jack polynomial. See, e.g., [36,37] for more

1
details. A Jack polynomial Jy (z1, ..., zx) is a symmetric polynomial in variables {z, ..., zx}

labeled by the partition n = (n1, na,...,ny):
n,-zn,-HzO, i=1,...,.N—1, (3.1)

and a parameter «. In the context of QHE, the partition n can be represented as a (bosonic)
occupation number configuration 1(n) = {/(n), m=0, 1,2, ...} of each of the lowest Landau
level (LLL) orbits of angular momentum L = mfi, where for m > 0 the number /,(n) is the

multiplicity of m in n. Given a partition n = (n1, na,...,ny), let
Ma= Y 2" gyt (32)
UGGN
1
be the orbit sum. The 0 € Gy is a permutation of the set {1, ..., N}. When « — 0, Jf — My is

the monomial wavefunction of the free boson state with occupancy number I(n).
The Dunkl operator D; is defined by

a K Zi +2j
Di=zi—+=Y L —0y). (3.3)
07; 2/¢, Zi —Zj

Here

@i )G Xiy o Xy ) = f (e Xy Xy o) (3.4)

are the operators that exchange of the i-th variable and the j-th variable and the differentiation
operations with respect to those variables. Two Dunkl operators commute with each other

[Di, D] =0, (3.5)

14
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such that

9\ zi+zj [ 9 9
ZDQ Z( z) _KlZ:~ /( 81, Zjaz> (3-6)

<j ZZ_Z]

It has been known that the eigenfunctions of Laplace-Beltrami operator are the Jack polyno-
mials

Hig (k) z1, ..., zn) = EMJS (21, ..., 2ZN). (3.7)

The energy spectrum is given by
EM)=ey — ey (3.8)
where

2
en_Z(na—I—K(N—_H—(x)) . (3.9)

Jack polynomial with negative rational value of « is used to construct wavefunction of frac-
tional quantum Hall effect. In particular Laughlin, Moore-Read, and Read-Rezayi fractional
quantum Hall effect wave function can be explicitly written as single Jack symmetric polyno-
mials, whose partitions n obey the (k, r)-admissible condition [17-19]

ni—niypy>r,i=1,...,N —k, (3.10)

and the coupling k = — 77 +} is set to negative rational number where » — 1 and k + 1 are co-prime.

See [38] for properties of Jack polynomial at negative rational coupling.
3.1. Concrete expressions

We define the power sum polynomial,
N
pax) =) 2} G.11)

1
Here we list a few the Jack polynomials Jy (z) given in terms of the power sum polynomial:

1
Th@=p1 (3.12a)
I @ = ——pat L p? (3.12b)
@'\z _1+Kp2 1+Kpl :
1 1 1
J(Kl,l)(z)z—ipz‘FiP% (3.12¢)
1 2 3k K2
1G5 (@) = + +————p 3.12d
6@=Troern” T )(2+K>1””’l Groe+oln  G8Fd
1 1 1— X
JE = J 3 3.12
(2,1)(1) 1+2KP3+ 1+2 p2J1+ 1+2KP1 ( €)
1 1 1 1
J<K1,1‘1)(Z)=§P3—§P2+6P1 (3.12)

1
The Jack polynomial Ji (z) can have divergent coefficients when « is a negative rational number.

15
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4. Higgsing the Coulomb moduli parameters

The wave function W (2.45) built from defect instanton partition function Zgefect Was proven
to be the eigenfunction of Laplace-Beltrami operator (2.61) in section 2. W is a function of
fractional couplings {zy}, adjoint mass m, Q2-deformation parameter ¢1, and Coulomb moduli
parameters {ag}.

N B ”c_l (w) i
v=[]z " Zefect- (4.1)
w=1
Here we consider a general bijective coloring function c¢(«) : {1,..., N} > {0,..., N — 1}. Wis

usually an infinite series of z4’s.

In this section we will demonstrate how the wave function W becomes a Jack polynomial:
By fine-tuning the Coulomb moduli parameters {a,} with respect to the adjoint mass m, the
infinite instanton summation is reduced to a finite number of terms. This finite summation can be
recast as a summation over the Young Tableaux. The summation is identified as the combinatorial
formula of the Jack polynomial [39].

To put the system on a circle, we denote z,, = ¢***» with a periodic variable X, = X, + 1. A
quantization condition for moduli parameters a,, shall be imposed for the wave function W to be
single valued:

a1

— O | gy =iy € Z. 4.2)
&1

This gives

ac—l(w) - ac—l(w+1) =—-—m-—¢£| + (nc—l(w+1) - nc—l(w))gl s Ny € Z (43)

The combination of —m — &1 might seem weird at first. One can understand this by putting the
gauge theory in the framework of gauge origami [32]. In the gauge origami, the adjoint mass m is
realized by 2-deformation parameter €3 on the third complex plane C3. The combination —m —
&4+ = &4 is the Q-deformation parameter on the fourth complex plane Cy4, which becomes —m —
€1 in the &2 — 0 limit. Hence, in terms of the Q2-deformation parameters, the Jack polynomial
parameter is written as

&3 &+ ¢ . &4
v=—, K= =lim|((——]). “4.4)
€1 &1 e—0

The condition (4.2) imposes a locus on the Higgs branch where it meets the Coulomb branch,
known as the root of Higgs branch for N' = 2* theory [40]. The physical interpretation of ny is
turning on a magnetic flux in the 23-direction for the «-th U (1) factor in the U (N) gauge group

1
o /(F23)adxz ANdx3 =ng. 4.5)

We denote the set of these U (1) fluxes by n = (ny)g=1,...N-

We can realize the quantization in the D-brane construction of A = 2* gauge theory. Let us
first consider the case with the absence of magnetic flux. The mass of the adjoint hypermultiplet
is realized by the 2-deformation on Ris = Cj3 space. The two ends of the D4 brane on the NS5
no longer align by the twisted boundary condition. In particular, this allows all D4 branes to join
together to from a single helical D4 or a coil wrapping along the x* and x° direction. See Fig. 1
for illustration.
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NS5
aq
D4 2
as
aN X4'5
. XS
X7

Fig. 1. The Higgsing branch root.

NS5

D

n

|
]

Ny

!

ny ——n, XS

x6
D4

X7

\
\

Ny

Fig. 2. D-brane realization of the quantization.

We now turn on the magnetic flux. The quantized magnetic flux can be realized as n, D2
branes “dissolving” into the «-th D4 brane. To minimize the energy, the D2 branes prefer to stay
inside the D4 brane. The compact helical structure of the D4 branes hence makes the engineering
of these D2 branes subtle. It is done by the following way: We take n, D2 branes and stretch
them from the single NS5 brane to the D4 brane in the x’ direction, then stretch them along the
x* and x° direction with a fixed x’ inside the toroidal D4 brane, and finally stretch them back to
the NS5 brane in the x’ direction. See Fig. 2 for the illustration.

Near the region transverse to the D4 brane, there are n, D2 branes with one orientation in the
x’ and ng 1 of D2 branes of opposite orientation. They locally annihilate each other leaving only
ny — Ng+1 net D2 brane stretching along the interval. The net magnetic flux from the D2 branes
cancels the net magnetic charge in the D4 brane, which is n, — ny+1 by the opposite orientation
of the adjacent D4 branes.

We would like to argue that without loss of generality, we can consider the case

m=ny> =y (4.6)

and choose the coloring function c(«) = o — 1. For the generic coloring functions, the U (1)
fluxes (ng;)i=1,..,n can be arranged in a non-increasing order

.....

N, > N, == Noy (47)
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where a1, ...,ay € [N]={l,..., N} and a; # «; if i # j. The arrangement is nothing but a
permutation of [N] generated by a permutation function s : [N] — [N] such that «; = s(i). We
choose the coloring function ¢ : N — {0, ..., N — 1} such that

=s4+1. (4.8)

By renaming each ny; as n;, we arrive at the case where

ny>=ny>--->ny 4.9

and the coloring function c¢(«) = o — 1. Furthermore we can set ny = 0 with an over all boost.
The wave function W in (2.56) can be simplified with the Higgsing condition (4.2):

N 2@
v=ITer 3 [T
a=1

A w=2
Aota—hd B3
1—[ ot (B —a)tng —ng+ry g —A, o+ j+K—1
x
a,f<w j=1 K(ﬂ_a)+n(x_nﬁ+)\i',3_)ﬂ—)\$,)a+j

@ (4.10)
kK(w—pB)+ng—ny+j—1
XH Hk(w B)+ng—n,+j—«

B<w

>

y lw—[ K(ﬂ—a))—i—nw—nﬂ—k(lw +j—14«
K(ﬁ—a))—i—nw—nﬁ—kgw)—l—j

j=1

Here we assume n; >ny > --- > ny = 0. In order to see W consists of only a finite number of
terms, we notice that the instanton configuration A that counts toward in the ensemble must obey

ng —npi1 +204) 200, (4.11)

for 1 < B8 < w < N to have a non-vanishing pseudo-measure. Remember that the instanton Young

diagram is limited in height )‘%}-)i-l p= = 0. By iteration, we obtain

w—np+20 =5 (4.12)
forany @ =1, ..., B < w. This restricts the length of each row in Young diagram A®). In partic-

ular when 8 =N + 1 — w + «, we have

A <N — N —wta (4.13)

w—o —
leaving only a finite number of terms in the ensemble in (4.10).
The wave function W in (4.10) has eigenvalue

N
HipW=EmW, Em) =) (ng —kpa)” —

a=l1

L, N(N?—1)
P )

B (4.14)

which matches with the Jack polynomial spectrum (3.8).
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Example 1: Let us consider the simplest case n=Owithn; =1,ny=---=ny_1 =ny =0.
The only instanton configuration that counts toward the ensemble is a single column Young
diagram, )Lfﬂ ) =0if B > 1. The instanton configuration is of single column of length one

1 @G<lI
A0 = ({ <0 (4.15)
0 (G=1
for/=0,1,..., N — 2. We find the wave function is of the form:
N -1 I
k(B+1) Kw—v
Y= - - = 4.16
Z]+ZZ1 l_[ Bl l_[ o Zi+z+---+ay (4.16)
=2 B=0 w=1
This is the first power sum symmetric polynomial of (zy, ..., zn), which agrees with the corre-
sponding Jack polynomial J1)(z1, ..., Zn).
Example 2: Consider n = withn; =2,ny =---=ny = 0. The instanton partition sums over
the Young diagram
2 (=h)
WW=11 <i<h) , 0<h<L<N-2; (4.17a)
0 (h<i<N-=-2)
W—o0, g1 (4.17b)

With some deliberate calculation, we find the wave function takes the following form

N N
2k 2k
— 2 = 2 o
\D—Zzi+1+K Z ZlZ]—ZZi+1+K Z ZiZj- (4.18)
i=1 1<i<j=<N i=1 I<i<j<N
Define the power sum polynomial
N .
pi(z) = Zzlf (4.19)
i=1
such that W can be rewritten as
K 2 -1
Y= —pi=J (21, 4.20
1+KP2+1+KP1 ) (z1 ZN) ( )

The wave function is identified as the Jack polynomial defined on partition n =[T].

Example 3: The defect instanton partition function of U (2) theory is an ensemble over single
rowed Young diagram:

ni A . .

22\ j+v nm+1-—j
W =" —= 4.21
4 E (Z) lel T mtvl— (4.21)

m_
1P=0

Here we list value of W, of the first few values of ny:
o Yy=1.
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[ ]
<
|
A
+
2
NS}

|
S

2+2v- K 1
U, — 2 2 2 2'
o V> 1+ 2+v11zz+zz —1+Kp1+—1+Kp2
o g+3—i—3v 2 3+3v 2,3 2 . 3k N
. = =
3 12 34y 2T T T T N+ T e+ D +2) P
K 3

k+ D+’

4k 6Kk (k + 1) 4k
N 3 2.2 344
o Yy 11+K+31112+(K+2)(K+3)2122+K+31112+Zz
For general no, it has poles at
ni
k=1—=n1, 2—n, ...,—[7] (4.22)

Example 4: Here we consider n = (n1, np,n3) = (1, 1,0) for N = 3 case. The instanton config-
uration A must satisfy

) @ ,® (2)
AT EAT, AT L0 AT =0, (4.23)
to have non-vanishing contribution toward the ensemble. We obtain

2 3
KT 273K

Van=u2|l+ - +———|=u2+uz3+2z.
22K 212K

=Ju,1(z1,22,23) (4.24)

which agrees with the Jack polynomial defined based on the partition n = H

Example 5: We now consider N = 3, n = (n, n2,n3) = (2, 1,0). The instanton configuration
needs to satisfy

(D (D 2 2 (1 ©)]
Ay SAUSATHL AT S AT <1, A7 =0 (4.25)

to have non-vanishing pseudo-weight in the ensemble. There are seven instanton configurations
that meet the above requirements:

A A(ll) )él) )Liz) counting  measure
@,2,2) 0 0 0 22 1
2.2 1 0 0 2123 1
Heo 1 1 0 nma 2tk
(@0e 0 0 1 2323 1

.0, 2) 1 0 1 712223 pau)
Hoe 1 1 1 53 1
Mmoo 2 0 1 323 1
Hoe 2 1 1 33 1

This gives
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K
Von=n+2n+us+us+523+205+ PPEERLeLs
S L +——p (4.26)
S TP +1p2p‘ 2 +1 '

1
= J(Ey[)(Zl, 22, Z3)

Again we see the wave function W is the Jack polynomial defined on the same partition n = Hj
4.1. Young Tableaux representation

We will now introduce an alternative way to denote the instanton configuration A that the
ensemble in (4.10) sums over.

Let us consider a semi-standard Young Tableaux Tj[A = &] of shape n. The initial reading
of each box in the a-th row is «. We define Young Tableaux Ty[A] based on an instanton con-
figuration A by the following procedure: Starting with T[A = @], we increase the reading of
the last )»l@ squares at «-th row (with the counting starts from the left) by one and repeat the
process for i =1,..., N — . On individual row this process guarantees that the reading stays
non-decreasing when moving towards right since )\l@ > )»ﬁ)l. For the j-th square in the «-th
row, the final reading is

a+#{i|na—,\§“)<j,i=1,...,N—a}. (4.27)
The j-th square in the (o + 1)-th row will have the reading
a+1+#[i|na+1—x§“+”<j,i=1,...,1v—a}. (4.28)
The constraint on the instanton configuration (4.11) ensures that
#{i | ng — 2@ < j, i:l,...,N—a} 5#{;‘ | ngr — 2 <, i:l,...,N—a}
4.29)

The reading of the squares in Young Tableaux Ty[A] is always non-decreasing when moving
rightward and always strictly increasing when moving downward. Thus Ty[A] is semi-standard
for any instanton configuration A.

The ensemble in (4.10) now sums over the Young Tableaux Tp = (n1,...,ny) of shape n.
We denote the reading of the j-th square in the «-th row as T;. These readings can be translated
to the corresponding instanton configuration by

=T —a (4.30)

The AT-@ denotes the conjugation of the instanton configuration A(“) (also known as the trans-
pose of 1(*)). By the construction of Young Tableaux Ty, we have

Ty, j <N. (4.31)
The counting of instanton configuration A, which is the power of zq, is
na+ Y A= 3 AP =ne =0+ Y AP 08 =, 4.32)
B<a B<a+1 B<a
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We now argue that this value is the weight #, of Ty[A]. In other words, 7, counts the occurrences
of the number of « in Ty[A]. The first two terms are straightforward, it is the number of the
number « after we increase the reading of squares in the «-th column. In the B8-th column with

B < «, asquare that can have a reading of « needs to be increased o — 8 times but not any further.

Since each AEO‘) only increase the reading by 1, the 8-th column will have exactly /\ff 3 g )Lfffgl_ 8

readings of the number «.
The wave function (4.10) can be rewritten as an ensemble over the semi-standard Young
tableaux Ty, whose reading at the («, j) square satisfy

o <Tyj<Tyjr1 =N, Ty j<Tyt1,j. (4.33)

Given a Young Tableaux Ty[A] whose largest reading is less than or equal to N (not necessary
equal to V). We can define a series of sub Young Tableaux

g=TON cTPRc - cTMA] =Talr] (4.34)

The sub Young Tableaux T,(,i )[X] =n® = (ngi), ng), e, ng\i,)) has its reading less than or equal
to i. By its construction

n;;‘) -0 (4.35)
if j > i. The instanton configuration A can be obtained by

MY =ng —nl@hD, (4.36)
The weight #,, of the Young Tableaux Ty[A] equals

te = @] — n@ ], (4.37)

where
o
(@) _ (o)
In®@ |_an ) (4.38)
j=1

The wave function (2.56) from the defect instanton partition function can be now written in terms
of ensemble over the Young Tableaux

W= Moy, (4.39)

T

Ta _TTN Lt
where z'n = [/, z; and

N P kBoa— D+ =+

—1 .
w=21<B<a<w j=1 K(ﬂ —a) +n((1w )~ nf‘;)) +J- 1

K(ﬂ—a)—l—ngi)l—nl(gw)—i—j—l
€(B—a—D+ng —ng” +

N Fk(B—oa—1+ne " —n ™V +1)

= H l_[ (=1 _

o l<peace DB —a—1)+ng ns”)

X
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F(K(ﬂ—a)+n(w D—ng —1)

TR D

Tk (B —a)+nl) —ng’™")

a+1
x @ (w)
Fk(B—a)+n, | — ng -1
Fk(B—a—1)+n —nf”)
x @) (w D
T(k(B—a—1)+nl - +1)

Eq. (4.39) is the combinatorial formula for Jack polynomlal [36, Chapter VI, §10].

In the massless limit m — 0, which translates to k — 1 limit (Schur limit) of the Jack param-
eter under the Bethe/gauge correspondence, all instanton configuration A satisfying (4.11) shares
a common pseudo-measure in the ensemble

‘}E}}) Zdefect A]=1. (4-40)

The wave function W is an ensemble over the instanton configuration that satisfies (4.11). We
immediately identify W as Schur polynomial using the Young Tableaux representation:

lim ¥ = oY = L IN)- 4.41
lim Doz = sz zw) (4.41)

Example:
Let N=3,n= EP = (2,1,0). We start with a Young Tableaux T,[@] that represents the no
instanton configuration A = (&, &, &)

To[2] =| 1 1] (4.42)
2
Here we will list out all Young Tableaux denoting the instanton configuration A.

oo ol="12 TEe =13  Tieoen="11]
2 2 3

nicooi=| 2 m@oen=|]?
3 3

Tal (0,0, 2)] = i 2 mIEPoe)= i 3] (4.43)

There are only eight semi-standard Young Tableaux of shape n, each of them corresponds to
an instanton configuration. One can check that in each case the weight of Ty[A] equals to the
instanton counting.

4.2. Higher dimensions

We have discussed the surface defect in four-dimensional gauge theory, and its relation to the
Jack polynomial. From the gauge theory point of view, one can generalize this setup to higher
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dimensions. Imposing codimension two defects, we would obtain 5d/3d and 6d/4d coupled sys-
tems, which correspond to the hierarchy of rational/trigonometric/elliptic integrable systems.
Based on a similar setup in five dimensions, it has been shown that the defect partition function
can be identified with the Macdonald polynomial, which is an eigenfunction of the Ruijsenaars—
Schneider operator [41,42]. In fact, the Macdonald polynomial also has the tableau formula,
which is a trigonometric analog of (4.39) (see [36, Chapter VI, §71" and [43]),

n(w) ;3&) ) - @ nﬂ +]t/3 o1 l_qnéJr)l*";iw)Jrj*ltﬁ—“
ﬂ [ H
w=21<f<a<w 1—qg"™ ny' = i‘lw)Jr]*l[ﬁ—al q aa-)zlfnl(Sw)Jrltﬂ —a—1
_ l_[ [ (q" ( et gy @ e )
_w=215ﬂ<a<w @ e gy (@ e ),

(w)
(" P g (g e g 444
X o 2@ =D | : (4.44)
(g1 7" tﬁ*"‘;q)oo (A Bl g) o

The previous formula (4.39) is reproduced by putting 1 = ¢ and then taking the limit ¢ — 1.
This expression is obtained in parallel from the defect partition function by replacing the index
functor (2.4) with the trigonometric version (5d/3d theory convention) although its derivation
from the gg-character would be more involved. We obtain an elliptic analog of the formula (4.44)
from the 6d/4d setup with the elliptic index,

(@) _ (w D

ng n@=b_

1_[ [1 ]‘[ 0" T T pmast; pya(g"en T T by p)
(w—1) (w) (w)
w=21<f<a<w O(q" s +f—ltﬂ—a;p)9(q"a+1_",s +Jﬂ3—a—l;p)
(w D_ ((ufl) 1 B ((wal)_ (w) _
_]_[ L' " TPerlig p) F(q" "5 1P g, p)
(w D_ (w)+l 1. *U_n(w*l) _
w=21<B<a<w F(C] th—a— 04, P) F((I b 1P a.qvp)
() (0—1) (@)
(g1 P, INC ” Htﬂ a=1,
(g ;4. p)T(q" - g, p)’ (4.45)

)
@™ thos g, ) T(g"en ™5 Hipa-tiq p)

where I'(z; g, p) is the elliptic I"-function (A.11). This defines an elliptic analog of the Macdon-
ald polynomial [44,45].

5. Quantum Hall states

In this section, we discuss a possible connection between four-dimensional gauge theory and
two-dimensional fractional quantum Hall (FQH) effect. The idea is as follows. On the four-
dimensional gauge theory side, we apply the Q2-background for each complex plane, which plays
a role of the background U (1) magnetic field. See, e.g., [46,47]. Then, imposing the surface
defect and taking the bulk decoupling limit, we may focus on the two-dimensional system with
the background field, which realizes the QH effect. In fact, it has been shown by Bernevig—
Haldane [17-19] that the wide class of FQH wave functions for the ground state and with the

1 See also https://www.symmetricfunctions.com/macdonaldP.htm.
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quasi-hole excitations are realized using the Jack polynomial (multiplying a trivial Gaussian
factor which we will drop here) that we have already obtained from the gauge theory analysis.
We pursue the direction suggested by Nekrasov [48] for more details, and construct more generic
FQH wave functions.’

5.1. Laughlin state

The lowest Landau level (LLL) wave function is in general given by a product of conformally-
invariant holomorphic multi-variable polynomial Y 11.(z1, ..., zx) and a trivial Gaussian factor
that we will drop here. The Laughlin wave function is a key for understanding the physics of the
FQH effect. It models the simplest abelian FQH state and is the building block to more general
cases, both abelian and non-abelian ones. The Laughlin wave function of filling fraction 13

(r) l_[(za —Zﬂ) nO(l "’ 5.1

a<f
is the eigenfunction of Laplace-Beltrami operator (2.61) with the parameter identification

r—1

=— 5.2
K 3 (5.2)
This can be easily verified by noticing the Laughlin state 1//(r) is annihilated by the Dunkl oper-
ator
D" —_- _, 5.3
“ Z Zoz - Zﬁ ( )
Hence the Laughlin state is annihilated by ) ; z; D(l)zi D-(r), which we identify
Zz DWVz,D (’)—J—CLB——N(N—l)(N+1+3r(N— ) (5.4)
i.e.
Hipy” = —2N(N— DN +143r(N — )y, (5.5)

For Laughlin state to be a polynomial in (zy)o=1,... N, i.6. ¥ € Z~0, it would require the
Laplace-Beltrami coupling « to be negative. On the gauge theory side, that means the adjoint
mass must be negative half integer

r—1 (5.6)
K=— .
2
We impose quantization condition (4.2)
4 ow=(N—)r, w=1,....N (5.7)
&l

2 We also remark that a gauge theory realization of the Moore-Read state has been discussed based on the AGT
relation [49].

3 Here we consider the bosonic FQH states, which are directly related to the Jack polynomial. Hence the parameter r
is even. One can obtain the fermionic FQH states by multiplying the free fermion factor, [, . pa —2p)- See [17-19]
for details.
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such that the Young diagram n is (1, r, N)-admissible. Indeed, we find the eigenvalue of gauge
theory instanton partition function becomes

HipW = %N(N— (N 4+ 1+3r(N — 1), (5.8)
matching with that of Laughlin state.

5.2. Moore—Read state

Let us turn our attention to the Moore-Read (MR) state [50]. It was introduced as a model to
study the FQH state with the filling fraction v = %, which is the M =1 case of

N
) []Ga—z)™". (5.9)

a<f

(M>@1,n.,ZN>==Pf<Z -
a — <

Hereafter we consider the odd M case, which is the bosonic analog of the MR state. The Pfaffian
factor in the Moore-Read state is annihilated by [51]

4/3 9 2/3 . 1
DPf = ot Z / P /E = DanPf< ) =0. (5.10)
“ 24— 2 az,s (Za —28) Za — 28

It’s not hard to find that the first Moore—Read state, obtained by multiplying the Pfaffian with
Vandermonde determinant, obeys

N(N +2)(5N +8)

3 v (5.11)

Hipk ™' = =3)w\) =

We consider the following quantization condition in the gauge theory:

N
Nyg—1 =Nog =N —2a, a=1,2,...,?. (5.12)
The partition n is (2, 2)-admissible. The defect partition function W is an eigenfunction of the
Laplace-Beltrami operator (2.44) with eigenvalue

N

2 2
E(n):Z(N—2a+K<¥—2 )) +(N—2a+x<¥—2a+l>>

a=1

£e(4)

o' =

N
=g@W+UW+D+HW—®>
(5.13)
Choosing «k = —% reproduces the correct spectrum for the Moore-Read state in (5.11):
N(N +2)(5N +38
E(m) = (V+ 1)8( + ). (5.14)
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Example: The M =0, N =4 Moore-Read state by (5.9) is
\I’l(vl[iq (z1,22,23,24) = 23 + 33 + 225 + 55 + BB + B2
- z%(zzz3 + 2224 + 2324) — 23(2123 + 2124 + 2324)
— z%(mzz + 2124 + 2224) — 23 (2122 + 2123 + 2223)
+ 621222324
We consider the following quantization condition for the U (4) gauge theory:
nyp=ny=2, n3=ny4=0.
The partition n = EH is (2, 2)-admissible:
ni—nij+2>2,i=0,1.
The instanton configuration that has non-zero pseudo-measure must obey
A0 <20 <229 <2¥ <2, 42 =2¥ =0

The 1® instanton configurations are of one of the following:

— s

. 0mi

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

The A(V is always dominated by A, Here we list out all the instanton configurations and their

contribution toward the ensemble:

W0 5O an H = i
%) z%z% Kzﬁz%zza z%z% Kz—flz%zzu %z%@u z%zi
O —%zm%@ Kzﬁzlzzz% Kz—flzlz%u %11121314 Kzﬁzlzzzi
1] z%z% %232314 z%zi
H A Punnu Zudu  und
EF‘ %zzzgu %121313
H 22

As we have demonstrated earlier, each instanton configuration A = (A", A 1® = &) can

be expressed using semi-standard Young Tableaux. We start with

(5.20)

Talo]=| ]!
212
The 20 instanton configurations can be captured by all semi-standard Young Tableaux Tp:
1|1 1
Tu (2, 2)] = Tu[(2,0)]=
212 213
Tulz. o)l = @=L ]2
313 213
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T, (O, C0)] = ; i,mmm)]: i i
TlEd)= 1 WlER=
LED]= L W)=
L= 2 WE) =

To[(0. )] =21 2] T[] =122

Ta[(e. )] = T[] =

T [@ )] =L ,Tn[(maa)]:j j,

414

Tn[@ﬂ,aﬂ)]:j S Wi==t==N M EIEN

4 414

The readings of each square in every Young Tableaux satisfy
@ <Tyj<Tuj+1 <N, Ty j <Tot1,j- (5.21)
The instanton partition function for general value of « is given by

2.2 2.2 2.2 2.2
W(z1,22,23,24) = 005 + 33 + 323 + 523 + 25 + 2345
2K

K
+ mz%(zzm + 2224 +2324) + o lzg(zlu + 2124 +2324)
+ 2 Bz + a2+ — s + a1z + 223)
P (@2t t 0+ - n [z + 2123+ 2223
N 12«2
————————7122237%4.
(c + D)2 + 1) 1723
(5.22)
As we can see W obeys the (2, 2)-admissible condition. It does not have pole at
2-1 1
- _ - __ 5.23
T2 T3 629
In the x — —% limit, the instanton partition function matches with the
1
0 _1
W(z1, 22, 23, Z4)|“=BH = W (21,22, 23, 24) = Jn (21, 22, 23, 24)- (5.24)
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5.3. Admissible condition

1
Jack polynomials Jii are defined on an integer partition n and a parameter «. Let k, r be
positive integers such that » > 2 and k + 1, » — 1 are coprime. The partition n is called (k, r)-
admissible if it satisfies

ni—niyr>r, 1 <i <N —k. (5.25)

In general, Jack polynomial can have poles at a negative rational value of . However if the
partition n is (k, r)-admissible then the Jack polynomial will not have a pole at [38],*
r—1
K= P (5.26)
This is known as the admissible condition. The admissible condition considers the pole structure
at a handful of particular values of Jack parameter «. It does not mean the Jack polynomial is
entire function for «.

It has been pointed out [17-19] that this admissible condition properly captures the clustering
property of the FQH state, so that the corresponding wave function is generally obtained as the
Jack polynomial with the negative couplings. For example, the Laughlin state and the MR state
correspond to k = 1 and 2, respectively. The higher k cases are the Read-Rezayi states, which are
associated with Zy-parafermion CFT, while the k = 2 case corresponds to the Ising CFT. One
can also apply this formalism to the FQH states with spin degrees of freedom [53,54].

We have seen in the example in the N =2 case with partition n =[T1= (2, 0). This partition
nis (1, 2) admissible

ny—ny>2. (5.27)

The Jack polynomial defined based on this partition

J(%z) (z1,22) = ﬁpz + fjpf (5-28)
does not have pole at
_ 2=t 1 (5.29)
1+1 2
Instead it has pole at k = —1. This corresponds to the (1, 2)-admissible condition, which n does
not obey.

5.3.1. Instanton sum formula

In the previous section we express the Jack polynomial as ensemble over instanton configu-
ration (4.10). It is easier to see the pole structure of the wave function W (2.45) by rewriting the
pseudo-measure in the form of I'-functions by multiplying the 1-loop factor in (2.58):

= o 3
a=1 i w=2 ¢ a,B<w F(nﬁ_n‘1+K(a_ﬂ)+)”$—|)—l—a_)"Euﬁ)ﬁ—i_l —K)

4 Tt has been discussed that a different parameter specialization provides a simplification of the wave function [52].

29



T. Kimura and N. Lee Nuclear Physics B 991 (2023) 116218

C(ng —ng+x@—B) + a5, =21
wp<w L(p—ng+K(a—pB)+ )»ff_)a — )»ff_)ﬁ)

T(ng — o +k(@—p) + 1" =20 )
few Dng —no+x(@—p)+27 =28 +1-x)

1—[ F(ng —ney+rx(w—B)+1—x)
F(ng —ne +k(w—p))

X

(5.30)

B<w

The last line comes from the 1-loop factor and does not depend on instanton configuration A. In
order for W to be finite, the pole coming from the 4 I'-function must be canceled by I"-functions
in the denominators. Let k — —7 be a negative rational number. s, € Z~¢ are coprime. We
isolated out the I'-functions whose arguments are integers in the limit k — —7:
+t+1) B
D(ng —npipn +t+20550 =30 1)

N
[T I1 B _, (B
w

=2 pti+l<w LB —Nppip1 +KE+ Ay g, gD

110

—1
T(ng — o +ut + 28570 2P0 )

(B+1—1) B)
w=2p+t—1<w Lng —ngy—1 +xt + )‘w—ﬁ—t—&-l - kw—ﬂ)
N (B+1) B)
y 1—[ Plng —npo+ut+a, g =2y p)
(B+1) B)
w=2B+t<w L(ng —npgis +«t +)‘w—ﬁ—t _)‘w—ﬂ)
N (B+1) B)
5 1_[ F(ng —npirtrt+2a, 5" =, g+ 1)

(B+1) B
=2 pti<w Vg =gy FKEFA 07 =Ry g+ 1)

I T(ng —npys + ot + 2T 1P

Brt<N F(nﬁ—nﬁ+t+Kl)

I'ng —n +xt+1
< 1 s ﬁ+l+1(ﬁ+z+1) ; ® (5.31)
ptiti<n T —npgyrpr + K144 A4+ D

The two terms that have no dependence on the instanton configuration A come from the 1-loop
contribution Zy_jo0p. Their combined contribution is

1—[ U(ng —ngyr+1 + et +1) 1

X .
C(ng —ngys + i) F'ny_1—¢ +«t) (5.32)

B+t+1<N
It’s obvious it does not give poles as the I'-function in the numerator has larger argument than
the denominator counter part. For the I'-functions in the first line, a similar argument holds

1 1

ng —ngyr+1 +kt+ )‘Efjﬁljzll — )»Ef_)ﬁ > Nng —Npyr+1 + Kkt + Awﬁj/;:) — A;ﬂ_)ﬂ (5.33)

The numerator in the fourth line can be combined with denominator from the third line. It’s
obvious that it will not give any poles.

At this stage the potential poles coming from the gamma function in the 1st, 4th, and 6th line

in (5.31) will be canceled by the zeros coming from the gamma function in the denominators in
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the 1st, 3rd, and 5th line in (5.31). This leaves us with the numerator in the second and third line,
and denominator in the second and fourth line

ﬁ I P(np —npyrr+xt + 2040 =3P Pag —npps+or 2880 =3P
(B+t—1) B
w=2 B+t<w Plng —npgri—1 +et+r, g 0 — Ay p)
N B+1) B)
8 1_[ 1_[ (nﬁ—n,g+[+Kt+Aw_ﬂ_t—kw_ﬁ)
(B+1) (02))
w=2 B+t<w F(l’lﬁ — g4t +Kt+ )"w—ﬁ—t - )‘a)fﬂ+1 + 1)

(5.34)

The last line comes from the ratio between numerator in the fourth line and denominator in the
third line. We notice that the arguments of the four I"-functions satisfy the relation
+1—1
ng —ngy—1 +kt+ Kf_ﬁ_til - Kf_)ﬂ

+r—1 +
<np—npet Tt hg T = A g g et A =20

=ng—npgi+ki+ )‘Euﬂjﬂt)—t - )‘Eoﬂ—)ﬂﬁ

(5.35)
This tells us that with a fixed (8, w), the Gamma factors can only have at most first order degree

pole in the k — —7 limit.
Let us consider the case w = N, which gives

-1
M D(np —npro—1 — s+ A0 4 DT (p —npyr —s — A4 5)
-1
B+I<N Fng—npri1+—s+ )‘g\llg—;ts—tzi-l - )‘g\e)—ﬁ) (5.36)
(ng—ngy —s+ K%fg_t - Aﬁf)_ﬂ)

X
(B+1)
priey Lp—npy —s+ )"N—ﬂ—t +D
In order to maximize the number of potential poles, we look at the instanton configuration A that
minimize the argument of I"-functions in the numerator, which are

-1
g —npio1 — s+ A 4 Zng—npg — s (5.37a)
ng —ngiy —s—)\%)fﬁzn,g”l —ngy — . (5.37b)

The I'-functions will be finite if the partition n satisfies the admissible condition

ng—ngy—1=s+1, g=1,...,N—t+1, (5.38)

—_s
at Kk = 7

The condition (4.13) provides a tool to analyze the argument of these I'-functions in (5.34)

/\L(f_)a =Ng —AN+1ta—ws )"if(-l)—l—a SNg —NNta—w (5.39)

for all @ < w. The number of I'-function that has poles in (5.34) is limited based on its structure.
Let us consider the following case: When )»iﬂ =D )»iﬂ * — 0 such that the I'-function in the
numerator in (5.34) will have the smallest argument. And in order to have poles with g fixed, we
would line to maximize the instanton configuration. It becomes
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N F(n,g—nﬁ+z—1+/ct—)»ff_)ﬂ+l) N F(nﬁ—nﬂ+t+/ct—kff)

D s+ 1)
B o=ptr Tp—npr—ttut—k,"g) g Pp—npptut =2 g+ 1)

T(ng —npi—1 +«1) Nl_—tl_l D(np —npas K1 =250 + 1)

X
Tng —np—1+xt =Py g Tog—nge+rr+1)

t

-1l

p=1

(5.40)
The terms with instanton configuration 1#) are finite in x — —# limit according to (4.11) by

ngi1 —Ngys + Kt — Afﬁﬂ) <ng—ngy +K— kfﬂ) <ng—ngy +K— )‘Eﬁ)l (5.41)

The admissible condition guarantees it does not have pole in the k — —7 limit for g =

1,2,...,t.

Example 1:
Let N=6and n= (4,4, 2,2,0,0). The partition satisfies the admissible condition

ni—njyy = 2. (5.42)

The instanton configuration must obey

A5 26 _ o (5.43)
W< <2 i=1,2; 1P =0 (5.43b)
W <@ <0 i=1,23,4 2 =o; (5.43¢)
A9 o, (5.43d)

The potential poles in (5.34) come from the I'-function in the numerator:

6
+2
1_[ H r (”ﬁ —nga—1+ )‘i}ﬂ—ﬁiz - }‘f—)ﬁ—&-l)
w=4 f+3<w

3
x T (n,g —ng43 — 1 +)»C(Uﬂj;312 - Afflﬂ)

=r(1+1 —aMHra+19 —a"hra +a —19)

x T+ =2 ra+28Y =2 ra +29 - 644
x D1+ =T +a5P —a")ra +a5 -l
< TG+20 =23+ = 2aP)ra +20 —2P)
=1+ 2P —2Mra+29ra +20 A ra +29Hra + 25" ra)
x T+ AP —ara + 28 —arara —22)ra —22)ra)
Only four I'-function among the total 11 in (5.44) can have zero or negative argument:
ra+2Y 2 ra+29 -2 ra +29 a2 ra +a80 - ). (5.45)

The I'-function in the denominator in the first line in (5.34) is
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6
2
1_[ 1_[ r (nﬁ —ngy— 1+ )»Ef_—;lz - Afﬁﬁ)
w=4 +3<w

=T +22 2T+ =2 +20 = 2Py
x T+ =2 +28Y -2 ra +29 -
=1+ =2+ —aP)ra +20 -2 ra +2 - A ramra
(5.46)

All the potential poles coming from the I'-function in the numerator of (5.34) will be canceled
by the I'-function in the denominator as the instanton configuration must obey (5.43). Here we
see the Jack polynomial of (2, 2)-admissible partition n = (4, 4, 2,2, 0, 0) does not have a pole
1
at Kk > — 3.
3

Example 2:
Next we consider a slightly bigger partition n = (5, 4, 3, 2, 1, 0) which satisfies the same admis-
sible condition (5.42). The instanton configuration must obey

At L1290 a0 —o. (5.47)
The I'-functions in the numerator of (5.34) in the limit x — —% are

6
+2
1_[ 1_[ r (I’lﬁ —ng42 — 1 +)\.£Uﬂ7512 - )\489,)'3+]>
w=4 f+3<w

3
x I (”/3 —ng43 — 1 +)»((f_4;312 - Afﬁﬂ)

=I'(1 +A(13) _ A‘(‘1))”1 + Af) _ Aé”)l‘(l +A§4> _ Af)) (5.48)
x TA 429 = 2AMra +20 - 2@ ra +20 —29)
x P+ =A@ +25" —a"re+8" -1
x T+ =22+ A r@+1© -8
The I'-functions that can have zero or negative argument are
ra+22 = aMra+29 a0 ra +9 -2 .

x T2+ 1" =2 re+ a8 —ahHre+10 —1@).

We now argue that it is not possible to have all six I"-function to have zero or negative argument
simultaneously. Precisely speaking, it is not possible for

ra+29 =), r@+219 —1%) (5.50)
to have non-positive argument simultaneously. Since

W<l +1<aP 4222 = 2420 2P =10 >0 (5.51)
The bound is saturated when A§2) =2, which will require A§3) = 1. On the other hand,

W@ r1=1 = 1420 -2V =20 >0. (5.52)
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The inequality is saturated when )L?) = 0. The structure of the Young diagram will restrict A§3) <

)»53) =0 = )»gS) = 0. Hence it is not possible for the two I'-functions to have zero argument
simultaneously.
There are six I'-functions in the denominator in (5.34):

6
2
1_[ 1_[ r (n,g —ngy— 1+ Afjglz - AEfZﬂ)
=4 f1+3<w (5.53)
=T+ 22 20+ =20 42 — 20y
< T+ 29 2 +28 22+ =29

Notice that all potential poles coming from the I'-function in the numerator will be canceled by
the following arrangement:

ra+1Y 1" ra+a?-2") ra+a? -1

PA+A7 —20) " T+ 20 " Ta 129 —2®)

5 re+x" -8 5 re+x" 2" re+id -1
ra+a? =) ra+i? -2 ra+id -1

(5.54)

It’s easy to check that the argument of I'-functions in the numerator is always greater than or
equal to the argument of the I'-function in the denominator. Thus the pseudo-measure is always
finite in the ¥ — —% limit.

We notice that, based on the two examples, not all I'-function in the numerator in (5.34)
can have non-positive argument. The number of I'-functions generating potential poles in the
K— — % limit is limited and will be canceled by the I'-function coming from the denominator
in the first line of (5.34). The pseudo-measure of all instanton configurations stay finite and the
Jack polynomial does not have pole at k — —% when the partition n is (k, r)-admissible. This
is easy to check when a partition n is given. The proof for general situation is rather subtle. It

will be nice to have rigorous proof for general case from the gauge theory.

5.3.2. Gauge theory perspective: further Higgsing

We have seen that the specialization of the parameter « (5.26) leads to the admissible condi-
tion. On the other hand, this parameter « can be written in terms of the 2-background parameters
as mentioned in (4.4). Hence, we may write the condition on « as follows,

g lgy Y =1, (5.55)

where we parametrize the Q2-background parameters as ¢; = ¢ fori =1, ..., 4. This expression
implies that the admissible condition may be interpreted as the Higgsing process in C; x Cy4 from
the point of view of gauge origami. A similar situation has been studied in [55]° that points out
that such a Higgsing condition is interpreted as the resonance condition [56,57] in the context of
quantum toroidal algebras.

5 We remark that the NS limit is taken in our case, g2 —> 1 (e — 0).
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6. Discussion and future direction

In this paper we have established relations between three objects: the surface operator of 4d
gauge theory, the Jack polynomials, and fractional quantum Hall states. In particular, the main
result is to realize the fractional quantum Hall states as the instanton partition function of four-
dimensional A/ = 2* in the presence of full-type surface defect (up to an overall Gaussian factor)
in the following simultaneous limits:

e Using the gg-character we are able to identify the instanton partition function of four-
dimensional N = 2* supersymmetric gauge theory in the presence of surface defects as the
eigenfunction of the N-body elliptic Calogero-Moser system in the Nekrasov-Shatashivili
limit &3 — 0 (i).

e The bulk decoupling limit q =e — 0 (ii) of the gauge theory, which translates to the
trigonometric limit of the elliptic Calogero-Moser system, simplifies the gauge theory par-
tition function to the surface contribution. The defect instanton partition function is then
proven to be the eigenfunction of the Laplace-Beltrami operator.

e With proper Higgsing condition (iii) imposed on the Coulomb moduli parameters, the defect
supersymmetric partition function is identified with the Jack polynomial, with the defining
partition given by the Higgsing condition. On the side of four-dimensional gauge theory, the
presence of both the orbifolding and Higgsing can be understood as two different types of
the co-dimensional two surface defects are introduced simultaneously.

e We also explored the reconstruction of Laughlin and Moore-Read states from the defect
instanton partition function (iv). It is well known that Laughlin and Moore-Read states serve
as models for the study of both abelian and non-abelian quantum Hall effect (up to an overall

&3

Gaussian factor) with the filling fraction given by v = o

2mit

The translation from the defect partition function (with bulk decoupled) to the FQH state
wavefunction requires a Gaussian factor shared by all FQH states:

eB N
exp (_E > |Za|2> 6.1)
a=1

here B is the magnetic field, e is the electron charge, /i = ¢ is the Planck constant. In section 4
we placed the trigonometric Calogero-Moser system on a circle with zo = e27* The Gaussian
factor is nothing but an overall constant since |z4| =1 foralle = 1,..., N — 1. It would be nice
to see in a more general case whether the Gaussian factor can be realized physically from the
gauge theory side.

We would like to note that our construction of the FQHE from 4d A/ = 2* theory has similarity
but not equivalent to the construction in [58]. In the later, the ADE N = (2, 0) gauge theory in
6d lives on S;’Z /ey X R x Z. Sg’z /1 is a squashed 3-sphere. X is a 2d Riemann sphere known as
the Gaiotto curve. In particular, the FQHE filling fraction is identified as v = 2?—? in [58].

The gg-character observables (2.23) are known to have analytic property on its argument. We
would like to know if one can use the analytic property of gg-character to prove the admissi-

1

ble condition of the Jack polynomial: a Jack polynomial J is regular at x = —% when the
partition n is (k, r)-admissible. The admissible condition has been proven using the clustering
properties of the Jack polynomial [59]. The hardship lies on the fact that the analytic property of

gq-character is associated to its argument x, which in the context of gauge origami is the moduli
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parameter on the auxiliary space C§4. On the other hand the Jack parameter « that the admissible
condition addresses is associated to the adjoint mass m and 2-deformation parameter &1 in the
gauge theory. Both are free parameters in the gauge theory. It will be very helpful if gauge theory
can provide a proof of the admissible condition of the Jack polynomial:

It is known that the supersymmetric gauge theory instanton partition function has five- and
six-dimensional extension. Using the same strategy of the gg-character one should recover the
Macdonald polynomial and its elliptic uplift. Furthermore, if a proof of the admissible condition
for Jack polynomial can be shown from the corresponding 4-dimensional gauge theory, it is
possible that an admissible condition would be applied to both Macdonald polynomial and its
elliptic uplift using the five- and six-dimensional gauge theories.
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Appendix A. Special functions
A.l. Random partition
A partition is defined as a way of expressing a non-negative integer n as summation over other

non-negative integers. Each partition can be labeled by a Young diagram A = (A1, A2, ..., Ag))
with A; € N such that

L)

n=[r=> A (A1)
i=1

We define the generating function of such a partition as
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o0

A _ i ) 1—q"); A2
% q @ D (a;9) n|:|]( q") (A.2a)
§ Mgl = : t: oo=||1—r". A2b
a q @ D (at; q) n:l( q") ( )

The g-shifted factorial (the g-Pochhammer symbol) is defined as
n—1
@@= ] —2g™. (A3)
m=0

A.2. Elliptic functions

Here we fix our notation for the elliptic functions. The so-called Dedekind eta function is
denoted as

n(7) =3 (q @)oo (A4)

The first Jacobi 6 function is denoted as:

it 1
011(z:T) =ie T 22 (d: Doo(d2: Doo(@ s @)oo (A.5)
whose series expansion
911(2; T) =l Z (_l)rfézreﬂirrz :l Z (_l)rf%erxeﬂirrz’ (A6)
reZ+% reZJr%

implies that it obeys the heat equation

1 o
— —011(z; 1) = (20:)%011 (z: 7). (A7)
Tl 0T
We also use another convention for the theta function,
0(z;9) = (25 Poo(a/z; q), (A.8)

which has a different normalization from the previous definition (A.5). The Weierstrass -
function

(z)—i-i-Z{ ! R } (A.9)
Plo=2 S @rptan?  (p+q0?] '

is related to theta and eta functions by

1
9 (2 7) = —(20:)*1og 11 (25 ) + — e log (7). (A.10)
We define the elliptic I'-function,
1— Z*lpn+lqm+l
rapea= [] T (A.11)
0<n,m<oo wq
obeying the functional relation,
I'(gz; p.q) I'(pz; p.q)
———=0&p), ——=0(z:q). (A.12)
I'(z; p.q) I'(z; p.q)
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A.3. Higher rank Theta function

Let us define

- 011(za /25 T)
Oay_(z;T)= n(t)V 1_[ “(7”’8 (A.13)
a>f g
as the rank N — 1 theta function, which also satisfies the heat equation [60]
0 - . -
NEQAN—I(Z; T)=miA;O4, (25 7), (A.14)
with the N-variable Laplacian:
N—
Az =) (20d:,)" (A.15)
A.4. Orbifolded partition
For the purpose in the main text, we consider the orbifolded coupling
N-1
0=[] 90 oty =0 (A.16)
=0
and
Zw
Jo = D ZotN = (20 (A.17)
Zw—1

We also consider the orbifolded version of the generating function of partitions (q; q)go1 in (A.2).

Given a finite partition A = (A1, ..., Ag@)), we define
A " 1709) .
w
l_[ qw+l —J l_[ ’ (A.18)
-1 Zw—X;

where we used the relation (2.13). The summation over all possible partition is given by

~re-T(E)- £ M(E) A1)

A oi=1 LAN—1,1>0 a=1

Zw—A;
The function Q(Z; 7) is the orbifolded version of the generating function of partitions (A.2),

N-1
Q=[] QG

w=0

- Tl

N—l1>a>p>0 (Za ; q)oo(q—, Doo

T

a=0

_ l_[ q1/12n(1.) /Za/Zﬂ 5 |:q1/24:|

011(za /285 T) n(t)

(a; Cl)oo

N—1>a>p20

38



T. Kimura and N. Lee Nuclear Physics B 991 (2023) 116218

2
_ n(t) g/
=" 1l sy | 7
N1 p0 V11(Za/ 285 Z
1 qN2/24
, (A.20)

Oay ZT) 7P

where (5 is the Weyl vector of SU (N) Lie group, whose entries are given as

N—-1 2 N—1
- . N-1 = -n 2 NN -D 5 Po
0 =(p0,-..,PN-1); Po=0———; 1ol ZZ'%Z — 0 ? =]_[ zhe.
=0 w=0
(A.21)
Using Eq. (A.14), it is easy to prove that the Q-function satisfies
1 1
0=>) VilogQ - SA:logQ+ 5 > (VilogQ)?, (A.22)
[0} w
with
Y VI=NVI+ 5V (A.23)
w
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