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Abstract. The agricultural sector is currently confronted with the challenge

to reduce greenhouse gas (GHG) emissions, whilst maintaining or increasing

production. Energy-saving technologies are often proposed as a partial solu-

tion, but the evidence on their ability to reduce GHG emissions remains mixed.

Production economics provides methodological tools to analyse the nexus of

agricultural production, energy use and GHG emissions. Convexity is predom-

inantly maintained in agricultural production economics, despite various theo-

retical and empirical reasons to question it. Employing nonconvex and convex

frontier frameworks, this contribution evaluates energy productivity change (the

ratio of aggregate output change to energy use change) and GHG emission inten-

sity change (the ratio of GHG emission change to polluting input change) using

Hicks-Moorsteen productivity formulations. We consider GHG emissions as by-

products of the production process by using a multi-equation model. Given

our empirical specification, nonconvex and convex Hicks-Moorsteen indices can

coincide under certain circumstances, which leads to a series of theoretical equiv-

alence results. The empirical application focuses on 1,510 observations of Dutch

dairy farms for the period of 2010-2019. The results show a positive associa-

tion between energy productivity change and GHG emission intensity change,

which calls into question the potential of on-farm, energy-efficiency-increasing

measures to reduce GHG emission intensity.
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1. Introduction

The agricultural sector is currently facing the challenge to reduce GHG emis-

sions, whilst maintaining or increasing production. Agriculture contributes almost

one quarter of total greenhouse gas (GHG) emissions (FAO, 2014). Energy-saving

technologies are often proposed as a way to reduce GHG emissions in agriculture

(Schneider and Smith, 2009). They can in theory decrease GHG emissions per unit

produced, since they can decrease the requirements for energy use, a polluting in-

put, per unit produced. In practice, however, these energy-saving technologies do

not necessarily lead to a decrease of energy per unit produced, because of slower

technology adoption among laggards, which furthermore can still be associated

with energy-wasting behaviour because of the rebound effect (Pan et al., 2021).

Moreover, GHG emissions per unit of polluting inputs, consisting of not only en-

ergy, but also for example herd size, fertilisers and feed, can still increase.

Analysing energy productivity change and GHG emission intensity change can

provide useful insights on the interplay between agricultural production, energy

use, and GHG emissions. Energy productivity change can be defined as the ratio

of aggregate output change to energy use change, and GHG emission intensity can

be defined as the ratio of GHG emission change to polluting input change. This

paper develops an analytical framework to evaluate energy productivity change

and GHG emission intensity change in the agricultural sector.

Production economics provides a suitable methodological toolbox to analyse

energy productivity change and GHG emission intensity change. This field is con-

cerned with the appropriate modelling of the production relationship between the

inputs used and outputs produced. Energy use is one of the conventional inputs to

produce conventional outputs. The axiomatic properties assigned to analyse the

conversion of conventional inputs to conventional outputs have been thoroughly

studied (e.g., Färe and Primont, 1995), which allows assessment of energy pro-

ductivity growth. GHG emissions are pollutants that occur as by-products in the
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production process. Axiomatic treatment of pollutants has been heavily debated,

but the multi-equation modelling approach proposed by Murty et al. (2012) is

currently considered the most promising.1 Such appropriate modelling permits

assessment of GHG emission intensity growth.

In spite of these methodological advances, applications to the agricultural sector

overwhelmingly use the basic convexity assumption when estimating the produc-

tion technology. However, there are theoretical and empirical reasons to question

the convexity assumption.

Theoretically, there can be indivisibilities in inputs and outputs, economies of

scale and economies of specialisation (that play a role in the new growth theory:

e.g., Romer (1990) on nonrival inputs), as well as externalities. Seminal contri-

butions to axiomatic production theory indicate that the cost function is convex

in the outputs if and only if technology is convex (e.g., Jacobsen (1970, Corollary

5.5)). Thus, using contraposition, the cost function is nonconvex if and only if

technology is nonconvex: Kerstens and Van de Woestyne (2021) illustrate that the

gap between convex and nonconvex costs may be very substantial.

Empirically, various studies in agricultural economics contain evidence about

the potential relevance of nonconvexities. Paris et al. (1970) report concave iso-

quants in the hay and concentrates inputs space for whole milk and skimmed milk.

Brokken (1977) similarly summarises three studies revealing that there are con-

cave isoquants in the concentrates and roughage inputs space in beef production.

Bhide et al. (1980) also report at least partially concave isoquants in the concen-

trate and corn silage input space that best explain the relationship in beef gain

production. Finally, Freeze and Hironaka (1990) report limited substitution of

alfalfa hay and concentrate in beef feeding diets resulting in a forage-concentrate

weight gain isoquant that are concave to the origin in the middle range. Despite

1Surveys on how to model pollutants are available in Dakpo et al. (2016), Ancev et al. (2017),

and Dakpo and Ang (2019).
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the empirical relevance of nonconvexities in experimental and agronomical data

in agriculture, the large majority of the empirical applications assumes a convex

technology. Recent exceptions empirically considering a nonconvex technology in-

clude Ruijs et al. (2013), Ruijs et al. (2017), Ang and Kerstens (2017) and Ang

et al. (2018). General reflections on the role of nonconvexity in ecosystems and

agriculture are found in Dasgupta and Mähler (2003) and Brown et al. (2011),

among others.

Our contributions are fourfold. First, using a production economics perspective,

we analyse energy productivity change and GHG emission intensity change side-

by-side. A particular advantage of this approach is its appropriate consideration of

on the one hand the conversion of conventional inputs to conventional outputs and

on the other hand the GHG emissions occurring as a by-product in this process.

Employing Hicks-Moorsteen productivity formulations (Bjurek, 1996), the aggre-

gations in the various components are grounded in production theory. Following

Murty et al. (2012), we consider GHG emissions as by-products of the production

process using multi-equation modelling.

Second, in contrast to the prevailing literature, we assume a nonconvex technol-

ogy in addition to the more traditional convex technology. To this end, we estimate

the production technology using a free disposal hull (FDH) (Deprins et al., 1984).

FDH is a nonparametric approach that only relies on minimal assumptions. Such

a nonconvex technology has been rarely employed in a productivity index context.

Examples of such studies include Diewert and Fox (2014), Kerstens and Van de

Woestyne (2014a), Ang and Kerstens (2017) and Kerstens et al. (2018), among

others.

Third, we show that convex and nonconvex Hicks-Moorsteen index results can

be identical under certain conditions, which is the case for several components in

our empirical analysis. This leads to a series of new theoretical results on the
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conditions under which convex and nonconvex Hicks-Moorsteen productivity in-

dices coincide. While theoretical relations between, for instance, Hicks-Moorsteen

and Malmquist productivity indices are well-established (see, e.g., Kerstens and

Van de Woestyne (2014a, Section 2.4) for a survey), we are unaware of any theoret-

ical results regarding the equivalence of a productivity index under convexity and

nonconvexity. To the best of our knowledge, our results are new to the productivity

index literature.

Fourth, merging a comprehensive accountancy data set with a unique data set

with GHG emission estimates, we illustrate our approach with an application to a

large sample of Dutch dairy farms for the years 2010-2019. The European Energy

Efficiency Directive focuses on increasing energy efficiency and reduction of the

use of fossil fuels (Moerkerken et al., 2021). The Dutch dairy sector in particular

has signed several covenants that target increases in energy-efficiency, which have

been in place in the studied period. There have been (so far unsuccessful) calls

for making the Dutch dairy chain energy neutral (Gebrezgabher et al., 2012).

Furthermore, the dairy sector contributes substantially to GHG emissions in the

Netherlands (Ruyssenaars et al., 2021). As a result, the Dutch dairy sector is a

good candidate for a case study.

The remainder of the current paper unfolds as follows. The next Section 2

describes the theoretical framework, in which we provide a Hicks-Moorsteen for-

mulation of energy productivity change and GHG emission intensity change. This

is followed by the description of the nonconvex method in Section 3, in which we

establish the equivalence results between nonconvex and convex Hicks-Moorsteen

productivity indices, and by a brief description of the data set of Dutch dairy farms

in Section 4. Subsequently, we show the empirical results in Section 5. The final

Section 6 concludes.
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2. Theoretical Framework

Balk (2003) states that Total Factor Productivity (TFP) change, the most en-

compassing measure of productivity change, is the “real” component of profitabil-

ity change. Therefore, productivity is a key component of profitability and it is an

important driver of changes in living standards. TFP growth can be conceived as

an index number that captures any output growth that is unexplained by input

growth (Hulten, 2001). Russell (2018) defines theoretical productivity indices as

known and non-stochastic, but unspecified. The Malmquist productivity index

(Caves et al., 1982) and the Hicks-Moorsteen productivity index (Bjurek, 1996)

are prime examples. The Malmquist productivity index measures the local shift of

the production frontier, while the Hicks-Moorsteen productivity index is a ratio of

an aggregate output index to an aggregate input index. The current contribution

focuses on the Hicks-Moorsteen productivity formulation.

Our Hicks-Moorsteen productivity formulation has two key advantages in com-

parison to the Malmquist productivity index formulation. First, the Hicks-

Moorsteen TFP index is multiplicatively complete (O’Donnell, 2012). This permits

separate analysis of output and input growth or decline, which can also be adapted

to the environmental context (Abad and Ravelojaona, 2022). For our partial pro-

ductivity formulations, this means that one can separately assess aggregate output

change and energy use change, on the one hand, and GHG emission change and

polluting input change, on the other hand. This is normally not possible using

a Malmquist productivity formulation, although Abad and Ravelojaona (2021)

demonstrate how to formulate a pollution-adjusted Malmquist productivity index

consisting of a separate polluting productivity index and a separate non-polluting

productivity index. Second, the Hicks-Moorsteen formulation is not susceptible
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to infeasibilities under weak conditions on technology (mainly strong disposabil-

ity), which contrasts with the Malmquist productivity formulation (see Briec and

Kerstens (2011)).2

2.1. Basic notation.

Let x P Rn�o
� be the vector of inputs being transformed to the vector of out-

puts y P Rm
� . Let us additionally consider a production process that generates

greenhouse gas emissions ghg as a by-product. We partition x into a sub-vector of

polluting inputs u P Rn
� and sub-vector of non-polluting inputs v P Ro

�: x � pu,vq.

Energy (E) is one of the polluting inputs; z P Rn�1
� is the sub-vector of non-energy

polluting inputs, which implies u � pE, zq.

2.2. Energy productivity change.

The parental conventional technology at time t is defined as follows:

Tt �
 
pxt,ytq P Rn�m�o

� |xt can produce yt

(
. (1)

whereby the vector of inputs x contributes to generating the vector of outputs y.

Here, x � pu,vq and u � pE, zq. Therefore, the technology (1) can be rewritten

as follows:

Tt �
 
pEt, zt,vt,ytq P Rn�m�o

� |pEt, zt,vtq can produce yt

(
. (2)

In line with, for example, Färe and Primont (1995), we make the following

assumptions:

Axiom 1 (Closedness). Tt is closed.

Axiom 2 (Boundedness). Tt is bounded.

2When using weak disposability (another popular way to model bad outputs), infeasibilities

can occur even with the Hicks-Moorsteen formulation. For instance, Zaim (2004) employs a

Hicks-Moorsteen productivity index with weak disposal of bad outputs and reports infeasibilities

for 8 out of 41 US states, despite using time windows that reduce the number of infeasibilities.
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Axiom 3 (Free disposability of inputs and outputs). If px1t,�y
1
tq ¥ pxt,�ytq then

pxt,ytq P Tt ñ px1t,y
1
tq P Tt.

Axiom 4 (Inaction). Inaction is possible: p0n�o,0mq P Tt.

Axiom 5 (Convexity). Tt is convex.

Axioms 1 to 4 are always maintained throughout this contribution. Despite its

widespread use in economics, the axiom of convexity is not always maintained in

this contribution.3

We can represent technology Tt by the traditional output distance function:

Dy
t pE, z,v,yq � inf

ϕ

"
ϕ ¡ 0|pE, z,v,

y

ϕ
q P Tt

*
(3)

that scales up outputs for given total input use, and a sub-vector energy distance

function:

DE
t pE, z,v,yq � sup

θ

"
θ ¡ 0|p

E

θ
, z,v,yq P Tt

*
. (4)

that scales down the energy input, given non-energy inputs and outputs. We refer

to Färe and Primont (1995) for the properties of these distance functions.

Using Malmquist aggregations (Caves et al., 1982; O’Donnell, 2012) of equations

(3)-(4), we can define aggregate output change between time s and t as:

Y Ct,t�1 �

d
Dy

t�1pEt�1, zt�1,vt�1,yt�1q

Dy
t�1pEt�1, zt�1,vt�1,ytq

Dy
t pEt, zt,vt,yt�1q

Dy
t pEt, zt,vt,ytq

(5)

and energy use change between time s and t as:

ECt,t�1 �

d
DE

t�1pEt�1, zt�1,vt�1,yt�1q

DE
t�1pEt, zt�1,vt�1,yt�1q

DE
t pEt�1, zt,vt,ytq

DE
t pEt, zt,vt,ytq

. (6)

3The convex variable returns to scale technology does not satisfy inaction. Since technologies

(1) and (2) are equivalent, axioms 1 to 4 as well as 5 can also be rewritten for technology Tt in

(2)
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Dividing the aggregate output change (5) by the (sub-vector) energy use change

(6) yields a Hicks-Moorsteen productivity formulation (Bjurek, 1996; Caves et al.,

1982) of energy productivity change between time periods s and t:

EPRODCt,t�1 �
Y Ct,t�1

ECt,t�1

�

c
Dy

t�1pEt�1,zt�1,vt�1,yt�1q

Dy
t�1pEt�1,zt�1,vt�1,ytq

Dy
t pEt,zt,vt,yt�1q

Dy
t pEt,zt,vt,ytqc

DE
t�1pEt�1,zt�1,vt�1,yt�1q

DE
t�1pEt,zt�1,vt�1,yt�1q

DE
t pEt�1,zt,vt,ytq

DE
t pEt,zt,vt,ytq

. (7)

Equation (7) represents a sub-vector and therefore partial productivity index fo-

cusing on energy use. Values above unity indicate energy productivity growth.

This means that the growth rate of aggregate output exceeds that of energy use,

which can be interpreted as a relative decoupling of production from energy use.

Note that a sub-vector approach to model energy productivity growth as in

expression (7) has also been used by, for instance, Oude Lansink and Ondersteijn

(2006) with an application to the Dutch glasshouse sector. But, these authors use

a Malmquist productivity index formulation instead.

2.3. GHG emission intensity change.

Murty et al. (2012) show that pollutants such as GHG emissions can be explic-

itly modelled as a by-product. The emission-generating technology is defined as

follows:

Gt �
 
put, ghgtq P Rn�1

� |ut can produce ghgt
(
. (8)

whereby the polluting inputs u produce the by-product of greenhouse gas emissions

ghg.

Following Murty et al. (2012), we make the following assumption:

Axiom 6 (Closedness). Gt is closed.

Axiom 7 (Boundedness). Gt is bounded.

Axiom 8 (Costly disposability of greenhouse gas emissions and polluting inputs).

If put, ghgtq P Gt and ghg1t ¥ ghgt and u1
t ¤ ut, then pu

1
t, ghg

1
tq P Gt.
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Axiom 9 (Convexity). Gt is convex.

Similar to the case of Tt, we do not always maintain the convexity assumption for

Gt in the following.

We represent Gt by the polluting input distance function:

Du
t pu, ghgq � inf

ρ

"
ρ ¡ 0|p

u

ρ
, ghgq P Gt

*
(9)

that scales up polluting inputs for given total ghg, and a ghg emission distance

function:

Dghg
t pu, ghgq � sup

δ

"
δ ¡ 0|pu,

ghg

δ
q P Gt

*
(10)

that scales down ghg as much as possible.

Analogous to equations (5)-(6) and (7), we aggregate equations (9)-(10) using

Malmquist formulations (Caves et al., 1982; O’Donnell, 2012). We define polluting

input change between time periods s and t as:

XPCt,t�1 �

d
Du

t�1put�1, ghgt�1q

Du
t�1put, ghgt�1q

Du
t put�1, ghgtq

Du
t put, ghgtq

(11)

and GHG emission change between time periods s and t as:

GHGCt,t�1 �

d
Dghg

t�1put�1, ghgt�1q

Dghg
t�1put�1, ghgtq

Dghg
t put, ghgt�1q

Dghg
t put, ghgtq

. (12)

Again, we refer to Färe and Primont (1995) for the properties of these distance

functions.

Dividing equation (12) by equation (11) yields a Hicks-Moorsteen formulation

of GHG emission intensity change between time periods s and t:

GHGICt,t�1 �
GHGCt,t�1

XPCt,t�1

�

c
Du

t�1put�1,ghgt�1q

Du
t�1put,ghgt�1q

Du
t�1put�1,ghgtq

Du
t put,ghgtqc

Dghg
t�1put�1,ghgt�1q

Dghg
t�1put�1,ghgtq

Dghg
t put,ghgt�1q

Dghg
t put,ghgtq

(13)

Equation (13) compares GHG emission change to polluting input change. Val-

ues above one indicate intensification, which means that the growth rate of GHG



10 F. ANG, K. KERSTENS, AND J. SADEGHI

emissions exceeds that of polluting inputs. Equation (13) can thus be regarded

as the reciprocal of a productivity change measure: scores above unity are bad,

while scores below unity are good. Observe that XPCt,t�1 reduces GHGICt,t�1

and is thus beneficial with regard to the emission-generating technology. If the

level of GHG emissions remains constant, while the level of polluting inputs has

increased, then this indicates an improvement of environmental performance in

the emission-generating technology, as reflected by a decrease in GHG emission

intensity. However, in the conventional technology, an increase in the level of

inputs (including polluting inputs) would be penalised in terms of productivity.

This highlights the importance of not only considering improvements in the en-

vironmental performance in the emission-generating technology, but also in the

economic performance in the conventional technology.

The separate theoretical consideration of the conventional technology and

emission-generating technology in a productivity context follows Lamkowsky et al.

(2021). This approach differs somewhat from the original approach of Murty et al.

(2012). The latter authors focus on the development of environmental efficiency

measures that appropriately take into account the emission-generating process gen-

erating pollution. To this end, they compute the average of efficiency in the conven-

tional technology and efficiency in the emission-generating technology, which can

be represented in the intersection of both technologies. The present contribution

focuses on comparing partial productivity scores in the respective technologies,

which makes separate consideration appropriate.

3. Empirical Specification of Nonparametric Technologies

Thus far we have been silent on the approximation of the conventional and

emission-generating technologies. This paper employs convex and nonconvex non-

parametric approximations. There are I farms. Assuming convexity and variable
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returns to scale (VRS), the conventional technology at time t is approximated by:

T̂tpxt,ytq �

#
pxt,ytq|

I̧

i�1

λi,txi,t ¤ xt,
I̧

i�1

λi,tyi,t ¥ yt,
I̧

i�1

λi,t � 1

+
. (14)

A nonconvex approximation is obtained by adding the binary integer constraint

λi,t P t0, 1u on the activity vector. Again assuming convex VRS, the emission-

generating technology at time t is approximated by:

Ĝtput, ghgtq �

#
put, ghgtq|

I̧

i�1

µi,tui,t ¥ ut,
I̧

i�1

µi,t, ghgi,t ¤ ghgt,
I̧

i�1

µi,t � 1

+
.

(15)

Again, a nonconvex approximation is obtained by adding the binary integer

constraint µi,t P t0, 1u on the activity vector.

These approximations allow computation of all components of energy productiv-

ity change and GHG emission intensity change. Following the detailed explanation

in Murty and Russell (2020, p. 47-48), these separate approximations are also con-

sistent with the original theoretical framework of Murty et al. (2012) that defines

the by-production technology as the intersection of the conventional technology

and the emission-generating technology. Appendix A (online) shows an overview

of the required linear and binary mixed-integer linear programmes under the as-

sumptions of convexity and nonconvexity respectively.

The only alternative theoretical models that use a by-production framework to

model bad outputs in both convex and nonconvex ways are found in Abad and

Briec (2019) and Abad and Ravelojaona (2021, 2022). These models are based on

recent work to measure strong forms of hypercongestion for convex and nonconvex

technologies in Briec et al. (2016) who develop a limited form of strong dispos-

ability called S-disposability (see Briec et al. (2018) for an empirical illustration).4

Abad and Briec (2019) and Yuan et al. (2021) are among the first to empirically

4Abad and Briec (2019) re-baptise this S-disposability assumption as a B-disposability as-

sumption when modelling bad outputs.
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implement a nonconvex version of the Murty et al. (2012) by-production approach:

these authors report substantial differences between convex and nonconvex empir-

ical results.

Convex and nonconvex comparisons of the Hicks-Moorsteen productivity index

are rare in the literature. Kerstens and Van de Woestyne (2014a) compare Hicks-

Moorsteen and Malmquist productivity indices under balanced and unbalanced

panel data and under constant and variable returns to scale. These authors report

substantial differences between convex and nonconvex Hicks-Moorsteen produc-

tivity indices, but they do not report any formal testing. In an additive context,

we are aware of only two further studies that report on the impact of convexity on

the Luenberger-Hicks-Moorsteen productivity indicator: both Ang and Kerstens

(2017) and Kerstens et al. (2018) report statistically significant differences between

nonconvex and convex estimates.

When computing nonconvex and convex Hicks-Moorsteen productivity indices

for our empirical specification, we find that several components coincide exactly.

This leads to a series of new theoretical results stating that convex and nonconvex

(partial) Hicks-Moorsteen productivity indices coincide under specific conditions.

Theorem 1. Assuming that there is just a single output pm � 1q, then the follow-

ing statements are true under both convex and nonconvex assumptions:

(i)

Dy
t�1pEt�1, zt�1,vt�1, yt�1q

Dy
t�1pEt�1, zt�1,vt�1, ytq

�
Dy

t pEt, zt,vt, yt�1q

Dy
t pEt, zt,vt, ytq

�
yt�1

yt
. (16)

(ii)

Y Ct,t�1 �
yt�1

yt
. (17)

The proofs of Theorem 1 and the other statements are given in Appendix B, online.

Theorem 2. The following statements are true under both convex and nonconvex

assumptions:
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(i)

DE
t�1pEt�1, zt�1,vt�1,yt�1q

DE
t�1pEt, zt�1,vt�1,yt�1q

�
DE

t pEt�1, zt,vt,ytq

DE
t pEt, zt,vt,ytq

�
Et�1

Et

. (18)

(ii)

ECt,t�1 �
Et�1

Et

. (19)

Corollary 1. Assuming that there is just a single output pm � 1q, then the fol-

lowing statement is true under both convex and nonconvex assumptions:

EPRODCt,t�1 �
yt�1Et

ytEt�1

. (20)

The above results shows that with a single output, we can measure all com-

ponents of the Hicks-Moorsteen index without having to solve any optimization

models. In addition, the Hicks-Moorsteen index and its components are indepen-

dent of the value of fixed inputs. As a consequence, in this particular case, the

fixed inputs can be ignored. This closed-form specification provides opportunities

for policy-oriented applications, that can dispense with more complex linear or

binary mixed-integer linear programmes.

This simplification for computing a theoretical Hicks-Moorsteen productivity in-

dex is new to the productivity literature. It is well-known that efficiency measures

under a FDH technology can be obtained via implicit enumeration algorithms and

that this leads to substantial time gains (see, e.g., Kerstens and Van de Woestyne

(2014b)). However, it is exceptional to have implicit enumeration results that are

also valid for convex technologies. To the best of our knowledge, the only other

results concern the cost function and revenue function under constant returns to

scale and a single output or a single input, respectively (see Briec et al. (2014)).

However, the latter result concerns value functions, while here we have a result for

a particular specification of the technology.

Theorem 3. Assuming that there is just a single polluting input pn � 1q, then the

following statements are true under both convex and nonconvex assumptions:
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(i)
Du

t�1put�1, ghgt�1q

Du
t�1put, ghgt�1q

�
Du

t put�1, ghgtq

Du
t put, ghgtq

�
ut�1

ut

. (21)

(ii)

XPCt,t�1 �
ut�1

ut

. (22)

Theorem 4. The following statements are true under both convex and nonconvex

assumptions:

(i)

Dghg
t�1put�1, ghgt�1q

Dghg
t�1put�1, ghgtq

�
Dghg

t put, ghgt�1q

Dghg
t put, ghgtq

�
ghgt�1

ghgt
. (23)

(ii)

GHGCt,t�1 �
ghgt�1

ghgt
. (24)

Corollary 2. Assuming that there is just a single polluting input pn � 1q, then

the following statement is true under both convex and nonconvex assumptions:

GHGICt,t�1 �
ut�1ghgt
utghgt�1

. (25)

Observe that our empirical application considers multiple polluting inputs. Con-

sequently, Theorem 3 and Corollary 2 do not strictly hold for our particular em-

pirical application.

4. Data

We use a data set from the Farm Accountancy Data Network (FADN), which

is merged with a data set containing computations of GHG emissions by Wa-

geningen Economic Research (WEcR). The FADN data set is an unbalanced, but

stratified panel. To obtain a homogeneous sample, the application focuses on the

specialised dairy farms not producing any other on-farm output (thus, omitting

farms that produce crop outputs). One clear outlier with an unrealistic value has

been omitted. The final, merged data set contains 1,510 observations for the years

2010-2019.
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We distinguish one output and six inputs. The output is the aggregate dairy

output (in ¿), which consists of milk and meat. The three polluting inputs (u)

are energy (in ¿), herd size (in livestock units) and other non-energy intermediate

polluting inputs (in ¿). The latter consist of an aggregation of seed, feed, pesticide,

fertilisers and other variable inputs. The three non-polluting inputs (v) are land (in

hectares), labour (in annual working hours), and the aggregate capital depreciation

of buildings and machinery (in ¿).

Dairy output, other non-energy intermediate polluting inputs and aggregate

capital depreciation are computed as the ratio of the total monetary value to the

respective dimensionless Törnqvist price index. The monetary value of energy

is deflated by the respective dimensionless price index. As a result, the outputs

and inputs expressed in monetary terms are implicit quantities, while livestock,

land and labour are expressed as original quantities. Implicit quantities employ a

common price index per year. This implies that differences in price are reflected

as differences in implicit quantity. Outputs and inputs with a higher price are here

assumed to have a higher quality and hence a higher price (Cox and Wohlgenant,

1986; Mairesse and Jaumandreu, 2005). All price indices are drawn from the

Eurostat (2021) database. Finally, we consider GHG emissions (in kilograms).

WEcR computes the GHG emissions by a consideration of the emission factors of

all inputs and outputs from cradle to farm gate, as well as a careful investigation of

the agricultural production system. GHG emissions consist of CO2 emissions, N2O

emissions and CH4 emissions. Sources of GHG emissions include, for example,

the production and purchasing of manure, ruminal fermentation of cows, use of

fertilisers, and energy use (DuurzameZuivelketen, 2018).

In our empirical setting, we compute EPRODCt,t�1 as follows: (i) the Y Ct,t�1

component expands the output given all six inputs, and (ii) the ECt,t�1 component

reduces the single energy input solely given the five other inputs and the output.

Additionally, GHGICt,t�1 is computed as follows: (i) the XPCt,t�1 component
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reduces GHG emissions given the three polluting inputs, and (ii) the GHGCt,t�1

component expands the three polluting inputs given GHG emissions.

The data on FADN and WEcR are proprietary, but their use can be requested

at and negotiated with WEcR. The Supplementary Materials online provide the

R code to compute EPRODCt,t�1 and GHGICt,t�1.

Table 1 shows the detailed descriptive statistics. Despite the homogeneity of

the sample, there is substantial heterogeneity in the inputs, output, and GHG

emissions.

Table 1. Descriptive Statistics

Statistic Mean St. Dev.

Dairy output (implicit quantity in ¿) 364,728 276,785

Labour (in annual working hours) 4,730 3,051

Land (in hectares) 58.158 35.635

Herd size (in livestock units) 151.870 100.799

Material non-energy input (implicit quantity in ¿) 144,716 115,273

Energy (implicit quantity in ¿) 7,239 5,246

Aggregate capital depreciation (implicit quantity in ¿) 50,624 41,545

Greenhouse gas emissions (in kilograms) 1,555,100 1,101,576

Dairy Törnqvist price index (dimensionless) 1.107 0.089

Material non-energy input Törnqvist price index (dimensionless) 1.132 0.072

Energy price index (dimensionless) 1.034 0.114

Aggregate capital Törnqvist price index (dimensionless) 1.068 0.061

5. Empirical Results

This section describes our empirical results. We first show the results regarding

energy productivity change and GHG emission intensity change, which is followed

by a comparison between both. There are in total 1,008 annual growth rates. The

nonconvex and convex approximations are deterministic and as a result sensitive to

potential outliers that may determine the production frontier. Following Ang and
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Kerstens (2016) and Serra et al. (2014) among others, we apply the super-efficiency

approach of Banker and Chang (2006) as a robustness check. This involves the re-

moval of the considered observation from the reference technology in the efficiency

estimation. “Super-efficient” farms have a score higher than unity or are infeasible

to compute with respect to such a modified technology (Ray, 2008). The Appen-

dix C online shows the nonconvex scores of energy productivity change and GHG

emission intensity change for the sub-sample of observations with a feasible score

between the 5th and 95th percentile for an output distance function formulation,

employing nonconvex approximation. These results without potential outliers are

overall similar to those presented in the main body of the text.

5.1. Energy productivity change.

As mentioned in Section 3, the nonconvex and convex approximations of all

components of EPRODCt,t�1 coincide.

Table 2 shows the annual energy productivity change, EPRODCt,t�1 in equation

(7), and the components of aggregate output change, Y Ct,t�1, and energy use

change, ECt,t�1. The average annual EPRODCt,t�1 in the considered period is

1.034, which indicates an average growth rate of 3.4% per annum (p.a.). The

median annual EPRODCt,t�1 is 1.008, which indicates a slight median increase of

0.8% p.a. The mean is somewhat higher than the median, but overall close to the

median. The average EPRODCt,t�1 indicates growth of �17.6%, �8.5%, �10.7%,

�13.7% and �11.7% in the periods of 2010 � 2011, 2011 � 2012, 2012 � 2013,

2016 � 2017 and 2017 � 2018, respectively. In the other periods, there is on

average a decline in EPRODCt,t�1, of which 2018 � 2019 (�12.8%) is the worst

period. Finally, we remark that ECt,t�1 is more volatile and has a larger spread

than Y Ct,t�1.

The results on average annual energy productivity change, aggregate output

change, and energy use change for the subsample without potential outliers are
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Table 2. Average Annual Energy Productivity Change, Aggregate

Output Change and Energy Use Change

Period EPRODCt,t�1 Y Ct,t�1 ECt,t�1

2010-2011 1.176 1.021 0.895

2011-2012 1.085 1.031 1.010

2012-2013 1.107 1.039 0.989

2013-2014 0.941 0.965 1.083

2014-2015 0.975 1.066 1.123

2015-2016 0.938 1.067 1.206

2016-2017 1.137 1.035 0.941

2017-2018 1.117 0.998 0.926

2018-2019 0.872 1.031 1.227

Overall 1.034 1.029 1.050

reported in Table C.1 in Appendix C, online. These results are similar to the ones

discussed here.

5.2. GHG emission intensity change.

As mentioned in Section 3, the nonconvex and convex approximations of

GHGCt,t�1 coincide.

As our empirical application considers multiple polluting inputs, Theorem 3 and

Corollary 2 do not hold for our empirical application. Therefore, the nonconvex

and convex approximations differ for XPCt,t�1 and GHGICt,t�1.

Table 3 shows the annual GHG emission intensity change estimated using non-

convex approximation, GHGICNC
t,t�1 in equation (13), and the components of pol-

luting input change estimated using nonconvex approximation, XPCNC
t,t�1, and

GHG emission change estimated using nonconvex approximation, GHGCNC
t,t�1. The

average annual GHGICNC
t,t�1 in the considered period is 1.015, which indicates an
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average increase of 1.5% p.a. The median annual GHGICNC
t,t�1 is 1.005, which

indicates a slight median increase of 0.5% p.a. The mean and median are thus

rather close to one another. The average GHGICNC
t,t�1 indicates decline of 2.5%

and 1.2% in 2013�2014 and 2014�2015, respectively. In all other periods, there is

on average an increase in GHGICNC
t,t�1, of which 2012�2013 (�16.9%) stands out.

Interestingly, average annual increases (decreases) in EPRODCt,t�1 are counter-

balanced by average annual increases (decreases) in GHGICNC
t,t�1. The trend of

GHGCNC
t,t�1 largely follows the trend of XPCNC

t,t�1, except in 2018� 2019, in which

XPCNC
t,t�1 ¡ 1 and GHGCNC

t,t�1   1. The positive association between XPCNC
t,t�1

and GHGCNC
t,t�1 is more pronounced than the one between Y Ct,t�1 and ECt,t�1.

This suggests that decoupling energy use from production occurs more frequently

than decoupling GHG emissions from the use of polluting inputs. Finally, we note

that XPCNC
t,t�1 and GHGCNC

t,t�1 are not so volatile and have a relatively low spread.

Table 4 shows the annual GHG emission intensity change estimated using convex

approximation, GHGICC
t,t�1 in equation (13), and the components of polluting in-

put change estimated using convex approximation, XPCC
t,t�1, and GHG emission

change estimated using convex approximation, GHGCC
t,t�1. As shown in the the-

oretical results, GHGCC
t,t�1 � GHGCNC

t,t�1. There are differences in GHGICC
t,t�1

and XPCC
t,t�1, albeit to a very minor extent.

The results on average annual GHG emission intensity change, polluting input

change, and greenhouse gas emission change under nonconvex approximation for

sub-sample without outliers are reported in Table C.2 in Appendix C, online.

Overall, these results are in line with the ones discussed here.

5.3. Comparing energy productivity change to GHG emission intensity

change.

Given the similarity between the results estimated using nonconvex and convex

approximations, we only focus on the comparison between energy productivity
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Table 3. Average Annual Greenhouse Gas Emission Intensity

Change, Polluting Input Change and Greenhouse Gas Emission

Change under Nonconvex Approximation

Period GHGICNC
t,t�1 XPCNC

t,t�1 GHGCNC
t,t�1

2010-2011 1.019 1.000 1.018

2011-2012 1.017 1.025 1.041

2012-2013 1.164 1.050 1.223

2013-2014 0.975 1.055 1.028

2014-2015 0.988 1.057 1.041

2015-2016 1.006 1.071 1.075

2016-2017 1.021 0.977 0.996

2017-2018 1.028 0.954 0.979

2018-2019 0.957 1.017 0.972

Overall 1.015 1.028 1.040

change and GHG emission intensity change employing the nonconvex approxima-

tion.

Figure 1 shows a scatter plot that relates energy productivity change to GHG

emission intensity change. It shows a positive association between energy pro-

ductivity change and GHG emission intensity change, which suggests a trade-off

between good performance in one technology and good performance in the other.

This empirical finding is confirmed by a Pearson correlation of 0.345 and Spearman

rank correlation of 0.486.

The large majority of farms score well either in terms of energy productivity

change or in terms of GHG emission intensity change: quadrant II shows 400

observations with energy productivity growth and GHG emission intensity growth,

while quadrant III shows 355 observations with energy productivity decline and
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Table 4. Average Annual Greenhouse Gas Emission Intensity

Change, Polluting Input Change and Greenhouse Gas Emission

Change under Convex Approximation

Period GHGICC
t,t�1 XPCC

t,t�1 GHGCC
t,t�1

2010-2011 1.032 0.988 1.018

2011-2012 1.018 1.026 1.041

2012-2013 1.173 1.043 1.223

2013-2014 0.978 1.053 1.028

2014-2015 0.982 1.063 1.041

2015-2016 0.989 1.089 1.075

2016-2017 1.018 0.981 0.996

2017-2018 1.037 0.947 0.979

2018-2019 0.931 1.047 0.972

Overall 1.017 1.024 1.040

GHG emission intensity decline. Quadrant I shows 177 observations with energy

productivity decline and GHG emission intensity growth. Quadrant IV shows 176

observations with energy productivity growth and GHG emission intensity decline.

6. Conclusions

Using a production economics perspective, this paper develops a framework to

analyse energy productivity change and GHG emission intensity change. Both

measures are computed employing a nonparametric, nonconvex and convex frame-

work based on a Hicks-Moorsteen productivity formulation. The empirical ap-

plication focuses on 1,510 observations of Dutch specialised dairy farms for the

years 2010-2019. Given our specific empirical specification, we observe that en-

ergy productivity change and polluting input change are equivalent for nonconvex
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I II

III IV

Figure 1. Scatter Plot of Energy Productivity Change vs. Green-

house Gas Emission Intensity Change, Estimated Using Nonconvex

Approximation

and convex approximations. We formulate theoretical conditions under which this

equivalence holds.

The results are similar for nonconvex and convex approximations. The average

energy productivity growth is 3.4% p.a. in both approximations, while the GHG
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emission intensity increases by 1.5% p.a. in the nonconvex approximation, and

by 1.7% p.a. in the convex approximation. A robustness check for outliers is in

line with our main results. Fluctuations over time are substantial for energy pro-

ductivity change and more moderate for GHG emission intensity change. Energy

productivity growth is positively associated with GHG emission intensity growth

rather than GHG emission intensity decline.

We emphasise that these results should be interpreted as descriptive and ex-

ploratory rather than causal. Our identification strategy disallows verifying whether

energy productivity growth causes GHG emission intensity growth. Moreover,

change in one technology may imply adjustment in the other one, which is over-

looked by the correlation analysis. Nonetheless, our findings do call into question

the potential of on-farm, energy-efficiency-increasing measures to reduce GHG

emission intensity.

We have five recommendations for future research. First, the flexibility of our

proposed framework allows straightforward application to other empirical settings.

Any change in partial or total factor productivity can be compared to a change

in the performance in the emission-generating technology. Energy productivity

change and GHG emission intensity change can be evaluated side-by-side in, for

instance, the electric power plant sector. Another interesting avenue is the con-

sideration of other pollutants such as phosphorus surplus and nitrogen surplus in

the agricultural sector.

Second, the behavioural and technological drivers explaining the nexus of agri-

cultural production, energy use and GHG emissions should be further investigated.

In this way, policy makers are able to draft policies that effectively stimulate reduc-

tion of GHG emissions whilst increasing or maintaining agricultural production.

Third, one should extend the current analysis by also considering indirect energy

use. This paper solely focuses on direct, purchased energy use. Indirect energy use

also takes into account earlier chain stages of, most notably, fertilisers. Although
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policy makers rather focus on reducing direct energy use by means of energy-

efficiency-increasing initiatives, identifying sustainable pathways to reduce GHG

emissions requires analysis beyond the farm level.

Fourth, our framework could be applied in a difference-based productivity indi-

cator framework. Following the terminology of Diewert (2005), the current frame-

work is based on ratio-based productivity “indices”. However, when there are zero

or negative values, difference-based “indicators” are more apt (Balk et al., 2003).

Difference-based productivity measures include Bennet (Chambers, 2002), Bennet-

Lowe (Ang, 2019), Luenberger (Chambers, 2002) and Luenberger-Hicks-Moorsteen

(Briec and Kerstens, 2004) indicators.

Fifth, we recommend to adapt the proposed framework to a statistical set-

ting. Our nonparametric framework is inherently deterministic. Simar and Wil-

son (1999) show how to obtain statistically robust estimates using a bootstrapped

Malmquist productivity formulation. An extension to a Hicks-Moorsteen index re-

mains to be developed. Alternatively, one could employ stochastic frontier analysis

(Aigner et al., 1977; Meeusen and Van Den Broeck, 1977).
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Appendices: Supplementary Material

Appendix A. Linear and Binary Mixed-Integer Linear Programmes

A.1. Energy Productivity Change.

To assess Y Ct,t�1 defined in equation (5), we compute four linear and binary

mixed-integer linear programmes based on the output distance function defined in

equation (3). With I observations in period s, and J observations in period t, we

have for observation k the following four linear programmes for the convex case:

Dy
t�1pEk,t�1, zk,t�1,vk,t�1,yk,tq � infϕ¡0,λi,t�1Pt0,1u ϕ

s.t.
°I

i�1 λi,t�1Ei,t�1 ¤ Ek,t�1,°I
i�1 λi,t�1zi,t�1 ¤ zk,t�1,°I
i�1 λi,t�1vi,t�1 ¤ vk,t�1,°I
i�1 λi,t�1yi,t ¥

yk,t

ϕ
,°I

i�1 λi,t�1 � 1.

(A1)

Dy
t�1pEk,t�1, zk,t�1,vk,t�1,yk,tq � infϕ¡0,λi,t�1Pt0,1u ϕ

s.t.
°I

i�1 λi,t�1Ei,t�1 ¤ Ek,t�1,°I
i�1 λi,t�1zi,t�1 ¤ zk,t�1,°I
i�1 λi,t�1vi,t�1 ¤ vk,t�1,°I
i�1 λi,t�1yi,t�1 ¥

yk,t

ϕ
,°I

i�1 λi,t�1 � 1.

(A2)

Dy
t pEk,t, zk,t,vk,t,yk,tq � infϕ¡0,λi,tPt0,1u ϕ

s.t.
°J

j�1 λi,tEi,t ¤ Ek,t,°J
j�1 λi,tzi,t ¤ zk,t,°J
j�1 λi,tvi,t ¤ vk,t,°J
j�1 λi,tyi,t ¥

yk,t

ϕ
,°J

j�1 λi,t � 1.

(A3)
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Dy
t pEk,t, zk,t,vk,t,yk,t�1q � infϕ¡0,λi,tPt0,1u ϕ

s.t.
°J

j�1 λi,tEi,t ¤ Ek,t,°J
j�1 λi,tzi,t ¤ zk,t,°J
j�1 λi,tvi,t ¤ vk,t,°J
j�1 λi,tyi,t ¥

yk,t�1

ϕ
,°J

j�1 λi,t � 1.

(A4)

To obtain the four binary mixed-integer linear programmes for the nonconvex case,

it is sufficient to add the following constraint to the above four linear programmes

(A1)-(A4): λi,t�1 P t0, 1u.

To assess ECt,t�1 defined in equation (6), we compute four linear programmes

based on the energy distance function defined in equation (4) for the convex case.

With I observations in period s, and J observations in period t, we have for

observation k:

DE
t�1pEk,t�1, zk,t�1,vk,t�1,yk,t�1q � supθ¡0,λi,t�1Pt0,1u θ

s.t.
°I

i�1 λi,t�1Ei,t�1 ¤
Ek,t�1

θ
,°I

i�1 λi,t�1zi,t�1 ¤ zk,t�1,°I
i�1 λi,t�1vi,t�1 ¤ vk,t�1,°I
i�1 λi,t�1yi,t�1 ¥ yk,t�1,°I
i�1 λi,t�1 � 1.

(A5)

DE
t�1pEk,t, zk,t�1,vk,t�1,yk,t�1q � supθ¡0,λi,t�1Pt0,1u θ

s.t.
°I

i�1 λi,t�1Ei,t�1 ¤
Ek,t

θ
,°I

i�1 λi,t�1zi,t�1 ¤ zk,t�1,°I
i�1 λi,t�1vi,t�1 ¤ vk,t�1,°I
i�1 λi,t�1yi,t�1 ¥ yk,t�1,°I
i�1 λi,t�1 � 1.

(A6)
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DE
t pEk,t, zk,t,vk,t,yk,tq � supθ¡0,λi,tPt0,1u θ

s.t.
°J

j�1 λi,tEi,t ¤
Ek,t

θ
,°J

j�1 λi,tzi,t ¤ zk,t,°J
j�1 λi,tvi,t ¤ vk,t,°J
j�1 λi,tyi,t ¥ yk,t,°J
j�1 λi,t � 1.

(A7)

DE
t pEk,t�1, zk,t,vk,t,yk,tq � supθ¡0,λi,tPt0,1u θ

s.t.
°J

j�1 λi,tEi,t ¤
Ek,t�1

θ
,°J

j�1 λi,tzi,t ¤ zk,t,°J
j�1 λi,tvi,t ¤ vk,t,°J
j�1 λi,tyi,t ¥ yk,t,°J
j�1 λi,t � 1.

(A8)

To obtain the four binary mixed-integer linear programmes for the nonconvex case,

it is sufficient to add the following constraint to the above four linear programmes

(A5)-(A8): λi,t�1 P t0, 1u.

Combining the above eight programmes (A1)-(A8) yields EPRODCt,t�1 defined

in equation (7).

A.2. Greenhouse Gas Emission Intensity Change.

To assessXPCt,t�1 defined in equation (11), we compute four linear programmes

based on the polluting input distance function defined in equation (10) for the

convex case. With I observations in period s, and J observations in period t, we

have for observation k:

Du
t�1puk,t�1, ghgk,t�1q � infρ¡0,µi,t�1Pt0,1u ρ

s.t.
°I

i�1 µi,t�1ui,t�1 ¥
uk,t�1

ρ
,°I

i�1 µi,t�1ghgi,t�1 ¤ ghgk,t�1,°I
i�1 µi,t�1 � 1.

(A9)
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Du
t�1puk,t, ghgk,t�1q � infρ¡0,µi,t�1Pt0,1u ρ

s.t.
°I

i�1 µi,t�1ui,t�1 ¥
uk,t

ρ
,°I

i�1 µi,t�1ghgi,t�1 ¤ ghgk,t�1,°I
i�1 µi,t�1 � 1.

(A10)

Du
t puk,t, ghgk,tq � infρ¡0,µi,tPt0,1u ρ

s.t.
°J

j�1 µi,tui,t ¥
uk,t

ρ
,°J

j�1 µi,tghgi,t ¤ ghgk,t�1,°J
j�1 µi,t � 1.

(A11)

Du
t puk,t�1, ghgk,tq � infρ¡0,µi,tPt0,1u ρ

s.t.
°J

j�1 µi,tui,t ¥
uk,t�1

ρ
,°J

j�1 µi,tghgi,t ¤ ghgk,t�1,°J
j�1 µi,t � 1.

(A12)

To obtain the four binary mixed-integer linear programmes for the nonconvex case,

it is sufficient to add the following constraint to the above four linear programmes

(A9) to (A12): µi,t P t0, 1u.

To assess GHGCt,t�1 defined in equation (12), we compute four programmes

(A9)-(A12) based on the ghg emission distance function defined in equation (10)

for the convex case. With I observations in period s, and J observations in period

t, we have for observation k:

Dghg
t�1puk,t�1, ghgk,t�1q � supδ¡0,µi,t�1Pt0,1u δ

s.t.
°I

i�1 µi,t�1ui,t�1 ¥ uk,t�1,°I
i�1 µi,t�1ghgi,t�1 ¤

ghgk,t�1

δ
,°I

i�1 µi,t�1 � 1.

(A13)
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Dghg
t�1puk,t�1, ghgk,tq � supδ¡0,µi,t�1Pt0,1u δ

s.t.
°I

i�1 µi,t�1ui,t�1 ¥ uk,t�1,°I
i�1 µi,t�1ghgi,t�1 ¤

ghgk,t
δ

,°I
i�1 µi,t�1 � 1.

(A14)

Dghg
t puk,t, ghgk,tq � supδ¡0,µi,tPt0,1u δ

s.t.
°J

j�1 µi,tui,t ¥ uk,t,°J
j�1 µi,tghgi,t ¤

ghgk,t
δ

,°J
j�1 µi,t � 1.

(A15)

Dghg
t puk,t, ghgk,t�1q � supδ¡0,µi,t�1Pt0,1u δ

s.t.
°J

j�1 µi,tui,t ¥ uk,t,°J
j�1 µi,tghgi,t ¤

ghgk,t�1

δ
,°J

j�1 µi,t � 1.

(A16)

To obtain the four binary mixed-integer linear programmes for the nonconvex case,

it is sufficient to add the following constraint to the above four linear programmes

(A13)-(A16): µi,t�1 P t0, 1u.

Combining the above eight programmes (A9)-(A16) yields GHGICt,t�1 defined

in equation (13).

Appendix B. Proofs of Theorems and Corollaries

Proof of Theorem 1:

Proof. (i): Assume that observation k is under evaluation and pλ�i,t�1, ϕ
�q is an op-

timal solution of model Dy
t�1pEk,t�1, zk,t�1,vk,t�1, yk,t�1q (model (A1)). Since there

is a single output, we have ϕ� �
yk,t�1

°I
i�1 λ

�

i,t�1yi,t�1
. By letting ϕ�� �

yk,t
°I

i�1 λ
�

i,t�1yi,t�1
,

then pλ�i,t�1, ϕ
��q is a feasible solution of model Dy

t�1pEk,t�1, zk,t�1,vk,t�1, yk,tq

(model (A2)). Since
°I

i�1 λ
�
i,t�1yi,t�1 �

yk,t
ϕ��

, we have
yk,t�1

ϕ�
�

yk,t
ϕ��

. As a result,
Dy

t�1pEk,t�1,zk,t�1,vk,t�1,yk,t�1q

Dy
t�1pEk,t�1,zk,t�1,vk,t�1,yk,tq

�
yk,t�1

yk,t
.
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Similarly, we can prove that
Dy

t pEk,t,zk,t,vk,t,yk,t�1q

Dy
t pEk,t,zk,t,vk,t,yk,tq

�
yk,t�1

yk,t
.

(ii): Based on relation (5), we have

Y Ct,t�1 �

c
Dy

t�1pEk,t�1,zk,t�1,zk,t�1,yk,t�1q

Dy
t�1pEk,t�1,zk,t�1,vk,t�1,yk,tq

Dy
t pEk,t,zk,t,vk,t,yk,t�1q

Dy
t pEk,t,zk,t,vk,t,yk,tq

�
b

yk,t�1

yk,t

yk,t�1

yk,t
�

yk,t�1

yk,t
.

□

Proof of Theorem 2:

Proof. (i): Assume that observation k is under evaluation and pλ�i,t�1, θ
�q is an

optimal solution of model DE
t�1pEk,t�1, zk,t�1,vk,t�1,yk,t�1q (model (A5)). Since

there is a single energy input Ek,t�1, we have θ� �
Ek,t�1

°I
i�1 λ

�

i,t�1Ei,t�1
. By letting

θ�� �
Ek,t

°I
i�1 λ

�

i,t�1Ei,t�1
, then pλ�i,t�1, θ

��q is a feasible solution of model DE
t�1pEk,t,

zk,t�1,vk,t�1,yk,t�1q (model (A6)). Since
°I

i�1 λ
�
i,t�1Ei,t�1 �

Ek,t

θ��
, we have

Ek,t�1

θ�
�

Ek,t

θ��
. As a result,

DE
t�1pEk,t�1,zk,t�1,vk,t�1,yk,t�1q

DE
t�1pEk,t,zk,t�1,vk,t�1,yk,t�1q

�
Ek,t�1

Ek,t
. Similarly, we can prove that

DE
t pEk,t�1,zk,t,vk,t,yk,tq

DE
t pEk,t,zk,t,vk,t,yk,tq

�
Ek,t�1

Ek,t
.

(ii): Based on relation (6), we have

ECt,t�1 �

c
DE

t�1pEk,t�1,zk,t�1,vk,t�1,yk,t�1q

DE
t�1pEk,t,zk,t�1,vk,t�1,yk,t�1q

DE
t pEk,t�1,zk,t,vk,t,yk,tq

DE
t pEk,t,zk,t,vk,t,yk,tq

�
b

Ek,t�1

Ek,t

Ek,t�1

Ek,t
�

Ek,t�1

Ek,t
.

□

Proof of Corollary 1:

Proof. Based on relation (7), we have EPRODCt,t�1 �
Y Ct,t�1

ECt,t�1
. Hence, by consid-

ering Theorems 1 and 2, we have EPRODCt,t�1 �
yk,t�1Ek,t

yk,tEk,t�1
. □

Proof of Theorem 3:

Proof. (i): Assume that observation k is under evaluation and pµ�i,t�1, ρ
�q is an

optimal solution of model Du
t�1puk,t�1, ghgk,t�1q (model (A9)). Since there is a
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single input u, we have ρ� �
uk,t�1

°I
i�1 µ

�

i,t�1ui,t�1
. By letting ρ�� �

uk,t
°I

i�1 µ
�

i,t�1ui,t�1
,

pµ�i,t�1, ρ
��q is a feasible solution of model Du

t�1puk,t, ghgk,t�1q (model (A10)). Since°I
i�1 µ

�
i,t�1ui,t�1 �

uk,t

ρ��
, thus we have

uk,t�1

ρ�
�

uk,t

ρ��
. As a result,

Du
t�1puk,t�1,ghgk,t�1q

Du
t�1puk,t,ghgk,t�1q

�
uk,t�1

uk,t
. Similarly, we can prove that

Du
t puk,t�1,ghgk,tq

Du
t puk,t,ghgk,tq

�
uk,t�1

uk,t
.

(ii): Based on relation (11), we have

XPCt,t�1 �

d
Du

t�1puk,t�1, ghgk,t�1q

Du
t�1puk,t, ghgk,t�1q

Du
t puk,t�1, ghgk,tq

Du
t puk,t, ghgk,tq

�

c
uk,t�1

uk,t

uk,t�1

uk,t

�
uk,t�1

uk,t

.

□

Proof of Theorem 4:

Proof. (i): Assume that observation k is under evaluation and pµ�i,t�1, δ
�q is an op-

timal solution of modelDghg
t�1puk,t�1, ghgk,t�1q (model (A13)). Since there is a single

output ghg, we have δ� �
ghgk,t�1

°I
i�1 µ

�

i,t�1ghgi,t�1
. By letting δ�� �

ghgk,t
°I

i�1 µ
�

i,t�1ghgi,t�1
, then

pµ�i,t�1, δ
��q is a feasible solution of model Dghg

t�1puk,t�1, ghgk,tq (model (A14)). Since°I
i�1 µ

�
i,t�1ghgi,t�1 �

ghgk,t
δ��

, we have
ghgk,t�1

δ�
�

ghgk,t
δ��

. As a result,
Dghg

t�1puk,t�1,ghgk,t�1q

Dghg
k,t�1puk,t�1,ghgk,tq

�

ghgk,t�1

ghgk,t
. Similarly, we can prove that

Du
t puk,t�1,ghgk,tq

Du
k,tpuk,t,ghgk,tq

�
ghgk,t�1

ghgk,t
.

(ii): Based on relation (11), we have

XPCt,t�1 �

c
Du

t�1puk,t�1,ghgk,t�1q

Du
t�1puk,t,ghgk,t�1q

Du
t puk,t�1,ghgk,tq

Du
t puk,t,ghgk,tq

�
b

ghgk,t�1

ghgk,t

ghgk,t�1

ghgk,t
�

ghgk,t�1

ghgk,t
.

□

Proof of Corollary 2:

Proof. Based on relation (13), we have GHGICt,t�1 �
GHGCt,t�1

XPCt,t�1
. Hence, by con-

sidering Theorems 3 and 4, we have GHGICt,t�1 �
GHGCt,t�1

XPCt,t�1
�

uk,t�1ghgk,t
uk,tghgk,t�1

.

□
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Appendix C. Empirical Results for Subsample without Potential

Outliers

Table C.1 shows the annual energy productivity change EPRODCt,t�1 in equa-

tion (7), and the components of aggregate output change Y Ct,t�1, and energy use

change ECt,t�1 for the subsample of observations with a feasible super-efficiency

score between the 5th and 95th percentile. The average annual EPRODCt,t�1 in

the considered period is 1.017, which indicates an average growth rate of 1.7% per

annum (p.a.). This is somewhat lower than the growth rate obtained in the main

results (3.4%p.a., but the magnitudes and trends are similar when analysed per

year. The average EPRODCt,t�1 indicates growth of �15.1%, �6.1%, �11.6%,

�13.7% and �10.0% in the periods of 2010 � 2011, 2011 � 2012, 2012 � 2013,

2016 � 2017 and 2017 � 2018, respectively. In the other periods, there is on av-

erage a decline in EPRODCt,t�1, of which 2018 � 2019 (�12.1%) is the worst

period. Finally, we remark that ECt,t�1 is more volatile and has a larger spread

than Y Ct,t�1.

Table C.2 shows the annual GHG emission intensity change estimated using

nonconvex approximation, GHGICNC
t,t�1 in equation (13), and the components of

polluting input change estimated using nonconvex approximation, XPCNC
t,t�1, and

GHG emission change estimated using nonconvex approximation, GHGCNC
t,t�1. The

average annual GHGICNC
t,t�1 in the considered period is 1.015, which indicates an

average increase of 1.5% p.a. This is the same as in the main results. The average

GHGICNC
t,t�1 indicates decline of 2.5% and 1.2% in 2013 � 2014 and 2014 � 2015,

respectively. In all other periods, there is on average an increase in GHGICNC
t,t�1,

of which 2012 � 2013 (�16.4%) stands out. As in the main results, average an-

nual increases (decreases) in EPRODCt,t�1 are counterbalanced by average an-

nual increases (decreases) in GHGICNC
t,t�1. The trend of GHGCNC

t,t�1 largely fol-

lows the trend of XPCNC
t,t�1, except in 2018 � 2019, in which XPCNC

t,t�1 ¡ 1 and
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Table C.1. Average Annual Energy Productivity Change, Aggre-

gate Output Change and Energy Use Change for Subsample without

Outliers

Period EPRODCt,t�1 Y Ct,t�1 ECt,t�1

2010-2011 1.151 1.015 0.900

2011-2012 1.061 1.037 1.014

2012-2013 1.116 1.039 0.959

2013-2014 0.947 0.965 1.061

2014-2015 0.982 1.072 1.120

2015-2016 0.949 1.063 1.188

2016-2017 1.137 1.037 0.945

2017-2018 1.100 0.995 0.935

2018-2019 0.879 1.033 1.220

Overall 1.017 0.975 1.007

GHGCNC
t,t�1   1. The positive association between XPCNC

t,t�1 and GHGCNC
t,t�1 is

more pronounced than the one between Y Ct,t�1 and ECt,t�1. This suggests that

decoupling energy use from production occurs more frequently than decoupling

GHG emissions from the use of polluting inputs. Finally, we note that XPCNC
t,t�1

and GHGCNC
t,t�1 are not so volatile and have a relatively low spread.

Figure A.1 shows a scatter plot that relates energy productivity change to GHG

emission intensity change for the subsample without potential outliers. Similar

to the findings in the main text, it shows a positive association between energy

productivity change and GHG emission intensity change, which suggests a trade-

off between good performance in one technology and good performance in the

other one. This empirical finding is confirmed by a Pearson correlation of 0.405

and a Spearman rank correlation of 0.516.
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Table C.2. Average Annual Greenhouse Gas Emission Intensity

Change, Polluting Input Change and Greenhouse Gas Emission

Change under Nonconvex Approximation for Subsample without

Outliers

Period GHGICNC
t,t�1 XPCNC

t,t�1 GHGCNC
t,t�1

2010-2011 1.034 0.991 1.022

2011-2012 1.020 1.029 1.049

2012-2013 1.179 1.044 1.231

2013-2014 0.978 1.056 1.031

2014-2015 0.981 1.064 1.041

2015-2016 0.987 1.086 1.068

2016-2017 1.019 0.981 0.997

2017-2018 1.037 0.948 0.981

2018-2019 0.930 1.045 0.970

Overall 1.015 1.028 1.041

The large majority of farms score well either in terms of energy productivity

change or in terms of GHG emission intensity change: quadrant II shows 356

observations with energy productivity growth and GHG emission intensity growth,

while quadrant III shows 315 observations with energy productivity decline and

GHG emission intensity decline. Quadrant I shows 147 observations with energy

productivity decline and GHG emission intensity growth. Quadrant IV shows 148

observations with energy productivity growth and GHG emission intensity decline.
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I II

III IV
Figure A.1. Scatter Plot of Energy Productivity Change vs.

Greenhouse Gas Emission Intensity Change for Subsample without

Outliers, Estimated Using Nonconvex Approximation
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