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The agricultural sector is currently confronted with the challenge to reduce greenhouse gas (GHG) emissions, whilst maintaining or increasing production. Energy-saving technologies are often proposed as a partial solution, but the evidence on their ability to reduce GHG emissions remains mixed.

Production economics provides methodological tools to analyse the nexus of agricultural production, energy use and GHG emissions. Convexity is predominantly maintained in agricultural production economics, despite various theoretical and empirical reasons to question it. Employing nonconvex and convex frontier frameworks, this contribution evaluates energy productivity change (the ratio of aggregate output change to energy use change) and GHG emission intensity change (the ratio of GHG emission change to polluting input change) using Hicks-Moorsteen productivity formulations. We consider GHG emissions as byproducts of the production process by using a multi-equation model. Given our empirical specification, nonconvex and convex Hicks-Moorsteen indices can coincide under certain circumstances, which leads to a series of theoretical equivalence results. The empirical application focuses on 1,510 observations of Dutch dairy farms for the period of 2010-2019. The results show a positive association between energy productivity change and GHG emission intensity change, which calls into question the potential of on-farm, energy-efficiency-increasing measures to reduce GHG emission intensity.

Introduction

The agricultural sector is currently facing the challenge to reduce GHG emissions, whilst maintaining or increasing production. Agriculture contributes almost one quarter of total greenhouse gas (GHG) emissions (FAO, 2014). Energy-saving technologies are often proposed as a way to reduce GHG emissions in agriculture [START_REF] Schneider | Energy Intensities and Greenhouse Gas Emission Mitigation in Global Agriculture[END_REF]. They can in theory decrease GHG emissions per unit produced, since they can decrease the requirements for energy use, a polluting input, per unit produced. In practice, however, these energy-saving technologies do not necessarily lead to a decrease of energy per unit produced, because of slower technology adoption among laggards, which furthermore can still be associated with energy-wasting behaviour because of the rebound effect [START_REF] Pan | Energy rebound effect associated with energy efficiency: an application to China's agricultural sector[END_REF].

Moreover, GHG emissions per unit of polluting inputs, consisting of not only energy, but also for example herd size, fertilisers and feed, can still increase.

Analysing energy productivity change and GHG emission intensity change can provide useful insights on the interplay between agricultural production, energy use, and GHG emissions. Energy productivity change can be defined as the ratio of aggregate output change to energy use change, and GHG emission intensity can be defined as the ratio of GHG emission change to polluting input change. This paper develops an analytical framework to evaluate energy productivity change and GHG emission intensity change in the agricultural sector.

Production economics provides a suitable methodological toolbox to analyse energy productivity change and GHG emission intensity change. This field is concerned with the appropriate modelling of the production relationship between the inputs used and outputs produced. Energy use is one of the conventional inputs to produce conventional outputs. The axiomatic properties assigned to analyse the conversion of conventional inputs to conventional outputs have been thoroughly studied (e.g., [START_REF] Färe | Multi-Output Production and Duality: Theory and Applications[END_REF], which allows assessment of energy productivity growth. GHG emissions are pollutants that occur as by-products in the production process. Axiomatic treatment of pollutants has been heavily debated, but the multi-equation modelling approach proposed by [START_REF] Murty | On Modeling Pollution-Generating Technologies[END_REF] is currently considered the most promising. 1 Such appropriate modelling permits assessment of GHG emission intensity growth.

In spite of these methodological advances, applications to the agricultural sector overwhelmingly use the basic convexity assumption when estimating the production technology. However, there are theoretical and empirical reasons to question the convexity assumption.

Theoretically, there can be indivisibilities in inputs and outputs, economies of scale and economies of specialisation (that play a role in the new growth theory: e.g., [START_REF] Romer | Are Nonconvexities Important for Understanding Growth?[END_REF] on nonrival inputs), as well as externalities. Seminal contributions to axiomatic production theory indicate that the cost function is convex in the outputs if and only if technology is convex (e.g., Jacobsen (1970, Corollary 5.5)). Thus, using contraposition, the cost function is nonconvex if and only if technology is nonconvex: Kerstens and Van de Woestyne (2021) illustrate that the gap between convex and nonconvex costs may be very substantial.

Empirically, various studies in agricultural economics contain evidence about the potential relevance of nonconvexities. [START_REF] Paris | A Note on Milk Production Functions[END_REF] report concave isoquants in the hay and concentrates inputs space for whole milk and skimmed milk. Brokken (1977) similarly summarises three studies revealing that there are concave isoquants in the concentrates and roughage inputs space in beef production. Bhide et al. (1980) also report at least partially concave isoquants in the concentrate and corn silage input space that best explain the relationship in beef gain production. Finally, [START_REF] Freeze | Effect of Form of Hay and Carcass Quality on the Economics of Concentrate: Hay Substitution in Cattle Feedlot Diets[END_REF] report limited substitution of alfalfa hay and concentrate in beef feeding diets resulting in a forage-concentrate weight gain isoquant that are concave to the origin in the middle range. Despite Surveys on how to model pollutants are available in [START_REF] Dakpo | Modelling Pollution-Generating Technologies in Performance Benchmarking: Recent Developments, Limits and Future Prospects in the Nonparametric Framework[END_REF]), Ancev et al. (2017), and [START_REF] Dakpo | Modelling Environmental Adjustments of Production Technologies: A Literature Review -Externalities and Environmental Studies[END_REF].

the empirical relevance of nonconvexities in experimental and agronomical data in agriculture, the large majority of the empirical applications assumes a convex technology. Recent exceptions empirically considering a nonconvex technology include [START_REF] Ruijs | Trade-off Analysis of Ecosystem Services in Eastern Europe[END_REF], [START_REF] Ruijs | Opportunity Cost Estimation of Ecosystem Services[END_REF], Ang and Kerstens (2017) andAng et al. (2018). General reflections on the role of nonconvexity in ecosystems and agriculture are found in [START_REF] Dasgupta | The Economics of Non-Convex Ecosystems: Introduction[END_REF] and [START_REF] Brown | The Devil in the Details: Non-Convexities in Ecosystem Service Provision[END_REF], among others.

Our contributions are fourfold. First, using a production economics perspective, we analyse energy productivity change and GHG emission intensity change sideby-side. A particular advantage of this approach is its appropriate consideration of on the one hand the conversion of conventional inputs to conventional outputs and on the other hand the GHG emissions occurring as a by-product in this process.

Employing Hicks-Moorsteen productivity formulations (Bjurek, 1996), the aggregations in the various components are grounded in production theory. Following [START_REF] Murty | On Modeling Pollution-Generating Technologies[END_REF], we consider GHG emissions as by-products of the production process using multi-equation modelling.

Second, in contrast to the prevailing literature, we assume a nonconvex technology in addition to the more traditional convex technology. To this end, we estimate the production technology using a free disposal hull (FDH) [START_REF] Deprins | Measuring Labor Efficiency in Post Offices[END_REF].

FDH is a nonparametric approach that only relies on minimal assumptions. Such a nonconvex technology has been rarely employed in a productivity index context.

Examples of such studies include [START_REF] Diewert | Reference Technology Sets, Free Disposal Hulls and Productivity Decompositions[END_REF], Kerstens and Van de Woestyne (2014a), Ang and Kerstens (2017) and [START_REF] Kerstens | Comparing Luenberger and Luenberger-Hicks-Moorsteen Productivity Indicators: How Well is Total Factor Productivity Approximated?[END_REF], among others.

Third, we show that convex and nonconvex Hicks-Moorsteen index results can be identical under certain conditions, which is the case for several components in our empirical analysis. This leads to a series of new theoretical results on the conditions under which convex and nonconvex Hicks-Moorsteen productivity indices coincide. While theoretical relations between, for instance, Hicks-Moorsteen and Malmquist productivity indices are well-established (see, e.g., Kerstens and Van de Woestyne (2014a, Section 2.4) for a survey), we are unaware of any theoretical results regarding the equivalence of a productivity index under convexity and nonconvexity. To the best of our knowledge, our results are new to the productivity index literature.

Fourth, merging a comprehensive accountancy data set with a unique data set with GHG emission estimates, we illustrate our approach with an application to a large sample of Dutch dairy farms for the years 2010-2019. The European Energy Efficiency Directive focuses on increasing energy efficiency and reduction of the use of fossil fuels [START_REF] Moerkerken | Determinants of energy efficiency in the Dutch dairy sector: dilemmas for sustainability[END_REF]. The Dutch dairy sector in particular has signed several covenants that target increases in energy-efficiency, which have been in place in the studied period. There have been (so far unsuccessful) calls for making the Dutch dairy chain energy neutral [START_REF] Gebrezgabher | Energy-neutral Dairy Chain in the Netherlands: An Economic Feasibility Analysis[END_REF].

Furthermore, the dairy sector contributes substantially to GHG emissions in the Netherlands [START_REF] Ruyssenaars | Greenhouse gas emissions in the Netherlands 1990-2019[END_REF]. As a result, the Dutch dairy sector is a good candidate for a case study.

The remainder of the current paper unfolds as follows. The next Section 2 describes the theoretical framework, in which we provide a Hicks-Moorsteen formulation of energy productivity change and GHG emission intensity change. This is followed by the description of the nonconvex method in Section 3, in which we establish the equivalence results between nonconvex and convex Hicks-Moorsteen productivity indices, and by a brief description of the data set of Dutch dairy farms in Section 4. Subsequently, we show the empirical results in Section 5. The final Section 6 concludes. (2003) states that Total Factor Productivity (TFP) change, the most encompassing measure of productivity change, is the "real" component of profitability change. Therefore, productivity is a key component of profitability and it is an important driver of changes in living standards. TFP growth can be conceived as an index number that captures any output growth that is unexplained by input growth [START_REF] Hulten | Total Factor Productivity: A Short Biography[END_REF]. [START_REF] Russell | Theoretical Productivity Indices[END_REF] defines theoretical productivity indices as known and non-stochastic, but unspecified. The Malmquist productivity index [START_REF] Caves | The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity[END_REF] and the Hicks-Moorsteen productivity index (Bjurek, 1996) are prime examples. The Malmquist productivity index measures the local shift of the production frontier, while the Hicks-Moorsteen productivity index is a ratio of an aggregate output index to an aggregate input index. The current contribution focuses on the Hicks-Moorsteen productivity formulation.

Theoretical Framework

Balk

Our Hicks-Moorsteen productivity formulation has two key advantages in comparison to the Malmquist productivity index formulation. First, the Hicks-Moorsteen TFP index is multiplicatively complete [START_REF] O'donnell | An Aggregate Quantity Framework for Measuring and Decomposing Productivity Change[END_REF]. This permits separate analysis of output and input growth or decline, which can also be adapted to the environmental context (Abad and Ravelojaona, 2022). For our partial productivity formulations, this means that one can separately assess aggregate output change and energy use change, on the one hand, and GHG emission change and polluting input change, on the other hand. This is normally not possible using a Malmquist productivity formulation, although [START_REF] Abad | The Case of a Queer Isoquant: Increasing Marginal Rates of Substitution of Grain for Roughage in Cattle Finishing[END_REF] demonstrate how to formulate a pollution-adjusted Malmquist productivity index consisting of a separate polluting productivity index and a separate non-polluting productivity index. Second, the Hicks-Moorsteen formulation is not susceptible to infeasibilities under weak conditions on technology (mainly strong disposability), which contrasts with the Malmquist productivity formulation (see Briec and Kerstens (2011)). 2 2.1. Basic notation.

Let x R n o be the vector of inputs being transformed to the vector of outputs y R m . Let us additionally consider a production process that generates greenhouse gas emissions ghg as a by-product. We partition x into a sub-vector of polluting inputs u R n and sub-vector of non-polluting inputs v R o : x pu, vq. Energy (E) is one of the polluting inputs; z R n¡1 is the sub-vector of non-energy polluting inputs, which implies u pE, zq.

Energy productivity change.

The parental conventional technology at time t is defined as follows:

T t px t , y t q R n m o |x t can produce y t ( . (1) 
whereby the vector of inputs x contributes to generating the vector of outputs y.

Here, x pu, vq and u pE, zq. Therefore, the technology (1) can be rewritten as follows:

T t pE t , z t , v t , y t q R n m o |pE t , z t , v t q can produce y t ( . (2) 
In line with, for example, [START_REF] Färe | Multi-Output Production and Duality: Theory and Applications[END_REF], we make the following assumptions:

Axiom 1 (Closedness). T t is closed.

Axiom 2 (Boundedness). T t is bounded.

2 When using weak disposability (another popular way to model bad outputs), infeasibilities can occur even with the Hicks-Moorsteen formulation. For instance, [START_REF] Zaim | Measuring Environmental Performance of State Manufacturing through Changes in Pollution Intensities: A DEA Framework[END_REF] employs a Hicks-Moorsteen productivity index with weak disposal of bad outputs and reports infeasibilities for 8 out of 41 US states, despite using time windows that reduce the number of infeasibilities.

Axiom 3 (Free disposability of inputs and outputs). If px I t , ¡y I t q ¥ px t , ¡y t q then px t , y t q T t ñ px I t , y I t q T t .

Axiom 4 (Inaction). Inaction is possible: p0 n o , 0 m q T t .

Axiom 5 (Convexity). T t is convex.

Axioms 1 to 4 are always maintained throughout this contribution. Despite its widespread use in economics, the axiom of convexity is not always maintained in this contribution. 3 We can represent technology T t by the traditional output distance function:

D y t pE, z, v, yq inf ϕ " ϕ ¡ 0|pE, z, v, y ϕ q T t * (3)
that scales up outputs for given total input use, and a sub-vector energy distance function:

D E t pE, z, v, yq sup θ " θ ¡ 0|p E θ , z, v, yq T t * . ( 4 
)
that scales down the energy input, given non-energy inputs and outputs. We refer to [START_REF] Färe | Multi-Output Production and Duality: Theory and Applications[END_REF] for the properties of these distance functions.

Using Malmquist aggregations [START_REF] Caves | The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity[END_REF][START_REF] O'donnell | An Aggregate Quantity Framework for Measuring and Decomposing Productivity Change[END_REF] of equations

(3)-(4), we can define aggregate output change between time s and t as:

Y C t,t 1 d D y t 1 pE t 1 , z t 1 , v t 1 , y t 1 q D y t 1 pE t 1 , z t 1 , v t 1 , y t q D y t pE t , z t , v t , y t 1 q D y t pE t , z t , v t , y t q
(5) and energy use change between time s and t as:

EC t,t 1 d D E t 1 pE t 1 , z t 1 , v t 1 , y t 1 q D E t 1 pE t , z t 1 , v t 1 , y t 1 q D E t pE t 1 , z t , v t , y t q D E t pE t , z t , v t , y t q . ( 6 
)
3 The convex variable returns to scale technology does not satisfy inaction. Since technologies

(1) and ( 2) are equivalent, axioms 1 to 4 as well as 5 can also be rewritten for technology T t in

(2)

Dividing the aggregate output change (5) by the (sub-vector) energy use change (6) yields a Hicks-Moorsteen productivity formulation (Bjurek, 1996;[START_REF] Caves | The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity[END_REF] of energy productivity change between time periods s and t:

EP RODC t,t 1 Y C t,t 1 EC t,t 1 c D y t 1 pE t 1 ,z t 1 ,v t 1 ,y t 1 q D y t 1 pE t 1 ,z t 1 ,v t 1 ,y t q D y t pEt,zt,vt,y t 1 q D y t pEt,zt,vt,y t q c D E t 1 pE t 1 ,z t 1 ,v t 1 ,y t 1 q D E t 1 pEt,z t 1 ,v t 1 ,y t 1 q D E t pE t 1 ,zt,vt,y t q D E t pEt,zt,vt,y t q . ( 7 
)
Equation ( 7) represents a sub-vector and therefore partial productivity index focusing on energy use. Values above unity indicate energy productivity growth.

This means that the growth rate of aggregate output exceeds that of energy use, which can be interpreted as a relative decoupling of production from energy use.

Note that a sub-vector approach to model energy productivity growth as in expression ( 7) has also been used by, for instance, Oude Lansink and Ondersteijn ( 2006) with an application to the Dutch glasshouse sector. But, these authors use a Malmquist productivity index formulation instead.

GHG emission intensity change.

Murty et al. (2012) show that pollutants such as GHG emissions can be explicitly modelled as a by-product. The emission-generating technology is defined as follows:

G t pu t , ghg t q R n 1 |u t can produce ghg t ( . (8) 
whereby the polluting inputs u produce the by-product of greenhouse gas emissions ghg.

Following [START_REF] Murty | On Modeling Pollution-Generating Technologies[END_REF], we make the following assumption:

Axiom 6 (Closedness). G t is closed. Axiom 7 (Boundedness). G t is bounded.
Axiom 8 (Costly disposability of greenhouse gas emissions and polluting inputs).

If pu t , ghg t q G t and ghg I t ¥ ghg t and u I t ¤ u t , then pu I t , ghg I t q G t .

Axiom 9 (Convexity). G t is convex.

Similar to the case of T t , we do not always maintain the convexity assumption for G t in the following.

We represent G t by the polluting input distance function:

D u t pu, ghgq inf ρ " ρ ¡ 0|p u ρ , ghgq G t * (9)
that scales up polluting inputs for given total ghg, and a ghg emission distance function:

D ghg t pu, ghgq sup δ " δ ¡ 0|pu, ghg δ q G t * (10)
that scales down ghg as much as possible.

Analogous to equations ( 5)-( 6) and ( 7), we aggregate equations ( 9)-( 10) using

Malmquist formulations [START_REF] Caves | The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity[END_REF][START_REF] O'donnell | An Aggregate Quantity Framework for Measuring and Decomposing Productivity Change[END_REF]. We define polluting input change between time periods s and t as:

XP C t,t 1 d D u t 1 pu t 1 , ghg t 1 q D u t 1 pu t , ghg t 1 q D u t pu t 1 , ghg t q D u t pu t , ghg t q (11)
and GHG emission change between time periods s and t as:

GHGC t,t 1 d D ghg t 1 pu t 1 , ghg t 1 q D ghg t 1 pu t 1 , ghg t q D ghg t pu t , ghg t 1 q D ghg t pu t , ghg t q . ( 12 
)
Again, we refer to [START_REF] Färe | Multi-Output Production and Duality: Theory and Applications[END_REF] for the properties of these distance functions.

Dividing equation ( 12) by equation ( 11) yields a Hicks-Moorsteen formulation of GHG emission intensity change between time periods s and t:

GHGIC t,t 1 GHGC t,t 1 XP C t,t 1 c D u t 1 pu t 1 ,ghg t 1 q D u t 1 put,ghg t 1 q D u t 1 pu t 1 ,ghgtq D u t put,ghgtq c D ghg t 1 pu t 1 ,ghg t 1 q D ghg t 1 pu t 1 ,ghgtq D ghg t put,ghg t 1 q D ghg t put,ghgtq (13) 
Equation ( 13) compares GHG emission change to polluting input change. Values above one indicate intensification, which means that the growth rate of GHG emissions exceeds that of polluting inputs. Equation ( 13) can thus be regarded as the reciprocal of a productivity change measure: scores above unity are bad, while scores below unity are good. Observe that XP C t,t 1 reduces GHGIC t,t 1 and is thus beneficial with regard to the emission-generating technology. If the level of GHG emissions remains constant, while the level of polluting inputs has increased, then this indicates an improvement of environmental performance in the emission-generating technology, as reflected by a decrease in GHG emission intensity. However, in the conventional technology, an increase in the level of inputs (including polluting inputs) would be penalised in terms of productivity.

This highlights the importance of not only considering improvements in the environmental performance in the emission-generating technology, but also in the economic performance in the conventional technology.

The separate theoretical consideration of the conventional technology and emission-generating technology in a productivity context follows [START_REF] Lamkowsky | Closing Productivity Gaps among Dutch Dairy Farms Can Boost Profit and Reduce Nitrogen Pollution[END_REF]. This approach differs somewhat from the original approach of [START_REF] Murty | On Modeling Pollution-Generating Technologies[END_REF]. The latter authors focus on the development of environmental efficiency measures that appropriately take into account the emission-generating process generating pollution. To this end, they compute the average of efficiency in the conventional technology and efficiency in the emission-generating technology, which can be represented in the intersection of both technologies. The present contribution focuses on comparing partial productivity scores in the respective technologies, which makes separate consideration appropriate.

Empirical Specification of Nonparametric Technologies

Thus far we have been silent on the approximation of the conventional and emission-generating technologies. This paper employs convex and nonconvex nonparametric approximations. There are I farms. Assuming convexity and variable returns to scale (VRS), the conventional technology at time t is approximated by: Tt px t , y t q # px t , y t q|

I i1 λ i,t x i,t ¤ x t , I i1 λ i,t y i,t ¥ y t , I i1 λ i,t 1 + . (14) 
A nonconvex approximation is obtained by adding the binary integer constraint λ i,t t0, 1u on the activity vector. Again assuming convex VRS, the emissiongenerating technology at time t is approximated by: Ĝt pu t , ghg t q # pu t , ghg t q|

I i1 µ i,t u i,t ¥ u t , I i1 µ i,t , ghg i,t ¤ ghg t , I i1 µ i,t 1 + . ( 15 
)
Again, a nonconvex approximation is obtained by adding the binary integer constraint µ i,t t0, 1u on the activity vector.

These approximations allow computation of all components of energy productivity change and GHG emission intensity change. Following the detailed explanation in Murty and Russell (2020, p. 47-48), these separate approximations are also con- When computing nonconvex and convex Hicks-Moorsteen productivity indices for our empirical specification, we find that several components coincide exactly.

This leads to a series of new theoretical results stating that convex and nonconvex (partial) Hicks-Moorsteen productivity indices coincide under specific conditions.

Theorem 1. Assuming that there is just a single output pm 1q, then the following statements are true under both convex and nonconvex assumptions:

(i) D y t 1 pE t 1 , z t 1 , v t 1 , y t 1 q D y t 1 pE t 1 , z t 1 , v t 1 , y t q D y t pE t , z t , v t , y t 1 q D y t pE t , z t , v t , y t q y t 1 y t . ( 16 
) (ii) Y C t,t 1 y t 1 y t . ( 17 
)
The proofs of Theorem 1 and the other statements are given in Appendix B, online.

Theorem 2. The following statements are true under both convex and nonconvex assumptions:

(i) D E t 1 pE t 1 , z t 1 , v t 1 , y t 1 q D E t 1 pE t , z t 1 , v t 1 , y t 1 q D E t pE t 1 , z t , v t , y t q D E t pE t , z t , v t , y t q E t 1 E t . ( 18 
) (ii) EC t,t 1 E t 1 E t . ( 19 
)
Corollary 1. Assuming that there is just a single output pm 1q, then the following statement is true under both convex and nonconvex assumptions:

EP RODC t,t 1 y t 1 E t y t E t 1 . ( 20 
)
The above results shows that with a single output, we can measure all components of the Hicks-Moorsteen index without having to solve any optimization models. In addition, the Hicks-Moorsteen index and its components are independent of the value of fixed inputs. As a consequence, in this particular case, the fixed inputs can be ignored. This closed-form specification provides opportunities for policy-oriented applications, that can dispense with more complex linear or binary mixed-integer linear programmes.

This simplification for computing a theoretical Hicks-Moorsteen productivity index is new to the productivity literature. It is well-known that efficiency measures under a FDH technology can be obtained via implicit enumeration algorithms and that this leads to substantial time gains (see, e.g., Kerstens and Van de Woestyne (2014b)). However, it is exceptional to have implicit enumeration results that are also valid for convex technologies. To the best of our knowledge, the only other results concern the cost function and revenue function under constant returns to scale and a single output or a single input, respectively (see Briec et al. ( 2014)).

However, the latter result concerns value functions, while here we have a result for a particular specification of the technology.

Theorem 3. Assuming that there is just a single polluting input pn 1q, then the following statements are true under both convex and nonconvex assumptions:

(i) D u t 1 pu t 1 , ghg t 1 q D u t 1 pu t , ghg t 1 q D u t pu t 1 , ghg t q D u t pu t , ghg t q u t 1 u t . ( 21 
) (ii) XP C t,t 1 u t 1 u t . ( 22 
)
Theorem 4. The following statements are true under both convex and nonconvex assumptions:

(i) D ghg t 1 pu t 1 , ghg t 1 q D ghg t 1 pu t 1 , ghg t q D ghg t pu t , ghg t 1 q D ghg t pu t , ghg t q ghg t 1 ghg t . ( 23 
) (ii) GHGC t,t 1 ghg t 1 ghg t . ( 24 
)
Corollary 2. Assuming that there is just a single polluting input pn 1q, then the following statement is true under both convex and nonconvex assumptions:

GHGIC t,t 1 u t 1 ghg t u t ghg t 1 . (25) 
Observe that our empirical application considers multiple polluting inputs. Consequently, Theorem 3 and Corollary 2 do not strictly hold for our particular empirical application.

Data

We use a data set from the Farm Accountancy Data Network (FADN), which is merged with a data set containing computations of GHG emissions by Wageningen Economic Research (WEcR). The FADN data set is an unbalanced, but stratified panel. To obtain a homogeneous sample, the application focuses on the specialised dairy farms not producing any other on-farm output (thus, omitting farms that produce crop outputs). One clear outlier with an unrealistic value has been omitted. The final, merged data set contains 1,510 observations for the years 2010-2019.

We distinguish one output and six inputs. The output is the aggregate dairy output (in ¿), which consists of milk and meat. The three polluting inputs (u) are energy (in ¿), herd size (in livestock units) and other non-energy intermediate polluting inputs (in ¿). The latter consist of an aggregation of seed, feed, pesticide, fertilisers and other variable inputs. The three non-polluting inputs (v) are land (in hectares), labour (in annual working hours), and the aggregate capital depreciation of buildings and machinery (in ¿).

Dairy output, other non-energy intermediate polluting inputs and aggregate capital depreciation are computed as the ratio of the total monetary value to the respective dimensionless Törnqvist price index. The monetary value of energy is deflated by the respective dimensionless price index. As a result, the outputs and inputs expressed in monetary terms are implicit quantities, while livestock, land and labour are expressed as original quantities. Implicit quantities employ a common price index per year. This implies that differences in price are reflected as differences in implicit quantity. Outputs and inputs with a higher price are here assumed to have a higher quality and hence a higher price [START_REF] Cox | Prices and Quality Effects in Cross-Sectional Demand Analysis[END_REF][START_REF] Mairesse | Panel-data Estimates of the Production Function and the Revenue Function: What Difference Does it Make?[END_REF]. All price indices are drawn from the Eurostat (2021) database. Finally, we consider GHG emissions (in kilograms).

WEcR computes the GHG emissions by a consideration of the emission factors of all inputs and outputs from cradle to farm gate, as well as a careful investigation of the agricultural production system. GHG emissions consist of CO 2 emissions, N 2 O emissions and CH 4 emissions. Sources of GHG emissions include, for example, the production and purchasing of manure, ruminal fermentation of cows, use of fertilisers, and energy use (DuurzameZuivelketen, 2018).

In our empirical setting, we compute EP RODC t,t 1 as follows: (i) the Y C t,t 1 component expands the output given all six inputs, and (ii) the EC t,t 1 component reduces the single energy input solely given the five other inputs and the output.

Additionally, GHGIC t,t 1 is computed as follows: (i) the XP C t,t 1 component reduces GHG emissions given the three polluting inputs, and (ii) the GHGC t,t 1 component expands the three polluting inputs given GHG emissions.

The data on FADN and WEcR are proprietary, but their use can be requested at and negotiated with WEcR. The Supplementary Materials online provide the R code to compute EP RODC t,t 1 and GHGIC t,t 1 .

Table 1 shows the detailed descriptive statistics. Despite the homogeneity of the sample, there is substantial heterogeneity in the inputs, output, and GHG emissions. 

Empirical Results

This section describes our empirical results. We first show the results regarding energy productivity change and GHG emission intensity change, which is followed by a comparison between both. There are in total 1,008 annual growth rates. The nonconvex and convex approximations are deterministic and as a result sensitive to potential outliers that may determine the production frontier. Following Ang and Kerstens (2016) and [START_REF] Serra | Measuring technical and environmental efficiency in a state-contingent technology[END_REF] among others, we apply the super-efficiency approach of Banker and Chang (2006) as a robustness check. This involves the removal of the considered observation from the reference technology in the efficiency estimation. "Super-efficient" farms have a score higher than unity or are infeasible to compute with respect to such a modified technology [START_REF] Ray | The Directional Distance Function and Measurement of Super-Efficiency: An Application to Airlines Data[END_REF]. The Appendix C online shows the nonconvex scores of energy productivity change and GHG emission intensity change for the sub-sample of observations with a feasible score between the 5th and 95th percentile for an output distance function formulation, employing nonconvex approximation. These results without potential outliers are overall similar to those presented in the main body of the text.

Energy productivity change.

As mentioned in Section 3, the nonconvex and convex approximations of all components of EP RODC t,t 1 coincide. C.1 in Appendix C, online. These results are similar to the ones discussed here.

GHG emission intensity change.

As mentioned in Section 3, the nonconvex and convex approximations of GHGC t,t 1 coincide.

As our empirical application considers multiple polluting inputs, Theorem 3 and Corollary 2 do not hold for our empirical application. Therefore, the nonconvex and convex approximations differ for XP C t,t 1 and GHGIC t,t 1 .

Table 3 shows the annual GHG emission intensity change estimated using nonconvex approximation, GHGIC N C t,t 1 in equation ( 13), and the components of polluting input change estimated using nonconvex approximation, XP C N C t,t 1 , and GHG emission change estimated using nonconvex approximation, GHGC N C t,t 1 . The average annual GHGIC N C t,t 1 in the considered period is 1.015, which indicates an average increase of 1.5% p.a. The median annual GHGIC N C t,t 1 is 1.005, which indicates a slight median increase of 0.5% p.a. The mean and median are thus rather close to one another. The average GHGIC N C t,t 1 indicates decline of 2.5% and 1.2% in 2013¡2014 and 2014¡2015, respectively. In all other periods, there is on average an increase in GHGIC N C t,t 1 , of which 2012 ¡2013 ( 16.9%) stands out.

Interestingly, average annual increases (decreases) in EP RODC and GHGC N C t,t 1 is more pronounced than the one between Y C t,t 1 and EC t,t 1 . This suggests that decoupling energy use from production occurs more frequently than decoupling GHG emissions from the use of polluting inputs. Finally, we note that XP C N C t,t 1 and GHGC N C t,t 1 are not so volatile and have a relatively low spread. Table 4 shows the annual GHG emission intensity change estimated using convex approximation, GHGIC C t,t 1 in equation ( 13), and the components of polluting input change estimated using convex approximation, XP C C t,t 1 , and GHG emission change estimated using convex approximation, GHGC C t,t 1 . As shown in the theoretical results, GHGC C t,t 1 GHGC N C t,t 1 . There are differences in GHGIC C t,t 1 and XP C C t,t 1 , albeit to a very minor extent. The results on average annual GHG emission intensity change, polluting input change, and greenhouse gas emission change under nonconvex approximation for sub-sample without outliers are reported in Table C.2 in Appendix C, online.

Overall, these results are in line with the ones discussed here.

Comparing energy productivity change to GHG emission intensity change.

Given the similarity between the results estimated using nonconvex and convex approximations, we only focus on the comparison between energy productivity observations with energy productivity growth and GHG emission intensity decline.

Conclusions

Using a production economics perspective, this paper develops a framework to The results are similar for nonconvex and convex approximations. The average energy productivity growth is 3.4% p.a. in both approximations, while the GHG emission intensity increases by 1.5% p.a. in the nonconvex approximation, and by 1.7% p.a. in the convex approximation. A robustness check for outliers is in line with our main results. Fluctuations over time are substantial for energy productivity change and more moderate for GHG emission intensity change. Energy productivity growth is positively associated with GHG emission intensity growth rather than GHG emission intensity decline.

We emphasise that these results should be interpreted as descriptive and exploratory rather than causal. Our identification strategy disallows verifying whether energy productivity growth causes GHG emission intensity growth. Moreover, change in one technology may imply adjustment in the other one, which is overlooked by the correlation analysis. Nonetheless, our findings do call into question the potential of on-farm, energy-efficiency-increasing measures to reduce GHG emission intensity.

We have five recommendations for future research. First, the flexibility of our proposed framework allows straightforward application to other empirical settings.

Any change in partial or total factor productivity can be compared to a change in the performance in the emission-generating technology. Energy productivity change and GHG emission intensity change can be evaluated side-by-side in, for instance, the electric power plant sector. Another interesting avenue is the consideration of other pollutants such as phosphorus surplus and nitrogen surplus in the agricultural sector.

Second, the behavioural and technological drivers explaining the nexus of agricultural production, energy use and GHG emissions should be further investigated.

In this way, policy makers are able to draft policies that effectively stimulate reduction of GHG emissions whilst increasing or maintaining agricultural production.

Third, one should extend the current analysis by also considering indirect energy use. This paper solely focuses on direct, purchased energy use. Indirect energy use also takes into account earlier chain stages of, most notably, fertilisers. Although policy makers rather focus on reducing direct energy use by means of energyefficiency-increasing initiatives, identifying sustainable pathways to reduce GHG emissions requires analysis beyond the farm level.

Fourth, our framework could be applied in a difference-based productivity indicator framework. Following the terminology of [START_REF] Diewert | Index number theory using differences rather than ratios[END_REF], the current framework is based on ratio-based productivity "indices". However, when there are zero or negative values, difference-based "indicators" are more apt (Balk et al., 2003).

Difference-based productivity measures include Bennet [START_REF] Chambers | Exact Nonradial Input, Output, and Productivity Measurement[END_REF], Bennet-Lowe (Ang, 2019), Luenberger [START_REF] Chambers | Exact Nonradial Input, Output, and Productivity Measurement[END_REF] and Luenberger-Hicks-Moorsteen (Briec and Kerstens, 2004) indicators.

Fifth, we recommend to adapt the proposed framework to a statistical setting. Our nonparametric framework is inherently deterministic. [START_REF] Simar | Estimating and Bootstrapping Malmquist Indices[END_REF] show how to obtain statistically robust estimates using a bootstrapped Malmquist productivity formulation. An extension to a Hicks-Moorsteen index remains to be developed. Alternatively, one could employ stochastic frontier analysis (Aigner et al., 1977;[START_REF] Meeusen | Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error[END_REF]. To assess Y C t,t 1 defined in equation ( 5), we compute four linear and binary mixed-integer linear programmes based on the output distance function defined in equation ( 3). With I observations in period s, and J observations in period t, we have for observation k the following four linear programmes for the convex case:

D y t 1 pE k,t 1 , z k,t 1 , v k,t 1 , y k,t q inf ϕ¡0,λ i,t 1 t0,1u ϕ s.t. °I i1 λ i,t 1 E i,t 1 ¤ E k,t 1 , °I i1 λ i,t 1 z i,t 1 ¤ z k,t 1 , °I i1 λ i,t 1 v i,t 1 ¤ v k,t 1 , °I i1 λ i,t 1 y i,t ¥ y k,t ϕ , °I i1 λ i,t 1 1. (A1) D y t 1 pE k,t 1 , z k,t 1 , v k,t 1 , y k,t q inf ϕ¡0,λ i,t 1 t0,1u ϕ s.t. °I i1 λ i,t 1 E i,t 1 ¤ E k,t 1 , °I i1 λ i,t 1 z i,t 1 ¤ z k,t 1 , °I i1 λ i,t 1 v i,t 1 ¤ v k,t 1 , °I i1 λ i,t 1 y i,t 1 ¥ y k,t ϕ , °I i1 λ i,t 1 1. (A2) D y t pE k,t , z k,t , v k,t , y k,t q inf ϕ¡0,λ i,t t0,1u ϕ s.t. °J j1 λ i,t E i,t ¤ E k,t , °J j1 λ i,t z i,t ¤ z k,t , °J j1 λ i,t v i,t ¤ v k,t , °J j1 λ i,t y i,t ¥ y k,t ϕ , °J j1 λ i,t 1. (A3) D y t pE k,t , z k,t , v k,t , y k,t 1 q inf ϕ¡0,λ i,t t0,1u ϕ s.t. °J j1 λ i,t E i,t ¤ E k,t , °J j1 λ i,t z i,t ¤ z k,t , °J j1 λ i,t v i,t ¤ v k,t , °J j1 λ i,t y i,t ¥ y k,t 1 ϕ , °J j1 λ i,t
1.

(A4)

To obtain the four binary mixed-integer linear programmes for the nonconvex case, it is sufficient to add the following constraint to the above four linear programmes (A1)-(A4): λ i,t 1 t0, 1u.

To assess EC t,t 1 defined in equation ( 6), we compute four linear programmes based on the energy distance function defined in equation ( 4) for the convex case.

With I observations in period s, and J observations in period t, we have for observation k:

D E t 1 pE k,t 1 , z k,t 1 , v k,t 1 , y k,t 1 q sup θ¡0,λ i,t 1 t0,1u θ s.t. °I i1 λ i,t 1 E i,t 1 ¤ E k,t 1 θ , °I i1 λ i,t 1 z i,t 1 ¤ z k,t 1 , °I i1 λ i,t 1 v i,t 1 ¤ v k,t 1 , °I i1 λ i,t 1 y i,t 1 ¥ y k,t 1 , °I i1 λ i,t 1 1. (A5) D E t 1 pE k,t , z k,t 1 , v k,t 1 , y k,t 1 q sup θ¡0,λ i,t 1 t0,1u θ s.t. °I i1 λ i,t 1 E i,t 1 ¤ E k,t θ , °I i1 λ i,t 1 z i,t 1 ¤ z k,t 1 , °I i1 λ i,t 1 v i,t 1 ¤ v k,t 1 , °I i1 λ i,t 1 y i,t 1 ¥ y k,t 1 , °I i1 λ i,t 1 1. (A6) D E t pE k,t , z k,t , v k,t , y k,t q sup θ¡0,λ i,t t0,1u θ s.t. °J j1 λ i,t E i,t ¤ E k,t θ , °J j1 λ i,t z i,t ¤ z k,t , °J j1 λ i,t v i,t ¤ v k,t , °J j1 λ i,t y i,t ¥ y k,t , °J j1 λ i,t
1.

(A7)

D E t pE k,t 1 , z k,t , v k,t , y k,t q sup θ¡0,λ i,t t0,1u θ s.t. °J j1 λ i,t E i,t ¤ E k,t 1 θ , °J j1 λ i,t z i,t ¤ z k,t , °J j1 λ i,t v i,t ¤ v k,t , °J j1 λ i,t y i,t ¥ y k,t , °J j1 λ i,t 1. 
(A8)

To obtain the four binary mixed-integer linear programmes for the nonconvex case, it is sufficient to add the following constraint to the above four linear programmes (A5)-(A8): λ i,t 1 t0, 1u.

Combining the above eight programmes (A1)-(A8) yields EP RODC t,t 1 defined in equation (7).

A.2. Greenhouse Gas Emission Intensity Change.

To assess XP C t,t 1 defined in equation ( 11), we compute four linear programmes based on the polluting input distance function defined in equation ( 10) for the convex case. With I observations in period s, and J observations in period t, we have for observation k:

D u t 1 pu k,t 1 , ghg k,t 1 q inf ρ¡0,µ i,t 1 t0,1u ρ s.t. °I i1 µ i,t 1 u i,t 1 ¥ u k,t 1 ρ , °I i1 µ i,t 1 ghg i,t 1 ¤ ghg k,t 1 , °I i1 µ i,t 1 1. (A9) D u t 1 pu k,t , ghg k,t 1 q inf ρ¡0,µ i,t 1 t0,1u ρ s.t. °I i1 µ i,t 1 u i,t 1 ¥ u k,t ρ , °I i1 µ i,t 1 ghg i,t 1 ¤ ghg k,t 1 , °I i1 µ i,t 1 1. (A10) D u t pu k,t , ghg k,t q inf ρ¡0,µ i,t t0,1u ρ s.t. °J j1 µ i,t u i,t ¥ u k,t ρ , °J j1 µ i,t ghg i,t ¤ ghg k,t 1 , °J j1 µ i,t 1. (A11) D u t pu k,t 1 , ghg k,t q inf ρ¡0,µ i,t t0,1u ρ s.t. °J j1 µ i,t u i,t ¥ u k,t 1 ρ , °J j1 µ i,t ghg i,t ¤ ghg k,t 1 , °J j1 µ i,t 1. 
(A12)

To obtain the four binary mixed-integer linear programmes for the nonconvex case, it is sufficient to add the following constraint to the above four linear programmes (A9) to (A12): µ i,t t0, 1u.

To assess GHGC t,t 1 defined in equation ( 12), we compute four programmes (A9)-(A12) based on the ghg emission distance function defined in equation ( 10)

for the convex case. With I observations in period s, and J observations in period t, we have for observation k: D ghg t 1 pu k,t 1 , ghg k,t 1 q sup δ¡0,µ i,t 1 t0,1u δ s.t. °I i1 µ i,t 1 u i,t 1 ¥ u k,t 1 , °I i1 µ i,t 1 ghg i,t 1 ¤ ghg k,t 1 δ , °I i1 µ i,t 1 1.

(A13)

□

Proof of Theorem 2:

Proof. (i): Assume that observation k is under evaluation and pλ ¦ i,t 1 , θ ¦ q is an optimal solution of model D E t 1 pE k,t 1 , z k,t 1 , v k,t 1 , y k,t 1 q (model (A5)). Since there is a single energy input E k,t 1 , we have θ ¦

E k,t 1 °I i1 λ ¦ i,t 1 E i,t 1
. By letting

θ ¦¦ E k,t °I i1 λ ¦ i,t 1 E i,t 1
, then pλ ¦ i,t 1 , θ ¦¦ q is a feasible solution of model D E t 1 pE k,t , z k,t 1 , v k,t 1 , y k,t 1 q (model (A6)). Since °I i1 λ ¦ i,t 1 E i,t 1 E k,t

θ ¦¦ , we have

E k,t 1 θ ¦ E k,t
θ ¦¦ . As a result, Proof. (i): Assume that observation k is under evaluation and pµ ¦ i,t 1 , ρ ¦ q is an optimal solution of model D u t 1 pu k,t 1 , ghg k,t 1 q (model (A9)). Since there is a 1. The positive association between XP C N C t,t 1 and GHGC N C t,t 1 is more pronounced than the one between Y C t,t 1 and EC t,t 1 . This suggests that decoupling energy use from production occurs more frequently than decoupling GHG emissions from the use of polluting inputs. Finally, we note that XP C N C t,t 1 and GHGC N C t,t 1 are not so volatile and have a relatively low spread. 

D E t 1 pE k,t 1 ,z k,t 1 ,v k,t 1 ,y k,t 1 q D E t 1 pE k,t ,z k,t 1 ,v k,t 1 ,y k,t 1 q E k,t

  1

  sistent with the original theoretical framework of[START_REF] Murty | On Modeling Pollution-Generating Technologies[END_REF] that defines the by-production technology as the intersection of the conventional technology and the emission-generating technology. Appendix A (online) shows an overview of the required linear and binary mixed-integer linear programmes under the assumptions of convexity and nonconvexity respectively.The only alternative theoretical models that use a by-production framework to model bad outputs in both convex and nonconvex ways are found in[START_REF] Abad | On the Axiomatic of Pollution-Generating Technologies: Non-Parametric Production Analysis[END_REF] andAbad and Ravelojaona (2021, 2022). These models are based on recent work to measure strong forms of hypercongestion for convex and nonconvex technologies in Briec et al. (2016) who develop a limited form of strong disposability called S-disposability (see Briec et al. (2018) for an empirical illustration). 4 Abad and Briec (2019) and Yuan et al. (2021) are among the first to empirically 4 Abad and Briec (2019) re-baptise this S-disposability assumption as a B-disposability assumption when modelling bad outputs. implement a nonconvex version of the Murty et al. (2012) by-production approach: these authors report substantial differences between convex and nonconvex empirical results. Convex and nonconvex comparisons of the Hicks-Moorsteen productivity index are rare in the literature. Kerstens and Van de Woestyne (2014a) compare Hicks-Moorsteen and Malmquist productivity indices under balanced and unbalanced panel data and under constant and variable returns to scale. These authors report substantial differences between convex and nonconvex Hicks-Moorsteen productivity indices, but they do not report any formal testing. In an additive context, we are aware of only two further studies that report on the impact of convexity on the Luenberger-Hicks-Moorsteen productivity indicator: both Ang and Kerstens(2017) and[START_REF] Kerstens | Comparing Luenberger and Luenberger-Hicks-Moorsteen Productivity Indicators: How Well is Total Factor Productivity Approximated?[END_REF] report statistically significant differences between nonconvex and convex estimates.

Figure 1

 1 Figure 1 shows a scatter plot that relates energy productivity change to GHG emission intensity change. It shows a positive association between energy productivity change and GHG emission intensity change, which suggests a trade-off between good performance in one technology and good performance in the other. This empirical finding is confirmed by a Pearson correlation of 0.345 and Spearman rank correlation of 0.486. The large majority of farms score well either in terms of energy productivity change or in terms of GHG emission intensity change: quadrant II shows 400 observations with energy productivity growth and GHG emission intensity growth, while quadrant III shows 355 observations with energy productivity decline and
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 1 Figure 1. Scatter Plot of Energy Productivity Change vs. Greenhouse Gas Emission Intensity Change, Estimated Using Nonconvex Approximation
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  Figure A.1 shows a scatter plot that relates energy productivity change to GHG emission intensity change for the subsample without potential outliers. Similar to the findings in the main text, it shows a positive association between energy productivity change and GHG emission intensity change, which suggests a tradeoff between good performance in one technology and good performance in the other one. This empirical finding is confirmed by a Pearson correlation of 0.405 and a Spearman rank correlation of 0.516.

  

  

Table 1 .

 1 Descriptive Statistics

	Statistic

Table 2

 2 7% in the periods of 2010 ¡ 2011, 2011 ¡ 2012, 2012 ¡ 2013, 2016 ¡ 2017 and 2017 ¡ 2018, respectively. In the other periods, there is on average a decline in EP RODC t,t 1 , of which 2018 ¡ 2019 (¡12.8%) is the worst period. Finally, we remark that EC t,t 1 is more volatile and has a larger spread than Y C t,t 1 . The results on average annual energy productivity change, aggregate output change, and energy use change for the subsample without potential outliers are

shows the annual energy productivity change, EP RODC t,t 1 in equation (

7

), and the components of aggregate output change, Y C t,t 1 , and energy use change, EC t,t 1 . The average annual EP RODC t,t 1 in the considered period is 1.034, which indicates an average growth rate of 3.4% per annum (p.a.). The median annual EP RODC t,t 1 is 1.008, which indicates a slight median increase of 0.8% p.a. The mean is somewhat higher than the median, but overall close to the median. The average EP RODC t,t 1 indicates growth of 17.6%, 8.5%, 10.7%, 13.7% and 11.

Table 2 .

 2 Average Annual Energy Productivity Change, Aggregate

	Output Change and Energy Use Change	
	Period	EP RODC t,t 1 Y C t,t 1 EC t,t 1
	2010-2011 1.176	1.021	0.895
	2011-2012 1.085	1.031	1.010
	2012-2013 1.107	1.039	0.989
	2013-2014 0.941	0.965	1.083
	2014-2015 0.975	1.066	1.123
	2015-2016 0.938	1.067	1.206
	2016-2017 1.137	1.035	0.941
	2017-2018 1.117	0.998	0.926
	2018-2019 0.872	1.031	1.227
	Overall	1.034	1.029	1.050
	reported in Table			

Table 3 .

 3 Average Annual Greenhouse Gas Emission IntensityChange, Polluting Input Change and Greenhouse Gas Emission

	Change under Nonconvex Approximation	
	Period	GHGIC N C t,t 1 XP C N C t,t 1 GHGC N C t,t 1
	2010-2011 1.019	1.000	1.018
	2011-2012 1.017	1.025	1.041
	2012-2013 1.164	1.050	1.223
	2013-2014 0.975	1.055	1.028
	2014-2015 0.988	1.057	1.041
	2015-2016 1.006	1.071	1.075
	2016-2017 1.021	0.977	0.996
	2017-2018 1.028	0.954	0.979
	2018-2019 0.957	1.017	0.972
	Overall	1.015	1.028	1.040
	change and GHG emission intensity change employing the nonconvex approxima-
	tion.			

Table 4 .

 4 Average Annual Greenhouse Gas Emission IntensityChange, Polluting Input Change and Greenhouse Gas Emission

	Change under Convex Approximation	
	Period	GHGIC C t,t 1 XP C C t,t 1 GHGC C t,t 1
	2010-2011 1.032	0.988	1.018
	2011-2012 1.018	1.026	1.041
	2012-2013 1.173	1.043	1.223
	2013-2014 0.978	1.053	1.028
	2014-2015 0.982	1.063	1.041
	2015-2016 0.989	1.089	1.075
	2016-2017 1.018	0.981	0.996
	2017-2018 1.037	0.947	0.979
	2018-2019 0.931	1.047	0.972
	Overall	1.017	1.024	1.040
	GHG emission intensity decline. Quadrant I shows 177 observations with energy
	productivity decline and GHG emission intensity growth. Quadrant IV shows 176

  1E k,t . Similarly, we can prove thatD E t pE k,t 1 ,z k,t ,v k,t ,y k,t q D E t pE k,t ,z k,t ,v k,t ,y k,t q E k,t 1 pE k,t 1 ,z k,t 1 ,v k,t 1 ,y k,t 1 q D E t 1 pE k,t ,z k,t 1 ,v k,t 1 ,y k,t 1 q D E t pE k,t 1 ,z k,t ,v k,t ,y k,t q D E t pE k,t ,z k,t ,v k,t ,y k,t qProof. Based on relation (7), we have EP RODC t,t 1 Y C t,t 1 EC t,t 1 . Hence, by considering Theorems 1 and 2, we have EP RODC t,t 1 y k,t 1 E k,t y k,t E k,t 1 . □

		E k,t .	
	(ii): Based on relation (6), we have
		c	
	EC t,t 1	D E t 1 b E k,t 1 E k,t	E k,t 1 E k,t E k,t 1 E k,t .
			□
	Proof of Corollary 1:	
	Proof of Theorem 3:	

  Table C.1. Average Annual Energy Productivity Change, Aggregate Output Change and Energy Use Change for Subsample without

	Outliers			
	Period	EP RODC t,t 1 Y C t,t 1 EC t,t 1
	2010-2011 1.151	1.015	0.900
	2011-2012 1.061	1.037	1.014
	2012-2013 1.116	1.039	0.959
	2013-2014 0.947	0.965	1.061
	2014-2015 0.982	1.072	1.120
	2015-2016 0.949	1.063	1.188
	2016-2017 1.137	1.037	0.945
	2017-2018 1.100	0.995	0.935
	2018-2019 0.879	1.033	1.220
	Overall	1.017	0.975	1.007
	GHGC N C t,t 1			

Table C .

 C 2. Average Annual Greenhouse Gas Emission Intensity Change, Polluting Input Change and Greenhouse Gas Emission Change under Nonconvex Approximation for Subsample without The large majority of farms score well either in terms of energy productivity change or in terms of GHG emission intensity change: quadrant II shows 356 observations with energy productivity growth and GHG emission intensity growth, while quadrant III shows 315 observations with energy productivity decline and GHG emission intensity decline. Quadrant I shows 147 observations with energy productivity decline and GHG emission intensity growth. Quadrant IV shows 148 observations with energy productivity growth and GHG emission intensity decline.

	Outliers			
	Period	GHGIC N C t,t 1 XP C N C t,t 1 GHGC N C t,t 1
	2010-2011 1.034	0.991	1.022
	2011-2012 1.020	1.029	1.049
	2012-2013 1.179	1.044	1.231
	2013-2014 0.978	1.056	1.031
	2014-2015 0.981	1.064	1.041
	2015-2016 0.987	1.086	1.068
	2016-2017 1.019	0.981	0.997
	2017-2018 1.037	0.948	0.981
	2018-2019 0.930	1.045	0.970
	Overall	1.015	1.028	1.041

I II III IV

Figure A.1. Scatter Plot of Energy Productivity Change vs. Greenhouse Gas Emission Intensity Change for Subsample without Outliers, Estimated Using Nonconvex Approximation

Analysis: The Use of Malmquist and Luenberger Productivity Measures," Managerial and Decision Economics, 42, 635-648. ---(2022): "A Generalization of Environmental Productivity Analysis," Journal of Productivity Analysis, 57, 1-18. Aigner, D., C. K. Lovell, and P. Schmidt (1977): "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, 6, 21-37. Ancev, T., M. Azad, and M. Akter (2017): "Environmentally Adjusted Productivity and Efficiency: A Review of Concepts, Methods and Empirical Work," in New Directions in Productivity Measurement and Efficiency Analysis: Counting the Environment and Natural Resources, ed. by T. Ancev, M. Azad, and F. Hernández-Sancho, Cheltenham: Elgar, 9-58. Ang, F. (2019): "Analyzing Components of Productivity Growth using the Bennet-Lowe Indicator: An Application to Welsh Sheep Farms," American Journal of Agricultural Economics, 101, 1262-1276. Ang, F. and P. J. Kerstens (2016): "To mix or specialise? A coordination productivity indicator for English and Welsh farms," Journal of Agricultural Economics, 67, 779-798. ---(2017): "Decomposing the Luenberger-Hicks-Moorsteen Total Factor Productivity indicator: An application to US agriculture," European Journal of Operational Research, 260, 359-375. Ang, F., S. M. Mortimer, F. J. Areal, and J. R. Tiffin (2018): "On the Opportunity Cost of Crop Diversification," Journal of Agricultural Economics,

D ghg t 1 pu k,t 1 , ghg k,t q sup δ¡0,µ i,t 1 t0,1u δ s.t. °I i1 µ i,t 1 u i,t 1 ¥ u k,t 1 , °I i1 µ i,t 1 ghg i,t 1 ¤ ghg k,t δ , °I i1 µ i,t 1 1.

(A14) D ghg t pu k,t , ghg k,t q sup δ¡0,µ i,t t0,1u δ s.t. °J j1 µ i,t u i,t ¥ u k,t , °J j1 µ i,t ghg i,t ¤ ghg k,t δ , °J j1 µ i,t 1.

(A15) D ghg t pu k,t , ghg k,t 1 q sup δ¡0,µ i,t 1 t0,1u δ s.t. °J j1 µ i,t u i,t ¥ u k,t , °J j1 µ i,t ghg i,t ¤ ghg k,t 1 δ , °J j1 µ i,t

(A16)

To obtain the four binary mixed-integer linear programmes for the nonconvex case, it is sufficient to add the following constraint to the above four linear programmes (A13)-(A16): µ i,t 1 t0, 1u.

Combining the above eight programmes (A9)-(A16) yields GHGIC t,t 1 defined in equation ( 13).

Appendix B. Proofs of Theorems and Corollaries

Proof of Theorem 1:

ϕ ¦¦ , we have

ϕ ¦¦ . As a result,

Similarly, we can prove that

ρ ¦¦ , thus we have

ρ ¦¦ . As a result,

Similarly, we can prove that

.

□

Proof of Theorem 4:

Proof. (i): Assume that observation k is under evaluation and pµ ¦ i,t 1 , δ ¦ q is an optimal solution of model D ghg t 1 pu k,t 1 , ghg k,t 1 q (model (A13)). Since there is a single output ghg, we have δ ¦ ghg k,t 1

δ ¦¦ , we have

δ ¦¦ . As a result, C.2 shows the annual GHG emission intensity change estimated using nonconvex approximation, GHGIC N C t,t 1 in equation ( 13), and the components of polluting input change estimated using nonconvex approximation, XP C N C t,t 1 , and GHG emission change estimated using nonconvex approximation, GHGC N C t,t 1 . The average annual GHGIC N C t,t 1 in the considered period is 1.015, which indicates an average increase of 1.5% p.a. This is the same as in the main results. The average GHGIC N C t,t 1 indicates decline of 2.5% and 1.2% in 2013 ¡ 2014 and 2014 ¡ 2015, respectively. In all other periods, there is on average an increase in GHGIC