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Abstract

The purpose of this contribution is to provide an overview of developments in nonconvex

production technologies and economic value functions, with special attention to the cost

function. Apart from a somewhat selective review of theoretical issues, the emphasis

is on whether the assumption of convexity makes a difference in practice. Anticipating

our conclusion, we argue that traditional convex empirical results differ on average

rather markedly from alternative nonconvex ones. This should make the discipline

reconsider its traditional relationship with convexity in both theoretical and applied

production analysis.

Keywords: Nonparametric frontier, Convexity, Production, Cost function, Scale, Pro-

ductivity.

PRELIMINARY VERSION. DO NOT CITE WITHOUT PRIOR CONSENT.

1 Introduction

This contribution focuses on deterministic nonparametric frontier technologies that somehow

relax the traditional hypothesis of convexity. Apart from developments in general equilibrium
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theory with nonconvexities, we are unaware of any developments in empirical production

theory that allow to empirically document the eventual impact of the traditional convexity

axiom. This explains the narrow and selective focus of this chapter.

The seminal article of Farrell (1957) introduced a single output multiple inputs determin-

istic nonparametric frontier technology, but did not establish a link with linear programming.

Boles (1966) and Charnes, Cooper, and Rhodes (1978) are the first economics and opera-

tions research articles respectively that have given the impetus that made the nonparametric

approach to production one of the great success stories in terms of both methodological de-

velopments and empirical applications. While the axiom of convexity is traditionally main-

tained in these nonparametric production models (see Afriat (1972), Banker, Charnes, and

Cooper (1984), Charnes, Cooper, and Rhodes (1978), Diewert and Parkan (1983)) as well as

in the mainstream empirical economic literature on production analysis, Afriat (1972) was

probably the first to mention a basic single output nonconvex technology imposing the as-

sumptions of strong input and output disposability. A multiple output version has probably

been proposed for the first time in Deprins, Simar, and Tulkens (1984) and these authors

suggested the moniker Free Disposal Hull (FDH).

The work of Scarf (1977; 1981a; 1981b; 1986a) may well be considered as an important

predecessor of FDH, since he studied activity analysis models based on integer data. For

instance, Figure 1 displayed in Scarf (1977, p. 3638) resembles the FDH as we know it.

Without the pretension to recount the history of the FDH technology in detail, it suffices

to mention that Lovell and Vanden Eeckaut (1994, footnote 2) list another three potential

historical sources of the FDH concept.

This traditional stress on convex applied production analysis is to some extent surprising,

since it is theoretically well-known that important features of technology fundamentally vi-

olate the convexity of the production possibility set (see Farrell (1959)). First, indivisibility

implies that inputs and outputs are not necessary perfectly divisible. Furthermore, scaling

down or up the entire production process in infinitesimal fractions may not be feasible. Ex-

amples include the start-up and shut-down costs in industries (see, e.g., O’Neill, Sotkiewicz,

Hobbs, Rothkopf, and Stewart (2005) for electricity generation ). Scarf (1986b; 1994) stresses

the importance of indivisibility in selecting among technological options. Second, economies

of scale (e.g., modern information technology) and economies of specialization (e.g., Romer

(1990) on nonrival inputs in the new growth theory) violate the convexity of technology.

Third, the existence of positive or negative production externalities also leads to nonconvex-

ities. Thus, the structure of production in society is potentially full of nonconvexities.

It should be realised that the natural environment is full of nonconvexities as well
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(see Dasgupta and Mähler (2003) for an overview). Ecologists identify pathways by which

ecosystem constituents interact with one another and with the external environment. A large

body of empirical work reveals that those pathways often involve transformation possibilities

among environmental goods and services that constitute nonconvex sets (e.g., see Boscolo

and Vincent (2003) on forestry economics). In the words of Dasgupta and Mähler (2003, p.

499): “The word “convexity” is ubiquitous in economics, but absent from ecology.”

This book chapter is structured as follows. Section 2 provides some basic definitions of

the traditional axioms underlying technologies and their representation via distance func-

tions. The next Section 3 discusses in detail the existing justifications for the axiom of

convexity. Section 4 first focuses on nonconvex FDH with its extensions and the correspond-

ing traditional convex technologies, then followed by a discussion of nonconvex economic

value functions as well as efficiency decompositions and tests of convexity that have been

conceived in the literature. Next, we offer an empirical perspective on the use of FDH and

its extensions on a variety of topics. Finally, we discuss some further methodological refine-

ments. The next Section 5 offers a very selective review of several attempts to mitigate the

impact of the convexity axiom while avoiding FDH and its extensions. Section 6 concludes

and outlines some future research issues.

2 Technologies and Distance Functions: Basic Defini-

tions

A production technology describes all available possibilities to transform input vectors x =

(x1, . . . , xm) ∈ Rm
+ into output vectors y = (y1, . . . , yn) ∈ Rn

+. The production possibility set

or technology T summarises the set of all feasible input and output vectors: T = {(x, y) ∈
Rm

+ ×Rn
+ : x can produce y}. Note that it may be surprising that the main contributions in

this literature continue considering that the technology is a subset of Rm × Rn. In Section

4 we open a perspective on considering the domain Nm × Nn instead.

Given our focus on input-oriented efficiency measurement later on, this technology can

be represented by the input correspondence L : Rn
+ → 2R

m
+ where L(y) is the set of all input

vectors that yield at least the output vector y:

L(y) = {x : (x, y) ∈ T} . (1)

The radial input efficiency measure is a map E : Rm
+ × Rn

+ −→ R+ ∪ {∞} that can be
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defined as:

E (x, y) = min {λ : λ ≥ 0, λx ∈ L(y)} . (2)

This radial efficiency measure, which is the inverse of the input distance function, indicates

the minimum contraction of an input vector by a scalar λ while still remaining in the input

correspondence. Obviously, the resulting input combination is located at the boundary of

this input correspondence. For our purpose, the radial input efficiency has two key properties

(see, e.g., Hackman (2008)). First, it is smaller or equal to unity (0 ≤ E (x, y) ≤ 1), whereby

efficient production on the isoquant of L(y) is represented by unity and 1−E (x, y) indicates

the amount of inefficiency. Second, it has a cost interpretation. Note that more general

efficiency measures are around in the literature: one example is the directional distance

function introduced by Chambers, Chung, and Färe (1998) that is sometimes mentioned in

this contribution.

Consider a set of K observations A = {(x1, y1) , . . . , (xK , yK)} ∈ Rm
+ × Rn

+. In the

following, let us denote K = {1, . . . , K}. Nonparametric specifications of technology can

then be estimated by enveloping these K observations in the set A while maintaining some

basic production axioms (see Hackman (2008) or Ray (2004)). We are interested in defining

minimum extrapolation technologies satisfying the following assumptions:

T1: (0, y) ∈ T ⇒ y = 0; (0, 0) ∈ T ;

T2: T is closed;

T3: For all (x, y) ∈ T and all (u, v) ∈ Rm
+ ×Rn

+ if (x,−y) ≤ (u,−v) then (u, v) ∈ T ;

T4: T exhibits: (ı) Constant Returns to Scale (CRS): δT ⊆ T,∀δ > 0; (ıı) Nonincreasing

Returns to Scale (NIRS): δT ⊆ T,∀δ ∈ (0, 1);(ııı) Nondecreasing Returns to Scale (NDRS):

δT ⊆ T,∀δ > 1; (ıv) Variable Returns to Scale (VRS): when (ı), (ıı) and (ııı) do not hold.

T5: T is convex.

We briefly expand on the interpretation of these basic axioms. Axiom (T.1) states that

there is no free lunch; and that inaction is feasible. Axiom (T.2) indicates that the technology

is closed. Axiom (T.3) represents strong or free disposability in the inputs and the outputs:

inputs can be wasted without opportunity costs, and outputs can be reduced at will. Axiom

(T.4) defines all four traditional returns to scale hypotheses (i.e., constant, nonincreasing,

nondecreasing and variable (flexible) returns to scale). Finally, the convexity assumption

(T.5) is traditional, but it is not indispensable.
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3 Axiom of Convexity: Arguments

While the axiom of convexity (T.5) is traditionally maintained in economics, we develop three

types of arguments to put it under scrutiny. Two arguments are related to economic theory.

One argument is more pragmatic: in empirical applications, it turns out that managers

often object to convexity. Sometimes the motivation to maintain the convexity axiom is just

analytical convenience (see, e.g., Hackman (2008, p. 2)). We think this is an argument that

is valid only if one can show that convex results provide a reasonably good approximation

to a potentially nonconvex economic reality.

3.1 Convexity and Duality

Often duality is invoked as a reason to maintain convexity. Since the main duality relations

in economics linking, e.g., production and cost approaches presume some form of convexity,

in applied empirical production analysis researchers feel compelled to maintain the same

axioms. It is an open question whether this desire for theoretical consistency is cogent.

We explore this viewpoint a little bit. The traditional duality results often fit in a

general equilibrium framework that maintains convexity in its simplest forms. But, applied

researchers tend to forget that general equilibrium theory has become less attractive as

a general normative framework since the Sonnenschein-Mantel-Debreu results appeared in

the early 1970s. Almost entirely negative conclusions appeared about the uniqueness and

stability of general equilibrium. While uniqueness only occurs under restrictions void of

economic realism, instability is the rule rather than the exception since almost any continuous

pattern of price movements may occur in general equilibrium (see Ackerman (2002)).

Furthermore, general equilibrium theory has been developed under more general condi-

tions of nonconvexity on technology and preferences (see Chavas and Briec (2012)). Realist-

ically, this involves some process of nonlinear pricing. At the firm level, one may therefore

look for proper nonconvex specifications that do justice to the nonconvexities in technology.

This may imply recourse to more complex duality relations, but this is simply the price to

pay for the gain in realism. The FDH and its extensions can be seen as one example that

may fit into such a strategy (see, e.g., Agrell and Tind (2001)).

3.2 Convexity and Time Divisibility

Several economic theorists interpret convexity of technology solely in terms of time divisibility

of technologies and see no other justification for its use.
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Hackman (2008, p. 39) puts things clearly when discussing the axiom of convexity in his

textbook:

It does have the following “time-divisibility” justification. Suppose input vectors x1 and x2
each achieve output level u > 0. Pick a λ ∈ [0, 1], and imagine operating 100λ% of the
time using x1 and 100(1 − λ)% of the time using x2. At an aggregate level of detail, it is
not unreasonable to assume that the weighted average input vector λx1 + (1 − λ)x2 can also
achieve output level u.

Jacobsen (1970, p. 759) remarks when discussing the quasi-concavity property of the

production function:

(A.5) implies a time divisibility in the production process.

Finally, Shephard (1970, p. 15) states about the property of convexity of the input set:

Property P.8 is valid for time divisibly-operable technologies. For example, if x ∈ L(u), y ∈
L(u) and θ ∈ [0, 1], the input vector [(1− θ)x+ θy] may be interpreted as an operation of the
technology a fraction (1− θ) of some unit time interval with the input vector x and a fraction
θ with y, assuring at least the output rate u.

The added footnote at the end of the last cited phrase reads: “Indeed the input vector

[(1− θ)x+ θy] may have no meaning unless so interpreted.”

This time divisibility argument basically ignores setup and lead times which make a

switch between the underlying activities costly in terms of time. This implies that convex-

ity becomes questionable when time indivisibilities compound all other reasons for spatial

nonconvexities (e.g., indivisibilities, increasing returns to scale, economies of specialization,

externalities, etc.).

3.3 Convexity and Managerial Practice: Some Skepticism Around

Decision makers do not necessarily believe in convexity. This is evidenced in remarks,

scattered in the literature, on the problems encountered in communicating the results of

traditional efficiency measurement assuming convexity to decision makers. We provide some

examples of quotes reflecting this doubt of managers to the axiom of convexity.

In a study applying convex nonparametric frontier methods to measure bank branch

efficiency, Parkan (1987, p. 242) notes:

The comparison of a branch which was declared relatively efficient, to a hypothetical composite
branch, did not allow for convincing practical arguments as to where the inefficiencies lay.

Epstein and Henderson (1989, p. 105) report similar experiences in that managers simply

question the feasibility of the hypothetical projection points resulting from convex nonpara-

metric frontiers when discussing an application to a large public-sector organisation:

The algorithm for construction of the frontier was also discussed. The frontier segment con-
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necting A and B was considered unattainable. It was suggested that either (1) these two
DMUs should be viewed as abnormal and dropped from the model, (2) certain key variables
have been excluded, or (3) the assumption of linearity was inappropriate in this organization.
It appears that each of these factors was present to some degree.

In a very similar vein, Bouhnik, Golany, Passy, Hackman, and Vlatsa (2001, p. 243) state:

Equally as important, it is our experience that managers often question the meaning of convex
combinations that involve what they perceive to be irrelevant DMUs.

All quotes seem to point to the fact that convexity may well in practice combine observations

that are too far apart in terms of input mix, output mix, and/or scale of operations. While

one hopes for a rather uniformly dense rather well-spaced cloud of points that avoids the

combination of extreme points of production, such extreme combinations apparently occur

and are puzzling for managers.

In a Value Efficiency Analysis application (a way of incorporating preference information

into efficiency analysis), Halme, Korhonen, and Eskelinen (2014, p. 11) also opt for its use

with FDH because this matched the preferences of management:

The management was also more comfortable providing preference information over existing
units than virtual units, and found the results valuable.

Also some researchers concede that nonconvex analysis of production facilitates the prac-

tical use of efficiency analysis. For instance, Bogetoft, Tama, and Tind (2000, p. 859) declare

in this context:

In general, allowing the possibility set to be nonconvex facilitates the practical use of productiv-
ity analysis in benchmarking. In particular, fictitious production possibilities, generated as
convex combinations of those actually observed, are usually less convincing as benchmarks,
or reference units, than actually observed production possibilities.

This experience is confirmed by Halme, Korhonen, and Eskelinen (2014, p. 10):

During our long experience of DEA applications we repeatedly encountered the phenomenon
that DMs (Decision Maker) are reluctant to evaluate other than existing units.

Obviously, we understand that this is just casual evidence that transpires from the em-

pirical literature. But, it is useful to consider in addition to the other arguments above.

Turning to a mathematical argument, notice that there exists some general condition

under which a distance function (related to the efficiency measure (2)) can characterizes

a nonconvex technology. This general condition is independent of the strong disposability

assumption (T.3) (though we use it in the remainder for computational reasons). One can

provide a simple condition considering the radian subset of R ∈ Rd. A subset R of Rd is a

radian set if for all λ ∈ [0, 1] and all x ∈ R, λx ∈ R. Equivalently, such a subset is called

a starshaped set (see Aliprantis and Border (2006) for related concepts). A subset S is co-

radian if for all λ ≥ 1, λx ∈ S. In the field of functional analysis in mathematics, a distance
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function is called a gauge function (analogous to the Minkowski functional for symmetrical

sets). This is a function that recovers a notion of distance on a linear space. For all subset

D of Rd, the gauge function ψD is the map ψD : Rd −→ [0,∞] defined by

ψD(x) = sup{δ : δx ∈ D}, (3)

with the convention that ψD(x) = 0 if there is no λ ≥ 0 such that λx ∈ A. Paralleling this

definition, for all co-radian set one can define a co-gauge as:

ηD(x) = inf{δ : δx ∈ D}. (4)

This definition implies that for all respectively closed radian and co-radian sets R and S:

R = {x ∈ Rd : ψR(x) ≥ 1} and S = {x ∈ Rd : ηS(x) ≤ 1} (5)

It follows that a production technology can be characterized from the efficiency measure (2)

if and only if the input set L(y) is co-radian for all y ∈ Rm
+ . Considering an output-oriented

efficiency measure such a characterization applies if and only if the output set is a radian

(starshaped) set.

4 Nonparametric Nonconvex Technologies and Value

Functions: Free Disposal Assumption and Minimum

Extrapolation Principle

4.1 Technologies: FDH and Its Extensions

While Deprins, Simar, and Tulkens (1984) are commonly acknowledged as the developers of

the basic FDH model, Kerstens and Vanden Eeckaut (1999) extended this basic model by

introducing the possibilities of constant, nonincreasing and nondecreasing returns to scale.

This leads to the definition of three new technologies complementary to the assumption of

flexible or variable returns to scale embodied in the basic FDH model.

Individual production possibilities sets are based upon one production unit (xk, yk), the

strong disposability assumption and different maintained hypotheses of returns to scale:

NΓ(xk, yk) =
{
(x, y) ∈ Rm

+ × Rn
+ : x ≥ δxk, y ≤ δyk, δ ∈ Γ

}
, (6)
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where Γ ∈ {ΓCRS,ΓNDRS,ΓNIRS,ΓV RS}, with:

(i) ΓCRS = {δ : δ ≥ 0} ;

(ii) ΓNDRS = {δ : δ ≥ 1} ;

(iii) ΓNIRS = {δ : 0 ≤ δ ≤ 1} ;

(iv) ΓV RS = {δ : δ = 1} .

Unions and convex unions of these individual production possibilities sets yield the nonconvex

technologies on the one hand and the traditional convex models on the other hand:

TNC,Γ =
⋃
k∈K

NΓ(xk, yk) and TC,Γ = Co
( ⋃

k∈K

NΓ(xk, yk)
)
, (7)

where Co stands for the convex hull operator.

In addition to this approach based on sets and their operations, an alternative and useful

formulation can be proposed making some analogy to the traditional convex model. Let us

introduce the following notation:

ΛC =
{∑

k∈K

zk = 1, zk ≥ 0
}
and ΛNC =

{∑
k∈K

zk = 1, zk ∈ {0, 1}
}
.

A unified algebraic representation of convex and nonconvex technologies under different

returns to scale assumptions for a sample of K observations is found in Briec, Kerstens, and

Vanden Eeckaut (2004):

TΛ,Γ =
{
(x, y) ∈ Rm

+ × Rn
+ : (x,−y) ≥

∑
k∈K

δzk(xk,−yk), zk ∈ Λ, δ ∈ Γ
}
, (8)

where Λ ∈ {ΛNC ,ΛC}. First, there is the activity vector (z) operating subject to a convexity

(C) or nonconvexity (NC) constraint. Second, there is a scaling parameter (δ) allowing for

a particular scaling of all K observations spanning the technology. This scaling parameter

is smaller than or equal to 1 or larger than or equal to 1 under nonincreasing returns to

scale (NIRS) and nondecreasing returns to scale (NDRS) respectively, fixed at unity under

variable returns to scale (VRS), and free under constant returns to scale (CRS).

Briec, Kerstens, and Vanden Eeckaut (2004, Proposition 1) prove the following result:

Proposition 4.1 (Briec, Kerstens, and Vanden Eeckaut (2004, p. 166)). The nonconvex tech-

nologies TΛNC ,Γ are the minimal extrapolation technologies containing the data A = {(xk, yk) :
k ∈ K} ⊂ Rm

+ ×Rn
+ and satisfying the axioms T1 to T4.
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The same statement for basic FDH solely has earlier been developed in Färe and Li (1998):

FDH can be seen as the closest inner approximation of the true, strongly disposable but

possibly nonconvex technology.

The advantages of this formulation (8) are twofold. First, it offers a coherent formulation

of all basic technologies under the four basic returns to scale assumptions (T.4) and under

both convexity (T.5) and nonconvexity. For example, under VRS (i.e., setting δ = 1) and

no convexity (i.e., constraint (ΛNC)), one obtains the classical FDH technology:

TΛNC ,ΓV RS
=

{
(x, y) ∈ Rm

+ ×Rn
+ : (x,−y) ≥

∑
k∈K

zk(xk,−yk), z ∈ ΛNC

}
, (9)

as formulated by Deprins, Simar, and Tulkens (1984). As another example, under VRS

and convexity (i.e., constraint (ΛC)), one retrieves the basic technology defined by Banker,

Charnes, and Cooper (1984) and Färe, Grosskopf, and Lovell (1983):1

TΛC ,ΓV RS
=

{
(x, y) ∈ Rm

+ ×Rn
+ : (x,−y) ≥

∑
k∈K

zk(xk,−yk), z ∈ ΛC

}
. (10)

Second, its pedagogical advantage is that it neatly separates the role of the various

assumptions in the formulation of technology. For instance, the restrictions on the scaling

parameter (δ) relate directly to the basic definitions of the axioms on returns to scale (T.4).

Furthermore, the sum constraint on the activity vector z (i.e., constraint (ΛC)) relates to

the convexity axiom (T.5).

In this way, one can avoid confusing statements as found in the literature. For instance,

the sum constraint on the activity vector z (i.e., constraint (ΛC)) in the envelopment or

primal formulation (10) is often called a “convexity constraint” under the VRS assumption,

while the CRS technology has no such constraint in the formulation of Charnes, Cooper,

and Rhodes (1978) though it also maintains the convexity axiom (see, e.g., Cook and Seiford

(2009, p. 2–3)).

To compute the radial input efficiency measure (2) relative to convex technologies in (8)

requires solving a nonlinear programming problem (NLP) for each evaluated observation. As

shown in Briec and Kerstens (2006, Lemma 2.1), this NLP can be transformed into the fa-

miliar linear programming (LP) problems that are known from the literature by substituting

wk = δzk.

For the nonconvex technologies in (8), the radial input efficiency measure (2) requires

1Note that the convex VRS and NDRS technologies do not satisfy inaction.
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computing a nonlinear binary mixed integer program (NLBMIP): see Briec, Kerstens, and

Vanden Eeckaut (2004, p. 166). In fact, to reduce the computational complexity of this

NLBMIP problem, three distinctive alternative solution methods have been proposed in

the literature. First, Podinovski (2004b) reformulates all these nonconvex technologies as

binary mixed integer programs (BMIP) using a big M technique. Second, starting from

an existing LP model for the basic FDH model (9) (see Agrell and Tind (2001)), Leleu

(2006) formulates for all these nonconvex technologies equivalent LP problems. Third, Briec,

Kerstens, and Vanden Eeckaut (2004) develop for all nonconvex technologies an implicit

enumeration strategy to obtain closed form solutions for the radial input efficiency measure

(2):2

Proposition 4.2. Let ENC,Γ denotes the radial input efficiency measure defined with respect

to technologies TΛNC ,Γ. For all (x, y) ∈ TΛNC ,Γ and k = 1 · · ·K, let us denote

αk(x) = max
i∈I(x)

xki
xi

and βk(y) = max
j∈J(yk)

yj
ykj

,

where for all (x, y) ∈ Rm
+ ×Rn

+, I(x) = {i ∈ {1, . . . ,m} : xi > 0} and J(y) = {j ∈
{1, . . . , n} : yj > 0}. We have, for all (x, y) ∈ TΛNC ,Γ:

ENC,Γ(x, y) =


min

(xk,yk)∈BΓ(x,y)
αk(x) if Γ = ΓV RS;

min
(xk,yk)∈BΓ(x,y)

βk(y) · αk(x) if Γ ∈ {ΓCRS,ΓNIRS};

min
(xk,yk)∈BΓ(x,y)

{max {βk(y), 1} · αk(x)} if Γ = ΓNDRS.

with BΓ(x, y) = {(xk, yk) : δxk ≤ x, δyk ≥ y, δ ∈ Γ}.

Briec and Kerstens (2006, p. 148-149) refine this analysis and also offer closed form solu-

tions for the output-oriented and graph-oriented efficiency measures. Furthermore, these

authors indicate that the computational complexity of enumeration is advantageous com-

pared to the BMIP or LP approaches. Indeed, the maximum (minimum) of a vector with

n components can be calculated in the worst case in O(n) arithmetic operations. Thus, to

enumerate on the data set with the number of firms K the number of arithmetic operations

is about O(LK(m+n)), where m and n represent the number input and output dimensions

and L is a measure of data storage for a given precision. A standard linear program has

2Note that the use of enumeration for the basic nonconvex FDH production model (9) has been around
in the literature for quite a while: examples include Deprins, Simar, and Tulkens (1984), Fried, Lovell, and
Turner (1996), Tulkens (1993), among others.
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a O(LK3) polynomial time complexity linked to the number of observed firms K. Since

K > m + n in general, the time complexity of enumeration is thus better than LP. In fact,

Kerstens and Van de Woestyne (2014b) empirically document that implicit enumeration is

by far the fastest solution strategy followed by BMIP and finally LP.3 Kerstens and Van de

Woestyne (2018) provide closed form solutions for the directional distance functions under

alternative returns to scale assumptions.

One can mention that in this nonconvex framework one can also treat the discrete case

by considering that the technology is a subset of Nm × Nn (instead of Rm × Rn). However,

the radial measure (2) involves an assumption of divisibility and is therefore unsuitable. In

line with Andriamasy, Briec, and Solonandrasana (2017), one can overcome this problem by

using the directional distance function (Chambers, Chung, and Färe (1998)) and selecting a

direction that is the unit vector of Nm × Nn.

In principle, the appropriateness of the convexity axiom can be tested for any comparison

between convex and nonconvex technologies imposing a similar returns to scale hypothesis.

We can define tests for the convexity of technology as a simple ratio between the convex and

nonconvex input efficiency measures. Thus, the ratio:

CTΓ(x, y) = EC,Γ(x, y)/ENC,Γ(x, y) (11)

determines a nonparametric goodness-of-fit test for the convexity of technologies conditional

on the scaling law Γ (Briec, Kerstens, and Vanden Eeckaut (2004, p. 178)).

4.2 Economic Value Functions

The nonconvex production models have been complemented by nonconvex cost functions

with corresponding specific returns to scale assumptions in Briec, Kerstens, and Vanden

Eeckaut (2004). Turning to a dual representation of technology, recall that the cost function

C : Rn
+ ×Rm

+ −→ R+ ∪{∞} defines the minimum costs to produce an output vector y given

a vector of semi-positive input prices (w ∈ Rm
+ ):

C(y, w) = inf {w · x : x ∈ L(y)} . (12)

Briec, Kerstens, and Vanden Eeckaut (2004, p. 175-176) establish a local duality result

between the nonconvex cost functions and the nonconvex FDH and its extensions.

The computation of the cost function (12) relative to convex nonparametric technologies

3This poor performance is related to the huge size of the LP formulation in Leleu (2006).
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TC,Γ again requires an NLP to be solved for each evaluated observation. As above, this NLP

can be transformed into the familiar LP problem that is known from the literature (e.g.,

Hackman (2008)).

The cost function (12) relative to the nonconvex technology TNC,Γ involves computing

a NLBMIP as mentioned above. Again, to reduce the computational complexity of this

NLBMIP problem, three distinctive solution methods can be pursued. First, following the

Podinovski (2004b) approach, one can transform these nonconvex cost functions to BMIPs.

Second, Leleu (2006) formulates for all these nonconvex cost functions equivalent LP prob-

lems. Third, Briec, Kerstens, and Vanden Eeckaut (2004) develop for all nonconvex cost

functions an implicit enumeration strategy yielding closed form solutions. For all y ∈ Rn
+,

let us denote:

VΓ(y, xk, yk) =
{
x ∈ Rm

+ ; (x, y) ∈ NΓ(xk, yk)
}

(13)

By construction, we have:

CNC,Γ(y, w) = min

{
w · x : x ∈

⋃
k∈K

VΓ(y, xk, yk)

}
. (14)

By defining C
(k)
NC,Γ(y, w) = min{w · x : x ∈ VΓ(y, xk, yk)}, we obtain

CNC,Γ(y, w) = min
k∈K

C
(k)
NC,Γ(y, w). (15)

Interestingly the above properties can be derived from the standard background of convex

analysis (see Clarke (1983) and Rockafellar and Wets (1998) for references).4 Given a closed

subset D of Rd let δD : Rd −→ R∪{−∞} be the indicator function defined as

δD(z) =

{
0 if x ∈ D

−∞ if x /∈ D
(16)

One can then show that

inf{w.z : z ∈ D} = inf{w.z − δD(z) : z ∈ Rd} = δ⋆D(w), (17)

where δ⋆D(w) stands for the conjugate of δD. Suppose moreover that for all k ∈ K, Dk is a

4This point was suggested to the authors by R. Chambers.
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closed subset of Rd and that D =
⋃

k∈KDk.

δ⋆D(w) = δ⋆⋃
k∈K Dk

(w) = inf{w.z − δ⋃
k∈K Dk

(z) : z ∈ Rd} (18)

= inf{w.z −max
k∈K

δDk
(z) : z ∈ Rd} = inf

{
min
k∈K

(
w.z − δDk

(z)
)
: z ∈ Rd

}
(19)

= min
k∈K

inf{w.z − δDk
(z) : z ∈ Rd} = min

k∈K
δ⋆Dk

(w). (20)

Along this line we obtain for all k ∈ K:

C
(k)
NC,Γ(y, w) = δ⋆VΓ(y,xk,yk)

(w) and CNC,Γ(y, w) = min
k∈K

δ⋆VΓ(y,xk,yk)
(w). (21)

Notice that a similar method applies for efficiency analysis. The next result is then derived.

Proposition 4.3. Let CNC,Γ(y, w) denotes the cost function with respect to technologies

TΛNC ,Γ. For all (y, w) ∈ Rn
+×Rm

+ we have:

CNC,Γ(y, w) =



min
k∈K

{w · xk : yk ≥ y} if Γ = ΓV RS;

min
k∈K

{βk(y)w · xk} if Γ = ΓCRS;

min
{k:βk(y)≤1}

{βk(y)w · xk} if Γ = ΓNIRS;

min
k∈K

{
max {βk(y), 1}w · xk

}
if Γ = ΓNDRS;

where J(y) = {j : yj > 0} and βk(y) = maxj∈J(yk)
yj
ykj

are defined as in Proposition 4.2.

Remark that Ray (2004, Section 10.2) shows that the basic FDH cost function yields the

same result as the Weak Axiom of Cost Minimization (WACM) as defined by Varian (1984).

This is intuitively obvious since WACM only imposes convexity of the input set and thus

this partial convexity yields the same cost function as the one not imposing convexity at all.

Now, there is a property of the cost function in the outputs worthwhile spelling out.

Some seminal contributors to axiomatic production theory state that the cost function is

nondecreasing and convex (nonconvex) in the outputs if and only if convexity of technology

is assumed (rejected) (e.g., Färe (1988, p. 87), Jacobsen (1970, p. 765), Shephard (1970, p.

227) or Shephard (1974, p. 15)). A central result established in Briec, Kerstens, and Vanden

Eeckaut (2004) is that cost functions based on convex technologies are always smaller or

equal to cost functions based on nonconvex technologies.

Proposition 4.4 (Briec, Kerstens, and Vanden Eeckaut (2004, p. 171)). The convex and

nonconvex cost functions CC,Γ and CNC,Γ, respectively, satisfy the following properties:

(a) For all (y, w) ∈ Rn
+ × Rm

+ , CC,Γ(y, w) ≤ CNC,Γ(y, w);
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(b) In the single output case, if Γ = ΓCRS, then: CC,Γ(y, w) = CNC,Γ(y, w).

Both cost functions are only equal in the case of CRS and a single output. This Proposition

4.4 can be conceived as a more detailed result spelling out the precise impact of convexity

on the above property of cost functions in the outputs.

Obviously, these results can also be transposed to other economic value functions. Rev-

enue functions based upon convex technologies are higher than or equal to revenue functions

based upon nonconvex technologies. Only in the single input and CRS case, both these

revenue functions coincide. For the long-run profit function, by contrast, the use of convex

technologies or nonconvex technologies is logically indistinguishable. However, for any other

restricted profit function one obtains the result that profit is higher or equal when tangent

to a convex instead of a nonconvex technology.

Also the appropriateness of the convexity axiom can be tested by comparing convex and

nonconvex value functions imposing a similar returns to scale hypothesis. A simple test of

the convexity of, e.g., the cost function can be defined as a simple ratio between the convex

and nonconvex cost functions. Thus, the ratio:

CCΓ(y, w) = CC,Γ(y, w)/CNC,Γ(y, w) (22)

determines a nonparametric goodness-of-fit test for the convexity of cost functions conditional

on the scaling law Γ (see Briec, Kerstens, and Vanden Eeckaut (2004, p. 178)). Obviously,

this convexity test in Definition 22 is similar in structure to the test earlier developed in

Definition 11.

4.3 Efficiency Decompositions and the Testing of Convexity: A

Priori Relations

While Farrell (1957) provided the first measurement scheme for the evaluation of technical

and allocative efficiency in a frontier context, Färe, Grosskopf, and Lovell (1985) and Seitz

(1971) both offer alternative extended efficiency taxonomies. Because it is in our opinion the

most widespreadly used, we stick in this contribution to the conceptual framework developed

in Färe, Grosskopf, and Lovell (1985, pp. 3–5).

The radial efficiency measure (2) used relative to different technologies entails the different

concepts in this efficiency taxonomy of Färe, Grosskopf, and Lovell (1985). By conditioning

the notation of the radial efficiency measure (2) on, e.g., a particular returns to scale hypo-

thesis, it is straightforward to provide a formal characterisation of all efficiency notions in
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the following definition (see, e.g., Briec, Kerstens, and Vanden Eeckaut (2004, p. 179)).

The following input-oriented efficiency notions are identified:

(a) Technical Efficiency TEΛ(x, y) = EΛ,VRS(x, y);

(b) Overall Technical Efficiency OTEΛ(x, y) = EΛ,CRS(x, y);

(c) Scale Efficiency SCEΛ(x, y) = EΛ,CRS(x, y)/EΛ,V RS(x, y);

(d) Overall Efficiency OEΛ(x, y, w) = CΛ,CRS(y, w)/(w · x);

(e) Allocative Efficiency AEΛ(x, y, w) = OEΛ(x, y, w)/OTEΛ(x, y).

While Technical Efficiency (TEΛ(x, y)) requires production on the boundary of the VRS

technology, Overall Technical Efficiency (OTEΛ(x, y)) necessitates that production is situ-

ated on the boundary of the CRS technology. Scale Efficiency (SCEΛ(x, y)) reflects a social

goal and is measured by the ratio between the actual (VRS) and ideal (CRS) technological

configurations. Overall Efficiency (OEΛ(x, y, w)) requires computing a cost function relative

to a CRS technology (CΛ,CRS(y, w)) and taking the ratio between minimal and observed

costs (w · x). Allocative Efficiency (AEΛ(x, y, w)) is a residual term computed by the ratio

of OTEΛ(x, y) and OTEΛ(x, y).
5

Since EΛ,CRS(x, y) ≤ EΛ,V RS(x, y), evidently 0 < SCEΛ(x, y) ≤ 1. The embeddedness of

technologies in terms of returns to scale assumptions determines the relations between these

efficiency measures. These static efficiency concepts are mutually exclusive and their radial

measurement yields a multiplicative decomposition:

OEΛ(x, y, w) = AEΛ(x, y, w) ·OTEΛ(x, y) (23)

where OTEΛ(x, y) = TEΛ(x, y) · SCEΛ(x, y).

To develop tests for convexity, we clarify the relationship between convex and nonconvex

decompositions:

Proposition 4.5 (Briec, Kerstens, and Vanden Eeckaut (2004, p. 180)). For all (x, y) ∈
Rm

+ ×Rn
+, the relations between convex and nonconvex decomposition components are: (a)

OTEC(x, y) ≤ OTENC(x, y); (b) TEC(x, y) ≤ TENC(x, y); (c) OEC(x, y, w) ≤ OENC(x, y, w).

5This decomposition ignores structural efficiency or congestion. Recently, an attempt was made to develop
new methods to measure strong forms of hypercongestion for convex and nonconvex technologies alike in
Briec, Kerstens, and Van de Woestyne (2016). This new methodology is empirically illustrated in Briec,
Kerstens, and Van de Woestyne (2018). Abad and Briec (2019) transpose this methodology towards the
modeling of bad outputs using a by-production framework.
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Thus, while three out of the five above efficiency notions can be ordered with respect

to the impact of convexity, there is no a priori ordering possible for the nonconvex and

convex scale (SCEΛ(x, y)) and allocative (AEΛ(x, y, w)) efficiency components. Though the

underlying efficiency measures can be ordered, it is not possible to order the ratios between

these efficiency measures.

Nonparametric goodness-of-fit tests for the convexity of the efficiency components based

upon constant returns to scale technologies and cost functions, respectively, are provided by

the following ratios (see Briec, Kerstens, and Vanden Eeckaut (2004, p. 181)):

CRTE(x, y) = OTEC(x, y)/OTENC(x, y) (24)

and

CRCE(x, y, w) = OEC(x, y, w)/OENC(x, y, w). (25)

Several methods have been proposed in the literature to obtain qualitative information

regarding global returns to scale (e.g., see Seiford and Zhu (1999)). Since these methods are

not suitable for nonconvex technologies, Kerstens and Vanden Eeckaut (1999, Proposition

2) generalise an existing goodness-of-fit method to suit all technologies. Including a fourth

returns to scale case only relevant for nonconvex technologies (see Podinovski (2004a)), the

following proposition summarises this method.

Proposition 4.6 (Cesaroni, Kerstens, and Van de Woestyne (2017, p. 579)). Conditional

on the optimal efficient point, technology TΛ,V RS is globally characterised by: (a) CRS

: EΛ,NIRS(x, y) = EΛ, NDRS(x, y) = EΛ,V RS(x, y); (b) IRS : EΛ,NIRS(x, y) < EΛ,NDRS(x, y) ≤
EΛ,V RS(x, y); (c) DRS : EΛ,NDRS(x, y) < EΛ,NIRS(x, y) ≤ EΛ,V RS(x, y); (d) SCRS : EΛ,NIRS(x, y) =

EΛ,NDRS(x, y) < EΛ,V RS(x, y);

where IRS, DRS and SCRS stand for increasing, decreasing and sub-constant returns to

scale, respectively.

Essentially, these CRS, NIRS and NDRS technologies are auxiliary to determine the

position of an observation relative to the true flexible (i.e., VRS) returns to scale technology.

Recently, Mostafaee and Soleimani-Damaneh (2020b) propose a more elaborated taxonomy

of global returns to scale characterisations for nonconvex technologies based on results of

Mostafaee and Soleimani-Damaneh (2020a).
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4.4 Empirical Evidence on FDH and Its Extensions: The Impact

of Convexity

This subsection focuses on the key question: does nonconvexity matter in empirical ap-

plications when compared to traditional convex analysis? We provide some evidence for

a selection of four economic topics: (i) cost functions, (ii) efficiency decompositions, (iii)

productivity growth, and (iv) capacity utilisation.

4.4.1 Cost Function Results

In Table 1 we list a small selection of studies that report the results of convex and nonconvex

frontier cost estimates. The first column lists the authors of the article, the second column

reports the ratio CCΓ(y, w) as defined in Definition 22, and the third column eventually

provides a remark.6

Article Ratio CCΓ(y, w) (in %) Remarks

Balaguer-Coll et al. (2007) 58.87

Briec et al. (2004) 97.76 CRS

Cummins & Zi (1998) 50.55

De Borger & Kerstens (1996) 77.59

Grifell-Tatjé & Kerstens (2008) 90.85 Actual

79.82 Ideal

Viton (2007) 87.64 1 Output

92.77 4 Outputs

Table 1: Nonconvex and Convex Cost Estimates: A Selection

The Balaguer-Coll, Prior, and Tortosa-Ausina (2007) study on Spanish municipalities

reveals that convex costs are only 58.87% of nonconvex costs at the sample average. Analys-

ing the U.S. life insurance industry, Cummins and Zi (1998) even report 50.55% on average

for CCΓ(y, w): this means that convex cost are about half of the nonconvex costs. The De

Borger and Kerstens (1996) analysis of Belgian municipalities shows that convex costs are

only 77.59% of convex costs. In a study of Spanish electricity distribution Grifell-Tatjé and

6In case the study does not report cost estimates but rather overall efficiency ratios, one can obtain
CCΓ(y, w) = CC,Γ(y, w)/CNC,Γ(y, w) by taking the ratio of the corresponding overall efficiency ratios
OEC(x, y, w)/OENC(x, y, w). The observed cost in each of the denominators of OEΛ(x, y, w) cancels out.
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Kerstens (2008) report a ratio of 90.85% when using data from the actual network and of

79.82% when using data from an ideal engineering network.

The Briec, Kerstens, and Vanden Eeckaut (2004) study lists a ratio of 97.76%, but

this study imposes CRS and therefore meets one of the two conditions for equality (see

Proposition 4.4). The Viton (2007) article is a bit a special case in that the author compares

WACM and traditional convex cost estimates: since WACM coincides with a nonconvex

estimate, this amounts to an implicit test of convexity. He reports a ratio of 87.64% under a

single output specification (meeting again one of the two conditions for equality: Proposition

4.4), and a ratio of 92.77% under a multiple output specification.

In conclusion, it is undeniable that convexity has an important to huge impact on cost

estimates and hence on Overall Efficiency.

4.4.2 Efficiency Decomposition

From the efficiency decomposition discussed in subsection 4.3, the overall efficiency compon-

ent has already been discussed in the previous subsubsection 4.4.1. Therefore, we focus on

technical efficiency components in this part.

As established in Proposition 4.5, TEC(x, y) ≤ TENC(x, y). There is an abundance of

studies reporting efficiency measures computed relative to basic convex (10) and nonconvex

(9) technologies. We focus on just a few examples. For instance, Stroobants and Bouckaert

(2014) compare libraries in the Flemish region and report substantial differences between

convex and nonconvex results for three specifications (though no statistical tests are repor-

ted). As another example, Mayston (2014) evaluates UK economics departments and finds

substantial differences at the sample level (though again no statistical tests are reported).

Cesaroni, Kerstens, and Van de Woestyne (2017, p. 582-583) report on the decomposition

OTEΛ(x, y) = TEΛ(x, y) · SCEΛ(x, y) for five secondary data sets. These authors find that

convex and nonconvex OTEΛ(x, y) is only significantly different for two data sets, while

convex and nonconvex SCEΛ(x, y) happens to be significantly different for all data sets

and convex and nonconvex TEΛ(x, y) for most data sets. The same authors also focus on

conflicting cases in returns to scale determination using Proposition 4.6: e.g., switches from

increasing returns to scale (IRS) to decreasing returns to scale (DRS), from CRS to IRS, and

from CRS to DRS. While one data set has no conflicting cases, four data sets find conflicting

cases ranging between 6.98% and 39.02% of observations. Finally, these authors explore the

markedly different patterns of ray average productivity curves under convex and nonconvex

technologies.

Chavas and Kim (2015, p. 69-70) report on convex and nonconvex TEΛ(x, y) and
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SCEΛ(x, y): while no statistical tests are reported, the descriptive statistics seem to be

markedly different. Cesaroni and Giovannola (2015, p. 128-129) establish results for altern-

ative convex and nonconvex cost-based efficiency components similar to the above: though

no statistical tests are mentioned, the descriptive statistics are clearly different beyond doubt.

4.4.3 Productivity Growth

Kerstens and Van de Woestyne (2014a) report empirical results for the immensely popular

Malmquist productivity index (e.g., Färe, Grosskopf, Norris, and Zhang (1994)) as well as

for the Hicks-Moorsteen Total Factor Productivity (TFP) index (defined by Bjurek (1996))

under various specifications of technology. For both indices, it turns out that convex and

nonconvex results for both CRS and VRS yield different descriptive statistics, though no

formal tests are provided regarding the statistical significance of these differences.

Kerstens and Managi (2012) focus on the Luenberger productivity indicator which is

defined in terms of the differences between directional distance functions (see Chambers

(2002)) using basic convex (10) and nonconvex (9) technologies. Analysing a huge data

set of petroleum wells, their findings can be summarised as follows. First, productivity

change is on average smaller under nonconvexity and the resulting distributions are signific-

antly different. Second, substantially more observations tend to push the frontier outward

under nonconvexity and are thus involved in creating technological change. Third, both

β-convergence and σ-convergence are being tested for and happen to occur only under non-

convexity, not under the traditional convexity axiom. In a follow-up study of Chinese banks,

Barros, Fujii, and Managi (2015) also find that the Luenberger productivity change is on

average smaller under nonconvexity. Testing differences in productivity with respect to scale

and ownership does not yield different patterns according to convexity.

Finally, Ang and Kerstens (2017) study productivity of US agriculture at the state level

using the Luenberger-Hicks-Moorsteen TFP indicator (introduced by Briec and Kerstens

(2004)) again using basic convex (10) and nonconvex (9) technologies. These authors report

a higher TFP change under nonconvexity and the resulting distributions are significantly

different.

4.4.4 Capacity Utilisation

Johansen (1987) introduces the notion of plant capacity as the maximum output vector that

can be produced with existing equipment with unrestricted variable inputs per unit of time.

Färe, Grosskopf, and Valdmanis (1989) transpose this notion into a multi-output frontier
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framework by using a combination of two output-oriented efficiency measures: one relative

to a technology including the variable inputs and another one excluding the variable inputs.

Walden and Tomberlin (2010) report average output-oriented plant capacity estimates that

vary between 52% and 84% in the cases of a basic convex (10) and a basic nonconvex (9)

technology, respectively.

Kerstens, Sadeghi, and Van de Woestyne (2019b) argue that the output-oriented plant

capacity utilization is unrealistic when the amounts of variable inputs needed to reach the

maximum capacity outputs are not available. This is related to the attainability issue already

noted by Johansen (1987). These authors illustrate empirically that the scaling of variable

inputs is less implausible for nonconvex compared to traditional convex technologies.

Cesaroni, Kerstens, and Van de Woestyne (2017) define an alternative input-oriented

plant capacity notion by using a combination of two sub-vector input-oriented efficiency

measures only aimed at reducing the variable inputs: one relative to a standard technology

and one relative to a technology with the minimum output level per dimension among all

observed units. While these authors report average output-oriented plant capacity estimates

that are 92% and 89% for the convex (10) and nonconvex (9) technologies, respectively:

these apparent small differences nevertheless represent distributions that turn out to be

statistically significantly different. For the average input-oriented plant capacity estimates

they report numbers of 120% and 121% for the convex (10) and nonconvex (9) technologies,

respectively: again these apparent small differences reflect distributions that are statistically

significantly different.

It goes without saying that such differences may well have potentially huge implications in

the design of policies to combat overcapacity in fisheries. Kerstens, Squires, and Vestergaard

(2005) report results from a short-run Johansen sector model allowing for the reallocation of

production between firms that is developed in two steps. In the first step, output-oriented

plant capacity estimates are computed. In the second step, the industry model minimizes

the industry use of fixed inputs in a radial way such that total production is maintained

at the current total level by reallocating production among firm capacities. From the 398

vessels in the fleet, the convex plant capacity estimates lead to maintain only 330 vessels

while the nonconvex estimates maintain 357 vessels. Thus, the required decommissioning

effort resulting from the short-run Johansen sector model is larger under convexity.

Kerstens, Sadeghi, and Van de Woestyne (2019a) aim to compare empirically technical

and economic capacity notions on both convex and nonconvex technologies. After defining

these capacity notions, an empirical comparison is performed using a secondary data set

containing data of French fruit producers. Two key empirical conclusions are that all these
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different capacity notions follow different distributions, and also that these distributions

almost always differ under convex and nonconvex technologies.

4.5 FDH and Its Extensions: Further Methodological Refinements

One can mention a whole series of methodological refinements and variations that have been

introduced in the literature related to methods initially developed in a convex setting.

First, traditional radial efficiency measures in FDHmodels yield potentially huge amounts

of slacks and surpluses since the efficient subset is limited to the corner points, nonradial

input-, output- and graph-oriented efficiency measures have been evaluated and found partic-

ularly relevant in the basic FDH model by De Borger, Ferrier, and Kerstens (1998). Portela,

Borges, and Thanassoulis (2003) focus on some alternative graph-oriented (or nonoriented)

efficiency measures in the same context. Following up on Ebrahimnejad, Shahverdi, Balf,

and Hatefi (2013), Fukuyama, Hougaard, Sekitani, and Shi (2016) develop least-distance

efficiency measures for FDH technologies that satisfy a strong monotonicity property.

Second, in the spirit of Bouhnik et al. (2001) who proposed lower bound restrictions on

the intensity variables to avoid unreasonable optimal activity vectors in a convex setting,

Mairesse and Vanden Eeckaut (2002) develop for these the nonconvex production models

lower and upper bound restrictions to the scaling of observations.

Third, several types of extreme points (including anchor points) can be distinguished in

FDH (see Soleimani-damaneh and Mostafaee (2015)). Fourth, Soleimani-damaneh (2013)

develop a dynamic FDH production model that can be recursively solved by means of simple

enumeration.

Fifth, Tavakoli and Mostafaee (2019) are the first to develop a network structure produc-

tion model that opens up the black box of production via parallel and sequential production

processes in a nonconvex world. These authors obtain closed form solutions for the ba-

sic efficiency measures under FDH and its extensions. Sixth, there is some work on the

construction of three-dimensional sections of the efficient frontier for nonconvex models via

enumeration methods as developed supra (see Krivonozhko and Lychev (2017a,b, 2019) and

Krivonozhko, Lychev, and Blokhina (2019)).

Finally, Tulkens (1993) was the first to propose a Free Replicability Hull (FRH) by al-

lowing for integer replications of all observations, eventually complemented by upper bounds

on the integer replication process. It turns out that this FRH is computationally quite chal-

lenging (see Ehrgott and Tind (2009)). In a similar vein, Green and Cook (2004) define a

nonconvex technology containing all observations as well as all composite observations ob-
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tained by simple aggregation. This Free Coordination Hull (FCH) can eventually also be

complemented by an upper bound on the number of observations being aggregated.

Thus, most of the analysis that has been developed for convex technologies can somehow

be transposed to FDH and its extensions. This simply illustrates that this rich body of

analytical results is not necessarily jeopardised when opting for nonconvex technologies.

5 Mitigating Convexity: A Selection

It should be clear by now that if one drops the convexity axiom altogether, then FDH

and its extensions are the straightforward technological and economic value function choices

to consider. However, some people have sought to mitigate the impact of convexity in a

variety of ways. This section offers a selection of approaches defining some alternative to the

traditional convexity axiom and somehow avoiding FDH and its extensions.

5.1 Partial Convexity

Several authors have attempted to relax the convexity axiom somewhat. Petersen (1990)

initiated a small literature aimed at maintaining convexity in input space and in output

space solely, but not in the graph of technology. The implementation of this relaxed set

of assumptions is corrected by Bogetoft (1996) with restrictions on the dimensionality of

the production technology. Bogetoft, Tama, and Tind (2000) relaxes these restrictions on

the dimensionality of the input and output spaces, while Post (2001) improves upon the

latter article by proposing a procedure that avoids computational problems in large scale

applications.

This relaxed assumption is justified by appeal to, for instance, the law of diminishing

marginal rates of substitution in the input space, or to the idea of diminishing marginal

rates of transformation in the output space. However, it is not clear how time divisibility

can be applied in the context of this partial convexity notion. Furthermore, one may question

whether there really is, for instance, a law of diminishing marginal rates of substitution in the

input space. For example, Brokken (1977) summarises three studies revealing that there are

increasing marginal rates of substitution of grain for roughage in beef production. Therefore,

the law of diminishing marginal rates of substitution is questionable.

Podinovski (2005) introduces the idea of partial convexity between certain subsets of in-

puts and subsets of outputs and derives BMIP for the traditional efficiency measures. Leleu

(2009) proposes new LP formulations combining aspects of convex and nonconvex produc-
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tion models across dimensions for all returns to scale assumptions and for the directional

distance efficiency measure. While Podinovski (2005, p. 555-556) justifies his partial con-

vexity approach by appealing to divisibility arguments pertaining to specific inputs and/or

outputs, one may wonder whether time divisibility is by definition related to the whole pro-

duction process and that setup times and indivisibilities destroy convexity altogether rather

than only in some subset of dimensions.

Finally, Chavas and Kim (2015) adopt a different strategy to combine convex and noncon-

vex models by defining the technology as a union of neighbourhood-based local representation

of the technology each of which are convex. Obviously, the union of convex technologies need

not be convex. By choosing very small or very large neighbourhoods the technology as a

union of neighbourhood-based local representations of the technology converges to the non-

convex technology (9) or the convex technology (10) respectively. An obvious problem of the

whole approach is the neighbourhood choice and its impact on productivity and efficiency

analysis.

5.2 Regular Ultra Passum Law

Olesen and Petersen (2013) intend to make convex models (10) suitable to estimate optimal

scale size by augmenting these with two additional maintained hypotheses which imply that

the frontier is consistent with smooth curves along rays in input and in output space that

obey the Regular Ultra Passum (RUP) law (i.e., monotonically decreasing scale elasticities).

This RUP-law implies that the production frontier must be S-shaped along any expansion

path in input space. Obviously, such technologies are nonconvex in input-output space.

Olesen and Petersen (2013) focus on the multiple inputs single output case.

Olesen and Ruggiero (2014) continue from there and focus on production technologies

that are input homothetic. This allows to maintain convexity in input and in output space,

but to allow for nonconvexities in input-output space. This homotheticity assumption mainly

serves to simplify the estimation procedure. Also this presentation assumes only one output.

In a sense, imposing the RUP law in this context again focuses on allowing for nonconvex-

ities in input-output space, just as in subsection 5.1. Therefore, the same reservations prevail.

Furthermore, there are long-standing misgivings on the use of homothetic structures in pro-

duction theory as in Olesen and Ruggiero (2014). Already Samuelson and Swamy (1974,

p. 592) conclude: “Empirical experience is abundant that the Santa Claus hypothesis of

homotheticity in tastes and in technical change is quite unrealistic.”
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5.3 From Generalized Convexity to Nonconvexity

We now focus on a modification of the CES − CET model introduced by Färe, Grosskopf,

and Njinkeu (1988) that is a generalisation of the traditional convex approach (10). This

CES−CET model has two parts: the output part is characterised by a Constant Elasticity

of Transformation specification, and the input part is characterised by a Constant Elasticity

of Substitution specification. Consider a generic map ϕr : Rd
+ → Rd

+ defined as ϕr(z) =

(zr1, . . . , z
r
d). For all r > 0, this function is an isomorphism from Rd

+ to itself and its reciprocal

is defined on Rd
+ as ϕ−1

r (z) = (z
1/r
1 , . . . , z

1/r
d ). Given a subset B = {uk : k ∈ K}k∈K of Rd

+,

from Ben-Tal (1977), one can define its ϕr-generalized convex hull as:

Coϕr(B) =
{
ϕr

−1
(∑

k∈K

zkϕr(uk)
)
:
∑
k∈K

zk = 1, zk ≥ 0
}
. (26)

Notice that this set is not convex in the “usual” case which corresponds to the case where

r = 1. The CES − CET model can then be defined as the set:

TC,γ,δ =
{
(x, y) ∈ Rm

+ ×Rn
+ : x ≥ ϕ−1

γ

(∑
k∈K

zkϕγ(xk)
)
, (27)

y ≤ ϕ−1
δ

(∑
k∈K

zkϕδ(yk)
)
,
∑
k∈K

zk = 1, zk ≥ 0
}
,

where γ and δ > 0. Paralleling Banker, Charnes, and Cooper (1984), this construction

is derived from the notion of generalized convex hull defined in (26). For such a class

of models, the radial efficiency measure (2) can be computed making some obvious linear

transformations. Notice that Ravelojaona (2019) has proposed a nonlinear version of the

directional distance function (see Chambers, Chung, and Färe (1998)) that can also be

computed by linear programming methods.

Boussemart, Briec, Peypoch, and Tavéra (2009, p. 334) state that a production techno-

logy T is said to be homogeneous of degree α if for all λ > 0:

(x, y) ∈ T ⇒ (λx, λαy) ∈ T. (28)

This technology has also been termed “almost homogeneous technology of degree 1 and α”.

This degree of homogeneity of the technology has direct implications for the nature of returns

to scale.

Proposition 5.1 (Boussemart, Briec, Peypoch, and Tavéra (2009, p. 334)). Assume that

the production technology T satisfies T1-T4. Moreover, suppose that T is homogeneous of
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degree α. (a) If α > 1, then T satisfies strictly increasing returns to scale; (b) If 0 < α < 1,

then T satisfies strictly decreasing returns to scale.

Thus, these homogeneous technologies exhibit either strictly increasing or strictly decreasing

returns to scale according to their degree of homogeneity. Therefore, one can say that if

the technology is homogeneous of degree α, then it satisfies α-returns to scale. Obviously,

strictly increasing returns to scale imply nonconvexity of technology.

Boussemart, Briec, Peypoch, and Tavéra (2009) propose to relax the definition proposed

in Färe, Grosskopf, and Njinkeu (1988) by considering the following production model:

T alpha
C,γ,δ =

{
(x, y) ∈ Rm

+ ×Rn
+ : x ≥ ϕ−1

γ

(∑
k∈K

zkϕγ(xk)
)
, (29)

y ≤ ϕ−1
δ

(∑
k∈K

zkϕδ(yk)
)
, zk ≥ 0

}
.

where γ and δ > 0. T alpha
C,γ,δ satisfies an α-returns to scale assumption with α = γ

δ
. This

technology differs from the one proposed by Färe, Grosskopf, and Njinkeu (1988) because

it suppresses the constraint
∑

k∈K zk = 1. While their model is not compatible with an α-

returns to scale assumption, model (29) satisfies axioms (T.1)-(T.4) and satisfies α-returns

to scale under a suitable specification of α.

Proposition 5.2 (Boussemart, Briec, Peypoch, and Tavéra (2009, p. 336)). The production

technology T alpha
C,γ,δ defined in (27) satisfies:

(a) strictly increasing returns to scale if and only if γ/δ > 1;

(b) strictly decreasing returns to scale if and only if γ/δ < 1;

(c) constant returns to scale if and only if γ/δ = 1.

Furthermore, this notion of α-returns to scale has also been extended to FDH and its exten-

sions (see Boussemart, Briec, Peypoch, and Tavéra (2009, p. 336)).

In empirical applications, γ and δ are a priori parameters: optimal parameter values can

be determined by applying a goodness-of-fit method. This can be done using a grid-search

method. For example, Leleu, Moises, and Valdmanis (2012) analyse four types of intensive

care units and find overwhelming evidence of increasing returns to scale, but at the hospital

level most institutions operate under decreasing returns to scale.

More recently, Boussemart, Briec, Leleu, and Ravelojaona (2019) attempt to endogenise

γ and δ using global optimisation tools. They propose a tractable procedure to find an
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optimal value of α under a generalized FDH technology. This approach fully endogenizes α

and estimate its value by linear programming. For each firm k ∈ K, we consider an individual

technology defined by:

Qγ,δ(xk, yk) =
{
(x, y) ∈ Rm

+ × Rn
+ : x ≥ λ1/γxk, y ≤ λ1/δyk, λ ≥ 0

}
. (30)

The global technology is then the union of individual technologies as follows:

TNC,γ,δ =
⋃
k∈K

Qγ,δ(xk, yk). (31)

For all k, j ∈ K let us denote

E
(k)
γ,δ (xj, yj) = min{θ : (θxj, yj) ∈ Qγ,δ(xk, yk)}. (32)

By definition, one has E
(k)
γ,δ (xk, yk) = 1. From Boussemart, Briec, Leleu, and Ravelojaona

(2019), one can show that

E
(k)
γ,δ (xj, yj) =

[
βk(yj)

]δ/γ
.
[
αk(xj)

]
(33)

where for all k, αk(xj) and βk(xj) as in Proposition 4.2. Notice that this result generalizes

the one defined in the VRS case. It follows that:

ENC,γ,δ(xj, yj) = min{θ : (θxj, yj) ∈ TNC,γ,δ} (34)

= min
k∈K

([
βk(yj)

]δ/γ
.
[
αk(xj)

])
. (35)

By defining α = γ/δ, using the fact that any efficiency score is obtained in closed form, one

can then find α⋆ which maximizes the quantity M defining an index of goodness of fit as:

M(A;α) =
∏
k∈K

ENC,γ,δ(xj, yj) =
∏
k∈K

min
k∈K

([
βk(yj)

]1/α
.
[
αk(xj)

])
(36)

subject to the constraint that (xj, yj) ∈ TNC,γ,δ for all j ∈ K. Taking the logarithm it is then

easy to convert this optimization problem to a linear program. An empirical application is

proposed in Boussemart, Briec, Leleu, and Ravelojaona (2019).

In the same vein, based on Charnes, Cooper, Seiford, and Stutz (1982), we now consider

the piecewise Cobb-Douglass (CD) model. Let us define the map ϕ0 : Rd
++ −→ Rd

++ defined

as: ϕ0(u) = (ln(u1), . . . , ln(ud)) . This function is a bijective function from Rd
++ to itself and
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its reciprocal is defined on Rd
++ by: ϕ−1

0 (u) = (exp(u1), . . . , exp(ud)) . This piecewise-Cobb-

Douglas model can be written as:

TCD =
{
(x, y) ∈ Rm+n

++ : x ≥
∏
k∈K

xλk
k , y ≤

∏
k∈K

yλℓ
k ,

∑
k∈K

λk = 1, λ ≥ 0
}
.

This model is a generalized-convex model derived from the notion of generalized convexity

analyzed by Ben-Tal (1977). A general taxonomy is provided in the next subsection.

5.4 Semilattice Structures

In mathematics, a partially ordered set S for which every two elements have a supremum

contained in S is called an upper-semilattice. Hence for some dimension d ∈ N, the par-

tial order defined by u ≤ w if ui ≤ wi for all i ∈ {1, . . . , d}, with u,w ∈ Rd
+, real-

ises upper-semilattice structures in Rd
+. The supremum of u and w is determined by

u∨w = (max(u1, w1), . . . ,max(ud, wd)). Note that the operator ∨ can be seen as taking the

component-wise maximum.

Following Briec and Horvath (2004), a subset L ⊂ Rd
+ is said to be a B-convex set, if

∀u,w ∈ L,∀t ∈ [0, 1] : u ∨ tw ∈ L. Obviously, B-convex subsets determine a special class

of upper-semilattice structures in Rd
+ of which the mathematical properties are analysed

in detail in Briec and Horvath (2004). Briec and Horvath (2009) impose B-convexity on

technologies in production economics as a substitute for convexity (and nonconvexity in the

sense of FDH) and study general properties of these technologies and related cost functions.

Starting from the set ofK observations A = {(x1, y1), . . . , (xK , yK)} ∈ Rm
+×Rn

+, the following

B-convex nonparametric technology is defined:

Tmax =

{
(x, y) ∈ Rm

+ × Rn
+ : x ≥

∨
k∈K

zkxk, y ≤
∨
k∈K

zkyk,
∨
k∈K

zk = 1, zk ≥ 0

}
, (37)

with the notation ∨
k∈K

uk =

(
max
k∈K

(uk1), . . . ,max
k∈K

(ukd)

)
∈ Rd

+,

for uk = (uk1, . . . , ukd) ∈ Rd
+, (k ∈ K), expanding the operator ∨ to multiple vectors. Notice

the structural similarity with (10) by replacing summation with component-wise maximum.

Dual to the notion of an upper-semilattice, a lower-semilattice is defined as a partially

ordered set S for which every two elements have an infimum contained in S. Applied to
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Rd
+, this infimum of u,w ∈ Rd

+ is determined by u ∧ w = (min(u1, w1), . . . ,min(ud, wd)).

Obviously, the operator ∧ takes the component-wise minimum of both vectors.

Using this dual notion, Adilov and Yesilce (2012) define a subset L ⊂ Rd
+ ∪ {+∞}d to

be inverse B-convex if ∀u,w ∈ L,∀t ∈ [1,+∞] : u ∧ tw ∈ L, and study its properties. By

analogy with the B-convex case, Briec and Liang (2011) define the following inverse B-convex
nonparametric technology:

Tmin =

{
(x, y) ∈ Rm

+ × Rn
+ : x ≥

∧
k∈K

zkxk, y ≤
∧
k∈K

zkyk,
∧
k∈K

zk = 1, zk ≥ 0

}
, (38)

with the notation ∧
k∈K

uk =

(
min
k∈K

(uk1), . . . ,min
k∈K

(ukd)

)
∈ Rd

+,

for uk = (uk1, . . . , ukd) ∈ Rd
+, (k ∈ K). Compared with (10), summation is now replaced with

component-wise minimum. This type of production technologies allows to take into account

the situation where the inputs exhibit complementarity. In such a case, the structure of the

input set is similar to that of the Leontief production function.

Radial efficiency measurements can be computed with respect to both technologies Tmin

and Tmax by using enumeration algorithms developed in Briec and Horvath (2009) and Briec

and Liang (2011). These new production models have recently been applied in, e.g., en-

ergy (Andriamasy, Barros, and Liang (2014)), transportation (Barros, Liang, and Peypoch

(2013)), and the tourism industry (Goncalves, Liang, and Peypoch (2012)).

Coming back to the model proposed by Färe, Grosskopf, and Njinkeu (1988), Andri-

amasy, Briec, and Mussard (2017) show that these production technologies are the Pain-

levé-Kuratowski lower [upper] limit of the sequence of production technologies TC,r,r that are

derived from technology CES − CET (27) by setting γ = δ = r7:

Limr−→∞TC,r,r = Tmax. (39)

In addition id A ⊂ Rm
++ × Rm

++

Limr−→−∞TC,r,r = Tmin, (40)

7The Painlevé-Kuratowski lower [upper] limit (sometimes also called Peano limit) of the sequence of sets
{En}n∈N is denoted Lin→∞En [Lsn→∞En]. For a set of points p for which there exists a sequence {pn}
of points such that pn ∈ En for all n and p = limn→∞ pn, a sequence {En}n∈N of subsets of Rm is said to
converge, in the Painlevé-Kuratowski sense, to a set E if Lsn→∞En = E = Lin→∞En, in which case we
write E = Limn→∞En.
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and finally

Limr−→0TC,r,r = TCD. (41)

Andriamasy, Briec, and Solonandrasana (2017) consider a class of closely related non-

parametric production models built on the so-called Max-Plus algebra. Let us consider the

semi-ring Rmax =
(
R ∪

{
−∞

}
,⊕,⊗

)
composed of the set R ∪

{
−∞

}
which is defined by

the maximization operation as addition: s⊕ t := max (s, t) and the usual addition operation

as multiplication: s ⊗ t := s + t. −∞ and 0 are respectively the neutral element of the

“addition” ⊕ and the “multiplication” ⊗. One can derive from this algebraic structure the

following production model:

T⊕ :=
{
(x, y) ∈ Rm

+ × Rn
+ : x ≥

⊕
k∈K

(zk ⊗ xk), (42)

y ≤
⊕
k∈K

(zk ⊗ yk),max
k∈K

zk = 0, z ∈ RK
}
.

This model is called a Max-Plus nonparametric estimation of the production technology.

The efficiency of firms can be meaningfully evaluated using the directional distance function

introduced by Chambers, Chung, and Färe (1998) for which some closed form have been

provided in Andriamasy, Briec, and Solonandrasana (2017).

Paralleling the standard technology TC,CRS, it is quite natural to define a graph transla-

tion homothetic Max-Plus nonparametric model of the technology. This is done by dropping

the last constraint in equation (42). The following technology is Max-Plus convex and sat-

isfies a graph translation homothetic (denoted th) assumption:

T th
⊕ :=

{
(x, y) ∈ Rm

+ × Rn
+ : x ≥

⊕
k∈K

(zk ⊗ xk), y ≤
⊕
k∈K

(zk ⊗ yk), z ∈ RK
}
. (43)

Notice that these type of algebraic structures have more recently been considered by

Baldwin and Klemperer (2019) to analyze discrete demand types and to prove the existence

of an equilibrium with indivisibilities.

5.5 Preliminary Conclusions

This selection is by definition incomplete and somewhat subjective. For instance, we ignore

Hackman (2008, p. 135) who introduces the notion of projective-convexity. As another

example, Kleine (2004) offers a series of production models with general or individual bounds

on activity levels potentially leading to nonconvexities. Our limited overview just offers a
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perspective on a non-negligible literature seeking alternatives to the convexity axiom.

6 Conclusions

Section 2 laid the foundations by providing basic definitions of the traditional axioms un-

derlying technologies and their representation via distance functions. Section 3 has focused

on existing justifications for the axiom of convexity. Apart from duality reasons that often

seem to be misunderstood, we have stressed the time divisibility argument and its weakness

when indivisibilities also affect the time dimension (e.g., setup times). Furthermore, we have

cited some evidence that decision makers often have a hard time understanding the results

from convex analysis and sometimes almost explicitly object to its use.

Section 4 started by a discussion of the nonconvex FDH and its extensions and also their

corresponding convex technologies. The focus was on computational problems related to

the need to solve nonlinear binary mixed integer programs. Three solution strategies were

discussed: (i) BMIP, (ii) LP, and (iii) an implicit enumeration strategy, whereby the latter

turns out to be most efficient from a computational point of view. The ensuing discussion of

nonconvex economic value functions also touched upon these computational problems and

the same three solution strategies. Thereafter, the focus moved to some popular efficiency

decomposition and the formulation of basic tests of convexity on the technology and on the

cost function.

After this methodological analysis, we switched to an empirical perspective on the use

of FDH and its extensions grouped under four headings: (i) cost functions, (ii) efficiency

decompositions, (iii) productivity growth, and (iv) capacity utilisation. A final subsection

discussed a series of methodological refinements of FDH and its extensions revealing that

almost all refined analysis developed for convex technologies can somehow be transposed to

FDH and its extensions.

The next Section 5 has offered a selective review of attempts to mitigate the impact of the

convexity axiom while avoiding FDH and its extensions. We focused extensively on partial

convexity, the imposition of regular ultra passum laws, α-returns to scale and semilattice

structures. This review is nowhere complete and reflects our own interests and biases.

An attempt to summarise the current state of affairs may be that the alternatives for

traditional convex technologies have now been around for a decade or so. Empirical res-

ults reveal that convexity not only matters for the technology, but also for economic value

functions. The latter may surprise some, but it reveals that the issue of imposing convexity

or not cannot be taken lightly. We consider attempts to mitigate convexity while steering
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away from FDH and its extensions not very successful at the moment. Therefore, unless we

manage to renew the axiomatic foundations of production theory in a fundamental way, it

may be hard to ignore using FDH and its extensions as well as its value functions, and even

harder to ignore its empirical results. An open question is to what extent existing empirical

methodologies need to be re-examined to be able to cope with nonconvexities: given the

local nature of some of the results, new standards may need to be established. This lack

of standards to report nonconvex results as well the need to go beyond traditional convex

optimisation that is often considered a cornerstone for economic analysis may well contribute

to its negligence.

References

Abad, A., and W. Briec (2019): “On the Axiomatic of Pollution-Generating Technologies:

Non-Parametric Production Analysis,” European Journal of Operational Research, 277(1),

377–390.

Ackerman, F. (2002): “Still Dead After All These Years: Interpreting the Failure of

General Equilibrium Theory,” Journal of Economic Methodology, 9(2), 119–139.

Adilov, G., and I. Yesilce (2012): “B−1-convex Sets and B−1-measurable Maps,” Nu-

merical Functional Analysis and Optimization, 33(2), 131–141.

Afriat, S. (1972): “Efficiency Estimation of Production Functions,” International Eco-

nomic Review, 13(3), 568–598.

Agrell, P., and J. Tind (2001): “A Dual Approach to Nonconvex Frontier Models,”

Journal of Productivity Analysis, 16(2), 129–147.

Aliprantis, C., and K. Border (2006): Infinite Dimensional Analysis: A Hitchhiker’s

Guide. Springer, Berlin, 3 edn.

Andriamasy, L., C. Barros, and Q. Liang (2014): “Technical Efficiency of French

Nuclear Energy Plants,” Applied Economics, 46(18), 2119–2126.

Andriamasy, L., W. Briec, and S. Mussard (2017): “On Some Relations between

Several Generalized Convex DEA Models,” Optimization, 66(4), 547–570.

Andriamasy, R., W. Briec, and B. Solonandrasana (2017): “Tropical Production

Technologies,” Pacific Journal of Optimization, 13(4), 683–706.

32



Ang, F., and P. Kerstens (2017): “Decomposing the Luenberger-Hicks-Moorsteen Total

Factor Productivity Indicator: An Application to U.S. Agriculture,” European Journal of

Operational Research, 260(1), 359–375.

Balaguer-Coll, M., D. Prior, and E. Tortosa-Ausina (2007): “On the De-

terminants of Local Government Performance: A Two-Stage Nonparametric Approach,”

European Economic Review, 51(2), 425–451.

Baldwin, E., and P. Klemperer (2019): “Understanding Preferences: “Demand Types”,

and the Existence of Equilibrium with Indivisibilities,” Econometrica, 87(3), 867–932.

Banker, R., A. Charnes, and W. Cooper (1984): “Some Models for Estimating Tech-

nical and Scale Inefficiencies in Data Envelopment Analysis,” Management Science, 30(9),

1078–1092.

Barros, C., H. Fujii, and S. Managi (2015): “How Scale and Ownership Are Related to

Financial Performance? A Productivity Analysis of the Chinese Banking Sector,” Journal

of Economic Structures, 4, article 16.

Barros, C., Q. Liang, and N. Peypoch (2013): “The Efficiency of French Regional

Airports: An Inverse B-Convex Analysis,” International Journal of Production Economics,

141(1), 668–674.

Ben-Tal, A. (1977): “On Generalized Means and Generalized Convex Functions,” Journal

of Optimization Theory and Applications, 21(1), 1–13.

Bjurek, H. (1996): “The Malmquist Total Factor Productivity Index,” Scandinavian

Journal of Economics, 98(2), 303–313.

Bogetoft, P. (1996): “DEA on Relaxed Convexity Assumptions,” Management Science,

42(3), 457–465.

Bogetoft, P., J. Tama, and J. Tind (2000): “Convex Input and Output Projections of

Nonconvex Production Possibility Sets,” Management Science, 46(6), 858–869.

Boles, J. (1966): “Efficiency Squared - Efficient Computation of Efficiency Indexes,” in

Proceedings of the Annual Meeting (Western Farm Economics Association), pp. 137–142,

Washington. Western Agricultural Economics Association.

Boscolo, M., and J. Vincent (2003): “Nonconvexities in the Production of Timber,

Biodiversity, and Carbon Sequestration,” Journal of Environmental Economics and Man-

agement, 46(2), 251–268.

33



Bouhnik, S., B. Golany, U. Passy, S. Hackman, and D. Vlatsa (2001): “Lower

Bound Restrictions on Intensities in Data Envelopment Analysis,” Journal of Productivity

Analysis, 16(3), 241–261.

Boussemart, J.-P., W. Briec, H. Leleu, and P. Ravelojaona (2019): “On Estim-

ating Optimal α-Returns to Scale,” Journal of the Operational Research Society, 70(1),

1–11.

Boussemart, J.-P., W. Briec, N. Peypoch, and C. Tavéra (2009): “α-Returns
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Färe, R., S. Grosskopf, M. Norris, and Z. Zhang (1994): “Productivity Growth,

Technical Progress, and Efficiency Change in Industrialized Countries,” American Eco-

nomic Review, 84(1), 66–83.

36
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