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Email: guibert@ceremade.dauphine.fr

MLISTRAL Conference
27 September 2022, Marseille, France

Joint work with Christophe Dutang

mailto:guibert@ceremade.dauphine.fr


OUTLINES

1 INTRODUCTION

2 GENERALIZED LINEAR MODELS (GLM)

3 GLM TREES
Model-based (MOB) partitioning tree
Examples of distributions

4 NUMERICAL ILLUSTRATIONS
A simulation analysis
Real datasets

5 RANDOM FOREST BASED ON GLM TREES

MLISTRAL Conference – Q. Guibert – September 2022 2/36



OUTLINES

1 INTRODUCTION

2 GENERALIZED LINEAR MODELS (GLM)

3 GLM TREES
Model-based (MOB) partitioning tree
Examples of distributions

4 NUMERICAL ILLUSTRATIONS
A simulation analysis
Real datasets

5 RANDOM FOREST BASED ON GLM TREES

MLISTRAL Conference – Q. Guibert – September 2022 3/36



BINARY TREES

Recursive binary partitioning: technique for building decision trees by separating a dataset
into different homogeneous subgroups according to partitioning variables.

These models have been widely used in supervised learning for regression and
classification for more than 50 years [Loh14].

Most binary trees comprise two or three steps:
1 recursively splitting the dataset by selecting the best

split until reaching a stopping criterion,
2 fitting an intercept-only model at each terminal node.
3 then, the tree may be pruned.

CART [Bre+84]: the most used, efficient and easy
to interpret.

Drawbacks: selection bias problem induced by an
exhaustive search over all possible splits
simultaneously, see [Bre+84].

Possible improvements: selection based on
statistical tests, see, FACT [LV88], QUEST
[LS97], CRUISE [KL01] or CTREE [HHZ06]
algorithms.

FIGURE 1: Example of decision tree
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FROM TREES TO FOREST

For all tree methods, single trees suffer from an instability issue:

⇒ the resulting tree can be significantly affected by small changes in the training data.

They may be less competitive than other approaches in machine learning, like

neural networks [Law94] or

support vector machines [CV95] in terms of prediction.

Predictions can be improved by introducing ensemble tree methods based on:

bagging [Bre96],

random forest [Bre01]

or boosting [Fri02],

but this is done at the expense of interpretability.

In this literature, the overwhelming majority of approaches are based on the CART
algorithm, although variable selection may be biased.
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AIMS OF THE STUDY

MODEL-BASED RECURSIVE PARTITIONING (MOB)

Tree algorithm based on a set of partitioning variables and a local parametric model
(ex : GLM) fitted on explanatory variables.

Predictions given by a statistical model adapted to each node

Computation time significantly longer than simple tree algorithms.

Tricky to use with ensemble tree methods.

MAIN AIMS

Reduce the computation time using explicit fitted GLM likelihood as an objective
function.

Introduce closed-form estimators for GLM-type trees for any link function in the case
of categorical explanatory variables.

Study the gain in computation speed.

Explore the interest of a GLM forest algorithm.
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GENERALIZED LINEAR MODELS (GLM)

[NW72] unify different regression models through the exponential family.

The likelihood L of the response variable Yi verifies

log L(θ | yi ) =
λi (θ)yi − b (λi (θ))

a(φ)
+ c(yi , φ), yi ∈ Y ⊂ R, (1)

and −∞ if yi /∈ Y, where a : R→ R, b : Λ→ R and c : Y× R→ R are known real-valued
measurable functions and φ is the dispersion parameter

GLM are defined by assuming that

(Yi )i are independent random variables,

Yi ∼ Fexp(λi , φ, a, b, c),

the expectation E (Yi ) and variables xi are linked

g(E (Yi )) = g(b′(λi (θ))) = 〈xi ,θ〉 = ηi , for all θ ∈ Θ, (2)

where ηi are the linear predictors.
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USUAL DISTRIBUTIONS AND FITTING PROCEDURE

Distribution Y λ φ a(x) b(x) c(x, φ)
Bernoulli {0, 1}

log( p
1−p ) 1 x log(1 + ex ) 0B(p)

Poisson N
log(µ) 1 x ex − log(x!)P(µ)

Gaussian R
µ σ2 x

N (µ, σ2) − 1
2 log(2πφ)

Gamma ]0,+∞[ −1
µ 1/ν x − log(−x)

log(x/φ)
φ − log(x)

G(ν, µ) − log Γ( 1
φ )

Inv. Gauss. ]0,+∞[ −1/(2µ2) 1/σ2 x −
√
−2x

− 1
2 log(2πφx3)

IG(µ, σ2) −1/(2φx)

TABLE 1: Usual distributions in the exponential family

GLM with the gaussian distribution is a linear model and can be fitted by using
closed-form formulas.

In general, GLM are fitted using a numerical procedure which solves the score
equations based on an Iteratively re-Weighted Least Square (IWLS) algorithm.

But, in some situations closed form solutions exists⇒ Potential gain in terms of
computation efficiency.

MLISTRAL Conference – Q. Guibert – September 2022 9/36



OUTLINES

1 INTRODUCTION

2 GENERALIZED LINEAR MODELS (GLM)

3 GLM TREES
Model-based (MOB) partitioning tree
Examples of distributions

4 NUMERICAL ILLUSTRATIONS
A simulation analysis
Real datasets

5 RANDOM FOREST BASED ON GLM TREES

MLISTRAL Conference – Q. Guibert – September 2022 10/36



MODEL-BASED (MOB) PARTITIONING TREE – GOALS AND NOTATION

[ZHH08] introduce model-based trees:

by integrating a parametric model (e.g. GLM or survival regression) fitted at each leaf
of a tree

based on least squares, maximum likelihood or more broadly M-estimation
approaches

selecting variables on M-fluctuation test

generalizing score-based tests, statistics based on LM statistics.

Notation:
partitioning variables zi = (zi,1, . . . , xi,q) ∈ Rq ,

explanatory variables xi = (xi,1, . . . , xi,p) ∈ Rp ,

response variable y
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GLM TREES – OVERALL PRINCIPLE

The GLM-based tree algorithm [RZ13] consists of splitting the dataset recursively based on
a set of partitioning variables and of fitting a GLM on a set of explanatory variables to
observations in each node.

Main steps are:

1 Fit the GLM on the current sample.

2 Assess parameter stability for each
partition. variable.

3 Choose the best splitting point.

4 Repeat this process.

FIGURE 2: Example of GLM tree

Example: GLM tree with 2 partition. variables [SHZ18]:

g(E(Yi )) = 〈xi ,β(z)〉 with

 β1 if z1 ≤ 0
β2 if (z1 > 0) ∧ (z2 ≤ 0)
β3 if (z1 > 0) ∧ (z2 > 0)
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GLM TREES – A TWO-STEP PROCEDURE AT EACH NODE TO SELECT
THE SPLITTING VARIABLE

For a node b, the first two steps are:

1 a GLM is fitted on all observations of the current node b (i ∈ b) possibly with
explanatory variables xi .

2 a variable selection is performed based on a M-fluctuation test

Wj (t , θ̂) = Ĵ−1/2 1
√

nb

∑
i≤bt×]bc,i∈b

ŝσ(i),j , 0 ≤ t ≤ 1,

where si,j () is the score function

si,j (θ) =
yi − µi

V (µi )
h′(ηi )zi,j ,

σ(i) is the ordering permutation giving the anti-rank observation of zi,j , ]b is the cardinality
of the set b, Ĵ = J(θ̂) the fitted covariance matrix, µi = h(ηi ) and h = g−1.

Under the null hypothesis, Wj,n converges to a Brownian bridge as n→ +∞, see [ZH07].

MLISTRAL Conference – Q. Guibert – September 2022 13/36



RECURSIVE PARTITION ALGORITHM FOR GLM TREES

while Loop over node b until no significant instability is detected do
0. Compute the observation number: nb = ]b for node b.
if nb is too small then

Stop the process for that node.
end
1. Fit the local model:
Fit GLM with xi for i ∈ b maximizing (1)⇒ θ̂b .
2. Assess param. instability of partition. variables with M-fluctuation tests:
for j = 1, . . . , q do

Compute the i-th score contribution as ŝi,j = si,j (θ̂b ) for all i ∈ b.

if j is a numerical variable then

Compute parameter instability as λj = max
i=i,...,i

(nb )2

i(nb−i)

∥∥∥Wj
(

i/nb, θ̂b
)∥∥∥2

2
,

where [i, i] is the interval of potential instability.
else

Compute parameter instability as λj = 1
nb

lj∑
c=1

(]Ivj,c )−1
∥∥∥∥∆vj,c Wj

(
i/nb, θ̂b

)∥∥∥∥2

2
,

where Ivj,c = {i ∈ b, zi,j = vj,c} is the set of observation indices in category vj,c .

end
end
Compute the p-value of the fluctuation test and assess the significance.
if there is at least one significant instable variable then

Select the most unstable variable j? = arg max
j∈{1,...,q}

λj .

3. Choose the best splitting point s:
if j? is a numerical variable then

Search for the optimal split point s? ∈ (mini zi,j? ,maxi zi,j? ) maximizing log-likelihood.

else
Search for the optimal set s? ⊂ {vj?,1, . . . , vj?,lj

} maximizing log-likelihood.

end
end

end

Algorithm 1: Recursive partition algorithm for GLM Trees
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GLM TREES – FINDING THE OPTIMAL SPLIT IN PRACTICE

An exhaustive search is performed.

For instance for a categorical variable z with 4 levels A, B, C, D, the following six GLMs are
fitted:

left node 1z∈{A,B,C} against right node 1z∈{D},

left node 1z∈{A,B,D} against right node 1z∈{C},

left node 1z∈{A,C,D} against right node 1z∈{B},

left node 1z∈{A,B} against right node 1z∈{C,D},

left node 1z∈{A,C} against right node 1z∈{B,D},

left node 1z∈{A,D} against right node 1z∈{B,C}.

For instance for a continuous variable z, all possible splits are tested in (mini zi ,maxi zi ).
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GLM TREE – DEFINING THE OBJECTIVE FUNCTION FOR OPTIMAL
SPLIT

Given the best splitting variable, the algorithm searches for the best split point based
on

O
(

y , φ, θ̂1, . . . , θ̂B

)
=

B∑
b=1

log L(θ̂b, φ, yi )1{i∈Lb(j?)}, (3)

where Lb(j?) corresponds to the b-th segment w.r.t. values taken by the variable j?.

For binary tree (B = 2), only one split point for a continuous variable or one subset for
a categorical variable, hereafter noted s, should be exhibited.

Objective function (3) is generally not explicit since θ̂b is estimated by the IWLS
algorithm.

However, explicit objective functions exist when
a GLM with no explanatory variable and a set of partitioning variables (continuous and/or
categorical).
a GLM with a single categorical explanatory variable and a set of partitioning variables
(continuous and/or categorical).
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EXPLICIT LIKELIHOOD CUT-OFF FOR CONSTANT BINARY TREES

For splitting variable j?, the linear predictor is

ηi = θL × 1{i∈L(j?,s)} + θR × 1{i∈R(j?,s)},

where L(j, s) and R(j, s) are the children subset:
numerical: i ∈ L(j, s)⇔ zi,j ∈]−∞, s], i ∈ R(j, s)⇔ zi,j ∈]s,+∞[ ;

categorical: i ∈ L(j, s)⇔ i ∈ s, i ∈ R(j, s)⇔ i /∈ s.

Based on [BDR20], [DG22] show that the objective function s 7→ O(yj? (s),mj? (s)) is
explicit

O(yj? (s),mj? (s)) = b̃
(

yL
j? (s)

)
mL

j? (s)yL
j? (s)− b

(
b̃(yL

j? (s))
)

mL
j? (s)

+b̃
(

yR
j? (s)

)
mR

j? (s)yR
j? (s)− b

(
b̃(yR

j? (s))
)

mR
j? (s),

(4)

where b̃ = (b′)−1 is the inverse of b′.

Left node Right node

Frequency mL
j (s) =

n∑
i=1

1{i∈L(j,s)} mR
j (s) =

n∑
i=1

1{i∈R(j,s)}

Average yL
j (s) = 1

mL
j (s)

n∑
i=1

yi 1{i∈L(j,s)} yR
j (s) = 1

mR
j (s)

n∑
i=1

yi 1{i∈R(j,s)}

TABLE 2: Notations for conditional frequencies and averages
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EXAMPLES OF DISTRIBUTIONS FOR GLM TREES

For a Bernoulli response, Equation (4) becomes of type p log(p) + (1− p) log(1− p)
as the entropy function used in classification trees, [VR02].
For a Gaussian response, Equation (4) becomes

O(yj ,mj ) =
1
2

(
yL

j

)2
mL

j +
1
2

(
yR

j

)2
mR

j ,

and is proportional to the loss deviance used in regression tree, [CH93]
A gamma distribution with mean µ and shape parameter ν for which Y = (0,+∞),
Λ = R−

O(yj ,mj ) = −mL
j

(
1 + log(yL

j )
)
−mR

j

(
1 + log(yR

j )
)
.

A Poisson distribution with a mean µ for which Y = N and Λ = R

O(yj ,mj ) =
(

log(yL
j )− 1

)
yL

j mL
j +

(
log(yR

j )− 1
)

yR
j mR

j .

An Inverse Gaussian distribution with mean µ and shape parameter σ2 for which
Y = (0,+∞) and Λ = (−∞, 0)

O(yj ,mj ) =
mL

j

2yL
j

+
mR

j

2yR
j

.

These examples illustrate non-quadratic objective functions for continuous distributions and
non-logit objective functions for discrete distributions.

MLISTRAL Conference – Q. Guibert – September 2022 18/36



TAKING WEIGHTS INTO ACCOUNT

Similarly to [BDR20], the weighted MLE is θ̂(s) = (θ̂L(s), θ̂R(s)) obtained by changing
arithmetical means yL/R

j (s) to weighted means yL/R
j,w (s).

Equation (4) is used with means given in Table 3.

Left node Right node

Frequency mL
j,w (s) =

n∑
i=1

wi 1{i∈L(j,s)} mR
j,w (s) =

n∑
i=1

wi 1{i∈R(j,s)}

Average yL
j,w (s) = 1

mL
j,w (s)

n∑
i=1

wi yi 1{i∈L(j,s)} yR
j,w (s) = 1

mR
j,w (s)

n∑
i=1

wi yi 1{i∈R(j,s)}

TABLE 3: Notations for conditional weighted frequency and average

Example – the binomial distribution:

we model Yi/mi when Yi ∼ B(mi , pi ).

A weighted MLE is used without changing a, b function of the Bernoulli distribution.

c becomes c(x , φ) = 1/mi log
( mi

mi x

)
.

MLISTRAL Conference – Q. Guibert – September 2022 19/36



OUTLINES

1 INTRODUCTION

2 GENERALIZED LINEAR MODELS (GLM)

3 GLM TREES
Model-based (MOB) partitioning tree
Examples of distributions

4 NUMERICAL ILLUSTRATIONS
A simulation analysis
Real datasets

5 RANDOM FOREST BASED ON GLM TREES

MLISTRAL Conference – Q. Guibert – September 2022 20/36



SIMULATED DATASETS CONFIGURATION

We consider various test datasets based on [Woo11] for benchmarking GAM.
we generate independent and uniformly random variables (xi,j )i,j .
we simulate continuous independent variables Yi , i = 1, . . . , n with mean
µi = g−1(ηi ) where

ηi = 1 +
m∑

j=1

fj−1(mod 15)(xi,j ),

where fj are nonlinear test functions.

Distribution µi φ

Gaussian N (µi , σ
2) µi = ηi 0.25

gamma G(ν, µi ) µi = eηi/5 0.25
inverse Gaussian IG(µi , σ

2) µi = eηi/5 0.1

TABLE 4: Mean and dispersion parameters µ, φ used in simulations

variable distribution number
cont for continuous expl. variables IG for inverse Gaussian 1 for m = 10 covariates
categ for categorical expl. variables G for gamma 2 for m = 20 covariates

TABLE 5: Naming convention for datasets <variable><distribution><number>
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RUNTIME COMPARISON BETWEEN GLM tree AND explicit GLM tree

100 200 500 1000 2000 5000 10000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Average runtime for ContG1

sample size

ru
nt

im
e

GLM tree
explicit GLM tree

(A) Gamma m = 10
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(B) Gamma m = 20
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(C) Inverse Gaussian m = 10
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(D) Inverse Gaussian m = 20

FIGURE 3: Computation time (sec) of GLM tree and explicit GLM tree
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COMPARISON WITH BENCHMARK MODELS

We compare the performance in accuracy, complexity and computation time of

a GLM tree (Explicit GLM Tree) with a intercept-node only;

a GLM tree with a one explanatory variable (GLM Tree reg),

conditional inference trees CTREE with different test specifications,

a linear model tree based on lmtree, which is equivalent to GLM trees with a
Gaussian distribution,

CART trees based on rpart.

We perform a bootstrap cross-validation approach for each dataset with a sample size
n = 1000.
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COMPARISON WITH BENCHMARK MODELS – RMSE
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FIGURE 4: Predictive RMSE with 100 bootstrap replications
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COMPARISON WITH BENCHMARK MODELS – COMPLEXITY

rpart produces less complex trees, hence it retains an important interest compared to its
competitors by providing more interpretable and simpler to explain results.

Method CategG1 CategIG1 ContG1 ContIG1
ctree Bonferroni 51.770 (4.156) 64.570 (4.841) 7.880 (3.006) 18.690 (3.826)

ctree Teststatistic 77.430 (2.417) 77.520 (2.834) 53.000 (8.299) 68.560 (5.907)

ctree Univariate 64.880 (3.264) 71.910 (3.232) 17.830 (5.520) 36.950 (6.559)

GLM tree reg 30.990 (1.982) 32.220 (1.643) 5.520 (3.301) 13.660 (5.769)

GLM tree reg-Gamma 30.022 (2.022) 32.225 (1.814) 5.340 (2.886) 12.420 (6.054)

GLM tree reg-inverse Gaussian 30.391 (1.827) 32.261 (1.725) 5.140 (3.291) 13.210 (5.186)

explicit GLM tree 31.640 (1.738) 31.090 (2.327) 10.950 (2.858) 25.800 (3.162)

explicit GLM tree-Gamma 31.450 (1.714) 31.170 (2.070) 10.220 (2.939) 25.030 (3.395)

explicit GLM tree-inverse Gaussian 31.420 (1.742) 30.800 (2.429) 12.560 (3.016) 22.990 (3.611)

lmtree 32.010 (1.888) 32.130 (2.377) 11.370 (3.139) 24.130 (3.620)

rpart 9.530 (1.795) 6.880 (3.291) 5.040 (2.558) 5.360 (1.494)

TABLE 6: Mean predictive complexity over 100 bootstrap replications with standard deviations in
parentheses.
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COMPARISON WITH BENCHMARK MODELS – RUNTIME

rpart is fast as it relies on C code, whereas the partykit package is entirely developed in
the R language.

Method CategG1 CategIG1 ContG1 ContIG1
ctree Bonferroni 0.541 (0.247) 0.418 (0.073) 0.089 (0.043) 0.162 (0.041)

ctree Teststatistic 0.682 (0.326) 0.471 (0.079) 0.365 (0.138) 0.415 (0.084)

ctree Univariate 0.622 (0.312) 0.453 (0.091) 0.166 (0.081) 0.262 (0.068)

GLM tree reg 0.372 (0.043) 0.484 (0.068) 2.310 (1.215) 3.095 (1.071)

GLM tree reg-Gamma 0.484 (0.067) 0.517 (0.070) 2.214 (1.076) 2.980 (1.350)

GLM tree reg-inverse Gaussian 0.436 (0.069) 0.471 (0.064) 2.141 (1.455) 3.590 (1.766)

explicit GLM tree 0.922 (0.452) 0.687 (0.170) 2.943 (1.711) 3.047 (0.461)

explicit GLM tree-Gamma 0.658 (0.099) 0.674 (0.104) 3.826 (0.651) 4.494 (0.585)

explicit GLM tree-inverse Gaussian 0.612 (0.102) 0.632 (0.134) 2.887 (0.659) 2.761 (0.338)

GLM tree 1.121 (0.525) 0.827 (0.163) 5.243 (1.857) 5.708 (0.828)

GLM tree-Gamma 1.325 (0.204) 1.326 (0.197) 17.887 (2.517) 18.601 (1.887)

GLM tree-inverse Gaussian 1.433 (0.227) 1.432 (0.274) 16.165 (4.342) 21.721 (1.693)

lmtree 0.713 (0.357) 0.483 (0.117) 1.651 (1.017) 1.493 (0.308)

rpart 0.022 (0.009) 0.015 (0.007) 0.022 (0.015) 0.018 (0.004)

TABLE 7: Mean predictive runtime of different methods over 100 bootstrap replications.
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PERFORMANCE ON BOSTONHOUSING AND HITTERS DATASETS

We assess the performance on two public benchmark datasets: BostonHousing and
Hitters from R packages mlbench and ISLR.

BostonHousing Hitters

4 5 6 300 400

ctree Bonferroni

ctree Teststatistic

ctree Univariate

explicit GLM tree

explicit GLM tree−Gamma

explicit GLM tree−inverse.gaussian

lmtree

rpart

RMSE

FIGURE 5: Predictive RMSE with 100 bootstrap replications for BostonHousing and Hitters
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RANDOM FOREST BASED ON GLM TREES

We assess the benefits of our approach based on a closed-form formula by implementing a
random forest type approach for GLM tree model called GLM forest.

We compare the performance of GLM forest against two classical random forest
competitors:

the function cforest from package partykit to fit random forests based on CTREE,

the function randomForest from the R package randomForest.
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DATASETS AND IMPLEMENTATION DETAILS

We use ContG2 and ContIG2 with m = 20 continuous explanatory variables for gamma
or inverse Gaussian responses and n = 1000 observations, see Table 5.

We consider

three versions of GLM forest by choosing Gaussian, gamma and inverse Gaussian
distributions (with canonical link).

Regarding cforest, we also consider three versions depending on the way the
distribution of the test statistic is computed: Teststatistic refers to the raw statistic,
Bonferroni and Univariate correspond respectively to adjusted and unadjusted
p-values

randomForest from randomForest

We control for

the number of trees, called ntree,

the number of input variables randomly sampled as splitting candidates at each node,
called mtry,

the maximum depth of the tree, called maxdepth.

For randomForest, the terminal node number is capped by 2maxdepth since there is no
argument for the maximum depth.
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BENCHMARK ACCURACY RESULTS – INVERSE GAUSSIAN
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FIGURE 6: Error metrics as a function of maxdepth
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BENCHMARK ACCURACY RESULTS – GAMMA
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FIGURE 7: Error metrics as a function of maxdepth
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RUNTIME AND COMPLEXITY ANALYSIS

Complexity Computation time

data method family mean median mean median

cforest Bonferroni Gaussian 728.00 640.5 2.03 1.72

cforest Teststatistic Gaussian 13244.31 13226.0 34.90 34.86

cforest Univariate Gaussian 1775.54 1732.5 5.61 5.59

glmforest Gamma 1263.94 1224.5 219.71 219.28

glmforest Gaussian 1432.09 1388.0 177.48 181.01

glmforest Inverse Gaussian 1516.63 1504.0 176.86 178.98

ContG2

randomForest gaussian 127905.45 127912.0 3.55 3.55

cforest Bonferroni Gaussian 845.10 794.0 5.39 4.20

cforest Teststatistic Gaussian 15303.13 15202.0 82.62 61.72

cforest Univariate Gaussian 2670.41 2567.0 18.35 14.38

glmforest Gamma 1451.66 1387.5 424.80 406.55

glmforest Gaussian 1587.87 1530.0 253.51 247.73

glmforest Inverse Gaussian 1480.79 1381.5 224.90 213.51

ContIG2

randomForest gaussian 127306.26 127334.0 7.18 5.75

TABLE 8: Complexity and runtime mean and median for ContG2 and ContIG2 over 100 runs,
maxdepth=8
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CONCLUSION AND PERSPECTIVES

In this presentation, we

propose a new fast algorithm for growing GLM trees,

demonstrate that this approach greatly increases the computation speed of the
GLM-based tree model,

derive a GLM forest algorithm.

This approach opens up some pathways for future research.
Other types of distributions could be studied in the framework model-based trees,
for instance inflated distributions such as zero-inflated Poisson,
two-parameter exponential families such as beta, negative binomial distributions or heavy-tailed
distributions.

In addition, we believe this method can be applied to other ensemble decision tree
algorithm,
such as boosted trees,
or for prediction rule ensembles where the features of MOBs is of interest for interpretable rule
generation.
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THEORETICAL PROPERTIES OF THE EXPONENTIAL FAMILY

For the exponential family, we have

Expectation
E(X) = µ = b′(θ),

Variance
Var(X) = a(φ)V (µ) = a(φ)b′′(θ),

where V is the unit variance function.

Skewness

γ3(X) =
dV
dµ

(µ)

√
a(φ)

V (µ)
=

b(3)(θ)a(φ)2

Var(Y )3/2
,

Kurtosis

γ4(X) = 3 +

[
d2V
dµ2

(µ)V (µ) +

(
dV
dµ

(µ)

)2
]

a(φ)

V (µ)
= 3 +

b(4)(θ)a(φ)3

Var(Y )2
.
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IWLS ALGORITHM FOR GLM

The IWLS algorithm is
1 Init:

1 Shift µ(0)
i = yi + 0.1 pour calculer η(0)

i = g(µ
(0)
i ).

2 Compute working response Z (0) = (η
(0)
i + (yi − µ

(0)
i )g′(µ(0)

i ))i .
3 Compute working weights W (0) = diag(w1, . . . ,wn) and wi = 1

a(φi )(g′(µ(0)
i ))2V (µ

(0)
i )

.

4 Solve
X T W (0)Xβ(0) = X T W (0)Z (0)

.

2 Iterate: for k = 1, . . . ,m do
1 Compute working response Z (k) = (zi )i and zi = ηi (β

(k)) + (yi − µi (β
(k)))g′(µi (β

(k))).
2 Compute working weights W (k) = diag(w1, . . . ,wn) and wi = 1

a(φi )(g′(µi (β(k)))2V (µi (β(k)))
.

3 Solve
X T W (k)Xβ(k+1) = X T W (k)Z (k)

.

4 Check convergence: ||Dev(β(k+1))− Dev(β(k))|| ≤ ε.

In practice, X T W (k)Xβ(k+1) = X T W (k)Z (k) is solved by QR decompostion.
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SITUATIONS WHERE A CLOSED-FORM MLE EXISTS: A SINGLE
CATEGORICAL EXPLANATORY VARIABLE

Consider x (1)
i = 1 is the intercept and x (2)

i takes values in {v1, . . . , vd2} with d2 > 2.

THEOREM ([BDR20])

Suppose that for all i ∈ I, Yi takes values in b′(Λ). If the vector R is such that Rθ = 0 and∑d2
j=1 rj − r0 6= 0, then there exists a unique, consistent and explicit MLE θ̂n of θ given by

θ̂n,(1) =

d2∑
k=1

rk g(Y (k)
n )

d2∑
k=1

rk − r0

, θ̂n,(2),j = g(Y (j)
n )−

d2∑
k=1

rk g(Y (k)
n )

d2∑
k=1

rk − r0

, j ∈ J,

where mj =
n∑

i=1
x (2),j

i , j ∈ J and y (j)
n = 1

mj

n∑
i=1

yi x
(2),j
i , j ∈ J.

COROLLARY ([BDR20])

The fitted log-likelihood does not depend on the link function g.

log L(θ̂n | y) =
1

a(φ)

d∑
j=1

∑
i,x(2),j

i =1

(
yi b̃
(

y (j)
n

)
− b

(
b̃
(

y (j)
n

)))
+

n∑
i=1

c(yi , φ), b̃ =
(
b′
)−1

.
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CASE 1: A SINGLE CATEGORICAL EXPLANATORY VARIABLE

Consider x (1)
i = 1 is the intercept and x (2)

i takes values in a set of d2 modalities
{v1, . . . , vd2} with d2 > 2.

To perform the estimation, Rθ = 0 and an incidence matrix is derived

(
x (2),j

i

)
i,j

=

(
1

x(2)
i =vj

)
i,j

⇒ g(E (Yi )) = θ(1) +

d2∑
k=1

x (2),k
i θ(2),k ,

where x (2),j
i is the binary dummy of the j th category for i ∈ I and j ∈ J = {1, . . . , d2}.

THEOREM ([BDR20])

Suppose that for all i ∈ I, Yi takes values in b′(Λ). If the vector R is such that∑d2
j=1 rj − r0 6= 0, then there exists a unique, consistent and explicit MLE θ̂n of θ given by

θ̂n,(1) =

d2∑
k=1

rk g(Y (k)
n )

d2∑
k=1

rk − r0

, θ̂n,(2),j = g(Y (j)
n )−

d2∑
k=1

rk g(Y (k)
n )

d2∑
k=1

rk − r0

, j ∈ J,

where mj =
n∑

i=1
x (2),j

i , j ∈ J and y (j)
n = 1

mj

n∑
i=1

yi x
(2),j
i , j ∈ J.

Note that if Y (j)
n does not belong to b′(Λ), g(Y (j)

n ) and hence θ̂n,(l),j are not defined.
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USUAL CONTRAST EXAMPLES AND FITTED LOG-LIKELIHOOD

Examples

no-intercept: θ̂n,(1) = 0, θ̂n,(2),j = g(Y
(j)
n );

no first-level: θ̂n,(1) = g
(

Y
(1)
n

)
, θ̂n,(2),1 = 0, θ̂n,(2),j = g

(
Y

(j)
n

)
− θ̂n,1, j ∈ J \ {1}.

COROLLARY ([BDR20])

The fitted log-likelihood (⇒ AIC, BIC) does not depend on the link function g.
∀i ∈ I, `(η̂i ) = (b′)−1(y (j)

n ) for j ∈ J such that x (2),j
i = 1 and

log L(θ̂n | y) =
1

a(φ)

d∑
j=1

∑
i,x(2),j

i =1

(
yi b̃
(

y (j)
n

)
− b

(
b̃
(

y (j)
n

)))
+

n∑
i=1

c(yi , φ),

with b̃ = (b′)−1.

The estimator of φ is obtained by maximizing log L(θ̂n | y) with respect to φ given a, b, c
functions.
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CASE 2: TWO CATEGORICAL EXPLANATORY VARIABLES

Dummy Frequency Mean Index

x(2),k
i = 1

x(2)
i =v2k

m(2)
k =

n∑
i=1

x(2),k
i y(2),k

n = 1

m(2)
k

n∑
i=1

yi x
(2),k
i k ∈ K = {1, . . . , d2}

x(3),l
i = 1

x(3)
i =v3l

m(3)
l =

n∑
i=1

x(3),l
i y(3),l

n = 1

m(3)
l

n∑
i=1

yi x
(3),l
i l ∈ L = {1, . . . , d3}

x(k,l)
i = x(2),k

i x(3),l
i mk,l =

n∑
i=1

x(k,l)
i y(k,l)

n = 1
mk,l

n∑
i=1

yi x
(k,l)
i (k, l) ∈ K × L

TABLE 9: Dummies, frequencies and averages w.r.t explanatory variables

We define Q = (1d2d3 , 1d3 ⊗ Id2 , Id3 ⊗ 1d2 , Id2d3 ), where ⊗ is the Kronecker product, and a
contrast matrix R.

Consider GLM

g (E (Yi )) = θ1 +

d2∑
k=1

x (2),k
i θ(2),k +

d3∑
l=1

x (3),l
i θ(3),l +

d2∑
k=1

d3∑
l=1

x (k,l)
i θk,l .

THEOREM ([BDR20])

Suppose that for all i ∈ {1, . . . , n}, Yi takes values in b′(Λ). Under Rθ = 0, and if R such
that (Q′,R′) is of rank d2d3, there exists a unique, consistent and explicit MLE θ̂n of θ
given by

θ̂n = (Q′Q + R′R)−1Q′g(Y), (5)

where the vector g(Y) is ((g(Y
(k,l)
n ))l )k .
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SPECIAL CASES OF PROBABILITY DISTRIBUTION

[BDR20] study:

exact distribution of the MLE θ̂n for Pareto 1 and lognormal,

compute the bias of the MLE,

a closed-form MLE estimator of the dispersion φ,

model diagnostic via residuals with a known distribution.

[BDR20] provide an illustration an actuarial dataset of 211,739 claims of corporate
business lines : they fit GLM for claim amount above µ = 340, 000 (in euros).

TABLE 10: Coefficients for the guarantee variable

Model Pareto 1 Shifted log normal
Variable canonical loginv shifted.loginv canonical symlog
Intercept 1.89 0.64 -0.11 11.75 2.46
Guarantee 2 0.04 0.02 0.04 0.10 0.01
Guarantee 3 -0.67 -0.43 -1.36 0.75 0.06
Guarantee 4 -0.86 -0.60 -3.13 1.04 0.08
Guarantee 5 -0.71 -0.47 -1.55 0.72 0.06
Guarantee 6 -0.42 -0.25 -0.63 0.42 0.04
Guarantee 7 -0.48 -0.29 -0.78 0.59 0.05
log likelihood -14507.53 -14507.53 -14507.53 -14517.37 -14517.37
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SPECIAL CASES OF PROBABILITY DISTRIBUTION

[BDR20] analyze two distributions: Pareto 1 and shifted log-normal.

Using a transformation T such that Zi = T (Yi ) belongs to the exponential family (1), see
Table 11.

Name T (x) a(x) b(x) c(x, φ)
Pareto 1 − log(x/µ) 1 − log(λ) 0
shifted lognormal log(x − µ) x x2/2 − 1

2 (x2/φ + log(2πφ))

TABLE 11: log-transformed distributions

[BDR20] study

exact distribution of the MLE θ̂n for Pareto 1 and
lognormal,

compute the bias of the MLE,

a closed-form MLE estimator of the dispersion φ,

model diagnostic via residuals with a known
distribution.

FIGURE 8: Pareto 1 – coef θ̃(2)
1
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SIMON WOOD’S TEST FUNCTIONS

We define smooth functions to Simon Wood’s test datasets [Woo11] as

f0 = 5 sin(2πx), f1 = exp(3x)− 7, f2 = 0.5× x11(10(1− x))6 − 10(10x)3(1− x)10,

f3 = 15 exp(−5|x − 1/2|)− 6,

f4 = 2− 1(x<=1/3)(6x)3 − 1(x>=2/3)(6− 6x)3 − 1(2/3>x>1/3)(8 + 2 sin(9(x − 1/3)π)),

f5(x) = b20xc − 10, f6(x) = 10− d20xe, f7(x) = sin(50x) + 10x − 10,

f8(x) = 8 + 2 cos(50x)− 50x(1− x), f9(x) = d50x(1− x)e − 5,

f10(x) = 5 log(x + 10−6) + 5, f11(x) = −10− 5 log(x + 10−6) + sin(50x),

f12(x) = 2 log(x + 10−6)− 2 log(1− x + 10−6), f13(x) = 10| sin(20x)|,
f14(x) = 1(x<=1/2) × 5 sin(20x) + 1(x>1/2) × (5 sin(10) + (exp(5(x − 0.5))− 1)).
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SPLIT INTO MORE THAN TWO SEGMENTS

Our approach can easily deal with multiway splits at tree nodes.
The linear predictor

ηi = θL1 × 1{i∈L1(j,s)} + · · ·+ θLm × 1{i∈Lm(j,s)}, (6)

where Lk (j, s) is the k -th leaf subset resulting from the split.

For numeric partitioning variables, L1 ∪ · · · ∪ Lm is a partition of the interval
[mini zi,j ,maxi zi,j ], while for categorical partitioning variables, it is a partition of the
modalities set {vj,1, . . . , vj,lj }.
The MLE θ̂(s) depends only on the link function g and is given by

θ̂Lk
(s) = g

(
yLk

j? (s)
)
, mLk

j? (s) =
n∑

i=1

1{i∈Lk (j?,s)},

yLk
j? (s) =

1

mLk
j? (s)

n∑
i=1

yi 1{i∈Lk (j?,s)}.

The objective function (4) is generalized to

O(yj? (s),mj? (s)) =
m∑

k=1

b̃
(

yLk
j? (s)

)
mLk

j? (s)yLk
j? (s)−

m∑
k=1

b
(

b̃(yLk
j? (s))

)
mLk

j? (s). (7)

MLISTRAL Conference – Q. Guibert – September 2022 47/36



OTHER SPECIAL CASES FOR LOG TRANSFORMED VARIABLE

We consider the transformation t(x) = log(d1x + d2) and denote by Ti = t(Yi ) the
transformed random variables, where d1, d2 are known parameters.

We assume that T1, . . . ,Tn are independent random variables with a distribution in the
exponential family.

The log-likelihood only differs by a new c̃ function

c̃(y , φ) = c(y , φ) + log(
d1

d1y + d2
),

whereas a and b remain identical to the original distribution.

As for non-transformed responses, the fitted log-like-lihood is explicit so that

O(tj? (s),mj? (s)) = b̃
(

tL
j? (s)

)
mL

j? (s)tL
j? (s)− b

(
b̃(tL

j? (s))
)

mL
j? (s)

+b̃
(

tR
j? (s)

)
mR

j? (s)tR
j? (s)− b

(
b̃(tR

j? (s))
)

mR
j? (s).

(8)

Left node Right node

Average tL
j (s) = 1

mL
j (s)

n∑
i=1

t(yi )1{i∈L(j,s)} tR
j (s) = 1

mR
j (s)

n∑
i=1

t(yi )1{i∈R(j,s)}

TABLE 12: Notations for conditional average for transform t(x) with frequencies given in Table 2
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COMPLEXITY FOR BOSTONHOUSING AND HITTERS DATASETS

Complexity Computation time

data method family mean median mean median

ctree Bonferroni Gaussian 21.90 22.0 0.359 0.363

ctree Teststatistic Gaussian 40.91 41.0 0.523 0.525

ctree Univariate Gaussian 36.21 36.5 0.493 0.494

explicit GLM tree Gaussian 14.15 14.0 1.330 1.343

GLM tree Gaussian 14.15 14.0 2.171 2.216

explicit GLM tree Gamma 13.82 14.0 1.752 1.742

GLM tree Gamma 13.82 14.0 4.678 4.684

explicit GLM tree inverse Gaussian 14.09 14.0 1.462 1.464

GLM tree inverse Gaussian 14.09 14.0 4.868 4.875

lmtree Gaussian 13.70 14.0 0.662 0.676

BostonHousing

rpart Gaussian 9.01 9.0 0.036 0.038

ctree Bonferroni Gaussian 9.35 9.0 0.209 0.211

ctree Teststatistic Gaussian 21.77 22.0 0.333 0.333

ctree Univariate Gaussian 18.43 19.0 0.301 0.311

explicit GLM tree Gaussian 7.08 7.0 0.475 0.484

GLM tree Gaussian 7.08 7.0 0.701 0.720

explicit GLM tree Gamma 6.50 6.5 0.604 0.597

GLM tree Gamma 6.50 6.5 1.430 1.435

explicit GLM tree inverse Gaussian 6.56 6.0 0.550 0.545

GLM tree inverse Gaussian 6.56 6.0 1.514 1.521

lmtree Gaussian 6.06 6.0 0.265 0.254

Hitters

rpart Gaussian 9.47 9.0 0.030 0.030
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PERFORMANCE ON BOSTONHOUSING AND HITTERS DATASETS

BostonHousing Hitters

3 4 5 200 250 300 350 400

cforest Teststatistic 

GLM forest gamma

GLM forest Gauss.

GLM forest inv. Gauss.

randomForest 

RMSE

FIGURE 9: Predictive RMSE with 100 bootstrap replications for BostonHousing and Hitters
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