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A B S T R A C T
In a previous work, we have shown that a granular micromechanics approach can lead to load path dependent
continuum models. In the present work, we generalize such a micromechanical approach introducing an
intrinsic 2nd gradient energy storage mechanism (resembling pantographic micromechanism), in the grain–
grain interaction. Such a mechanism, represents long-range effects but could also be thought as deriving
from the utilization of an actual pantographic connection between two grains in a granular metamaterial.
Taking advantage of the homogenization approach developed in previous works, we determine the mechanical
behavior of the macro-scale continuum and carry out parametric analyses with respect to the averaged
intergranular distance and with respect to the stiffness associated to the pantographic term. We show that with
the inclusion of the pantographic term mentioned above, the desired thickness of the localization zone can
be modeled and finely tuned successfully. We also show that the complex mechanics of load-path dependency
can be predicated by the micromechanical effects and the introduced pantographic term.

. Introduction

Damage and fracture can significantly impair the safety and opera-
ional capacity of many engineering devices and structures. Occurrence
f damage often represents the extreme load scenario that drives the
esign. Therefore, resilience of modern engineering architectures with
espect to damage, especially in critical applications like aeronautics,
ivil engineering and mechanical engineering, is often one of the main
ost-driving factors.

Since it is often difficult and economically nonviable to validate
Oberkampf et al., 2004; Schwer, 2007; Babuska and Oden, 2004; TMS,

2019) by experimental means the real damage tolerance of a new archi-

shortcomings. For example, classical linear elastic fracture mechanics is
unable to predict weakening or nucleation of defects at locations away
from existing cracks, such as from boundaries that could appear, among
others, due to material damage or weakness and related localization
of deformation (Tokaji et al., 1987; Pook, 2000). Similarly, classical
damage mechanics suffers from instabilities associated with loss of
ellipticity, which typically requires certain regularization, particularly
for simulating coalescence of microfractures into concentrated zones
and for producing results that are independent of mesh size and shape
used in numerical simulations (Kumar et al., 2020; Tanné et al., 2018;
Fang et al., 2020; Carrara et al., 2020; Brach et al., 2019).

In recent years, phase-field models that include regularization have

tecture apart from scaled-down trials, with the design load cases often been proposed to address some of the above-mentioned shortcomings
remaining untested, there is an increasing need for reliable modeling
and related numerical protocols helping towards the objective above.
One of the main challenges in damage mechanics is that loss of stiffness
and failure of mechanical systems are often accompanied by localiza-
tion of deformation (Placidi et al., 2018a,b). It is well known that
numerical simulation of such problems utilizing methods such as classi-
cal fracture mechanics or classical damage mechanics presents serious

(Molnár et al., 2020; Miehe et al., 2016). However, further develop-
ments are needed, as many of these existing methods, including phase
field methods, do not treat the effect of load paths and pre-loading upon
the fracture paths and their evolution (Nguyen et al., 2020; Ouali et al.,
2021). Moreover, localization zones (or shear bands) and boundary
layers observed in many experiments are of finite spatial dimension and

http://www.elsevier.com/locate/ijsolstr
http://www.elsevier.com/locate/ijsolstr
https://doi.org/10.1016/j.ijsolstr.2022.111880
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2022.111880&domain=pdf
cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri




International Journal of Solids and Structures 254–255 (2022) 111880

2

L. Placidi et al.

they exist irrespective of the size of the domain (size of the structure).
Regularization approaches proposed within the above mentioned classi-
cal and phase field approaches do not address the question of size of the
localization zone, particularly from a micro-mechano-morphological

pantographic beams exhibit second gradient effects, i.e. non-locality or
second-neighbor interactions, also in extension/compression and not
only in bending, as standard beam models.

In previous works, we have proved that a granular micromechanics

viewpoint. In addition, in many past micro-macro identification, the
2nd gradient energy derived from lattice or discrete models depends
upon the 1st gradient energy, and the 2nd gradient stiffnesses are
proportional to 1st gradient ones and to the square of the RVE or to
the lattice size (Askes and Metrikine, 2005; Askes and Aifantis, 2011;
Chang and Gao, 1995; Maranganti and Sharma, 2007; Triantafyllidis
and Bardenhagen, 1993). In these cases, and in the limit of such a
size going to zero, the 2nd gradient constants vanish. Such schemes,
therefore, cannot ex in that limit (i) a finite localization zone, that
is in fact independent on grain sizes, and (ii) the fact that similar
grain sizes lead to different shear band thickness (Jia et al., 2003;
Polyzos and Fotiadis, 2012), an observation that can be attributed to
correct micro-macro identification of kinematical features, including
the effect of grain-rotation and other long-range effects. It is also
noteworthy that strain localization could be accompanied by band
broadening (Joshi and Ramesh, 2008) due to the evolution of micro-
mechano-morphological effects an aspect that conventional fracture
mechanics or shear band modeling largely overlooks (Placidi et al.,
2019). To develop an approach in which we can incorporate the depen-
dence upon the load-path and be able to regulate the localization zone
thickness we utilize the micro-macro identification formalism based
upon granular micromechanics (Misra et al., 2021; Placidi et al., 2021),
in which it is considered that the elastic strain energy is stored and/or
energy is dissipated in the deformation mechanisms representing in-
teraction of grain-pairs. Such a deformation is modeled by relative
motions of grain bary-centers, regardless of the location of the actual
deformation within the grains.

It should be noted that, owing to recent advances in versatile
manufacturing techniques as additive manufacturing allowing for their
rapid production (Seppecher et al., 2019; Golaszewski et al., 2019;
Spagnuolo et al., 2019; Trippel et al., 2020), architected materials,
also known as metamaterials (Carcaterra et al., 2015; Del Vescovo
and Giorgio, 2014; dell’Isola et al., 2016a), have become widespread
in several fields of engineering. Indeed, properly designed architected
materials can exhibit extremely favorable mechanical performances
like low weight-to-stiffness ratios (Zheng et al., 2014; Giorgio et al.,
2020a), high element-failure tolerance (Turco et al., 2016; Turco and
Rizzi, 2016), and high energy-absorption capability (Mohsenizadeh
et al., 2018). This has further urged theoretical mechanicians to take
into account the significance of micro-scale mechanisms in influencing
macro-scale material behaviors. Indeed, the main idea underlying the
development of so-called metamaterials is the production of materials
with artificially-controlled architecture conferring desired properties to
the material (Yildizdag et al., 2019). Recently, the homogenization of
different pantographic motifs (dell’Isola et al., 2016b; Rahali et al.,
2015; Coutris et al., 2020; Boutin et al., 2017; dell’Isola et al., 2019),
i.e. a mechanism which is well known from everyday life (pantographic
mirrors, expanding fences, scissor lifts, etc.), which is characterized
by a zero-energy accordion-like homogeneous extension/compression
deformation mode, has been addressed for this reason. The studies
on the homogenization of the above-mentioned pantographic motifs
has concluded that, at macro-scale, they behave as second gradient
continua. More particularly, the deformation energy of pantographic
beams (Turco, 2019, 2021; Turco et al., 2021), i.e. slender pantographic
structures, in contrast to the Elastica for which the deformation energy
depends on the projection of the second gradient to the normal vector
of the placement function, i.e. the material curvature, does also depend
on the projection onto the tangent vector, introduced as the stretch
gradient. Thus, the deformation energy takes into account the complete
second gradient of the placement function. In such a model, non-
standard boundary conditions and more generalized forces such as
double forces do appear (Barchiesi et al., 2019, 2018). In other words,
approach can lead to load path dependent outcomes (Placidi et al.,
2021; Timofeev et al., 2020). Here, we generalize the grain-pair in-
teraction by introducing an additional pantographic energy storage
mechanism that depends upon strain gradient, and therefore, represents
long-range (beyond nearest neighbor) effects that characterize all dis-
crete systems and that need to be accounted for continuum models to
be representative. More specifically, a spring is introduced at the micro-
scale accumulating energy upon the gradient of its stretch, which can
be regarded at a lower scale as a pantographic beam with fixed stretch
at boundaries, deforming mainly along the axial direction, e.g. with
low slenderness. Such a pantographic term generalizing the grain-pair
interaction could be regarded not just as accounting generically for
long-range interactions, but as a term deriving from the modeling
of an actual pantographic sub-structure embedded within grain–grain
interactions, that could be realized by 3D printing in the context of an
actual granular metamaterial (Giorgio et al., 2020b; Misra et al., 2020;
De Angelo et al., 2020; Nejadsadeghi et al., 2019).

In this paper, we show through numerical examples that with
the inclusion of the pantographic term mentioned above, a micro-
mechanical effects on the macro damage model is that the desired
thickness of the localization zone can be modeled and finely tuned
successfully. Moreover, the damaged state of the body subjected to
complex loading paths can also described in a systematic way. In
particular, the paper is organized as follows. In Section 2, the discrete
micro-mechanical model for granular systems is introduced. The target
continuum is introduced as well. Then, Piola’s ansatz is employed to
relate the discrete with the continuum and the objective relative grain–
grain displacement is defined. Exploiting Piola’s ansatz, continuum
deformation measures are derived from the previously-introduced ob-
jective relative grain–grain displacement. Subsequently, stiffnesses and
effective damaged stiffnesses are defined following the introduction of
the kinematic damage descriptors for the state of degradation of each
grain–grain interaction. In Section 3 the elastic strain energy associated
to each grain–grain interaction is defined. Successively, in Section 4,
the dissipation, external, and total energy functionals are introduced.
After that, governing equations for the damage descriptors associated to
each grain–grain interaction are derived from a variational deduction
procedure based on a hemi-variational principle. Section 5 reports
on the numerical results obtained by making use of the presented
model. Particularly, parametric analyses are carried out with respect
to the averaged intergranular distance and with respect to the stiffness
associated to the pantographic term by re-scaling in micromechani-
cal parameters with the averaged intergranular distance so to keep
unchanged the continuum stiffness and damage characteristics.

2. Discrete and continuous descriptions of systems with grain–
grain interactions

2.1. Identification à la piola

Within the discrete description, the reference configuration of the
considered set of 𝑁 grains is given by positions of their centroids

𝑿𝑖 ∈ 𝐸2, with 𝑖 = 1,… , 𝑁,

where 𝐸2 is the Euclidean two-dimensional space. The position in the
present (or current) configuration 𝒙𝑖 ∈ 𝐸2, at time 𝑡, is obtained
through the placement function 𝝌 𝑖 (𝑡) as follows

𝒙𝑖 = 𝝌 𝑖 (𝑡) = 𝑿𝑖 + 𝒖𝑖 (𝑡) , 𝑖 = 1,… , 𝑁 (1)

where 𝒖𝑖 (𝑡) is the displacement function of the 𝑖th grain.
Within the continuum description, a continuous body  ⊂ 𝐸2,

constituted by infinitely many particles, is considered in the reference
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Fig. 1. Graphical representation of Piola’s Ansatz in Eq. (3). Discrete kinematic descriptors introduced in Eq. (1), on the left, and continuous kinematic descriptor introduced in
Eq. (2), on the right.

configuration. A generic particle occupies the position 𝑿 in the refer-
ence configuration, i.e. 𝑿 ∈ . Such a particle is placed, in the present
configuration at time 𝑡, into the position 𝒙 through the placement

where the following second and third order tensors evaluated at 𝑿 =
𝑿𝑝 have been defined
3

function 𝑭 𝑝 = (∇𝝌)𝑿=𝑿𝑝
, ∇𝑝𝑭 = [∇ (∇𝝌)]𝑿=𝑿𝑝

.

𝒙 = 𝝌 (𝑿, 𝑡) = 𝑿 + 𝒖 (𝑿, 𝑡) , (2)

where 𝒖 (𝑿, 𝑡) is the displacement function of the continuous body .
In the continuum-discrete identification, the following relationship

(Piola’s Ansatz, see Fig. 1) will be assumed

𝝌
(

𝑿𝑖, 𝑡
)

= 𝝌 𝑖 (𝑡) , 𝑖 = 1,… , 𝑁, (3)

which means that the placements 𝝌 𝑖 (𝑡) of the 𝑁 grains correspond to
the placement 𝝌 (𝑿, 𝑡) of the continuous body  evaluated at those
positions 𝑿 = 𝑿𝑖, with 𝑖 = 1,… , 𝑁 , where the grains are located in
the reference configuration.

2.2. Objective relative grain–grain displacement and continuum deforma-
tion measures

Let us now consider just a pair of grains denoted as 𝑛 and 𝑝 with
their centroids positioned at 𝑿𝑛 and 𝑿𝑝, respectively. Let us also
assume that the distance between them is equal to 𝐿, that is assumed to
be the averaged intergranular distance. Furthermore, the unit vector𝒄̂
can be defined as follows

𝑿𝑛 −𝑿𝑝 = 𝒄̂𝐿. (4)

Therefore, the vector quantity 𝒄̂𝐿 in Eq. (4) is nothing but the arrow
in the reference configuration that, once applied to the position 𝑿𝑛,
touches and points towards the position 𝑿𝑝. In the current configura-
tion, at time 𝑡, the positions occupied by the two grain centroids at
positions 𝑿𝑛 and 𝑿𝑝 in the reference configuration are, respectively,
𝒙𝑛 = 𝝌

(

𝑿𝑛, 𝑡
)

and 𝒙𝑝 = 𝝌
(

𝑿𝑝, 𝑡
)

. Analogously, the vector in Eq. (4) is
transformed in the present configuration, at time 𝑡, into

𝒙𝑛 − 𝒙𝑝 = 𝝌
(

𝑿𝑛, 𝑡
)

− 𝝌
(

𝑿𝑝, 𝑡
)

. (5)

Following (Timofeev et al., 2020), an objective relative displacement is
defined as

𝒖𝑛𝑝 = 𝑭 𝑇 (

𝒙𝑛 − 𝒙𝑝
)

−
(

𝑿𝑛 −𝑿𝑝
)

, (6)

where 𝑭 = ∇𝝌 is the deformation gradient. Here and after ∇ means
the gradient operator with respect to the position 𝑋 in the reference
configuration.

Let us now assume that the two grains 𝑛 and 𝑝 are neighboring ones.
Thus, the Taylor’s series expansion of the function 𝝌

(

𝑿𝑛, 𝑡
)

centered at
𝑿 = 𝑿𝑝 yields

𝒙𝑛 = 𝝌
(

𝑿𝑛, 𝑡
)

≅ 𝒙𝑝 + 𝐿𝑭 𝑝𝒄̂ +
𝐿2

2
[

∇𝑝𝑭 𝒄̂
]

⋅ 𝒄̂, (7)
Let us also introduce the Green-Saint-Venant tensor 𝑮 and its gradient,
which are, respectively, a second and third order tensor

𝑮 = 1
2
(

𝑭 𝑇𝑭 − 𝑰
)

, ∇𝑮 = 𝑭 𝑇∇𝑭 . (8)

Eqs. (7) and (8), in index notation, where superscripts denote the
position at which the corresponding quantity is evaluated, read as

𝑥𝑛𝑖 = 𝑥𝑝𝑖 + 𝐹 𝑝
𝑖𝑗𝑐𝑗𝐿 + 𝐿2

2
𝐹 𝑝
𝑖𝑗,ℎ𝑐𝑗𝑐ℎ, 𝐺𝑝

𝑖𝑗 =
1
2

(

𝐹 𝑝
𝑎𝑖𝐹

𝑝
𝑎𝑗 − 𝛿𝑖𝑗

)

,

𝐺𝑝
𝑖𝑗,ℎ = 𝐹 𝑝

𝑎𝑖𝐹
𝑝
𝑎𝑗,ℎ.

(9)

Thus, making use of the index notation and taking into account Eqs. (4)
and (9), the objective relative displacement in Eq. (6) can be re-written
as

𝑢𝑛𝑝𝑖 = 2𝐺𝑝
𝑖𝑗𝑐𝑗𝐿 + 𝐿2

2
𝐺𝑝
𝑖𝑗,ℎ𝑐𝑗𝑐ℎ. (10)

We remark that, owing to Eq. (10), the objective relative displacement
𝒖𝑛𝑝 for a given grain–grain orientation 𝒄̂ is not additive inverse of that
computed for the opposite grain–grain orientation, i.e. −𝒄̂, when the
strain gradient is non-vanishing, i.e. ∇𝑮 ≠ 0, because it is not an odd
function of 𝒄̂. This means that the strain gradient breaks the symmetry
with respect to the inversion of the grain–grain orientation. Such a
feature enables strain-gradient-triggered chiral effects.

The half-projection of the objective relative displacement on the
unit vector 𝒄̂ is the so-called normal displacement 𝑢𝜂 (a scalar quantity),
while its projection on the unit vector orthogonal to 𝒄̂ is the so-called
tangent displacement vector

𝑢𝜂 =
1
2
𝒖𝑛𝑝 ⋅ 𝒄̂, 𝒖𝜏 = 𝒖𝑛𝑝 − (𝒖𝑛𝑝 ⋅ 𝒄̂) 𝒄̂. (11)

Such a definition for 𝑢𝜂 have been chosen in order to have non-
confusing interpretation of stiffness parameters defined in the next
subsection. For the detailed justification one can see Placidi et al.
(2021). Insertion of (10) into (11) yields the normal displacement, its
square and the squared tangent displacements, in terms of the strain 𝑮,
the strain gradient ∇𝑮, the grain–grain distance 𝐿 and its orientation
𝒄̂

𝑢𝜂 = 𝐿𝐺𝑖𝑗𝑐𝑖𝑐𝑗 +
𝐿2

4
𝐺𝑖𝑗,ℎ𝑐𝑖𝑐𝑗𝑐ℎ, (12)

𝑢2𝜂 = 𝐿2𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝐺𝑖𝑗𝐺𝑎𝑏 +
1
2
𝐿3𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑐𝑐𝐺𝑖𝑗𝐺𝑎𝑏,𝑐

+ 1
16

𝐿4𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐 , (13)
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𝑢2𝜏 = 4𝐿2𝐺𝑖𝑗𝐺𝑎𝑏
(

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 − 𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏
)

+2𝐿3𝐺𝑖𝑗𝐺𝑎𝑏,𝑐
(

𝛿𝑖𝑎𝑐𝑗𝑐𝑏𝑐𝑐 − 𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑐𝑐
)

(14)

+𝐿4
𝐺𝑖𝑗,ℎ𝐺𝑎𝑚,𝑛

(

𝛿𝑖𝑎𝑐𝑗𝑐ℎ𝑐𝑚𝑐𝑛 − 𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐
)

,

w

2

t
n

𝑘

w
i
r
t
s

v
d
a
d

𝑘

w
d
d
F
n
d
n

𝑘

W
n

𝑘

I
s
s

3. Elastic strain energy

The elastic energy density per unit area is derived starting from the
elastic energy associated to a single grain–grain interaction, say the

T

𝑈

𝑈

4
here the superscript 𝑝 has been omitted to simplify the notation.

.3. Damage descriptors and effective stiffnesses

Following the same notation employed in Timofeev et al. (2020),
he damaged tangent stiffness is denoted with 𝑘𝜏,𝐷 and the damaged
ormal stiffness is denoted with 𝑘𝜂,𝐷

𝜂,𝐷 = 𝑘𝑡𝜂,𝐷𝛩
(

𝑢𝜂
)

+ 𝑘𝑐𝜂,𝐷𝛩
(

−𝑢𝜂
)

, (15)

here 𝑘𝑡𝜂,𝐷 is the stiffness in tension and 𝑘𝑐𝜂,𝐷 ≫ 𝑘𝑡𝜂,𝐷 is the stiffness
n compression. Remark that, usually, for cementitious granular mate-
ials the stiffness in compression is much higher than the stiffness in
ension. Here, tension and compression are discriminated through the
ign of the objective normal displacement 𝑢𝜂 and, for this reason, we

make use of the Heaviside function 𝛩. Damage is modeled with two
ariables, i.e. the normal damage 𝐷𝜂 , and the tangent damage 𝐷𝜏 . The
amage variables 𝐷𝜂 and 𝐷𝜏 reduce linearly, respectively, the tension
nd compression normal damaged stiffness 𝑘𝜂,𝐷(15) and the tangent
amaged stiffness 𝑘𝜏,𝐷. In formulas, we have

𝑡
𝜂,𝐷 = 𝑘𝑡𝜂

(

1 −𝐷𝜂
)

, 𝑘𝑐𝜂,𝐷 = 𝑘𝑐𝜂
(

1 −𝐷𝜂
)

, 𝑘𝜏,𝐷 = 𝑘𝜏
(

1 −𝐷𝜏
)

,

(16)

hich means that the tangent damaged stiffness 𝑘𝜏,𝐷 and the normal
amaged stiffness 𝑘𝜂,𝐷 are defined, respectively, through the non-
amaged tangent stiffness 𝑘𝜏 and the non-damaged normal stiffness 𝑘𝜂 .
or the latter case, in formulas, we have 𝑘𝜂,𝐷 = 𝑘𝜂

(

1 −𝐷𝜂
)

, where the
on-damaged normal stiffness 𝑘𝜂 has been defined in terms of the non-
amaged tension normal stiffness 𝑘𝑡𝜂 and the non-damaged compression
ormal stiffness 𝑘𝑐𝜂 as

𝜂 = 𝑘𝑡𝜂𝛩
(

𝑢𝜂
)

+ 𝑘𝑐𝜂𝛩
(

−𝑢𝜂
)

. (17)

e hence obtain the following synthetic expression for the damaged
ormal stiffness

𝜂,𝐷 = 𝑘𝜂
(

1 −𝐷𝜂
)

= 𝑘𝑡𝜂
(

1 −𝐷𝜂
)

𝛩
(

𝑢𝜂
)

+ 𝑘𝑐𝜂
(

1 −𝐷𝜂
)

𝛩
(

−𝑢𝜂
)

. (18)

n order to smooth the constitutive assumption in Eq. (17), the Heavi-
ide function 𝛩 (𝑥) is replaced in the numerical scheme by the following
mooth function (see Fig. 2) (Wang and Qian, 2018)

1
2
+ 1

𝜋
arctan

(𝑥
𝛼

)

(19)

so that the non-damaged normal stiffness is defined as a smooth func-
tion of the normal relative displacement

𝑘𝜂 =
1
2

(

𝑘𝑡𝜂 + 𝑘𝑐𝜂
)

+ 1
𝜋

(

𝑘𝑡𝜂 − 𝑘𝑐𝜂
)

arctan
( 𝑢𝜂

𝛼

)

, (20)

that in turns gives the damaged normal stiffness as a smooth function
of the normal relative displacement

𝑘𝜂,𝐷 = 1
2

(

𝑘𝑡𝜂 + 𝑘𝑐𝜂
)

(

1 −𝐷𝜂
)

+ 1
𝜋

(

𝑘𝑡𝜂 − 𝑘𝑐𝜂
)

arctan
( 𝑢𝜂

𝛼

)

(

1 −𝐷𝜂
)

. (21)

The quantity 𝛼 can be tuned to modulate the regularization. Large
values of 𝛼 enhance the convergence of the algorithm. A value for
𝛼 is considered, see Table 1, as to give a sufficiently smooth and
non-stiff problem while not being detrimental to the congruence of
Eqs. (17), (20) and (18), (21), so that the physical meaning of 𝛼 can
be overlooked.
couple 𝑛 − 𝑝 considered in Section 2.2, within the discrete description.
It is chosen to be additively decomposed in two parts

𝑈 𝑡𝑜𝑡 = 𝑈𝑢 + 𝑈𝑃 ,

where the first contribution 𝑈𝑢 follows the modeling assumption of
imofeev et al. (2020)

𝑢 =
1
2
𝑘𝜂,𝐷𝑢

2
𝜂 +

1
2
𝑘𝜏,𝐷𝑢

2
𝜏 , (22)

having intergranular interaction described by means of normal and
tangential springs. It is worth to be noted that the damaged elastic
stiffnesses in Eqs. (16)3 and (18), which are related to those springs,
can be defined as the coefficients of a quadratic form of the objective
normal and tangential displacements in Eq. (22).

The second term 𝑈𝑃 reads as

𝑃 = 1
2
𝐾𝑃

[(

∇𝑢𝜂
)

⋅ 𝒄̂
]2 (23)

and it is introduced as an additional energy storage mechanism that
represents long-range (beyond nearest neighbor) effects, and therefore,
upon gradients of relative displacement. The normal gradient of the
objective normal displacement is, neglecting second gradient of strain
terms,
(

∇𝑢𝜂
)

⋅ 𝒄̂ = 𝐿𝐺𝑝
𝑖𝑗,ℎ𝑐𝑖𝑐𝑗𝑐ℎ

and it leads us to the 𝑈𝑃 formulation in terms of strain gradient
components

𝑈𝑃 = 1
2
𝐾𝑃

[(

∇𝑢𝜂
)

⋅ 𝒄̂
]2 = 1

2
𝐾𝑝𝐿

2𝐺𝑝
𝑖𝑗,ℎ𝐺

𝑝
𝑎𝑏,𝑐𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐 . (24)

The grain–grain interaction is, therefore, no longer represented by
two (normal and tangential) springs. The introduction of the term 𝑈𝑃
allows us to account, for instance, for a non-null strain energy when the
objective relative displacement 𝒖𝑛𝑝 is zero for both normal 𝑢𝜂 and tan-
gential 𝑢𝜏 components. It can be seen from Fig. 3 that such a behavior
resembles that of a pantograph. Thus, the introduction of 𝑈𝑃 implies
a kind of pantographic interaction mechanism and the coefficient 𝐾𝑃
will be further referred to as the coefficient of pantographic interaction
(or the pantographic coefficient).

In the discrete description, the total energy 𝑈 𝑡𝑜𝑡 associated to the
interaction of a given grain, whose centroid occupies the position 𝑿𝑝
in the reference configuration, with neighboring grains is given by
the summation of the energy in Eq. (22) for all the 𝑁 − 1 possible
interactions

𝑈 𝑡𝑜𝑡 =
𝑁−1
∑

𝑖=1
𝑈𝑖 =

𝑁−1
∑

𝑖=1

(

𝑈𝑢,𝑖 + 𝑈𝑃 ,𝑖
)

=
𝑁−1
∑

𝑖=1

( 1
2
𝑘𝜂,𝐷,𝑖𝑢

2
𝜂,𝑖 +

1
2
𝑘𝜏,𝐷,𝑖𝑢

2
𝜏,𝑖 +

1
2
𝐾𝑃 ,𝑖

[(

∇𝑢𝜂,𝑖
)

⋅ 𝒄̂𝑖
]2
)

, (25)

where the subscript 𝑖 refers to a generic couple 𝑛−𝑝 of grains. In Eq. (25)
it is therefore intended that 𝑘𝜂,𝐷,𝑖 and 𝑘𝜏,𝐷,𝑖 are the damaged stiffnesses,
respectively normal and tangent, associated to the interaction of the
𝑖th couple of grains, while 𝑢2𝜂,𝑖 and 𝑢2𝜏,𝑖 are the squared elastic relative
displacements, respectively normal and tangent, of the 𝑖th couple of
grains. By

[(

∇𝑢𝜂,𝑖
)

⋅ 𝒄̂𝑖
]2 we denoted the squared normal gradient of

objective normal displacement of the 𝑖th couple of grains.
It is worth to mention here that the pantographic coefficients 𝐾𝑃 ,𝑖

are not affected by damage growth, in contrast to other stiffnesses in
Eq. (25), so the term 𝑈𝑃 remains finite during the evolution of the
system.

Continualization of Eq. (25) is performed by using the following
homogenization rule (see Fig. 4). Let 𝑎 be a generic quantity defined
within the discrete description, such that 𝑎𝑖 refers to the grain–grain
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Fig. 2. Plot for Eq. (19). In the limit of 𝛼 going to zero the smooth function in (19) goes to the Heaviside function.
Fig. 3. Representation of the pantographic mechanism.

interaction, identified with the index 𝑖, between a generic grain 𝑛 and a
generic grain 𝑝. Let 𝑎 (𝜃) be the continuous distribution of the quantity
𝑎 over the orientation 𝜃 of the grain-pair formed by grain 𝑛 and its

quantities are all functions of the orientation 𝜃 ∈ [0, 2𝜋] of the generic
grain-pair formed by grain 𝑛 and its neighboring grains, namely
5

neighboring grains. We have that, when the number 𝑁 of grains within

the discrete system tends to infinite, the following limit holds
𝑁
∑

𝑖=1

[

𝑎𝑖
]

⟶ ∫1
𝑎 (𝜃) , (26)

where 1 = [0, 2𝜋] is the unit circle, namely the domain of the function
𝑎 (𝜃), i.e. the set of all orientations. Remark that 𝑎𝑖 = 𝑎

(

𝜃𝑖
)

, where
𝜃𝑖 is the orientation of the grain-pair formed by grain 𝑛 and grain 𝑝,
namely the orientation of the unit vector 𝒄̂. The application of the
homogenization rule in Eq. (26) to the total energy 𝑈 𝑡𝑜𝑡 in Eq. (25)
gives

𝑈 𝑡𝑜𝑡 ⟶ 𝑈 = ∫1

1
2
𝑘𝜂

(

1 −𝐷𝜂
)

𝑢2𝜂 +
1
2
𝑘𝜏

(

1 −𝐷𝜏
)

𝑢2𝜏 ,

+ 1
2
𝐾𝑃

[(

∇𝑢𝜂
)

⋅ 𝒄̂
]2 , (27)

where 𝑘𝜂 = 𝑘̃𝜂 (𝜃), 𝑘𝜏 = 𝑘̃𝜏 (𝜃), 𝐾𝑃 = 𝐾𝑃 (𝜃), 𝐷𝜂 = 𝐷̃𝜂 (𝜃), and 𝐷𝜏 = 𝐷̃𝜏 (𝜃)
replace, respectively, 𝑘𝜂,𝑖, 𝑘𝜏,𝑖, 𝐾𝑃 ,𝑖, 𝐷𝜂,𝑖, and 𝐷𝜏,𝑖. Remark that these
𝑘𝜂,𝑖 → 𝑘̃𝜂 (𝜃) , 𝑘𝜏,𝑖 → 𝑘̃𝜏 (𝜃) , 𝐾𝑝,𝑖 → 𝐾𝑝 (𝜃) 𝐷𝜂,𝑖 → 𝐷̃𝜂 (𝜃) ,

𝐷𝜏,𝑖 → 𝐷̃𝜏 (𝜃) .

From Eqs. (13) and (14) the continuum elastic strain energy density per
unit area in Eq. (27) reads as

𝑈 = ∫1

1
2
𝑘𝜂

(

1 −𝐷𝜂
)

(

𝐿2𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝐺𝑖𝑗𝐺𝑎𝑏 +
1
2
𝐿3𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑐𝑐𝐺𝑖𝑗𝐺𝑎𝑏,𝑐

)

+ ∫1

1
2
𝑘𝜂

(

1 −𝐷𝜂
)

( 1
16

𝐿4𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐

)

+ ∫1

1
2
𝑘𝜏

(

1 −𝐷𝜏
) (

4𝐿2𝐺𝑖𝑗𝐺𝑎𝑏
(

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 − 𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏
)

+ 2𝐿3𝐺𝑖𝑗𝐺𝑎𝑏,𝑐
(

𝛿𝑖𝑎𝑐𝑗𝑐𝑏𝑐𝑐 − 𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑐𝑐
))

+ ∫1

1
2
𝑘𝜏

(

1 −𝐷𝜏
)

( 1
4
𝐿4𝐺𝑖𝑗,ℎ𝐺𝑎𝑚,𝑛

(

𝛿𝑖𝑎𝑐𝑗𝑐ℎ𝑐𝑚𝑐𝑛 − 𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐
)

)

(28)

+∫1

1
2
𝐾𝑃𝐿

2𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐 .
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the following 4 (3 scalar and one vector) fundamental kinematical
quantities

𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 , 𝐷𝜏 , (33)
Fig. 4. Graphic representation of the homogenization rule.

The previous expression can be re-written in a more compact form as

𝑈 = 1
2
C𝑖𝑗𝑎𝑏𝐺𝑖𝑗𝐺𝑎𝑏 +M𝑖𝑗𝑎𝑏𝑐𝐺𝑖𝑗𝐺𝑎𝑏,𝑐 +

1
2
D𝑖𝑗ℎ𝑎𝑏𝑐𝐺𝑖𝑗,ℎ𝐺𝑎𝑏,𝑐 , (29)

where, accounting for the symmetrization induced by the symmetry
of the strain tensor 𝑮, the elastic stiffnesses C, M, D are identified as
follows

C𝑖𝑗𝑎𝑏 = 𝐿2
∫1

𝑘𝜂
(

1 −𝐷𝜂
)

𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏 (30)

+𝐿2
∫1

𝑘𝜏
(

1 −𝐷𝜏
) ((

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐𝑗𝑐𝑎 + 𝛿𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿𝑗𝑏𝑐𝑖𝑐𝑎
)

− 4𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏
)

M𝑖𝑗𝑎𝑏𝑐 =
1
4
𝐿3

∫1
𝑘𝜂

(

1 −𝐷𝜂
)

𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑐𝑐 (31)

1
4
𝐿3

∫1
𝑘𝜏

(

1 −𝐷𝜏
) ((

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐𝑗𝑐𝑎 + 𝛿𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿𝑗𝑏𝑐𝑖𝑐𝑎
)

𝑐𝑐

− 4𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑐𝑐
)

D𝑖𝑗ℎ𝑎𝑏𝑐 =
1
16

𝐿4
∫1

𝑘𝜂
(

1 −𝐷𝜂
)

𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐 (32)

+ 1
16

𝐿4
∫1

𝑘𝜏
(

1 −𝐷𝜏
) ((

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐𝑗𝑐𝑎 + 𝛿𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿𝑗𝑏𝑐𝑖𝑐𝑎
)

𝑐ℎ𝑐𝑐

− 4𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐
)

+𝐿2𝐾𝑃 ∫1
𝑐𝑖𝑐𝑗𝑐ℎ𝑐𝑎𝑐𝑏𝑐𝑐

From Eqs. (30)–(32) one can see the presence of the pantographic
coefficient 𝐾𝑃 only in the expression for the six-rank elastic stiffness
tensor D. Therefore, since neither 𝐷𝜂 nor 𝐷𝜏 affects 𝐾𝑃 , we can notice
that all of the components of the elastic tensors C and M tend to
zero because of damage growth, but for the elastic tensor D it is not
true. Hence, there is always some portion of elastic energy stored at
every material point of the continuum even if we assume the damage
variables reaching their maximum values.

Let us finally remark that, from the nontrivial expression in Eq. (31)
for the stiffness M, it is not odd with respect to grain-pair’s orienta-
tion. Thus, it is deduced that the occurrence of damage, induce the
emergence of chiral effects. Note that, indeed, in the integral (31), the
unit vector 𝒄̂ appears an odd number of times, while the domain is
symmetric with respect to zero. Thus, while initially we have M = 𝟎
the evolution of damage variables 𝐷𝜂 and 𝐷𝜏 , induces the emergence
of chiral effects characterized by the conditions M ≠ 𝟎.

4. Evolution of damage descriptors

4.1. Definition of the fundamental kinematical quantities

We evaluate the evolution of damage variables via an
hemi-variational derivation of the grain interaction, that is considered
for a given orientation. To do this, we start by the definition of
where 𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 and 𝐷𝜏 have been already defined in Eqs. (11) and
(16).

4.2. Definition of the dissipation, external and total energy functionals

The dissipation energy 𝑊𝐷 is the energy dissipated because of irre-
versible phenomena, which is damage in our case. It can be additively
decomposed into normal, i.e. 𝑊 𝜂

𝐷, and tangent, i.e. 𝑊 𝜏
𝐷, parts

𝑊𝐷 = 𝑊 𝜂
𝐷 +𝑊 𝜏

𝐷 . (34)

The normal contribution 𝑊 𝜂
𝐷 to the damage dissipation energy is de-

fined as follows

𝑊 𝜂
𝐷 = 1

2
𝑘𝑐𝜂

(

𝐵𝑐
𝜂

)2
𝛩
(

−𝑢𝜂
)

[

−𝐷𝜂 +
2
𝜋
tan

(𝜋
2
𝐷𝜂

)]

+ (35)

1
2
𝑘𝑡𝜂

(

𝐵𝑡
𝜂

)2
𝛩
(

𝑢𝜂
)

[

2 +
(

𝐷𝜂 − 1
)

(

2 − 2 log
(

1 −𝐷𝜂
)

+
(

log
(

1 −𝐷𝜂
))2

)]

,

where 𝐵𝑐
𝜂 and 𝐵𝑡

𝜂 are two characteristic lengths associated to normal
damage dissipation in compression and in tension, respectively. We
observe that usually, for cementitious materials, we have 𝐵𝑡

𝜂 ≪ 𝐵𝑐
𝜂 . In-

deed, a much smaller amount of elastic relative displacement is needed
in tension to activate damage mechanisms. The tangent contribution
𝑊 𝜏

𝐷 to the damage dissipation energy is defined as follows

𝑊 𝜏
𝐷 = 1

2
𝑘𝜏

[

𝐵𝜏
(

𝑢𝜂
)

]2
[

2 +
(

𝐷𝜏 − 1
) (

2 − 2 log
(

1 −𝐷𝜏
)

+
(

log
(

1 −𝐷𝜏
))2

)]

, (36)

where 𝐵𝜏 = 𝐵𝜏
(

𝑢𝜂
)

is the characteristic length associated to tangent
damage dissipation. Such a characteristic length is assumed to depend
the normal relative grain–grain displacement, as in Misra and Poor-
solhjouy (2015) and Misra and Singh (2015). Additionally, differently
from Misra and Poorsolhjouy (2015) and Misra and Singh (2015) and
for the sake of simplicity, the effect of the mean stress has been
neglected. Following said references, the functional dependence 𝐵𝜏

(

𝑢𝜂
)

has been chosen as follows

𝐵𝜏 = 𝐵𝜏
(

𝑢𝜂
)

=

⎧

⎪

⎨

⎪

⎩

𝐵𝜏0 if 𝑢𝜂 ≥ 0
𝐵𝜏0 − 𝛼2𝑢𝜂 if 1−𝛼1

𝛼2
𝐵𝜏0 ≤ 𝑢𝜂 < 0

𝛼1𝐵𝜏0 if 𝑢𝜂 < 𝐵𝜏0
1−𝛼1
𝛼2

,

(37)

where 𝐵𝜏0 (𝐵𝑤0 in Misra and Poorsolhjouy (2015) and Misra and Singh
(2015)), 𝛼1 and 𝛼2 are further constitutive parameters needed to express
the functional dependence 𝐵𝜏

(

𝑢𝑒𝑙𝜂
)

. Such a functional dependence
couples the two addends 𝑊 𝜂

𝐷 and 𝑊 𝜏
𝐷 of the decomposition (34).

In conclusion, because of Eqs. (34), (35), (36), the dissipation
energy functional (34) reads as

𝑊 = 𝑊 𝜂
𝐷 +𝑊 𝜏

𝐷 (38)

= 1
2
𝑘𝑐𝜂𝛩

(

−𝑢𝑒𝑙𝜂
)

𝐵2
𝑐
[

−𝐷𝜂 + tan
(

𝐷𝜂
)]

+ 1
2
𝑘𝑡𝜂𝛩

(

𝑢𝑒𝑙𝜂
)

𝐵2
𝑡

[

2 +
(

𝐷𝜂 − 1
)

(

2 − 2 log
(

1 −𝐷𝜂
)

+
(

log
(

1 −𝐷𝜂
))2

)]

+ 1
2
𝑘𝜏𝐵

2
𝜏

[

2 +
(

𝐷𝜏 − 1
)

(

2 − 2 log
(

1 −𝐷𝜏
)

+
(

log
(

1 −𝐷𝜏
))2

)]

Within the considered approach, the external world can exert forces
expending power both on the scalar normal objective relative displace-
ment 𝑢𝜂 and on the vector tangent objective relative displacement 𝒖𝜏 ,
so that the external energy functional is

𝑈 𝑒𝑥𝑡 = 𝐹 𝑒𝑥𝑡
𝜂 𝑢𝜂 + 𝐹 𝑒𝑥𝑡

𝜏 ⋅ 𝒖𝜏 , (39)

where 𝐹 𝑒𝑥𝑡
𝜂 and 𝐹 𝑒𝑥𝑡

𝜏 are, respectively, the external normal and tan-
gent forces. Since we are neglecting kinetic energy and considering
quasi-static evolution, the energy functional  reads as

 = 𝑈 +𝑊 − 𝑈 𝑒𝑥𝑡. (40)

cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri




International Journal of Solids and Structures 254–255 (2022) 111880

7

L. Placidi et al.

Remark that it is a functional of the fundamental kinematical quantities
(33), namely

 = 
(

𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 , 𝐷𝜏
)

. (41)

4

t
m
a
q
a
𝑇
s
a
a
𝛽
n

𝛽

T

𝛿

T
g
𝑡
(

T
f

𝛥

{

𝐷𝜏 − 𝐷̃𝜏 (𝒖𝜏 )
}

𝛥𝐷𝜏 = 0 (49)

where the auxiliary threshold functions 𝐷̃𝜂(𝑢𝜂) and 𝐷̃𝜏 (𝒖𝜏 ) have been
defined as follows

( )

𝐷

.3. Formulation of the hemi-variational principle

The variational inequality principle can be here applied similarly
o what has been done in Timofeev et al. (2020). We introduce a
onotonously increasing time sequence 𝑇𝑖 ∈

{

𝑇𝑖
}

𝑖=0,…,𝑀 with 𝑇𝑖 ∈ R
nd 𝑀 ∈ N. An initial datum on each of the fundamental kinematic
uantities must be given for 𝑖 = 0, i.e. for time 𝑇0. A motion is defined
s a family of displacements 𝜁 =

(

𝑢𝜂 , 𝒖𝜏
)

defined for each time 𝑡 =
0, 𝑇1,… , 𝑇𝑀 . The set 𝐴𝑀𝑡 is defined as the set of kinematically admis-
ible displacements for a given time 𝑡 — we require

(

𝑢𝜂 , 𝒖𝜏
)

∈ 𝐴𝑀𝑡 —
nd the set 𝐴𝑉𝑡 is defined as the corresponding space of kinematically
dmissible variations — i.e. 𝜐 =

(

𝛿𝑢𝜂 , 𝛿𝒖𝜏
)

∈ 𝐴𝑉𝑡. Admissible variations
of the irreversible kinematic quantities

(

𝐷𝜂 , 𝐷𝜏
)

must be positive,
amely

= 𝛿𝐷𝜂 , 𝛿𝐷𝜏 ∈ R+ × R+. (42)

he first variation 𝛿 of the energy functional (41) is defined as

 = 
(

𝑢𝜂 + 𝛿𝑢𝜂 , 𝒖𝜏 + 𝛿𝒖𝜏 , 𝐷𝜂 + 𝛿𝐷𝜂 , 𝐷𝜏 + 𝛿𝐷𝜏
)

−
(

𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 , 𝐷𝜏
)

. (43)

he increment of the fundamental kinematic quantities (33) at 𝑡 = 𝑇𝑖 is
iven by the difference between these quantities as evaluated at times
= 𝑇𝑖 and 𝑡 = 𝑇𝑖−1, namely

𝛥𝑢𝜂 , 𝛥𝒖𝜏 , 𝛥𝐷𝜂 , 𝛥𝐷𝜏
)

𝑇𝑖
=
(

𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 , 𝐷𝜏
)

𝑇𝑖
−
(

𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 , 𝐷𝜏
)

𝑇𝑖−1
.

he same definition is utilized for the increment 𝛥 of the energy
unctional

 = 
(

𝑢𝜂 + 𝛥𝑢𝜂 , 𝒖𝜏 + 𝛥𝒖𝜏 , 𝐷𝜂 + 𝛥𝐷𝜂 , 𝐷𝜏 + 𝛥𝐷𝜏
)

− 
(

𝑢𝜂 , 𝒖𝜏 , 𝐷𝜂 , 𝐷𝜏
)

.

(44)

Finally, the hemi-variational principle is formulated as follows

𝛥 ≤ 𝛿 ∀𝜐 =
(

𝛿𝑢𝜂 , 𝛿𝒖𝜏
)

∈ 𝐴𝑉𝑡, ∀𝛽 =
(

𝛿𝐷𝜂 , 𝛿𝐷𝜏
)

∈ R+ × R+. (45)

4.4. Derivation of the Euler–Lagrange equations

The variational inequality (45) must be exploited following the
same procedure described in Timofeev et al. (2020), which will thus
be omitted here. The results of such a procedure are the following two
Euler–Lagrange equations,

⎧

⎪

⎨

⎪

⎩

−𝑘𝜂
(

1 −𝐷𝜂
)

𝑢𝜂 − 𝑘𝜏𝐵𝜏
𝜕𝐵𝜏
𝜕𝑢𝜂

𝐷𝜏

∫
0

[

log (1 − 𝑥)
]2 𝑑𝑥 + 𝐹 𝑒𝑥𝑡

𝜂

+ 𝐾𝑝
{[

∇
(

∇𝑢𝜂
)]

𝒄̂ ⋅ 𝒄̂
}

⎫

⎪

⎬

⎪

⎭

(

𝛿𝑢𝜂
)

= 0

{

−𝑘𝜏
(

1 −𝐷𝜏
)

𝒖𝜏 + 𝐹 𝑒𝑥𝑡
𝜏

} (

𝛿𝒖𝜏
)

= 0

where x is an internal integration variable that is used only to avoid to
write the analytical form of the integral, together with the two Karush–
Kuhn–Tucker (KKT) conditions for damage variables (already derived
in Timofeev et al. (2020))

[
(

𝑢𝜂
)2 − 𝛩

(

𝑢𝜂
)

𝐵2
𝑡
(

log
(

1 −𝐷𝜂
))2 − 𝛩

(

−𝑢𝜂
)

𝐵2
𝑐
[

tan
(

𝐷𝜂
)]2]𝛥𝐷𝜂

= 0, (46)
[

(

𝒖𝜏
)2 −

[

𝐵𝜏
]2 (log

(

1 −𝐷𝜏
))2

]

𝛥𝐷𝜏 = 0, (47)

The two KKT conditions (46), (47) for irreversible descriptors can
be arranged in a more compact form a
{

𝐷𝜂 − 𝐷̃𝜂(𝑢𝜂)
}

𝛥𝐷𝜂 = 0 (48)
𝐷̃𝜂(𝑢𝜂) =

⎧

⎪

⎨

⎪

⎩

1 − exp − 𝑢𝜂
𝐵𝑡
𝜂

, 𝑢𝜂 > 0,

2
𝜋 arctan

(

− 𝑢𝜂
𝐵𝑐
𝜂

)

, 𝑢𝜂 < 0,
(50)

̃ 𝜏 (𝒖𝜏 ) = 1 − exp
(

−
|

|

𝒖𝜏 ||
𝐵𝜏

)

, (51)

5. Numerical results

5.1. Description of the numerical experiments

In the current section, we present numerical simulations to show
the capabilities of the derived model to describe initiation and growth
of damage localization zones. Following Timofeev et al. (2020) we
consider 2D square specimen with a circular flaw (hole). Here 𝑆 =
10 cm is the size of the sample and 𝑅ℎ = 0.12 ⋅𝑆 is the hole’s radius. In
this work, two types of numerical experiments are employed:

1. In type 1, the specimen is subjected to tensile loading to demon-
strate the effects of pantographic mechanism on the evolution
and thickness of damage localization from the circular flaw.
Fig. 5 (left) illustrates this loading type where we have imposed
displacement 𝑢̄ which is increasing monotonically during the
tests within the range [0, 𝑢̄𝑚𝑎𝑥]on the right-hand vertical bound-
ary. Two cases of simulations are performed. One in which the
averaged intergranular distance 𝐿 is kept unchanged while the
pantographic coefficient 𝐾𝑃 is changed resulting in a change in
the overall stiffness/strength of the specimen. And the second,
in which the inter-granular stiffness are re-scaled for different
averaged intergranular distance 𝐿, such that the overall stiff-
ness/strength of the specimen remains unchanged while both
the averaged intergranular distance 𝐿 and the pantographic
coefficient 𝐾𝑃 are varied.

2. In type 2, the specimen is subjected to a more complex loading
path by sequentially applying tensile and shear loading, as it is
sketched in Fig. 5 (right), to demonstrate the effects of loading-
path on the evolution and thickness of damage localization from
the circular flaw. For all of the four boundaries of the specimen
we apply two conditions, i.e.
{

𝑢1 = 𝑢̃1(𝑥, 𝑦) = 𝑢̄1 ⋅ (𝑥∕𝑆)
𝑢2 = 𝑢̃2(𝑥, 𝑦) = 𝑢̄2 ⋅ (𝑥∕𝑆)

∀(𝑥, 𝑦) ∈ [0, 𝑆] × [0, 𝑆] (52)

where 𝑢1 and 𝑢2 are horizontal and vertical components of the
displacement field 𝒖. Eq. (52) implies that the left-hand side of
the sample is blocked both for horizontal 𝑢1 and for vertical 𝑢2
displacements

𝑢1 = 𝑢̃1(0, 𝑦) = 0

𝑢2 = 𝑢̃2(0, 𝑦) = 0

since 𝑥 = 0 in this case, whereas on the right-hand side we have
imposed displacements

𝑢1 = 𝑢̃1(𝑆, 𝑦) = 𝑢̄1
𝑢2 = 𝑢̃2(𝑆, 𝑦) = 𝑢̄2.

At the top as well as at the bottom imposed displacement for
each point of the boundary increases with horizontal coordinate
𝑥 ∈ [0, 𝑆]. Both horizontal and vertical imposed displacements
are monotonically increasing within the ranges [0, 𝑢̄𝑚𝑎𝑥1 ] and
[0, 𝑢̄𝑚𝑎𝑥2 ] respectively. We consider two cases of simulations to
describe path-dependency of the system evolution for the de-
rived model. One case in which the simulation starts with tensile
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Fig. 5. Schematics of analyzed domains and considered boundary conditions.

5.2. Re-scaling with the averaged intergranular distance

In this Sub-section we consider a class of materials with the same
8

stiffness and damage characteristics but different averaged intergran-
Fig. 6. Graphic representation of the loading path with respect to number of loading
steps.

loading, increasing 𝑢̄1 while keeping 𝑢̄2 null, and then switch to
shear loading, increasing 𝑢̄2 keeping 𝑢̄1 unchanged, such that the
specimen in first subjected to tensile loading followed by shear
loading. In the second case, we first apply shear loading and then
switch to tensile loading, such that the final deformed external
shape of the specimen remains the same. For both of these cases,
we keep the averaged intergranular distance 𝐿 unchanged while
the pantographic coefficient 𝐾𝑃 is changed resulting in a change
in the overall stiffness/strength of the specimen. The loading
paths for the two cases are represented graphically in Fig. 6 for
pantographic coefficient 𝐾𝑃 = 0, 𝐾𝑃 = 𝐾1

𝑃 and 𝐾𝑃 = 𝐾4
𝑃 . In

Fig. 6, the axis refer to the number of loading steps highlighted
later in the Table 4.
ular distance 𝐿. To do this, we introduce a re-scaling parameter 𝛾 ∈
R+ for changing the averaged intergranular distance from 𝐿 to 𝐿∗ as
follows:

𝐿∗ = 𝐿
𝛾
. (53)

Such re-scaling should therefore correspond to materials with similar
elastic and damage behavior. Thus, in particular the consequence is (i)
an identical 4th rank elasticity tensor C∗, i.e.,

C∗ = C

and from Eq. (30) we deduce the following re-scaling rule for inter-
granular stiffness,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑘𝑡𝜂
)∗

(𝐿∗)2 = 𝑘𝑡𝜂𝐿
2

(

𝑘𝑐𝜂
)∗

(𝐿∗)2 = 𝑘𝑐𝜂𝐿
2

(

𝑘𝜏
)∗ (𝐿∗)2 = 𝑘𝜏𝐿2,

→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑘𝑡𝜂
)∗

= 𝛾2𝑘𝑡𝜂
(

𝑘𝑐𝜂
)∗

= 𝛾2𝑘𝑐𝜂

𝑘∗𝜏 = 𝛾2𝑘𝜏 ,

(54)

and (ii) similar damage characteristic lengths. To do this we recall the
expressions of the auxiliary threshold functions in Eqs. (50), (51) and
consider

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢∗𝜂
(

𝐵𝑐
𝜂
)∗ = 𝑢𝜂

𝐵𝑐
𝜂

𝑢∗𝜂
(

𝐵𝑡
𝜂
)∗ = 𝑢𝜂

𝐵𝑡
𝜂

|𝒖∗𝜏 |
𝐵∗
𝜏

= |𝒖𝜏 |
𝐵𝜏

,

→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝐵𝑡
𝜂

)∗
=

𝐵𝑡
𝜂
𝛾

(

𝐵𝑐
𝜂

)∗
=

𝐵𝑐
𝜂
𝛾

𝐵∗
𝜏0 =

𝐵𝜏0
𝛾 ,

(55)

where the definitions (12) and (14) of normal and tangent displacement
have been used to deduce the following approximations for their order
of magnitudes,

𝑢∗𝐴 ≅ 𝐿∗

𝐿
𝑢𝐴 =

𝑢𝐴
𝛾
, 𝐴 = 𝜂, 𝜏. (56)

For the same reason and taking into account Eq. (20), the regularizing
parameter 𝛼, the one used to smooth the constitutive assumption on
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Fig. 7. Flowchart of the numerical iterative procedure used to solve the mathematical formulation.
Fig. 8. Convergence analysis with respect to the size of the load step 𝛥𝑢̄. Global elastic response, i.e. total reaction force vs prescribed displacement for the pantographic coefficient
𝐾𝑃 = 𝐾3

𝑃 .

tension–compression asymmetry in Eq. (21), for the sake of numerical
accuracy has been re-scaled as follows,
∗

In this case we remark that in the limit of zero averaged intergranular
distance 𝐿 → 0 (i.e. from (53) in the limit 𝛾 → ∞) we derive, from
(58) and (59), that M∗ → 𝟎 and D∗ → 𝟎, i.e. a situation with no strain
9

𝑢𝜂 =
𝑢𝜂 , → 𝛼∗ = 𝛼 . (57) gradient effects and therefore vanishingly thin boundary layers in the
𝛼∗ 𝛼 𝛾

It is worth to be noted that, as a consequence of the re-scalings assumed
in (53), (54), (55) and (57) on the one hand the 5th rank elasticity
tensor M will be re-scaled as follows

M∗ =
(𝐿∗)3

𝐿3

(

𝑘𝑡𝜂
)∗

𝑘𝑡𝜂
M = 1

𝛾3
𝛾2M = M

𝛾
, (58)

and, on the other hand, in order to derive the re-scaling rule for the 6th
rank elasticity tensor D, we need to prescribe a re-scaling rule also for
the pantographic coefficient 𝐾𝑃 . To do this we consider first the case
of no pantographic coefficient and derive,

𝐾𝑃 = 0, → D∗ =
(𝐿∗)4

𝐿4

(

𝑘𝑡𝜂
)∗

𝑘𝑡𝜂
D = 1

𝛾4
𝛾2D = D

𝛾2
. (59)
numerical simulations. However, the presence of the pantographic term
changes this undesired effect by ensuring that in this limit the 6th rank
elasticity tensor may be the same, i.e.,

lim
𝛾→∞

D∗ = D →
(

𝐿∗)2 𝐾∗
𝑃 = 𝐿2𝐾𝑃 → 𝐾∗

𝑃 = 𝛾2𝐾𝑃 ,

that is, by employing the same re-scaling rules as that for the other
stiffness coefficients given in (54).

5.3. Constitutive coefficients setting

For illustration, we will consider three sets of material parameters,
namely the sets 1, 2 and 3 that are defined respectively by assuming
𝛾 = 1, 𝛾 = 2 and 𝛾 = 5 according to Tables 1–2, such as to consider a
wide range of intergranular distance.
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Fig. 9. Mesh-convergence analysis. Global elastic response, i.e. total reaction force vs prescribed displacement for the pantographic coefficient 𝐾𝑃 = 𝐾3
𝑃 .
Fig. 10. Force versus displacement diagram for the 1 set of parameters defined in Tables 1–2 and for different values of 𝐾𝑃 . Circle markers indicate approximately the time
step, when the crack reaches the boundary of the sample.

Table 1
Values of constitutive parameters used in numerical tests.

𝛾 𝐿 [m] 𝑘𝑐𝜂 [J/m4] 𝑘𝑡𝜂 [J/m4] 𝑘𝜏 [J/m4] 𝐵𝑐
𝜂 [m] 𝐵𝑡

𝜂 [m] 𝐵𝜏 [m] 𝛼1[1] 𝛼2[1] 𝛼[1]
1 1 0.01 1.4 ⋅ 1015 1.4 ⋅ 1014 3 ⋅ 1013 1.5 ⋅ 10−7 3.5 ⋅ 10−8 5 ⋅ 10−8 3 ⋅ 10−10
10 142 2 0.005 5.6 ⋅ 1015 5.6 ⋅ 1014 1.2 ⋅ 1014 7.5 ⋅ 10−8 1.75 ⋅ 10−8 2.5 ⋅ 10−8 1.5 ⋅ 10−10

3 5 0.002 35 ⋅ 1015 35 ⋅ 1014 7.5 ⋅ 1014 3 ⋅ 10−8 7 ⋅ 10−9 1 ⋅ 10−8 75 ⋅ 10−11

Moreover, the values of the pantographic coefficients have been
selected by comparing the first and the third row of (32) with the
following rule,

Table 2
Values of the pantographic coefficient 𝐾𝑝 used in numerical tests.

𝛾 𝐾𝑃 = 0 𝐾1
𝑃 [J/m2] 𝐾2

𝑃 [J/m2] 𝐾3
𝑃 [J/m2] 𝐾4

𝑃 [J/m2]
10

𝑖 𝑡 2 𝑖−8 1 1 0 1.1 ⋅ 108 2.2 ⋅ 108 4.4 ⋅ 108 8.8 ⋅ 108
𝐾𝑃 = 𝑘𝜂𝐿 2 (60)

so that with 𝑖 = 4 the first and the third row of (32) have the same
order of magnitude, so that the pantographic coefficient and the tension
stiffness have the same role and order of magnitude in the 6th rank
elasticity tensor but with 𝑖 = 3 the pantographic coefficient is the half,
with 𝑖 = 2 it is one fourth and with 𝑖 = 1 is one eighth, such that the
characteristic length of the boundary layers can also be independently
varied (controlled).

Finally, for the simulation setups one can see Table 3.
2 2 0 4.4 ⋅ 108 8.8 ⋅ 108 17.6 ⋅ 108 35.2 ⋅ 108

3 5 0 27.5 ⋅ 108 55 ⋅ 108 11 ⋅ 109 22 ⋅ 109

5.4. Implementation of the numerical algorithm

For the solution of the problem formulated above, numerical effort
is needed. To this end, an algorithm was developed for the numerical
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Fig. 11. Contour plots of elastic 𝑈 (1st row) row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑃 = 0 and for the 1 set of parameters defined in Tables 1–2.
Fig. 12. Contour plots of elastic 𝑈 (1st row) row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾1
𝑃 = 1.1 ⋅ 108 and for the 1 set of parameters defined in Tables 1–2.

Table 3
Numerical values used in numerical simulations.
𝑁𝜃 𝛥𝑢̄ [m] 𝐾𝑃 = 0 𝐾𝑃 = 𝐾 𝑖

𝑃 > 0

parameters 𝐿, 𝑘𝑐𝜂 , 𝑘
𝑡
𝜂 , 𝑘𝜏 , 𝐵

𝑐
𝜂 , 𝐵

𝑡
𝜂 , 𝐵𝜏0, 𝐾𝑃 , according to Tables 1–

2. The stiffnesses 𝑘𝑐𝜂 , 𝑘
𝑡
𝜂 , 𝑘𝜏 given as input material parameters
11

𝑁𝑖𝑡 𝑢̄𝑚𝑎𝑥 [m] 𝑁𝑖𝑡 𝑢̄𝑚𝑎𝑥 [m]
may be initially isotropic, i.e. they do not need to depend on
120 3.125 ⋅ 10−9 150 468.75 ⋅ 10−9 250 781.25 ⋅ 10−9

implementation of the model. The continuum model is solved by means
of the commercial software Matlab and COMSOL Multiphysics. An
iterative procedure is implemented in a staggered fashion in Mat-
lab as described in the flowchart in Fig. 7, making use of COMSOL
Multiphysics as a subroutine solving the elastic equilibrium problem.

The steps of the iterative procedure can be resumed as follows:

1. null initial conditions on the displacement field 𝒖 and damage
fields 𝐷𝜂 and 𝐷𝜏 are given together with the material
the orientation angle 𝜃. It is worth to mention that the effective
(i.e. damaged-) stiffnesses 𝑘𝑐𝜂,𝐷, 𝑘

𝑡
𝜂,𝐷, 𝑘𝜏,𝐷 may change during the

evolution of the system due to the damage induced by the state
of deformation, thus leading to non-isotropically distributed
effective (damaged-) stiffnesses. Indeed, owing to Eq. (28), this
is the reason why – for a given basis – the components of
the elasticity tensors may change during the evolution of the
system, possibly implying anisotropy shifts. The pantographic
coefficient, on the contrary, does not experience damage;

2. the fourth-rank (C𝑖𝑗𝑎𝑏), the fifth-rank (M𝑖𝑗𝑎𝑏𝑐) and the sixth-rank
(D𝑖𝑗ℎ𝑎𝑏𝑐) elasticity tensors are computed according to Eqs. (30),
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Fig. 13. Contour plots of elastic 𝑈 (1st row) row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾2
𝑃 = 2.2 ⋅ 108 and for the 1 set of parameters defined in Tables 1–2.
Fig. 14. Contour plots of elastic 𝑈 (1st row) row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾3
𝑃 = 4.4 ⋅ 108 and for the 1 set of parameters defined in Tables 1–2.

(31) and (32). Such elastic tensors, as well as boundary condi-
tions, are given as input to a finite element subroutine based
on COMSOL Multiphysics. Particularly, the weak form of the

4. when the increment of the displacement field with respect to
the previous step compares positively with the above-mentioned
chosen tolerance, then the components of the strain field 𝑮 and
12

equilibrium problem in Eq. (45) is solved by means of the of its gradient are computed making use of the displacement

weak form package. Quintic Argyris polynomials are used as
shape functions ensuring 𝐶2 continuity across elements along the
normal to element boundaries. A Delaunay-tessellated triangular
mesh was employed. Different mesh sizes were considered to
investigate mesh independence. The output of this subroutine
is the displacement field. It is worth to mention here that the
pantographic coefficient 𝐾𝑝 does not experience any change due
to damage evolution;

3. the increment of the displacement field with respect to the pre-
vious step is node-wise compared with a tolerance. When such a
tolerance is not respected, then the displacement parameters 𝑢̄ or
𝑢̄1, 𝑢̄2 are reduced to re-initialize the finite element subroutine;
field. The strain fields are then used by means of Eq. (11) to
compute the relative displacements 𝑢𝜂 and 𝒖𝜏 , which depend on
the space coordinates and on the orientation 𝜃. Such displace-
ments are then given as input to the KKT conditions in Eqs. (50)
and (51) and, as an output, the damage fields 𝐷𝜂 and 𝐷𝜏 are
recovered. In formulas, we have

𝐷𝑡
𝜂 = max

{

𝐷̃𝑡
𝜂 , 𝐷

𝑡−1
𝜂

}

, 𝐷𝑡
𝜏 = max

{

𝐷̃𝑡
𝜏 , 𝐷

𝑡−1
𝜏

}

, (61)

where 𝑡 is an index used to label the loading steps. Eqs. (61) have
been conceived to take into account that, according to Eqs. (50)
and (51), damage fields cannot decrease and they do not reach
the unit value;
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Fig. 15. Contour plots of elastic 𝑈 (1st row) row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾4
𝑃 = 8.8 ⋅ 108 and for the 1 set of parameters defined in Tables 1–2.
Fig. 16. Contour plots of dissipation energy density 𝑊𝐷 (1st row) for 𝐾𝑝 = 𝐾3
𝑃 = 4.4 ⋅ 108 and for the 1 set of parameters defined in Tables 1–2 obtained for a given loading step

𝑁𝑖𝑡 = 180 for different meshes (2nd row).

5. the load parameter 𝑢̄ is increased.

The instructions above (from point 2) are repeated until a termi-

pantographic interaction, which is imposed by choosing values of 𝐾𝑃
different from zero, according to (60).

For the numerical loading process, we first perform a convergence
13

nation criterion is not verified. As mentioned at the beginning of the analysis for the incremental loading size. Fig. 8 presents a convergence

section, the termination criterion is given by 𝑢̄ reaching a maximum
desired value 𝑢̄𝑚𝑎𝑥 or by reaching 𝑢̄1, 𝑢̄2 maximum values 𝑢̄𝑚𝑎𝑥1 , 𝑢̄𝑚𝑎𝑥2
respectively.

5.5. Parametric analysis with respect to the pantographic coefficient for
constant intergranular distance

In this subsection we consider results, according to Tables 1–2,
of the 1 series of extension tests corresponding to the intergranular
distance 𝐿 = 0.01. The aim of performing these tests was to in-
vestigate mechanical properties of the model taking into account the
analysis with respect to the size of the load step 𝛥𝑢̄. It is observed that
convergence is taking place. For the subsequent simulations, 𝛥𝑢̄ = 3.125⋅
10−9 is chosen, since the difference between the force displacement
curve corresponding to this value of 𝛥𝑢̄ and that related to the smallest
𝛥𝑢̄ indicated in Fig. 8 is reasonably small, considering that for the
smallest 𝛥𝑢̄ it takes much more computational time to get results.

Fig. 9 shows that convergence with respect to the maximum mesh
element size is taking place as well. For the subsequent simulations
maximum element size equal to 0.001 is chosen.

In Fig. 10 one can see the computed force–displacement diagrams.
It is clear from the plot that, by introducing 𝐾𝑃 different from zero,
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Fig. 17. Force versus displacement diagrams for different values of 𝐿 and 𝐾𝑝.
Fig. 18. Contour plots, at the final step, of elastic 𝑈 (1st row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾0
𝑝 and different 𝐿. All material parameters are rescaled

in order to obtain the same Young modulus and Poissons ration for the calculations.

we obtain a stronger response of the sample with respect to the case
of 𝐾𝑃 = 0, as shown by the increase in peak reaction. Furthermore,
increasing pantographic coefficient leads to an increase of the reaction

Figs. 11–15 show contour plots for elastic (1st row of contour
plots) and dissipation (2nd row of contour plots) energy densities
evolution throughout the simulation, where increasing 𝑁𝑖𝑡𝑒𝑟 indicates
14

force in the softening part of the response and a slowed rate of soften- the increase in the imposed displacement. These contour plots show the

ing. The observed nature of the force–displacement curves can be exed
by considering Eqs. (30)–(32), where expressions of elasticity tensors
are presented. Specifically, the additional term 𝐾𝑃 increases the values
of the components of D, and since 𝐾𝑃 is not affected by damage, the
components of D never vanish. Therefore, there will be always some
elastic energy that is stored at each material point of the considered
sample even as the damage within materials points tend to 1.
development of concentration zones which emanate from the hole and
grow towards the outer edges of the square specimen. The evolution
of dissipation (due to damage in this case) is of particular interest
in these simulations from the viewpoint of describing its localization
as well as the characteristic length of the damage localization zone.
These plots makes evident micro-mechanical effect of the pantographic
interaction on the damage behavior on macro-scale. We can observe
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Fig. 19. Contour plots, at the final step, of elastic 𝑈 (1st row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾1
𝑝 and different 𝐿. All material parameters are re-scaled

in order to obtain the same Young modulus and Poissons ratio for the calculations.
Fig. 20. Contour plots, at the final step, of elastic𝑈 (1st row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾2
𝑝 and different 𝐿. All material parameters (including 𝐾𝑝)

are re-scaled in order to obtain the same Young modulus and Poissons ratio for the calculations.

that by choosing different pantographic coefficient, 𝐾𝑃 , the width of
the localization zone can be controlled. Indeed, a higher value of the
pantographic coefficient, 𝐾 , results in a thicker damage zone. We

gradient moduli in Eqs. (30)–(32), with the caveat that these moduli,
and therefore, the characteristic lengths evolve during the loading
process. For the case of pantographic coefficient, 𝐾 = 0, the damage
15

𝑃
further note here that in the next section, the micromechanical effects

𝑃
zone is thin as in this case it has the order of the averaged intergranular
are further illustrated by showing that model can predict localization
zones that are independent of the intergranular distance, an effect
which is a direct consequence of the pantographic interaction. The
localization thickness could be described as proportional to the material
characteristic length roughly estimated from the ratio of the 2nd and 1st
distance 𝐿. By selecting appropriate pantographic coefficient, 𝐾𝑃 , the
size of the localization zone can be increased in a pre-specified manner
even to the order of the flaw size (in this case size of the circular
hole), while keeping the averaged intergranular distance 𝐿 unchanged.
It is noteworthy, that the included pantographic effect can arise at
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Fig. 21. Contour plots, at final step, of elastic 𝑈 (1st row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾3
𝑝 and different 𝐿. All material parameters (including 𝐾𝑝)

are re-scaled in order to obtain the same Young modulus and Poissons ratio for the calculations.
Fig. 22. Contour plots, at the final step, of elastic 𝑈 (1st row) and dissipation 𝑊𝐷 (2nd row) energy densities for 𝐾𝑝 = 𝐾4
𝑝 and different 𝐿. All material parameters (including

𝐾𝑝) are re-scaled in order to obtain the same Young modulus and Poissons ratio for the calculations.

the micro- or grain-scale through a variety of long-range mechanisms,
including grain rotation, that introduce floppy modes resulting from the
micro-mechano-morphology of the material. Finally, it is worthwhile

and different meshes (2nd row of contour plots). It is observed, that
thickness of the damaged area does not change with mesh refinement.
16

to note the concentration features in the elastic energy contours on 5.6. Parametric analysis for varying averaged intergranular distance

the two edges of the damaged zone, which indicate the large elastic
deformations that occur in the locations immediately contiguous to the
damage localization.

Fig. 16 shows contour plots for dissipation energy (1st row of
contour plots) with 𝐾𝑃 = 𝐾2

𝑃 = 2.2 ⋅ 108 for a given time step 𝑁𝑖𝑡 = 180
Fig. 17 shows 5 force–displacement diagrams, where each diagram
is obtained for a given value of the pantographic coefficient 𝐾𝑃 = 0
and 𝐾𝑃 = 𝐾 𝑖

𝑃 , 𝑖 = 1,… , 4 and for different set of parameters 1 (𝛾 = 1),
2 (𝛾 = 2) or 3 (𝛾 = 5). The plots indicate that the re-scaling adopted
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Fig. 23. Force versus displacement diagram for the 1 set of parameters defined in Tables 1–2 and for different values of 𝐾𝑃 .
Fig. 24. Total dissipation energy versus displacement diagram for the 1 set of parameters defined in Tables 1–2 and for different values of 𝐾𝑃 .

in Section 5.2 is valid because no significant difference is recognized
for different values of 𝛾 and the higher is the pantographic coefficient
𝐾 , the lower is such a difference.

limit of such a size going to zero. In these cases, the localization zone
is restricted to be the size of the intergranular distance 𝐿.

However, for the cases 𝐾 = 𝐾 𝑖 > 0, 𝑖 = 1,… , 4 the situation is
17

𝑃

Figs. 18–22 show contour plots for elastic (1st row of contour plots)
𝑃 𝑃

different. We can see that enhancing the pantographic interaction 𝐾

and dissipation (2nd row of contour plots) energy densities at the final
time step and for different sets of parameters 1 (𝛾 = 1), 2 (𝛾 = 2)
or 3 (𝛾 = 5) corresponding to different values of the intergranular
distance 𝐿. It can be seen from the plots, that when 𝐾𝑃 = 0 decreasing
𝐿 implies also the reduction of the thickness of the damaged area, such
that as the intergranular distance 𝐿, tends to vanish, the thickness of
the localization zone will also vanish. Indeed, in most past micro-macro
identification in which 2nd gradient stiffnesses are proportional to the
square of the RVE or to the lattice size, or the intergranular distance
𝐿 as it is here for 𝐾𝑃 = 0, the 2nd gradient constants vanish in the
𝑃
means to attenuate such a reduction of the thickness of the damaged
area. In other words, as the pantographic coefficient 𝐾𝑃 increases, the
thickness of the damage localization zone becomes independent of the
intergranular distance 𝐿. In fact, through the proposed re-scaling, we
define a family of discrete systems whose structural response remains
invariant to change of grain size, but whose damage localization zone
can be independently varied by accounting for the long-range effects
modeled using the pantographic coefficient 𝐾𝑃 . Hence, we may con-
jecture that physical systems obeying the discrete description could
be designed such that second gradient effect remains non-negligible
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Fig. 25. Contour plots of dissipation 𝑊𝐷 energy densities tension–shear (1st row) and shear–tension (2nd row) for 𝐾𝑃 = 0 and for the 1 set of parameters defined in Tables 1–2.
Fig. 26. Contour plots of dissipation 𝑊𝐷 energy densities tension–shear (1st row) and shear–tension (2nd row) for 𝐾𝑃 = 𝐾1
𝑝 and for the 1 set of parameters defined in Tables 1–2.

even for very dense physical systems. In this sense, embedding micro-
structural interactions giving a non-zero gradient effect into an existing
micro-structure could significantly improve the mechanical properties

Table 4
Number of load-steps.
𝐾𝑃 = 𝐾0

𝑝 𝑁 𝑡𝑒𝑛𝑠
𝑖𝑡 = 100 𝑁𝑠ℎ𝑒𝑎𝑟

𝑖𝑡 = 200 𝑁 𝑡𝑜𝑡𝑎𝑙
𝑖𝑡 = 300
18

of the material. 𝐾𝑃 = 𝐾1
𝑝 𝑁 𝑡𝑒𝑛𝑠

𝑖𝑡 = 120 (+20) 𝑁𝑠ℎ𝑒𝑎𝑟
𝑖𝑡 = 220 (+20) 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑖𝑡 = 340
5.7. Path-dependency of damage localization evolution

To further highlight the micromechanical effects on the macro
damage model, we contrast the morphology of damage evolution under
the tension–shear and shear–tension loading paths illustrated in Fig. 6.
The details of the simulation steps for the two loading-paths are given
in Table 4, where we note that the number of load-steps to reach a
comparative damage condition increase with increasing 𝐾𝑃 as seen
from Fig. 10.

Further, in Fig. 23 we give the calculated reaction
force–displacement response for the tension–shear and shear–tension
𝐾𝑃 = 𝐾2
𝑝 𝑁 𝑡𝑒𝑛𝑠

𝑖𝑡 = 130 (+30) 𝑁𝑠ℎ𝑒𝑎𝑟
𝑖𝑡 = 230 (+30) 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑖𝑡 = 360

𝐾𝑃 = 𝐾3
𝑝 𝑁 𝑡𝑒𝑛𝑠

𝑖𝑡 = 170 (+70) 𝑁𝑠ℎ𝑒𝑎𝑟
𝑖𝑡 = 270 (+70) 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑖𝑡 = 440

𝐾𝑃 = 𝐾4
𝑝 𝑁 𝑡𝑒𝑛𝑠

𝑖𝑡 = 190 (+90) 𝑁𝑠ℎ𝑒𝑎𝑟
𝑖𝑡 = 290 (+90) 𝑁 𝑡𝑜𝑡𝑎𝑙

𝑖𝑡 = 480

simulations, where we consider the resultant reaction force and the
imposed resultant displacement at the right vertical boundary. We can
see, that the response for the tension–shear simulations is significantly
different from the one for shear–tension simulations for each 𝐾𝑃 . In
particular, we can observe that the shear–tension response, which
is dominated by the grain-scale shear interactions, are considerably
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Fig. 27. Contour plots of dissipation 𝑊𝐷 energy densities tension–shear (1st row) and shear–tension (2nd row) for 𝐾𝑃 = 𝐾2
𝑝 and for the 1 set of parameters defined in Tables 1–2.
Fig. 28. Contour plots of dissipation 𝑊𝐷 energy densities tension–shear (1st row) and shear–tension (2nd row) for 𝐾𝑃 = 𝐾3
𝑝 and for the 1 set of parameters defined in Tables 1–2.

softer compared to the tension–shear response, dominated by the grain-
scale normal interactions. The same conclusion can be made from
Fig. 24 where total dissipation energy versus displacement diagram

different 𝐾𝑃 , where increasing 𝑁𝑖𝑡𝑒𝑟 indicates the increase in the im-
posed displacement. In the tension–shear test, we see that the damage
zone progresses vertically, during the tensile phase, and subsequently
19

is presented. However, it is also interesting to observe that the final tilts in the shear phase of the of loading path to form a winged zone.

reaction, at the end of the loading, are close for both cases of simula-
tions for each 𝐾𝑃 . So although it appears that for a given deformed
shape, the reaction force or dissipated energies are similar, the mi-
cromechanical effects predicate the loading path dependency of the
force–displacement response during the loading process. This point is
further illustrated by the evolution of the damage localization as shown
in the Figs. 25–30 which show contour plots for dissipation energy
densities evolution tension–shear (1st row of contour plots) and shear–
tension (2nd row of contour plots) tests throughout the simulation for
Furthermore, increasing 𝐾𝑃 , results in controlling the thickness of the
damage zone as well as in suppressing the emergence or manifestation
of tilt. In contrast, in the shear–tension test we observe a completely
different evolution of damage zone which develops in the diagonal
direction under the shear phase and further grows diagonally under
the tension phase. Although some rotation of the diagonal damage
zone towards the vertical is notable whose extent is controlled by
the pantographic coefficient 𝐾𝑃 . It is clear from these simulation that
the micro-macro correlations and the introduction of the pantographic
coefficient 𝐾𝑃 , introduce unprecedented load-path dependency that
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Fig. 29. Contour plots of dissipation 𝑊𝐷 energy densities tension–shear (1st row) and shear–tension (2nd row) for 𝐾𝑃 = 𝐾4
𝑝 and for the 1 set of parameters defined in Tables 1–2.
Fig. 30. Contour plots of dissipation 𝑊𝐷 energy densities tension–shear (1st row) and shear–tension (2nd row) for 𝐾𝑃 = 𝐾2
𝑝 and for the 1 set of parameters defined in Tables 1–2

to compare the last time-steps of the simulations.

leads to completely different states at the end of the loading otherwise
characterized by the same overall deformed shape of the specimen and
similar reaction force as exemplified in Fig. 30.

plate with prescribed hole. The influence of the pantographic term
is observed both in the case of single loading and in more complex
experiments. We find completely different localization characteristics
20

even for the same final deformed shape of the specimen. This lo-

6. Conclusion

The key findings of the work reported here is that long-range
(beyond nearest neighbor) mechanism must be included in continuum
models based upon micro-macro identification derived from discrete
models. Here, we have shown that by including at micro-scale addi-
tional pantographic grain-pair interactions that store elastic energy in
response to strain gradients, we can control at macro-scale the thick-
ness of the localization zones that form as failure (fracture) nucleates
from certain prescribed weakness. This outcome is demonstrated via
numerical simulation of localization nucleation and propagation in a
calization strongly depends upon the loading-path and reflects the
consequences of different loading history for each grain-pair direc-
tion at the microscale. The results illustrate the capabilities of the
micro-macro identification based upon the granular micromechanics
paradigm, which we have demonstrated models load path dependency
that gives rise to evolving anisotropy and material chirality as well as
growth of localization zones from location other than the prescribed
weakness. Future outlooks of the present work include the applications
of the present framework to the study of more complex loading con-
ditions and materials, as well as the development of actual granular
metamaterials with pantographic connections. For those parameters

cagri
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related to damage dissipation energy there is a work in progress to find
a proper way for their experimental validation.
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