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The Markovian Bernoulli queues with operational server
vacation, Bernoulli’s weak and strong disasters, and linear
impatient customers.

Zahia Ahmedi Ezzourgui, Hafida Saggou, Megdouda Ourbih-Tari and El Bey Bourennane

Abstract. This paper studies the stationary analysis of a Markovian queuing system
with Bernoulli feedback, interruption vacation, linear impatient customers, strong
and weak disaster with the server’s repair during the server’s operational vacation
period. Each customer has its own impatience time and abandons the system as soon
as that time ends. When the queue is not empty, the server’s operational vacation
can be interrupted if the service is completed and the server starts a busy period
with a probability q̄ or continues the operational vacation with a probability q. A
strong disaster forces simultaneously all present customers (waiting and served) to
abandon the system permanently with a probability p but a weak disaster is that all
customers decide to be patient by staying in the system, and wait during the repair
time with a probability p̄, where arrival of a new customer can occur. As soon as
the repair process of the server is completed, the server remains providing service
in the operational vacation period. We analyze this proposed model and derive the
probabilities generating functions of the number of customers present in the system
together with explicit expressions of some performance measures such as the mean
and the variance of the number of customers in the different states, together with the
mean sojourn time. Finally, numerical results are presented to show the influence of
the system parameters on some studied performance measures.
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1 Introduction

Queuing systems with server vacations accommodate the real-world situations more
closely, becoming more and more important with the development of telephone systems
and communications. Nowadays, there is growing interest in the analysis of queuing models
with impatient customers. This is due to their potential applications and their increas-
ing demands in network systems and industrial scenario, communications, transportation,
planning, production and road-traffic areas. It is also very important in the issue where
authors expect a potential response from their submitted papers, and in the problem of
hospital emergency rooms where critical patients are treated.

Along with the intensity and frequency of different random events, a disaster is one
of the most common problems in the economic world. When all customers are cleared
from the system and lost, the impact of the disaster changes from some systems to others
depending on its severity and risk, for example, infectious viruses as corona virus which
raises concerns all mankind. Other examples are the lack of financial liquidity or also the
scarcity of products, especially the basics in times of crisis. Repairing the server can reduce
the risk of disaster.

In fact, since the paper of Altman and Yechiali [1], various aspects of server vacations
with impatient customers for single server queuing systems have interested several authors
for instance; Yue et al. [12] analyzed a queuing system with impatient customers and
working vacations; Yue et al. [8] studied customer impatience in a single server queuing
system with working vacations; Yue et al. [9] analyzed an M/M/1 queue with vacations
and impatience timers which depend on the server’s states; Bouchentouf et al. [2] were
interested by the study of the economic analysis of Markovian Bernoulli feedback queuing
system with waiting server, vacations and impatient arrivals.

In some systems, an interruption may occur during the server vacation when a customer
has completed his service and then, the server starts the busy period. To name just
few of the numerous contributions on the analysis of queues with vacation interruptions,
Goswami [5] was interested in studying impatient customers in queues with two different
types of vacation, and, Li and Tian [7] have studied the single server queues with working
vacations where the server moves to another state after the interruption of the working
vacation.

Most of the analysis of queuing systems, here, have focused on one type of disaster,
only on busy period with repair state, for instance: the analysis of a single-server queue
with disasters and repairs under Bernoulli vacation schedule [10]; the study of queues with
impatient customers and disasters when the system is down [11]; the analysis of a disaster
queue problem with Markovian and impatient arrivals [3]; and the Markovian single queue
with disasters and geometric reneging [4].

For most economic problems, in all of the disaster related studies, generally all cus-
tomers abandon the working system, but in the last three years the catastrophe make a big
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and dominant influence in the healthy and practical life, so, we have to study the challenge
in the current type of disasters.

This paper considers a new model of Markovian queuing system with one server, vaca-
tion interruptions and impatient customers and two types of disaster during the server’s
operational vacation which begins when the queue is empty. The first disaster is a strong
Bernoulli with a probability p (a strong Bernoulli disaster forced all customers to abandon
the system), so the server remains in the operational vacation period because the system
becomes empty. The second type is a weak disaster (when all customers don’t abandon the
system), in this case the server begins immediately the repair period with a probability p̄.
Once the repair time is completed, the customer already in service continuous his service
in the server’s operational vacation. During this repair period, a new customer can enter
the system. During the server’s operational vacation, one of the customers abandon the
system when his time of impatience is expired. Once the server’s operational vacation is
completed, the server stays in this state with a probability q or interrupts this state and
starts a normal service in the busy period with a probability q̄ if the queue is not empty.

The rest of the article is structured as follows: After introducing the concept of the
server’s operational vacation and the types of disasters, we obtain a description of the
model in section 2, and the explicit expressions of the steady-state probability genera-
tion functions of the system in different cases of services are given in section 3. While,
important performance measures of the system as the mathematical expectation of the
number of customers in the server vacation, busy period and repair state, the mathemat-
ical expectation of the number of customers in the system, the variance of the number
of customers in each state, and the sojourn time are all described in section 4. Section 5
reports interesting numerical examples with their illustrations. We finish this paper with
a conclusion.

2 Model description

We study a queuing system with one server having three periods of service; the first is
the busy period with normal service, the second is the operational vacation period and the
last is the repair period. During all times of services, the customers arrive according to
a Poisson process with a rate λ and First Come First Serve discipline. The service times
of customers are independently and identically distributed random variables following in
the busy period, an exponential distribution with a rate µ, and in the server’s operational
vacation period, an exponential distribution with a rate η. It is worth mentioning that
during the repair time, there is no service. The vacation time has an exponential distribu-
tion with a rate φ which begins when the queue is empty. A disaster occurs according to
a Poisson process of a rate γ when the server is in an operational vacation period.

In the operational vacation period and when the system is not empty, the strong dis-
aster will forces all current customers to leave the system with a p probability, otherwise,
the weak disaster forced all customers to stay in the system and a repair period begins
immediately with a probability of p̄. The repair time follows an exponential distribution of
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rate α. When the repair time is completed, the customer in service continuous his service
in the operational vacation period. One of the customers in the system is assumed to be
impatient during the server’s operational vacations, the customer operates an impatience
time Γ considered as an exponential distribution with a rate ξ, Once his time of impatience
is completed, he abandons the system.

If the server ends a service while he is in an operational vacation period, he will start
a busy period with probability q̄ if the queue is not empty of course, otherwise he remains
in the same period with a probability q. The inter-arrival times, vacation times, disaster
times, service times, and repair times are all considered mutually independent variables.

3 Analysis of the steady-state probabilities

We model a two-dimensional Markov chain by {(N(t), S(t)); t ≥ 0} to describe the
system states. At time t, we denote by N(t) the number of customers in the system and
S(t) the state of the server. The states’s space of the Markov process is

Ω = {(0, 0) ∪ (i, j), i = 1, 2, . . . and j = 0, 1, 2}

and the server’s states are

S(t) =


0 if the server is in operational vacation period,

1 if the server is in busy period,

2 if the server is in repair period.

If the steady-state distribution exists, we can define limiting probabilities by the fol-
lowings

πn,0 = lim
t7−→+∞

P (N(t) = n, S(t) = 0), n ≥ 0,

πn,1 = lim
t7−→+∞

P (N(t) = n, S(t) = 1), n ≥ 1,

πn,2 = lim
t7−→+∞

P (N(t) = n, S(t) = 2), n ≥ 1.

These stationary probabilities satisfy the following balance equations

λπ0,0 = µπ1,1 + (η + ξ)π1,0 + γp

∞∑
n=1

πn,0 (1)

(η + λ+ γ + φ+ nξ)πn,0 = λπn−1,0 + απn,2 + (qη + (n+ 1)ξ)πn+1,0 n > 1 (2)

(λ+ µ)π1,1 = φπ1,0 + q̄ηπ2,0 + µπ2,1 (3)

(λ+ µ)πn,1 = φπn,0 + q̄ηπn+1,0 + µπn+1,1 + λπn−1,1 n > 2 (4)

(α + λ)π1,2 = γp̄π1,0 (5)

(α + λ)πn,2 = γp̄πn,0 + λπn−1,2 n > 2 (6)
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where the normalization condition is
+∞∑
i=0

πi,0 +
+∞∑
i=1

πi,1 +
+∞∑
i=1

πi,2 = 1.

Let

Gj(z) =

{∑∞
i=0 πi,jz

i j = 0 ,∑∞
i=1 πi,jz

i j = 1, 2.

The following theorem describes the steady-state distribution of the system in terms
of probabilities generating functions.

Theorem 3.1. In the steady state, for |z| < 1, we have

G0(z) =
A2K2(z)− (γpG0(1) + A1)K1(z)− A3K3(z)

ξ(1− z)
1
ξ
(β−qη−λ)z

qη
ξ

[
(α + λ)(1− z)

λ(1− z) + α

] 2λγp̄
αξ

e−
λ
ξ
z

, (7)

G1(z) =
(φz + q̄η)G0(z)− (φ+ q̄η)G0(1)z − q̄η(1− z)π0,0

(λz − µ)(1− z)
, (8)

G2(z) =
γp̄(G0(1)− π0,0)
α + λ(1− z)

, (9)

where

K1(z) =

∫ z

0

(1− x)
1
ξ
(β−qη−λ)−1x

qη
ξ [

(α + λ)(1− x)

λ(1− x) + α
]

2λγp̄
αξ e−

λ
ξ
xdx,

K2(z) =

∫ z

0

(1− x)
1
ξ
(β−qη−λ)x

qη
ξ
−1[

(α + λ)(1− x)

λ(1− x) + α
]

2λγp̄
αξ e−

λ
ξ
xdx,

K3(z) =

∫ z

0

(1− x)
1
ξ
(β−qη−λ)x

qη
ξ [

(α + λ)(1− x)

λ(1− x) + α
]

2λγp̄
αξ e−

λ
ξ
x 1

α + λ(1− x)
dx,

β = λ+ η + φ+ γ,

A1 = µπ1,1 + (φ+ q̄η)π0,0 + q̄ηπ1,0, A2 = qηπ0,0 and A3 = γλp̄π0,0. (10)

Proof. Multiplying the power of zn in (6), adding over all possible values of n, and using
(5), we obtain

[α + λ(1− z)]G2(z) = γp̄[G0(z)− π0,0], (11)

so, we have

G2(z) =
γp̄(G0(1)− π0,0)
α + λ(1− z)

. (12)

In the same way, using (1) and (2), we get

G0(z)(g(z) +
αγp̄z

α + λ(1− z)
) + ξz(1− z)G

′

0(z) (13)

= A2(1− z)− z(
γλp̄π0,0(1− z)

α + λ(1− z)
+ A1 + γpG0(1)),
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where
g(z) = λz2 − βz + qη. (14)

Similarly, multiplying (4) and (5) with the power of zn and adding over n, we have

(λz − µ)(1− z)G1(z) = (φz + q̄η)G0(z)− A1z − q̄η(1− z)π0,0. (15)

For ξ 6= 0, z 6= 0 and |z| < 1, the formula (13) becomes

d

dz
G0(z) +

1

ξ
G0(z)

[
g(z)

z(1− z)
+

αγp̄

(1− z)(α + λ(1− z))

]
(16)

=
1

ξ

[
A2

z
− A1 + γpG0(1)

(1− z)
− γλp̄π0,0
α + λ(1− z)

]
.

Solving the linear differential equation (16), we obtain an integrating factor as

e
∫ z
0

g(x)
ξx(1−x)

+ αγp̄
ξ(1−x)(α+λ(1−x))

dx = (1− z)
1
ξ
(β−qη−λ)z

qη
ξ

[
(α + λ)(1− z)

λ(1− z) + α

] 2λγp̄
αξ

e−
λ
ξ
z. (17)

Multiplying both sides of (16) by the integrating factor, we have

d

dz
[(1− z)

β−qη−λ
ξ z

qη
ξ

[
(α + λ)(1− z)

λ(1− z) + α

] 2λγp̄
αξ

e−
λ
ξ
zG0(z)] (18)

=
1

ξ

[
A2

z
− A1 + γpG0(1)

1− z
− γλp̄π0,0
α + λ(1− z)

]
(1− z)

1
ξ
(β−qη−λ)z

qη
ξ

[
(α + λ)(1− z)

λ(1− z) + α

] 2λγp̄
αξ

e−
λ
ξ
z.

Integrating both sides of (18) from 0 to z, we obtain

G0(z) =
A2K2(z)− (γpG0(1) + A1)K1(z)− A3K3(z)

ξ(1− z)
1
ξ
(β−qη−λ)z

qη
ξ

[
(α + λ)(1− z)

λ(1− z) + α

] 2λγp̄
αξ

e−
λ
ξ
z

. (19)

Replacing z by 1 in (13), we have

A1 = (φ+ q̄η)G0(1). (20)

Now using (20), formula (15) can be rewritten as

G1(z) =
(φz + q̄η)G0(z)− (φ+ q̄η)G0(1)z − q̄η(1− z)π0,0

(λz − µ)(1− z)
. (21)

Remark 3.2. Setting γ = 0 in (13), we get

G0(z)g(z) + ξz(z − 1)G
′

0(z) = zA1 − A2(1− z)

which matches with Goswami (2014) results.
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Corollary 3.3. The steady-state probabilities that the server is in operational vacation, busy
or under repair, are given respectively by

G0(1) = ρα(µ− λ)[λγp̄K3(1)− qηK2(1)]× Π−1,

G1(1) =
G
′

0(1)(φ+ q̄η)− q̄η(G0(1)− π0,0)
µ− λ

,

G2(1) =
γp̄(G0(1)− π0,0)

α
,

where

ρ = ηq̄ + γp+ φ+ ξ,

Π = [(αλ+ λγp̄− αηq)(φ+ q̄η)− ρ(αηq̄ − (γp̄+ α)(µ− λ))][λγp̄K3(1)− qηK2(1)]

− (γp+ φ+ q̄η)K1(1)[(αηq − λγp̄)(φ+ q̄η) + ρ(αηq̄ − γp̄(µ− λ))],

K1(1) =

∫ 1

0

(1− x)
1
ξ
(β−qη−λ)−1x

qη
ξ [

(α + λ)(1− x)

λ(1− x) + α
]

2λγp̄
αξ e−

λ
ξ
xdx,

K2(1) =

∫ 1

0

(1− x)
1
ξ
(β−qη−λ)x

qη
ξ
−1
[

(α + λ)(1− x)

λ(1− x) + α

] 2λγp̄
αξ

e−
λ
ξ
xdx, (22)

K3(1) =

∫ 1

0

(1− x)
1
ξ
(β−qη−λ)x

qη
ξ [

(α + λ)(1− x)

λ(1− x) + α
]

2λγp̄
αξ e−

λ
ξ
x 1

α + λ(1− x)
dx,

π0,0 =
(γp+ φ+ q̄η)K1(1)

qηK2(1)− λγp̄K3(1)
G0(1).

Proof. Putting z = 1 in (12), we have

G2(1) =
γp̄(G0(1)− π0,0)

α
. (23)

Using l’Hopital’s rule in (8), we have

G1(1) =
G
′

0(1)(φ+ q̄η)− q̄η(G0(1)− π0,0)
µ− λ

. (24)

Since G1(1) = 1−G0(1)−G2(1), from (23) and (24), we get the followings

G
′

0(1) =
1

φ+ q̄η

(
(µ− λ)[1−G0(1)] +

1

α
(q̄ηα− γp̄(µ− λ))[G0(1)− π0,0]

)
. (25)

Differentiating (13) at z = 1, we obtain

G
′

0(1) =
G0(1)(αλ+ λγp̄− αηq) + π0,0(αqη − λγp̄)

[α(ηq̄ + γp+ φ+ ξ)]
. (26)
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From (25) and (26) we get

ρα(µ− λ) ={[αλ+ λγp̄− αηq](φ+ q̄η)− ρ[αηq̄ − (γp̄+ α)(µ− λ)]}G0(1)

+ π0,0{[αηq − λγp̄](φ+ q̄η) + ρ[αηq̄ − γp̄(µ− λ)]}.
(27)

When z tends to 1 in (19) and, using (10) and (20), we get

G0(1) =
−(γp+ φ+ q̄η)G0(1)K1(1) + qηπ0,0K2(1)− λγp̄π0,0K3(1)

ξe−
λ
ξ (α+λ

α
)

2λγp̄
αξ

× lim
z−→1

(1− z)−
1
ξ
(β−λ−qη+)− 2λγp̄

αξ .

(28)

As 0 6 G0(1) =
∑∞

0 πn,0 6 1 and limz−→1(1− z)−
1
ξ
(β−λ−qη)− 2λγp̄

αξ →∞, so we must have

−(γp+ φ+ q̄η)G0(1)K1(1) + qηπ0,0K2(1)− λγp̄π0,0K3(1) = 0. (29)

Using (27) and (29), we obtain

π0,0 =
(γp+ φ+ q̄η)K1(1)

qηK2(1)− λγp̄K3(1)
G0(1). (30)

So
G0(1) = ρα(µ− λ)[λγp̄K3(1)− qηK2(1)]× Π−1,

where

Π = [(αλ+ λγp̄− αηq)(φ+ q̄η)− ρ(αηq̄ − (γp̄+ α)(µ− λ))]× [λγp̄K3(1)− qηK2(1)]

− (γp+ φ+ q̄η)K1(1)× [(αηq − λγp̄)(φ+ q̄η) + ρ(αηq̄ − γp̄(µ− λ))].

4 Performance measures

In this section, we will compute some important performance measures of the proposed
queuing system. Let Li, i = 0, 1, 2 be the number of customers in the server’s states
respectively in operational vacation period, busy period and repair period . Let T be the
total sojourn time of a customer in the system measured from the moment of arrival until
departure, where the latter occurs at the end of service or at his abandonment.

Theorem 4.1. The mathematical expectation of T is given by

E(T ) =
1

λ
(E(L0) + E(L1) + E(L2)) (31)
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where

E(L0) =
ρ(µ− λ)[λγp̄K3(1)− qηK2(1)]× Π−1

(ηq̄ + γp+ φ+ ξ)

[
(αλ+ λγp̄− αηq) +

(αqη − λγp̄)(γp+ φ+ q̄η)

qηk2(1)− γλp̄k3(1)

]
,

E(L1) =
φ+ q̄η

µ− λ
G0(1)(λα2 + γλp̄) + E(L0)[α

2(λ− η − γp− φ− ξ) + αγλp̄] + γλp̄π0,0(α + λ)

α2(γp+ φ+ ηq̄ + 2ξ)

+
1

(φ+ q̄η)(µ− λ)
× [(φµ+ λq̄η)(1−G0(1)) + φq̄η(G0(1)− π0,0)] ,

E(L2) =
γp̄

α

(
E(L0) +

λ

α
G0(1)[1 +

(γp+ φ+ q̄η)K1(1)

qηK2(1)− λγp̄K3(1)
]

)
.

Proof. Using the expression of π0,0 and G0(1) of Corollary 3.3 and in (26), we get the
expected number of customers in the server’s operational vacation E(L0).

E(L0) =
ρ(µ− λ)[λγp̄K3(1)− qηK2(1)]× Π−1

(ηq̄ + γp+ φ+ ξ)

×
[
(αλ+ λγp̄− αηq) +

(αqη − λγp̄)(γp+ φ+ q̄η)

qηk2(1)− γλp̄k3(1)

]
.

Next, we can determine the expected number of customers in busy period E(L1) from (21)
by using l’Hopital’s rule as follows

E(L1) = G
′

1(1) =
φ+ q̄η

µ− λ
G”

0(1)

2
+

1

(φ+ q̄η)(µ− λ)
×H, (32)

where

H = [(φµ+ λq̄η)(1−G0(1)) + φq̄η(G0(1)− π0,0)] .

Differentiating (13) twice at z = 1, we obtain

G”
0(1) [g(1) + γp̄− 2ξ] + 2G

′

0(1)[g
′
(1) +

γp̄(α + λ)

α
− ξ] (33)

= −G0(1)

[
g”(1) +

2γp̄λ

α2

]
+ 2γp̄λπ0,0

α + λ

α2
. (34)

It is easy to see that

g(1) = −(γ + φ+ ηq̄), g
′
(1) = λ− γ − η − φ, g”(1) = 2λ.

Thus, from (33), we get

G”
0(1)

2
=

G0(1)(λα2 + γλp̄) + E(L0)[α
2(λ− η − γp− φ− ξ) + αγλp̄] + γλp̄π0,0(α + λ)

α2(γp+ φ+ ηq̄ + 2ξ)
.

(35)
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Using (25) and (32) in (34), we get E(L1) by

E(L1)

=
φ+ q̄η

µ− λ
G0(1)(λα2 + γλp̄) + E(L0)[α

2(λ− η − γp− φ− ξ) + αγλp̄] + γλp̄π0,0(α + λ)

α2(γp+ φ+ ηq̄ + 2ξ)

+
1

(φ+ q̄η)(µ− λ)
[(φµ+ λq̄η)(1−G0(1)) + φq̄η(G0(1)− π0,0)] .

Differentiating (11) at z = 1, we have

E(L2) = G
′

2(1) =
1

α
[γp̄E(L0) + λG2(1)] . (36)

From (12) and (30), we get

E(L2) =
γp̄

α

(
E(L0) +

λ

α
G0(1)[1 +

(γp+ φ+ q̄η)K1(1)

qηK2(1)− λγp̄K3(1)
]

)
. (37)

The expected number of customers in the system is obtained by

E(L) = E(L0) + E(L1) + E(L2),

then, according to the Little’s rule, we get the result.

Corollary 4.2. The variance of the number of customers in each state is given by

V (Li) = G”
i (1) + E(Li)− E2(Li), i = 0, 1, 2.

Proof. To obtain the variance of the number of customers in each state, we can calculate
only G”

j(1) for j = 0, 1, 2. From (34), we get

G”
0(1) = 2

G0(1)(λα2 + γλp̄) + E(L0)[α
2(λ− η − γp− φ− ξ) + αγλp̄] + γλp̄π0,0(α + λ)

α2(γp+ φ+ ηq̄ + 2ξ)
.

(38)
Differentiating (11) twice at z = 1, we obtain

G”
2(1) =

γp̄G”
0(1) + 2λG

′

2(1)

α
. (39)

We differentiate (15) three times at z = 1

G”
1(1) =

φG”
0(1) + 2λG

′

1(1)

µ− λ
+

G
(3)
0 (1)(φ+ q̄η)

3(µ− λ)
. (40)

Finally, to calculate G
(3)
0 (1), we differentiate (13) three times and apply to z = 1, we get

G
(3)
0 (1) =

2G”(1)[α3(λ− η − φ− γp− 3ξ) + γp̄λα2] + 2λαE(L0)[α
2 + γp̄(α + λ)]

α3(φ+ 6ξ + γp+ ηq̄)

− 2γλ2p̄π0,0(α + 2 + 3λ)

α3(φ+ 6ξ + γp+ ηq̄)
.
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4.1 Sojourn time

Let Tser be the total sojourn time of a customer who finishes his service before leaving
the system. Denote by Tn,j the conditional sojourn time of a customer who does not
abandon the system, given that, the state on arrival is (n, j). Then, we have

E(Tn,1) =
n+ 1

µ
n = 1, 2, . . . . (41)

Let p(n,0)(n,1), p(n,0)(n+1,0), p(n+1,0)(n,1), p(n,0)(n−1,0), p(n+1,0)(n+1,2) the successive probabilities
of transition from the state (n, 0) to the state (n, 1), from the state (n, 0) to the state
(n + 1, 0), from the state (n + 1, 0) to the state (n, 1), from the state (n, 0) to the state
(n− 1, 0) and from the state (n+ 1, 0) to the state (n+ 1, 2).

Using the approach of Altman and Yechiali (2006), we determine E(Tn,0). For n ≥ 1,
we get

E(Tn,0) = p(n+1,0)(n+1,1)[
1

αn+1

+ E(Tn,1)]

+ p(n+1,0)(n+2,0)[
1

αn+1

+ E(Tn,0)]

+ p(n+1,0)(n,0)[
1

αn+1

+ E(Tn−1,0)]

+ p(n+1,0)(n,1)[
1

αn+1

+ E(Tn−1,1)]

+ p(n+1,0)(n+1,2)[
1

αn+1

+ E(Tn,2) + E(Tn,0)]

(42)

where
αn = λ+ φ+ η + p̄γ + nξ for any n.

The mean sojourn time of the marked customer during the transition from state (n+ 1, 0)
to any other state is

1

αn+1

.

The second term of the right hand side of equation (42) follows because a new arrival
does not modify the sojourn time of a customer present in the system. In the next term,
as the marked customer is not impatient, n customers can leave the system and the fourth
term follows due to the vacation interruption while the fifth term follows due to repair
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period. Given that

p(n+1,0)(n+1,1) =
φ

αn+1

,

p(n+1,0)(n+2,0) =
λ

αn+1

,

p(n+1,0)(n,0) =
q̄η

αn+1

,

p(n+1,0)(n,1) =
nξ + qη

αn+1

,

p(n+1,0)(n+1,2) =
p̄γ

αn+1

,

then, E(Tn,0) becomes

E(Tn,0) =
φ

αn+1

[
1

αn+1

+ E(Tn,1)]

+
λ

αn+1

[
1

αn+1

+ E(Tn,0)]

+
nξ + qη

αn+1

[
1

αn+1

+ E(Tn−1,0)]

+
q̄η

αn+1

[
1

αn+1

+ E(Tn−1,1)]

+
p̄γ

αn+1

[
1

αn+1

+ E(Tn,2) + E(Tn,0)].

(43)

On the other hand, for n ≥ 1, we have

E(Tn,2) = p(n,2)(n,0)[
1

βn
+ E(Tn,0]) + p(n,2)(n+1,2)[

1

βn
+ E(Tn,2]). (44)

The mean sojourn time of the marked customer during the transition from the state
(n+ 1, 2) to any other state is

1

βn+1

=
1

α + λ
.

The first term of the right hand side of equation (44) follows because the repair period is
finished and the second term follows because a new arrival does not vary the sojourn time
of the present customer in the system. The transition probabilities in (44) are given then
by

p(n,2)(n,0) =
α

λ+ α
and p(n,2)(n+1,2) =

λ

λ+ α
. (45)

From (44), we get

E(Tn,2) =
1

α
+ E(Tn,0). (46)
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As

E(T0,0) =
φ

α1

(
1

α1

+
1

µ
) +

λ

α1

(
1

α1

+ E(T0,0)) +
η

α1

1

α1

, (47)

we have then from (47),

E(T0,0) =
1

φ+ η + ξ + γp̄

[
φ+ λ+ η

α1

+
φ

µ

]
. (48)

Recursively iterating (43) using (46) and (48), we have

E(Tn,0) =
1

φ+ η + (n+ 1)ξ − γp̄
[
αn
αn+1

+
(n+ 1)φ+ nηq̄

µ
+
γp̄

α
]

+
n∏
j=1

jξ + qη

φ+ η + (j + 1)ξ − γp̄
× 1

φ+ η + ξ + γp̄

[
φ+ λ+ η

α1

+
φ

µ

]

+
n+1∑
i=1

[
αi−1
αi

+
iφ+ (i− 1)ηq̄

µ
+
γp̄

α
]×

n∏
j=i

jξ + qη

φ+ η + (j + 1)ξ − γp̄
.

Other performance measures are studied such as Pser the proportion of served customers
and Q the abandonment rate due to impatience and the strong disaster. Given that the
expected number of served customers per unit of time is

µG1(1) + η[G0(1)− π0,0 + G2(1)],

so, Pser the proportion of served customers is as follows

Pser =
1

λ
[µG1(1) + η(G0(1)− π0,0 + G2(1))],

and Q the abandonment rate of a customer due to impatience and the strong disaster is
given by

Q = λ(1− Pser) = λ− [µG1(1) + η(G0(1)− π0,0 + G2(1))].

5 Numerical Results

In this section, based on the theoretical results obtained previously, we present some
numerical examples to study the impact of the model’s different parameters on the mean
and variance of the number of customers in the system for the different periods.

Numerical results of the most performance measures such as:

• The mean number of customers when the server is in operational vacation period
E(L0), when the server is in busy period E(L1), when the server is under repair
E(L2).

• The expected number of customers in the system E(L).
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• The variance of the number of customers in the server’s operational vacation V (L0),
in the busy period V (L1) and in the repair period V (L2).

are presented by varying p and α in (Table 1), and γ, φ and q in (Table 2).
The parameters in Table 1 are chosen such as λ = 2, µ = 4, φ = 1.6, η = 1.5, γ = 0.5,

ξ = 0.8 and q = 0.75. The parameters used in Table 2 are the same as those in Table 1
except for α = 2.5 and p = 0.9.

Table 1: The effect of α and p on the studied performance measures
α p E(L0) E(L1) E(L2) E(L) V (L0) V (L1) V (L2)
2.2 0.36 0.9359 0.1028 1.3987 0.7586 2.2331 0.3631
2.5 0.3 0.3599 0.9105 0.0857 1.3561 0.7295 2.196747 0.2854
3 0.3598 0.8809 0.0666 1.3073 0.697 2.1512 0.2053
2.2 0.3552 0.8703 0.0712 1.2967 0.6948 2.1199 0.2486
2.5 0.5 0.3551 0.8518 0.0594 1.2664 0.6724 2.0919 0.1953
3 0.3552 0.8305 0.0462 1.2319 0.6474 2.0572 0.1405
2.2 0.3511 0.8059 0.0413 1.1982 0.6252 2.0014 0.1416
2.5 0.7 0.3511 0.7947 0.0345 1.1802 0.6107 1.9835 0.1114
3 0.3512 0.7819 0.0268 1.1599 0.5946 1.9616 0.0802
2.2 0.3477 0.7434 0.0132 1.1043 0.5493 1.8792 0.0443
2.5 0.9 0.3478 0.7396 0.0110 1.0984 0.5442 1.8729 0.0349
3 0.3478 0.7354 0.0086 1.0918 0.5384 1.8653 0.0253

From Table 1, we observe that the effect of increasing the repair time’s rate α and
the probability of abandoning the system p shows a decrease in the expected number of
customers in the different periods. It can also be seen that the variance of the number of
customers in each server’s state of the system decreases due to the same α and p changes.
According to Table 2, for a given φ value, the performance measures E(L0), E(L1), E(L)

Table 2: The effect of γ, q and φ on the studied performance measures
γ q φ E(L0) E(L1) E(L2) E(L) V (L0) V (L1) V (L2)
0.8 0.2 0.3105 0.7388 0.0159 1.0652 0.4774 1.821 0.0496
1.2 0.5 1.6 0.304 0.6876 0.0239 1.0154 0.4810 1.7386 0.0744
1.4 0.8 0.3027 0.6537 0.0282 0.9847 0.4968 1.6953 0.0885
0.8 0.2 0.2926 0.7604 0.0151 1.0681 0.4476 1.8575 0.0467
1.2 0.5 1.8 0.2865 0.7134 0.0226 1.0225 0.4515 1.7841 0.0701
1.4 0.8 0.2852 0.6827 0.0267 0.9945 0.4658 1.7470 0.0833
0.8 0.2 0.2845 0.7702 0.0147 1.0694 0.4339 1.8733 0.0453
1.2 0.5 1.9 0.2786 0.7251 0.022 1.0256 0.438 1.8039 0.0681
1.4 0.8 0.2772 0.6958 0.0259 0.9989 0.4516 1.7696 0.0809

and V (L1) decrease while the performances E(L2), V (L0) and V (L2) increase as γ and
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q increase. However, for fixed γ and q parameters, all performances decrease when φ
increases.

Now, we present in Figure 1, the effect of η the rate of the service time in the server’s
operational vacation and α the rate of the repair time, on the values of π0,0 by taking
µ = 1.9, λ = 1.7, φ = 0.9, q = 0.5, p = 0.5, ξ = 0.4 and γ = 0.2.

Figure 1: The effect of η and α on π0,0

From Figure 1, we observe that π0,0 decreases when η increases, also, when η and α
increase, the π0,0 decreases rapidly and tends to zero.

The Figures 2 and 3 represent the effect of α and γ respectively on π0,0 and E(L),
where the parameters are taken to be µ = 3, λ = 2, φ = 0.8, η = 1.5, ξ = 0.5, p = 0.4 and
q = 0.5.

According to Figures 2 and 3, we can say that there is an inverse relationship between
π0,0 and E(L) as the values of α increase.

In Figure 4, we show the impact of the probability p on the expected number of cus-
tomers in the system E(L) for different values of α when µ = 5, λ = 1.9, φ = 1.5, η = 1.2,
ξ = 1.3, γ = 2 and q = 0.5. Figure 5 presents the impact of ξ on the expected number
of customers in the system E(L) for different values of γ when the parameters are taken
such as µ = 6, λ = 2.5, φ = 1.5, α = 2.7, η = 1.8, p = 0.7, q = 0.5.
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Figure 2: The effect of γ and α on π0,0 Figure 3: The effect of γ and α on E(L)

Figure 4: The effect of p and α on E(L) Figure 5: The effect of ξ and γ on E(L)

Figure 4 indicates that E(L) decreases as p increases, for different values of α. On the
other hand, for a given p, it is clear that the increasing of α leads to the decreasing of
E(L) rapidly.

We observe from Figure 5 that as ξ increases, E(L) decreases rapidly. Figure 5 con-
firms that the disaster lowers the expected number of customers, with more losses of the
customers when the strong Bernoulli disaster occurs.

In Figure 6, we measure the impact of the vacation rate φ on the variance of the number
of customers in the server’s operational vacation V (L0) for different values of γ by taking
µ = 6, λ = 3 ,η = 1.8 ,ξ = 0.8 , α = 3.5 ,q = 0.5 and p = 0.7.
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Figure 6: The effect of φ and γ on V (L0)

The Figure 6 indicates that V (L0) decreases rapidly from a certain value of φ when
γ is equal to 0.8, 1.2 and 1.6. The variance of the number of customers in the server’s
operational vacation takes his maximum value when φ is around 0.8 for a given γ.

Now we demonstrate the influence of φ on the variance of the number of customers
in repair period V (L2) but for different values of q in Figure 7 by taking µ = 5, λ = 3,
η = 1.8, ξ = 0.8, α = 3.5, p = 0.7 and γ = 0.8.

It can be observed from Figure 7 that the variance V (L2) decreases with the increasing
values of φ for the q values 0.3, 0.7 and 1.

Finally, in Figure 8, we present the effect of φ and q on the variance of the number
of customers in busy period V (L1), in the case of µ = 4, λ = 2,η = 1.2, ξ = 0.8, α = 3,
γ = 0.8 and p = 0.5.

The Figure 8 indicates that V (L1) increases as φ increases when q is equal to 0.3, 0.7,
and 1.
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Figure 7: The effect of φ and q on V (L2) Figure 8: The effect of φ and q on V (L1)

To conclude on the numerical study, we can say that all the numerical results confirm
theoretical results of the performance measures of our system in each server’s state for
all the possible values of the parameters. Also, the illustrated variances of the number
of customers in the server’s states are all quite small, therefore the practical model data
is close to its mean in all periods, which reflects the stochastic behavior of the proposed
model.

6 Conclusion

The performance measures such as the number of customers in the system, in the
operational vacation period, in a busy period, in a repair period, together with the variance
in each server’s state were derived. The steady-state sojourn time distribution of an
arbitrary customer was also obtained. Finally, some numerical examples to demonstrate
the impact of input parameters on the average queue length and the variance in each
server’s state were presented.

The future extension of this research work is that the proposed queuing model can be
extended to a queuing network model with two or more identified servers whose perfor-
mances will be generated by the developed performance measures of our model and then, an
application on a specific network, for instance, the Network on Chip will be implemented.
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