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Abstract: This work investigates the use of Reflectance Transformation Imaging (RTI) rendering for
visual inspection. This imaging technique is being used more and more often for the inspection of
the visual quality of manufactured surfaces. It allows reconstructing a dynamic virtual rendering
of a surface from the acquisition of a sequence of images where only the illumination direction
varies. We investigate, through psychometric experimentation, the influence of different essential
parameters in the RTI approach, including modeling methods, the number of lighting positions
and the measurement scale. In addition, to include the dynamic aspect of perception mechanisms
in the methodology, the psychometric experiments are based on a design of experiments approach
and conducted on reconstructed visual rendering videos. The proposed methodology is applied
to different industrial surfaces. The results show that the RTI approach can be a relevant tool for
computer-aided visual inspection. The proposed methodology makes it possible to objectively
quantify the influence of RTI acquisition and processing factors on the perception of visual properties,
and the results obtained show that their impact in terms of visual perception can be significant.

Keywords: material appearance; Reflectance Transformation Imaging; soft metrology; psychometric
evaluation; visual assessment; Design of Experiment

1. Introduction

Inspecting the appearance of manufactured surfaces is essential in many industries,
particularly for high-added value products. Indeed, the quality of appearance can con-
stitute an important lever of differentiation and added value for products. Indeed, with
technological functions being more and more complex and difficult to evaluate objectively,
a customer often builds his or her first and global impressions based on a visual assessment.
In practice, the inspection tasks are still generally carried out through a visual or visuo-
tactile [1,2] sensory analysis [3–5] directly on the objects. The human visual system is able
to perform highly complex visual inspection tasks and is very flexible. In addition, various
sensory analysis methodologies have been developed to optimize the repeatability and
reproducibility of these processes. For example, some criteria related to the detection time
which make it possible to better assess the visual impact of an anomaly or a more precise
definition of exploration processes can allow one to better formalize the inspection process.
Another approach to assessing the visual appearance of surfaces is to implement physical
measurement(s) of the visual attributes [6] through instrumental systems. Digitization of
the appearance is aligned with the approaches of Industry 4.0, since this numerical informa-
tion could make it possible to implement active control of the surface manufacturing and
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finishing processes in order to control their appearance in the same way that can be carried
out for other technical and technological surface features [7–9]. Strong synergies with
other Industry 4.0 axes such as machine learning [10] and deep learning techniques [11]
are also possible, or in connection with new manufacturing processes such as additive
manufacturing [12,13] or remanufacturing [14] in a general context, where we seek to
achieve more eco-efficient production methods [15]. Indeed, the challenges associated with
the inspection and control of the visual quality of products can constitute important levers
for the development and control of these processes [16]. For example, the printing process
parameters and material properties can have a significant effect on the appearance of 3D
printed parts [17].

Many technical and scientific challenges associated with measurement of the ap-
pearance are still unsolved [18–21]. One of the issues concerns the choice of the visual
attributes that one wishes to quantify. Indeed, if for the human visual system the appear-
ance of a surface constitutes an inseparable whole [22,23], this information is complex and
multi-physical, and it cannot be quantified or estimated entirely by a unique appearance
measurement system, especially since, in the industrial context, time constraints are es-
sential for inspection processes. The implementation of a physical measurement therefore
requires determining which components of the appearance we wish to quantify as a priority
in relation to the problem and the applications to which we wish to respond. Today, while
the development of appearance attribute measurement systems is still recent, and these
systems are not widely implemented in the industry, one approach is to not replace but
assist sensory experts, such as by providing them with augmented visualizations of the
inspected surfaces or by automating certain aspects of the visual inspection process, such
as the exploration path, (i.e., the sequence of scene visualization in terms of incidence light
angles or the position of the observer). The work presented here is part of these so-called
semi-automated approaches, whose main purpose is to assist visual experts [24] and thus
objectify the inspection process.

The methodology proposed in this paper is based on an imaging technique which
has seen many developments for cultural heritage applications and, more recently, in the
industrial field. This approach, namely the Reflectance Transformation Imaging technique
(RTI), consists of acquiring a sequence of images of a surface by only varying the direction
of illumination, in a similar way to what is carried out during visual sensory analysis.
Indeed, in visual inspection, the operator usually varies the configuration of the inspection
scene, (i.e., the geometric configuration between the observer, the lighting, and the in-
spected object) in order to highlight possible appearance defects. It is important to highlight
here that the fact that the RTI imaging technique transcribes, in a certain way, the visual
inspection practices known by the operators in charge of these tasks, allowing a better
and faster appropriation of the technique during its deployment in the industrial context.
The acquired data obtained with the RTI technique enable building a local experimental
model of the angular reflectance at each point of the inspected surface, which character-
izes the appearance [25]. It is then possible to estimate the maps of local characteristics
of surfaces, which are linked to the distribution of measured luminances or to the local
micro-geometry [26,27], and to reconstruct the visual rendering of the surfaces under a
virtual lighting.

The core objective of this paper is to evaluate the use of these relightings in an industrial
context of inspection and assessment of the visual quality of surfaces, as a tool for computer-
aided visual inspection, (i.e., to assist the experts and operators of sensory control). Studies
in this sense have already been conducted, especially in the field of heritage [25,28], to
quantify the performance of the existing RTI reconstruction models in particular [29,30].
This type of analysis evaluates the performance from a quantitative, numerical point of
view but does not take into account the aspects related to human perception. The presented
methodology aims to integrate these aspects and bring elements of an answer concerning
the relevance of this approach in this context. Moreover, in addition to what has been
presented in [29], the proposed methodology also integrates the dynamic aspects (which
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are essential in the human perception mechanisms) not taken into account when only
static RTI relighting is assessed. Thus, this paper aims to show how the RTI approach can
be used and implemented for surface quality inspection tasks and how the parameters
associated with the RTI process, both from the point of view of acquisition and modeling or
reconstruction, can influence the surface appearance assessment and therefore the analyses
and decisions concerning, for example, the acceptability of a surface.

A brief overview concerning the Reflectance Transformation Imaging technique and
the existing methods for the perceptual assessment of a sequence of images is presented
in Section 2. The proposed methodology is detailed in Section 3. The major findings are
presented and discussed in Section 4.

2. Background on the Implemented Techniques
2.1. Reflectance Transformation Imaging

The Reflectance Transformation Imaging (RTI) technique [31–33] consists of acquiring
a series of images from several light directions using a camera positioned orthogonally to
the inspected surface. Each image of the acquired Multi-Light Image Collections (MLICs)
corresponds to an illumination direction and represents a discrete measurement of the
luminance in one lightning direction. The angular reflectance of each pixel is then modeled
as illustrated in Figure 1 (modeling section), where the measured luminance values are
represented in the normalized (Lu, Lv) space as defined in [32] and the vertical axis is
associated with the sensor gray level range ([0, 255]). These local experimental models
make possible the relighting, (i.e., the continuous reconstruction of the visual rendering
of the inspected surface) for virtual illumination angles. The principle of this technique is
illustrated in Figure 1, where PTM, HSH, and DMD are RTI reconstruction models and
stand for Polynomial Texture Mappings, Hemispherical Harmonics, and Discrete Modal
Decomposition, respectively.

Figure 1. Principle of the RTI technique from acquisition to relighting. The RTI acquisition is the
system that allows acquisition of a surface to be made. (a–c) Modeling is using the acquisitions to
model the behavior per pixel. Visual relighting allows to reconstruct from the models an image
lighted with a specific light position.

Many new RTI acquisition modalities have recently been developed, including multi-
spectral approaches [34,35], approaches to measure the complete luminance dynamic
(HD-RTI, [36–38]) self-adaptive approaches to determine the relevant lighting directions
(NBLP-RTI, [39]), and even robot-based RTI systems [40]. Within the framework of this
research, we focus on the RTI acquisition parameters associated with the conventional ap-
proach. In a non-exhaustive way, these parameters are associated with the spectral content
of the lighting implemented, the distribution of the lighting positions, their number or den-
sity [41,42], or even the measurement scale. In terms of processing, the main parameter is
linked to the choice of the modeling method. Processing an RTI set of images allows one to
model the local angular reflectance at each point or pixel of the inspected surface and allows
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the relighting of the surface in virtually any arbitrary direction of light. Originally, there was
the Polynomial Texture Mappings (PTM) [32,33,43] approach, based on second-order poly-
nomials. This method is simple, robust, and easy to implement, but it has the disadvantage
of excessively smoothing the measured luminance point clouds, which alters the quality of
the reconstructions when the surfaces are not Lambertian [44]. Other approaches were then
developed to overcome this limit, in particular the HSH method based on Hemispherical
Harmonics [45] and Discrete Modal Decomposition (DMD) [44,46,47]. This last approach
implements the natural modes of vibration to form the basis of decomposition. More
recently, local interpolation approaches have shown interesting results, such as the Radial
Basis Function [48] or even machine learning approaches [49].

In this paper, we have chosen to study three parameters that the authors identified
to be particularly influential in previous studies related to Reflectance Transformation
Imaging. However, the methodology presented in these works is generic in the sense that it
allows, whatever the choice of factors, quantifying the effect of the RTI factors of acquisition
and processing in terms of visual perception. The chosen parameters are the density of
lighting directions during the RTI acquisition sequence, the measurement scale, and the
chosen modeling method.The modalities and levels chosen for the experience plan are
detailed in Section 3. In addition to these three parameters, we applied the method to
three different surfaces with distinct roughnesses or materials, allowing us to characterize
the possible correlations between the type of surface reflectance behavior and the RTI
parameters.

2.2. Perceptual Assessment

As mentioned above, surfaces are still often inspected by visual sensory analysis. In the
industrial context, the results obtained by this type of approach remain the gold standard.
Moreover, with the human perception mechanisms being very complex, the only manner of
verifying the results obtained by means of instrumental measurement is comparison with
sensory measurements. Thus, the proposed method is based on psychometric experiments.
We detail here the main approaches to evaluate the perceived quality of images (or image
sequences) reconstructed by the RTI technique.

Several subjective scaling methods can be used to measure the perceived quality
of images and find the relation between physical characterization and the stimulus [50].
One of the most common approaches is Absolute Category Rating (ACR), where the
evaluation of the test sequences uses a category scale. ACR with a hidden reference (ACR-
HR) is a variation of this approach that implements a hidden reference test sequence. An
alternative is the Degradation Category Rating (DCR) [50] , where the degradation, (i.e.,
the distance to the reference image) is rated on a five-point scale. Test sequences can also
be displayed in pairs of references and stimuli. This is particularly the case for the double
stimulus impairment scale method. Each pair is then displayed simultaneously on the
same monitor, which reduces the experiment’s time and helps subjects to rate the stimulus
in parallel comparison to the reference. Another pair approach is the Pair Comparison
method (PC) [51], where two images are presented and the operator has to decide which
image possesses more of an investigated attribute. We chose to implement the principle
of the PC method. Indeed, because of the choice of factors and modalities of the DoE,
and also because the experiment was conducted from reconstructed videos and not static
images, the experimentation time is an important criterion. The PC approach indeed saves
time due to the simultaneous viewing of the analyzed videos and the absence of distance
quantification. Moreover, the literature about RTI has shown that the reconstruction models
were very influential on the quality of the reconstruction. We therefore chose to extend the
PC approach to a triple comparison, which made it possible to evaluate the three selected
models simultaneously. This approach is detailed in Section 3.2.

Another important point is the implementation of a training phase prior to the psy-
chometric evaluation. Indeed, to ensure the subjects’ full understanding of the requested
task (familiarization with the assessment tool and instructions) and stabilize the subjects’
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evaluation, a preliminary training session is recommended for each subject using at least
five representative test sequences (ITU-R Standard, [50]). Indeed, the training session
allows the participants to become aware of the type of images or videos that they will have
to evaluate and the scale of variation that they will encounter, which can help to notably
improve the intra-observer repeatability. Two pieces of information need to be assessed for
choosing training sequences [50]: the Spatial perceptual Information (SI) and the Temporal
perceptual Information (TI). The SI indicates the amount of spatial detail of a sequence.
This descriptor is based on the Sobel filter, and its mathematical expression is given in
Equation (1). TI describes the difference between the same pixels’ values in two successive
frames. Its expression is given in Equation (2):

SI = Maxtime{stdspace[Sobel(Fn)]} (1)

TI = Maxtime{stdspace[∆(i, j)]} with ∆(i, j) = Fn(i, j)− Fn−1(i, j) (2)

where Sobel(Fn) represents the filtered frame at time (Fn), stdspace is the standard deviation
computed over the pixels, and maxtime is the maximum value in the time series.

The implementation of this training phase in our methodology for the RTI-based
approach is presented below in Section 3.

3. Dynamic Perceptual Assessment for RTI-Based Visual Inspection: Methodology
3.1. Experimental Surface Samples and RTI Acquisition Set-Up

As stated before, the adjustment of the RTI acquisition and modeling parameters have
to be correlated with the type of inspected surface. For example, a homogeneous surface
with Lambertian reflectance will not require a high density of lighting positions, with a low
number of images distributed in the hemispherical space (φ, θ) allowing one to correctly
estimate the angular reflectance and the opposite for when the local reflectance is heteroge-
neous or more complex. We therefore chose three surfaces samples with different properties
and reflectance behaviors, noted in the following as S1–3. Sample S1 was a Lambertian-type
surface of paper material. Sample S2 was a sandblasted surface (Spectralon® SRS-05-020
Diffuse Reflectance Chemically Inert Standard) with a reflectance value of 20%. Sample
S3 was a brush-finished metallic surface, inducing an anisotropic texture. These surface
samples are illustrated in Figure 2.

Figure 2. Surface samples: (a) S1 = industrial paper, (b) S2 = Spectralon® Diffuse Reflectance Standard
(SRS-05-020), and (c) S3 = metallic brushed or polished surface.

The RTI acquisitions were carried out using an in-house developed set-up (Figure 3).
The system is based on a powerful white LED light source mounted on a motorized hoop,
allowing one to position the light in the (θ,φ) space. The imaging sensor is a monochromatic
2/3 active pixel-type CMOS sensor with a resolution of 12.4 Mp (4112× 3008). A precision
micro-imaging modular and motorized magnification and focus has been implemented to
be able to adapt the field of view and the focus. The lower lens and other optic components
are fully modular, allowing one to cover a very wide range of the measurement scale, the
main limitation being the difference between the maximum and minimum magnification
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([×1,×12]) and the space available to position the samples to be measured (maximum
of approximately 10× 10 cm). The device can be fully controlled with a user interface,
allowing one to adjust all the RTI acquisition parameters [38]. In addition, the system is
modular, and a specific light wavelength for RTI acquisition on particular surfaces, such as
transparent or semi-transparent (varnished) surfaces, can easily be implemented.

Figure 3. (a) Custom RTI acquisition system (ImViA Laboratory). (b) The associated user interface.

In particular, the acquisition parameters associated with the light energy emitted
are essential in the RTI approach. Their adjustment requires special attention, especially
since this adjustment also depends on the level of magnification. Indeed, the illumination
parameters can strongly alter the quality of the acquisitions and therefore consequently
the analysis performed from these data [52]. Generally, the exposure time is, in practice,
arbitrarily chosen by the operator in charge of the acquisition, who tries to reach a com-
promise between the number of saturated and underexposed pixels for all acquisition
angles. For this experiment, we therefore carried out a preliminary step to optimize the
illumination parameter settings for each of the surface samples of the study according to
the methodology presented in [52].

3.2. Design of Experiment

The parameters retained for this experiment were the measurement scale, the acqui-
sition density, (i.e., the number of lighting positions of the acquisition sequence), and the
implemented reconstruction model. Regarding this last parameter, many models have
indeed been developed and applied to RTI acquisitions with a significant effect on the
quality of rendering. The most commonly used models are global models, such as the
historical PTM approach [31,32], the HSH method [45], or the more recent Discrete Modal
Decomposition (DMD) [44,47], which we chose to evaluate in this paper. The proposed
methodology could, however, be applied in other reconstruction models, such as the Radial
Basis functions (RBFs) recently proposed by [28], which are based on local interpolations.
For the choice of these parameters having to be correlated with the type of surface to be
inspected, three different industrial surface samples were retained. The chosen samples
for the experiment and the DoE parameters and associated modalities are detailed in the
following section.

3.2.1. Protocol, Studied Factors, and Modalities

The parameters retained for this experiment, noted as P1−4 in the following, are
detailed below.

• P1, the reconstruction model (three modalities): As stated before, many models have
indeed been developed and applied to RTI acquisitions with a significant effect on the
quality of rendering. For this experiment, we chose the Polynomial Texture Mappings
(PTM) approach, the Hemispherical Harmonics (HSH) technique, and Discrete Modal
Decomposition (DMD).
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• P2, the angular density of acquisition, or the number of lighting directions in the
acquisition sequence (four modalities): RTI acquisitions were performed with 50, 100,
200, and 400 positions homogeneously distributed in the (θ, φ) angular space (see
Figure 4). These values correspond to what is commonly used in existing RTI acquisi-
tion systems, where typically, between 50 and 200 lighting directions are used. The
value of 400 corresponds to a value that we consider to be maximal in an industrial
context, where the inspection time is a major constraint.

• P3, the measurement scale (two modalities): Mechanisms related to visual perception
are very sensitive to the scale. We chose here two modalities for this parameter
which were associated with the zoom factor (40% and 80%). These two zoom factors
correspond to pixel sizes of approximately 5 µm and 2 µm, respectively.

• P4, the surface material and roughness (three modalities): For the choice of the pre-
ceding parameters (P1–3) having to be correlated with the type of surface inspected,
three industrial surface samples were retained. These samples were described in detail
previously in Section 3.1.

Many other RTI parameters could be influential on the visual perception of surfaces
such as, non-exhaustively, the light path during the inspection, the light wavelength of the
light source, or other general imaging parameters, such as the resolution, the gamma value,
or even the type of sensor. However, we assumed that the proposed methodology could
be transposed if necessary for the study of their impact and that the chosen parameters
here were particularly relevant. Concerning the light path, a single light path was thus
implemented, as presented in Figure 4a using a white line. To carry out this experiment,
a dense RTI acquisition was realized on this chosen lightpath (397 acquisitions, linearly
distributed) for each surface sample in order to reconstruct the reference video for the
psychometric experiment. Thus, this reference video corresponded to the raw data and
was not subject to any processing or modeling.

Figure 4. (a) Chosen light path. (b–e) Acquisition positions associated with parameter P2 modalities.

3.2.2. Psychometric Experiment

As mentioned before, the approach chosen is based on the principle of the Pair Compar-
ison (PC) method [51]. To reduce the number of image sequences to be evaluated and thus
the duration of the experiment, we chose to extend the PC approach to a triple comparison,
which made it possible to evaluate the three selected models simultaneously. This approach
is detailed below. In addition, to include the dynamic aspects in the proposed methodology,
which are of particular importance in the human perception mmechanisms, the psychomet-
ric experiments were conducted on rendering videos, for which the reference lighting paths
were defined. To conduct the evaluation of the reference videos to the rendered videos
using RTI data, the proposed extended version of the Paired Comparison method allowed
us to compare the videos according to their resemblance, and due to the simultaneous
viewing of the reference-reconstruction pairs, the PC method saved time and reduced the
distance quantification. To build the reference videos, a dense acquisition was acquired for
each surface in the two measurement scales (two magnification levels). For this experiment,
6 reference acquisitions were acquired (3 surfaces × 2 measurement scales). The reference
was then displayed simultaneously with the reconstructed videos associated with the DoE
parameters and modalities on a divided screen as illustrated in Figure 5. The reference
video was always in the top left, and the other three were randomly displayed. As the
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reconstruction model can particularly alter the quality of the reconstruction, we chose to
show simultaneously the reconstructions associated with the three models retained for
each configuration of the parameters P2−4 of the experimental design. The videos were
resized to fill 1/4 of the screen resolution (1440× 2560) using bicubic interpolation.

Figure 5. User interface for the psychometric experiment (S1 sample). The acquired raw video
sequence was presented in the top-left screen zone, and the three other areas were dedicated to the
rendering videos using the three tested approximation models (PTM, HSH, and DMD), which were
randomly positioned.

For each experimental design configuration, a video containing the four sub-videos
(renderings) was generated frame by frame to ensure synchronization. The randomized
positioning of the videos allowed us to avoid a potential experimental bias, which was
confirmed by the obtained values presented in Table 1. The participants in the experiment
then selected, among the three videos associated with the visual reconstructions obtained
with the different values of the factors of the experimental design, which one seemed to
them to be the closest to the reference video (systematically displayed in the top left). This
preferential choice was made by clicking on the chosen video, and it was recorded by the
system. The next video, corresponding to the next configuration of the experimental design,
was then displayed.

Table 1. Participants’ preferred choices per reconstruction model and screen zone.

Top Right Bottom Left Bottom Right

PTM (%) 4 8 6
HSH (%) 37 35 39
DMD (%) 59 56 55
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Each experimental configuration was displayed twice in a random order for each
subject to enable the quantification of the intra-subject variation. The experiment was
divided into two parts: the training and the main session. For the training session, six se-
quences were chosen for their temporal and spatial perceptual information to stabilize the
observers’ opinion following the methodology presented in [50]. This approach allows
for a representative sampling of the diversity of experiences as illustrated in Figure 6.
It can be observed that the minimum of spatial information (SI = 0.036) and temporal
information (TI = 4.67) was associated with the paper surface (S1) reconstructed using 400
light positions at high magnification level (80%) , which means that the minimum distance
was perceived between the original video and the reconstructions. The maximum of SI
and TI jointly (SI = 0.059, TI = 24.41) was obtained with the metallic brushed surface
(S3) reconstructed with 50 positions. These results were expected due to the reflectance
behavior simplicity and were therefore easier to model for S1, and the inverse was true for
the S3 sample.

The experiment was held in a dark room, and 24 volunteers participated, with an
average age of 34 years old. The experiment took an average of 23 minutes for each
participant, with 4 minutes for the training session and 19 minutes for the main session.
The participants thus evaluated 48 videos of approximately 13 seconds in duration, in
addition to the 6 videos from the training session.

!
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!!

"

#

$
%

Figure 6. The experiment sequence numbered form 1 to 6 are displayed in the central graph according
to their temporal and spatial perceptual information. These six experiment covers the extremal values
contained in the whole sequence set as well as some average sequence (1, 5–6). The sequence 2
refers to high spatial perceptual information while the sequence 4 presents high temporal perceptual
information. These six sequence are chosen for the training session.

An example of the images extracted from the different videos of the experiment
associated with two angular configurations (from the defined lighting path) for the three
surface samples is presented in Figure 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Example of images of appearance renderings with the three implemented models (random
display) extracted from the DoE experimental videos (magnification: 40%; sampling density: 50).
The top-left sub-image is the reference (acquisition). (a,b) Surface sample S1. (c,d) Surface sample S2.
(e,f) Surface sample S3.

4. Results and Discussion

The overall results presented in Figure 8 reflect the difference in perception between
the surfaces reconstructed with the three modeling methods tested and the reference surface
(raw data). It appears that with a median value of approximately 6%, PTM was rarely
chosen compared with the HSH and DMD renderings. A considerable preference was
observed for the DMD reconstructions, amassing 58% of the participants’ clicks over 34%
for HSH and 6% for PTM. Regarding the surface material (Figure 8b), we can notice that the
HSH gain performance for surface sample S2 (Spectralon®) gained 50% of the participants’
clicks against 48% for DMD, while HSH fell to 25% for S3, where the participants chose
DMD as the most accurate model to reconstruct the angular reflection of light using the
RTI system. Thus, it appears that even for diffuse surfaces (such as S1), the HSH and
DMD global modeling methods produced a lower difference in perception than the PTM
method. However, we observed that the more complex the behavior was in terms of angular
relfectance, the more the gap between the methods increased, with a clear advantage for
the DMD method when the texture was anisotropic (such as S3), which was consistent with
the shapes and complexity of the decomposition bases implemented for the HSH and DMD
methods.
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5. Results and discussion 221

The overall results in Figure 6 indicates a remarkable variation of performance of the 222

approximation models (PTM, HSH, DMD) to reconstruct the surfaces appearance using 223

RTI relighting. With median value of 6.25 % PTM is rarely chosen compared to HSH and 224

DMD, it reaches the maximum of its performance using the metallic surface S3 with 8.33 %. 225

A considerable preference using DMD reconstruction model with 58.33 % of participants 226

clicks over 34.38% for HSH and 6.25% for PTM. Regarding the surface material in Figure 227

6, HSH gain performance using surface Spectralon R� S2 with 50% of participant’s clicks 228
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was largely chosen for S3 with 65 % of choices and 55.5 % for S1 against 25.25 % and 38.25% 238

using HSH model respectively using the same surfaces. The evaluation of participants’ 239

preference using Spectralon R� S2 is shared between HSH with 48% and DMD with 49.25% 240

of participant’s votes. This achievement is due to the regularity of surface’s geometry 241

(standard and Lambertian surface), where HSH reproduce the surface appearance with 242

higher quality comparing to its performance using other surfaces(S1, S3). HSH saves an 243
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sities. Passing over the irregular appearance of the industrial paper used in the experiment 245
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Figure 8. Percentage of participants’ clicks per approximation model: (a) global and (b) per sample.

The detailed results for the different factors and modalities of the design of the experi-
ment are presented as a heatmaps associated with each surface sample (S1–3) in Figure 9. As
for the overall results, we observed a clear preference for the HSH and DMD methods in
the perception of visual reconstructions. It can be noted that, particularly for the S3 surface
sample and to a lesser extent the S1 surface sample, the PTM method saw its performance
increase and the HSH method saw its performance decrease when the angular density
increased. With the S1 sample also being relatively anisotropic (orientation of the fibers of
the paper in two main directions), this result underlines once again the difficulty of the
HSH approach to render the appearance produced by anisotropic textures.

Concerning the magnification, it generally appears that the higher the magnification,
the greater the difference between the methods, and the more the reconstructions associated
with the DMD method were chosen. This result is explained by the fact that the higher
the zoom, the smaller the integration zone and therefore the averaging of the reflectance
behavior associated with each pixel, and the more the complexity of the measured behavior
increased. The DMD method having a decomposition basis of greater complexity then
made it possible to reconstruct the local visual rendering more accurately.

Finally, concerning the effect of the density, we observed a relatively better result
compared with the other methods of the PTM technique for 400 acquisition positions. This
counter-intuitive result might be explained by the fact that sometimes, for high acquisition
densities, the most efficient reconstruction techniques have the effect of including behaviors
around the salient reconstruction angle and therefore represent in the renderings details
not present in the raw image. This defect, which concerns high-frequency variations in
angular reflectance frequency, is linked to the very principle of reconstruction techniques
by global approximation. There is therefore, in terms of acquisition, an optimum in terms
of the number of light positions associated with the RTI sequence, which is not necessarily
associated with the densest possible acquisition.

We also evaluated the experimentation carried out in terms of the repeatability of the
results obtained. The individual reliability per subject was measured from the participants’
votes of replicated sequences. The global average measured consistency was approximately
49%. The results presented in Figures 10 and 11 show that this low consistency value was
mainly due to a hesitation in the choice between HSH and DMD reconstruction for certain
renderings of the experiment. This result translates a hesitation of the participants which
was due, for certain tests of the experimental design, to a very strong similarity of the
reconstructions obtained. (The two methods performed equally, and both were much better
than the PTM approach.)
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Figure 7. Mean of scores of global participants voting sequences per experiment parameter P1�4 on
experiment surfaces S1�3 .

The individual reliability per subject is measured from participants votes of replicated 263

sequences. No participant was discard due to his reliability score in this experiment. The 264

consistency mean value of participants is up to 49 % which is a low consistency value. 265

However, in Figure 10 participants hesitation is between HSH and DMD with 45% using 266

(S1 and S2) unlike S3 where DMD is largely chosen as the most accurate reconstruction 267

of S3. Seeing Figure 9 where the heat map represents only participants’ consistent clicks, 268

DMD outperform PTM and HSH using S1 and S3. for S2 HSH remains an equivalent score 269

to DMD which confirm the model’s capacity to reproduce a regular reflectance behavior. 270

Investigating participants’ spend mean time in Figure 11 were green box-plot indicates 271

mean time spend for consistent votes and red box-plots indicates the mean time spend for 272

non-consistent votes (participant choice is changed between the two replication of the same 273

sequence). we noticed that participant mean time of non-consistent choices is lightly higher 274

then when participants are consistent for 50% of participant which can be explainable of 275

the difficulty of the choice and time spend to hesitate between at least two very similar 276

reconstruction to the original video. 277

6. Conclusion 278

The dynamic aspect of the human inspection process of manufactured surface can be 279

transposed to the inspection of reconstructed surface’s visual aspect by the virtual inspec- 280

tion of relighted surfaces using the RTI setup and modeling parameters. In this chapter, 281

we investigate the accuracy of reconstructed relighting of surface’s visual aspect. Four 282

parameters were evaluated: reconstruction model (PTM, HSH, DMD), the angular density 283

of acquisition (varying from 50 to 400), the scale of acquisition (40%, 80%), and surface’s 284

reflectance behavior (using 3 samples with 3 common different reflectance behaviors). All 285

these parameters impact greatly the quality of reconstructions using RTI setup and the 286

inspection process as well: inspecting a metallic surface is different than a paper inspection 287

in terms of time, light angles, the inspection scale. . . . The impact of these parameters is 288

evaluated using images’ quality metrics to quantify the quality degradation of RTI approxi- 289

mations and then through a psychometric experiment to involve human’s subjectivity for 290

visual inspection which still the reference for high added-value manufactured products. 291

the experiment results highlight the necessity to determinate the parameters value for 292

each reflectance behavior to ensure the best accuracy the reproduce surface visual aspect: 293

DMD for metallic and anisotropic surfaces, HSH for isotropic surfaces and PTM for diffuse 294

reflectance behavior. Also, scale of inspection impacts the inspection quality where we 295

notice that participants preference attempts to change with the changes of the scale of 296
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experiment surfaces S1–3.

However, it can be noticed that the consistency increased very significantly for S3
for the choices of the DMD method (which were also the most frequent; see Figure 8),
which confirmed the superior performance of this approach in terms of the perception
gap with the reference videos when the local behaviors to be modeled were complex or
anisotropic. For S2, the HSH method retained an equivalent score to the DMD method,
which confirmed the model’s capacity to reproduce a regular reflectance behavior. The main
result extracted from the global data presented in Figure 8b for the S2 sample (equivalent
performance of the HSH and DMD approaches) was also confirmed by these consistency
data (no significant difference). These perceptual results are consistent with those obtained
in previous studies that evaluated the performance of PTM, HSH, and DMD reconstruction
models from a numerical quantitative point of view [28,44,47]. Concerning the other RTI
factors, such as the scale and the density of the acquisition points, the existing RTI devices
often did not allow varying these parameters, and to our knowledge, although their effect
is known by the users of the technique [25,41,42], their influence has not been evaluated in
previous works.

Finally, we evaluated the time spent by the different participants to make a decision.
Indeed, this indicator could make it possible to identify (or confirm) aberrant behaviors,
which could alter the quality of the global results, such as an unreliable participant char-
acterized by a low consistency associated with a very short analysis time. Moreover, in
sensory analysis, the inspection time is often associated with the visual impact of a defect,
such as in [3]. In this experiment case, this indicator could thus make it possible to quantify
the difficulty of deciding. To illustrate this, we separated the consistent and non-consistent
votes (Figure 12). The green box plots indicate the mean time spent for the consistent votes,
and the red box plots indicate the mean time spent for the non-consistent votes. It can be
noticed that the participant mean time for the non-consistent choices was lightly higher
than when the participants were consistent for 50% of the participants, which could indi-
cate the difficulty of the choice and time spent when hesitating between similar perceived
reconstruction qualities.
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We also evaluated the experimentation carried out in terms of the repeatability of the 267

results obtained. The individual reliability per subject is measured from participants votes 268

of replicated sequences. The global average measured consistency is approximately 49%. 269

The results presented in Figure 10 and 10 show that this low consistency value is mainly due 270

to a hesitation between the choice of HSH and DMD reconstruction for certain renderings 271

of the experiment. This result translates a hesitation of the participants which is due, for 272

certain tests of the experimental design, to a very strong similarity of the reconstructions 273

obtained (the two methods equally perform, both much better than the PTM approach). 274

275

However, it can be noticed that the consistency increases very significantly for S3, for 276

the choices of the DMD method (which are also the most frequent, see Figure 7), which 277

confirms the superior performance of this approach in terms of perception gap with the 278

reference videos, when the local behaviours to be modelled are complex and/or anisotropic. 279

for S2 HSH remains an equivalent score to DMD which confirm the model’s capacity to 280

reproduce a regular reflectance behavior. The main result extracted from the global data 281

presented in figure 1b for the S2 sample (equivalent performance of the MSM and DMD 282

approaches) is also confirmed by these consistency data (no significant difference).
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Figure 11. Participants’ Time spend for consistent and non consistent Evaluations

Finally, we evaluated the time spent to choose by the different participants. Indeed, 284

this indicator could make it possible to identify (or to confirm) aberrant behaviours, which 285

could alter the quality of the global results, such as for example an unreliable participant 286

characterized by a low consistency associated with a very short analysis time. Moreover, 287

in sensory analysis, the inspection time is often associated with the visual impact of a 288

defect, for example [3]. In this experiment case, this indicator could thus make it possible 289

to quantify the difficulty of choosing. To illustrate this, we separate and non consistent 290

votes (Figure 11). Green box-plot indicates mean time spend for consistent votes and red 291

box-plots indicates the mean time spend for non-consistent votes. It can be noticed that 292

participant mean time of non-consistent choices is lightly higher that when participants 293

are consistent for 50% of participants, which could indicate the difficulty of the choice and 294

time spend when hesitating between similar perceived quality of reconstructions. 295

6. Conclusion 296

The dynamic aspect of the human inspection process of manufactured surface can be 297

transposed to the inspection of reconstructed surface’s visual aspect by the virtual inspec- 298

tion of relighted surfaces using the RTI setup and modeling parameters. In this chapter, 299

we investigate the accuracy of reconstructed relighting of surface’s visual aspect. Four 300

parameters were evaluated: reconstruction model (PTM, HSH, DMD), the angular density 301
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Figure 11. Participants’ Time spend for consistent and non consistent Evaluations
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box-plots indicates the mean time spend for non-consistent votes. It can be noticed that 292

participant mean time of non-consistent choices is lightly higher that when participants 293

are consistent for 50% of participants, which could indicate the difficulty of the choice and 294

time spend when hesitating between similar perceived quality of reconstructions. 295
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Figure 12. Time spent for consistent and non-consistent evaluations for each participant.
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5. Conclusions

In this paper, we proposed evaluating the use of dynamic RTI renderings for visual
inspection tasks. We investigated this through psychometric experimentation the influence
of different essential parameters in the RTI approach, including modeling methods, the
number of lighting positions of the acquisition sequence, and the measurement scale. The
psychometric experiments were conducted on reconstructed visual rendering videos to
include the dynamic aspect of perception mechanisms in the methodology. The overall
results reflect the difference in perception between the surfaces reconstructed with the three
modeling methods tested (PTM, HSH, and DMD approaches). We observed that the more
complex the reflectance behavior was, the more the gap between the perception of the
rendering videos increased, with a clear advantage for the DMD method when the texture
was anisotropic, which was consistent with the shapes and complexity of the decomposition
basis implemented for the HSH and DMD methods. This experiment underlines the
difficulty of the HSH approach in rendering the appearance produced by anisotropic
textures, and it can also be noted that the PTM method saw its performance increase and the
HSH method’s performance decreased when the angular density of acquisition increased.
Concerning the magnification, it generally appeared in this experiment that the higher the
magnification, the greater the difference between the tested methods, and the more the
reconstructions associated with the DMD method were chosen. This result is explained by
the fact that the integration zone was smaller for the higher magnifications. Therefore, it
decreased the averaging of the reflectance behavior at each pixel and allowed us to measure
more complex behaviors. The DMD method having a decomposition basis of greater
complexity then made it possible to reconstruct the local visual rendering more accurately.
In terms of density, we also observed a counterintuitive effect, or for a large number of
acquisition positions, the implementation of a fine global approximation method, such
as the HSH or DMD methods, could affect the perceived quality. Finally, this experiment
shows that it is important to take into account the repeatability aspects for this type of study,
which can be indicative of aberrant behavior of participants or difficulty in choosing in
case of great similarity between two reconstructions. The analysis of the decision time can
also make it possible to quantify the facility (or lack thereof) to discriminate between two
appearances. Thus, the proposed methodology and the results obtained make it possible to
highlight the importance of the choice of the investigated parameters when carrying out
RTI-based dynamic perceptual assessments.
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