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Abstract

Fault Detection and Diagnosis (FDD) are important tools to perform on-going monitoring of the sys-
tems and help in their building commissioning. An innovative method is investigated based on combined
data-driven and knowledge-based approaches. This article presents the method. First phase, a so-called
operating map of the system is built using dimension reduction method and numerical or experimental
dataset. This map is composed of several regions corresponding to nominal operation and to specific
faults. The second phase focuses on the FDD. The monitored data are projected on the map. According
to the position, a clear and precise fault detection and diagnosis can be carried. The method is applied
to an air handling unit. The map is built using data generated with a building simulation program. The
reliability of the method is proven using experimental data of nominal and fault operation generated.

Key words: Fault detection and diagnosis; Heating Ventilation and Air-Conditionning systems;
data-driven approach; knowledge-based approach; dimensionality reduction technique

1 Introduction
According to the United States Department of Energy, the building sector is the biggest consumer of

primary energy in the USA amounting to 41 % of the total energy consumption [1, 2]. Among these huge
energy uses, 50 % are directly consumed by the Heating, Ventilation and Air-Conditioning (HVAC) systems
[3]. It is also known that the HVAC systems usually do not operate as required, causing supplementary
energy consumption. A recent study showed that the HVAC operation problems can induce a waste between
25 % to 50 % of the consumed energy [4]. With a good follow-up, the energy consumption can be reduced
by 15%. These HVAC operation problems can be caused by several different sources such as breakdown of
components, efficiency drift or control problems. For these reasons, the control of HVAC systems in existing
buildings is a major issue.

The building commissioning aims to respond to this issue with on-going monitoring among other ap-
proaches. Particularly, simple and automated Fault Detection and Diagnosis (FDD) are developed to help
the maintenance staff to take care of the equipment in detecting the problems as fast as possible. Nowa-
days, the required characteristics for HVAC systems FDD are known. Venkatasubramanian listed the
ten wanted criteria of a FDD system: quick detection and diagnosis, isolability, robustness, novelty identi-
fiability, classification error estimate, adaptability, explanation facility, modeling requirement and multiple
fault identifiability [5]. In a general way, they aim at detecting the occurrences of malfunctions during
the equipment operation, to inform operation or maintenance staff in the shortest possible time to avoid
violating indoors comfort or too high energy use.

The FDD techniques have been classified into four main branches for Air Handling Unit (AHU) [6–
8]: analytical-based methods, knowledge-based methods, data-driven methods, and a combination of all of
those. The first approach compares measured data to simulated ones obtained from mathematical model.
The fault detection in systems is realized by computing the residual. One of the main advantages is to detect
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unknown faults without huge quantity of measured data. Nevertheless, numerical models may be complex
and face computational issues. The knowledge-based approaches use expert analysis to extract rules from
data and detect faults. No model are required but usually unknown faults are not detected. The data-driven
methods search for relations among data patterns and identified faults. It does not need any complex model
or expert information, even unknown, but the capacity to diagnose can be reduced. Combination of these
different methods appeared in recent years to solve the inherent problems of individual techniques.

Since the creation of the “Annex 25” of the International Energy Agency (IEA) developed in the frame of
the Energy Conservation in Buildings and Community Systems (ECBCS) in 1999 [9], the real implementation
of these tools in buildings areas remains an important issue. Indeed, it is still an open challenge for real
time FDD tools to present the results in a clear and intelligible form. It requires to be understandable to all
maintenance operators regardless of their qualification to analyze the FDD tools outputs [10]. Furthermore,
with the development of smart buildings, a new challenge appears [11]. There is a big amount of data to deal
with, and old methods are not always able to cope with it. Indeed, even in residential areas, it may produce
a huge amount of data for regulation of the simplest systems, as Air Handling Unit (AHU) with numerous
measured data recorded at short time steps. This context increases the computing time and makes the
FDD complex or too expensive for residential buildings. As mentioned in [12, 13], the energy management
systems lack in consolidating the data into a clear and understandable format by operators.

Thus, the aim of this article is to explore a new fault detection and diagnosis method for the building area.
It is based on a combination of data-driven and knowledge-based approaches. This combination intends to
produce one information easily understandable by operators to detect nominal and faulty operation of the
system. The method is separated in two phases. The first one aims at creating a so-called operating map
of the system using a dimension reduction method and a set of data. The latter can be generated from an
experimental campaign and/or a numerical model. The dimension reduction method enables to reduce the
high dimensional space of indicators into a lower two-dimensional representation. Such map is composed
of several regions corresponding to the nominal operation and to specific faults. The second phase aims
at following the system operation. For this, the monitored data of the system are projected on the map.
Depending on the position, a clear and easy detection and diagnosis of the fault can be performed.

The structure of the article is as follows. Next Section presents the methodology with emphasis on the
offline and online phases. Then, in Section 3 is applied to an AHU unit. The map is generated using a
building simulation program. The reliability of the method is evaluated using experimental data obtained
from a campaign detailed in [14]. Some conclusions are made in Section 4.

2 Methodology
The data-driven and knowledge-based methods are now presented. Two phases are distinguished: (i) the

offline phase that enables to create a map of the system operation and (ii) the online phase when the fault
detection and diagnosis is carried out.

2.1 Offline phase: map construction

2.1.1 Data filtering

The first step of the method consists in treating the data regarding the operation rules. It enables to
create the so-called input data space. The so-called input data arises from two possible sources: (i) numerical
synthetic data generated with a building simulation programs or (ii) measured data obtained from building
energy management systems. Usual data are temperature, electrical power, airflow rated or logical values.
Let’s denote by Nm the number of input data, obtained on a time grid

{
tn
}
, n ∈

{
1 , . . . , N t

}
. Note

that N t is the total number of time acquisitions. The original dataset is defined by:

U
def:=
{
U n

}
, n ∈

{
1 , . . . , N t

}
, (1)
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where U n ∈ RNm is a vector composed of the Nm input quantities at the time instant tn :

U n
def:=
(
U 1( tn ) , . . . , UNm( tn )

)
=
(
U i( tn )

)
, i ∈

{
1 , . . . , Nm

}
. (2)

The treatment is carried out according to the operation rules defined by the user for the fault detection. A
rule represents logical statements observed in a regular operation of the building. It is defined, at each time
instant tn:

U i( tn ) − U j( tn ) = U∞ , ( i , j ) ∈
{

1 , . . . , Nm
} 2
, i 6= j , (3)

where U∞ is a chosen limit value so that, by convention, a fault is detected when

U i( tn ) − U j( tn ) > U∞ . (4)

A total of NR rules are created and gathered in the following set:

ρ
def:=
{
ρn
}
, n ∈

{
1 , . . . , N t

}
, (5)

with ρn ∈ RNR is a vector composed of the NR rules:

ρn
def:=
(
ρ 1( tn ) , . . . , ρNR

( tn )
)

=
(
ρ k( tn )

)
, k ∈

{
1 , . . . , NR

}
. (6)

The element ρ k( tn ) is a so-called expert rule, where the results of logic rules are treated in a dimensionless
form:

ρ k( tn ) def:= U i k( tn ) − U j k( tn ) − U∞ k

β k
, ( i k , j k ) ∈

{
1 , . . . , Nm

} 2
, i k 6= j k , (7)

The factor β is used as a gravity indicator to the fault detection process. Note that a rule can be composed
of several sub-rules that are combined using logical inclusions. The result of the expert rules are then
processed with an hyperbolic tangent function to create the severity index (SI) denoted by σ and computed
according to:

σ
def:=
{
σ n

}
, n ∈

{
1 , . . . , N t

}
, (8)

where σ n ∈ RNR is a vector composed of the NR severity indices:

σ n
def:=
(
σ 1( tn ) , . . . , σNR

( tn )
)

=
(
σ k( tn )

)
, k ∈

{
1 , . . . , NR

}
, (9)

and

σ k( tn ) def:= tanh
(
ρ k( tn )

)
. (10)

Thus, the severity index presents a dimensionless indicator in the range
]
−1 , 1

[
, regardless of the nature

of the fault or the data. At the time tn , a negative value σ k( tn ) < 0 , indicates a nominal function of the
system regarding the rule k . Contrarily, a positive value σ k( tn ) > 0 , stands for a faulty operation. As
illustrated in Figure 2(a), the quantity β guides the transition between the nominal and faulty state. This
transformation also enables to compare the indicators among them.

Another indicator is created to detect the emergence of multiple faults. The total fault severity is denoted
by λ and defined as follows:

λ
def:=
{
λn
}
, n ∈

{
1 , . . . , N t

}
, (11)

where

λn
def:=

NR∑
k=1

σ +
k ( tn ) , σ +

k

def:= max (σ k , 0 ) . (12)
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Thus, σ +
k corresponds to the positive part of the severity index, indicating the appearance of a fault. The

last indicator corresponds to the total number of faults appearing simultaneously:

δ
def:=
{
δn
}
, n ∈

{
1 , . . . , N t

}
, (13)

with

δn
def:=

NR∑
k = 1

χ [ 0 , 1 ]
(
σ k( tn )

)
, (14)

where χ [ 0 , 1 ] ( • ) denotes the indicator function of the subset
[
0 , 1

]
.

2.1.2 Construction of two-dimensional maps of the system state using manifold learning

As mentioned above, the set σ includes all the severity indices representing the state of the system.
However, this matrix describes data in a high dimensional space. Typically, N t scales with O( 104 ) . For
the number of rules NR , it range depends on the complexity of the system and varies between O( 10 )
and O( 10 2 ) . Dimension reduction techniques are used to embed the input points, associated to the set
σ, into a subspace of lower dimensionality. Here the dimension of the subspace is two to enable an easy
and comprehensive visual representation of the system state. Such representation is referred to as a map.
The procedure is carried out as follows. First, to reduce the computational cost, a subset of the NH most
representative points is obtained using a clustering method [15] and selecting the prototypes of each cluster.
This algorithm identifies the clusters minimizing the cumulated distance separating each point from the
prototype of its cluster. Hence, the selected points provide a good representation of the dataset dispersion
in the original space.

Then, several dimensionality reduction techniques can be employed. The general goal of this mapping
methods is to embed the dataset lying in the original high dimensional space onto a low dimensional output
space while preserving as much as possible the data structure. In that framework each item originally de-
scribed by many coordinates in the original space is positioned with a few coordinates in the output space.
The Principal Component Analysis (PCA) [16] is one of the best-known dimension reduction technique,
performing the linear projection of data that preserves the most of the data variance. The classical mul-
tidimensional scaling method [17] is another well-known approach based on distance metrics. Yet, those
approaches are not suited for data that lie on a non-linear manifold of the space. Thus, we choose to focus
here on methods which are designed for such data and focus on the preservation of the neighbourhoods
of each point. These methods derived from Stochastic Neighbor Embedding (SNE) [18] also include tSNE
[19], NeRV [20], JSE [21], etc) try to preserve the neighbourhoods ranks. A high number of techniques are
described in the literature; a review may for example be found in [22].

Practically, the dimensionality reduction enables to represent data from a high dimensional space onto
a space of lower dimensionality (dimension two) called map. An illustration of this approach is shown in
Figure 1. The original data in the three dimensional space (S-shaped surface) can be represented into a two-
dimensional one, using different methods. All these methods attempt to preserve the structure of the data.
Indeed, the original spatial organization of points is conveyed by the maps, as shown by the reproduction
of the red, yellow, blue color gradient along the surface.

There is no classification of faults regarding their degree of severity with the dimensionality reduction. In
other words, there is no information that the red dots is more important than the blue ones when considering
Figure 1. The key point of the reduction is to maintain the red (and others) dots in a same region in the
reduced space. The approach helps the user to decide if the system is in a faulty or nominal state (defined
by the expert rules). It does not provide any classification or hierarchy of the states. If the user considers
the red dots as a strong important fault, then they should decide to operate on the system.

In the present paper, we use ASKI [24]. Indeed, tSNE tends to show a more desirable than SNE for very
high dimensional data but the opposite phenomenon is observable in case of low dimensional space. ASKI
adapts its kernel to the intrinsic dimension of the input data leading to a behaviour more robust to the data
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Figure 1. Example of dimensionality reduction taken from [23]. The insert in the left of the Figure shows
the input data in the original 3D space. The points color depends on the position along the 2D sub-variety
on which data lie. The organization of data is expected to be preserved while mapped onto 2D spaces
according to various multidimensional scaling methods. Eight maps reached by eight different mapping
methods are drawn in other inserts. We can observe that the structure (which is consistent with color) is
often preserved.

dimension. The method maps the severity indices selected using the Hastie’s sampling algorithm [15]:

f : Mat
( ]
−1 , 1

[
, N t , NR

)
−→ Mat

(
R , NH , ND

)
, (15)

σ 7−→ σ̃ , (16)

where NH is the number of points selected by the Hastie method and ND is the dimension of the subspace.
In the end, the offline phase allows an easily understandable representation of the input data composed of
quantities with physical dimensions through a space of reduced size. Since in this work ND = 2, the
reduced space is identified as a map.

In order to obtain a map of the data, ASKI relies on the minimization of a stress function whose variables
are the position of points in the map. This stress function assesses, for any given map of the data that may
be considered during the optimization process, the level of distortion of the data structure associated to
this map. The preservation of the data structure is measured by comparing between the data space and the
map, the rate of belonging of each point j to the neighbourhood of each point i. In the data space, these
belonging rates are given by:

βij
def:=

(
1 + ∆2

ij

λiσ2
i

)−λi+1
2

∑
k 6=i

(
1 + ∆2

ik

λiσ2
i

)−λi+1
2

, (17)
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while in the map, they are expressed as:

bij
def:=

(
1 + D2

ij

ls2
i

)− l+1
2

∑
k 6=i

(
1 + D2

ik

ls2
i

)− l+1
2
, (18)

where ∆ij andDij are the distances between point i and j in the data space and map respectively. Parameters
σi and si are scaling factors, where σi is set by the perplexity as defined in [18], while λi and l are the degrees
of freedom of the Student kernels defined as the intrinsic dimensionality of data and as the embedding
space dimensionality respectively. The stress function ζ is then computed by comparing the distribution of
belonging rates between the two spaces with a mixture of Kullback–Leibler divergence:

ζ
def:=

∑
i

∑
j 6=i

βij log
(
βij
bij

)
+ bij log

(
bij
βij

)
. (19)

The map is then optimized to minimize the function ζ .

2.2 Online phase: projection on the maps

During the second phase, measured data monitored by the building energy management system are
obtained. The purpose of the FDD tool is to analyze such data to evaluate if the system is working in its
nominal or faulty state. To do so, first the measured data are filtered according to the same methodology
presented in Section 2.1.1. As mentioned before, this step is essential to obtain dimensionless quantities
that can be compared to each other. Let’s denote by σ ′ ∈ RNR the new NR severity indices obtained from
measured data at a given time instant. Then, those indices are projected on the reduced space using Radial
Basis Functions (RBF) according to:

σ̃ ′ =
N t∑

n = 1
λn φ

( ∣∣∣∣σ ′ − σ n

∣∣∣∣ ) , (20)

where φ is a kernel function and
{
λn
}
∈ RN are some real coefficients. In our computations, a Matern

RBF kernel is employed. It is important to underline that the computation of the coefficients
{
λn
}
is

performed during the offline procedure, to reduce the computational cost of the online phase. Then, during
the online phase, the numerical complexity of the map scales with NR ×NH only, which is very satisfying.
The computational cost of the projection is low so that real time prediction can be performed.

2.3 Synthesis

As a synthesis of the general methodology, a diagram of mapping is illustrated in Figure 2(b) for the
offline and online processes, respectively. For the offline process, given the input data, the expert rules
enables to define the severity indices. Then, the Hastie algorithm is used to select NH points. From
the manifold NH × N t , the dimensionality reduction technique enables to generate a lower subspace of
dimension ND ×N t . For the online process, at each time instant, the measured data are treated according
the expert rules. Then, a projection is carried out from RNR to R 2, so the severity index of the measured
data can be positioned in the subspace.

The Algorithm 1 gives the main steps of the FDD approach. The offline phase includes two programming
parts. First, the data filtering can be implemented with several programming language/environment such
as Python, Matlab, C++ or even VBA/Excel. There is no existing toolbox for this part but it should be very
accessible (basic sum, minus and tangent operations). Then, for the dimensionality reduction, several tools
are available in the literature, mainly in Python and Matlab environments. For the primer (Python), the
Scikit-learn package can be employed [25]. For the latter (Matlab), the dimensionality reduction toolbox
developed L. Van der Maaten and co-workers (available at https://lvdmaaten.github.io/drtoolbox/)
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Figure 2. (a) Illustration of the severity index and the influence of the parameter β . (b) Diagram of
mapping of the offline and online processes.

proposes many algorithms with a lot of practical examples for implementations. However, in the paper, the
ASKI method (thoroughly described in [24]) has been used for its interesting properties according to the
specific task. A shared Matlab code for ASKI is available as open source code on the code ocean platform
[26].

Regarding the online phase, the filtering of the measured data can be carried out by the same code
implemented previously. The projection on the map using RBF function can be easily programmed in the
same environments (Python, Matlab, C++ or even VBA/Excel). Nowadays it is already included in several
packages of Python (Scipy) or Matlab toolboxes (Mathworks community and more precisely dace toolbox
[27]) environments.

Algorithm 1 Basic steps of the data-driven and knowledge-based FDD algorithm.
1: . Offline phase: data filtering (Self programming)
2: Generate numerical data U using EnergyPlus;
3: Define & compute the expert rule associated using Eq. (7);
4: Compute the severity indices associated using Eq.(10);
5: . Off-line phase: build 2D map (ASKI package [26])
6: Select NH most representative points;
7: Create map of the system operations using ASKI approach ;
8: Compute coefficients of RBF basis in Eq. (20);
9: . Online phase: projection on the maps (Self programming)

10: Record experimental data U ′ from building energy management system;
11: Compute the expert rule associated using Eq. (7) ;
12: Compute the severity indices σ ′ associated using RBF Eq. (20);
13: Place coordinate σ̃ on the map;
14: Operator establishes diagnosis by reading the map;

Regarding the practical implementation of the method in real buildings, the off-line phase consists in
elaborating the map using existing monitored data or numerical data generated with a simulation program.
The data are then treated using expert rules and multi-dimensional scaling. The former can be easily
program while the latter can be carried using the above-mentioned programming packages. This step should
be carried by engineers in charge of the design of the HVAC system (in collaboration with operators). Indeed,

7 / 25



The use of dimensionality reduction techniques for fault detection and diagnosis in a AHU unit: critical
assessment of its reliability

it requires to define the expert rules and then to program them. At the end of this phase, a map of the
system operation is produced. The engineer needs to implement it on the building management system.
Then, during the on-line phase, the faulty and nominal operations are followed. It can be achieved by
maintenance operators. It consists in reading the map and checking if the projected points of the actual
measurements are located in nominal or faulty areas. All information are gathered into one single map. No
programming skills are required by the operators. One or two times per year, the engineers can interacts
by updating the map with new experts rules and experimental data if needed.

3 Case study

3.1 Offline phase: maps construction using a building simulation program

3.1.1 Input data simulation

To build the map of the system operation, a building simulation program is used to generate the so-called
input data. As in a authentic engineering situation, the EnergyPlus software is employed to model a small
office building inspired from a real case. Such building could use the ventilation system described in [14].
For the simulations, the building is located in Bordeaux, France, so that standard climate is used. There
is no shadings induced by the urban surroundings. The surface is 200 m 2 split in two storeys. The general
plan of the building is given in Figure 3(a). The first 160 m 2 floor is composed of two thermal zones: the
offices zone and a reception zone, which includes archives, xerography, waiting room and reception. The
second floor represents the third thermal zone with a private meeting room of 40 m 2 . An illustration of
the main North-oriented facade is shown in Figure 3(b), based on the Sketchup software. The enclosures
of the building have a global thermal resistance of 4.85 m 2 .K .m−1 , 4.15 m 2 .K .m−1 and 9 m 2 .K .m−1 ,
for the vertical surfaces, the terrace floor and the flat roof, respectively. According to the regulations, each
office has an air change rate of 25 m 3 . h−1 . For the meeting and welcome zones, it equals to 30 m 3 . h−1

and 182 m 3 . h−1 , respectively. The global air change rate is 0.49 . The building occupancy is from 8 a.m.
to 8 p.m. from Monday to Friday, with a reduced rate for the Saturday. Standards heat generation due to
occupants, lights and systems is included in the simulation.

Concerning the HVAC systems, the inside temperature is regulated by an Air Handling Unit (AHU)
combined with radiant panels in each room. The AHU used is the same as the one presented in [14] and
a schematic representation is shown in Figure 4. The system is modeled in EnergyPlus. The demand side
corresponds to the loads (in case of cooling) or demand (in case of heating). It includes the different thermal
zones and networks. The supply side comprises the components for air treatment and movement. The frost
coil belongs to this part. Its set-up temperature is set to 5 ◦C . Next to heating air exchanger, a mixturing
component has been included in the modeling that does not exist in the system presented in [14]. It is
imposed by the software. However, it should not affect the results since the mixture rate is set to 0 % . The
blow in air branch is divided in three sub-branches connected to each of the three thermal zones.

To generate the input data, nominal and faulty operation of the building are simulated. A total of 19
failures cases are modeled based on two complementary simulations (one for each season). According to the
definition given in [14, Section 2.5.2], 6 global faults, 4 winter faults and 3 summer faults are generated.
The global faults includes: supply and exhaust fans failures, fans belts breakdown and filter fouling. For
the winter, there are heating/frost coils failures, heating/frost coils regulation problems and simultaneous
failure of both coils. For winter, the faults arise from three regulation problems of free cooling. Note that
fan failures occurs for supply, exhaust or both of fans. A synthesis of the failure is presented in Figure 5.
The results of the simulations are obtained for a time step of 15 min , using two annual simulations (one for
winter and one summer faults), so the number of acquisition is N t = 70080 . A total of Nm = 12 simulated
input quantities are extracted from those results. Thus, the total number of input data is N = N t ·Nm .
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(a) (b)

Figure 3. General plan (a) and main North-oriented facade (b) of the building
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Figure 4. Schematic representation of the AHU system with the interested measured quantities.

3.1.2 Expert rules

The input data are first filtered using the expert rules. For the winter season, eight rules are defined
as reported in Table 1. The formalism of Eq. (7) is employed with the coefficient values given in the same
Table. Each rule is composed of at least two sub-rules. The rule ρ 1 represents a supply fan failure. It is
highlighted by two sub-rules: one analyzing if the airflow decreases to a null value and one verifying if the
electrical power is lower than a user-defined value. Similar logic applied to the exhaust fan is adopted for
the rule ρ 2 . The third rule is for the frost coil failure. It occurs when the electrical power of the component
is turned off while the outside temperature does require to pre-heat the entering air T out < 5 ◦C . Similar
logic applied to the heat coil is used for rule ρ 4 . Here, the regulation fault appears when the temperature
difference between the supply air and the set-point is higher than one degree: T c , sup − T sup > 1 ◦C . Note
that the set-point temperature of the heat coil is set to T c , sup = 26 ◦C . The exhaust fan belt breakdown
is represented by ρ 5 and two sub-rules. The first one checks if airflow rate is almost null. The second
analyses if the electrical consumption of the fan is still positive (at a value probably lower than the nominal
one). For the frost coil regulation faults, four sub-rules are needed. The first one verifies if pre-heating is
required using the outside temperature. The next one looks if the battery is turned on using its electrical
consumption. The third sub-rules confirm that the fan is working. Last, instabilities in the temperature are
detected. For the latter, the field of interest is the time derivative of the pre-heating temperature denoted
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Figure 5. Synthesis of the failure and nominal cases generated with building simulation program for
summer (a) and winter (b).

by T ′pre . It is computed using a second order backward finite-differences approximation:

T ′pre( tn ) def:=
∣∣∣∣∣ T pre( tn − 2 ·∆t ) − 2 · T pre( tn − ∆t ) + 3 · T pre( tn )

2 ·∆t

∣∣∣∣∣ , (21)

where ∆t is the time step between two input data. The default appears when T ′pre > 0.1 indicating
fluctuation of the pre-heating temperature. The same approach is extended for the seventh rule. The
quantity T ′sup is defined following Eq. (21). Note that sub-rules ρ 3.2 , ρ 6.1 and ρ 7.1 are equal and sub-rule
ρ 3.1 is opposite to ρ 6.2 and ρ 7.2 . The last fault concerns the filter fouling. It happens when the fan airflow
operates in nominal conditions (Q v , sup > −0.103 kg . s−1) and when the supply fan power is higher than
nominal conditions, with a threshold defined at 40 W .

For the summer period, eight expert rules are defined with associated coefficients reported in Table 2.
The rules ρ 1 , ρ 2 and ρ 8 are equivalent to their counterparts for winter season. The rule ρ 3 is the same as
ρ 5 for winter season. And ρ 4 is the extension of ρ 3 for the supply fan. Rules 5 to 7 concern failure in the
bypass regulation in the framework of free-cooling. It is recalled that free-cooling occurs in summer period
when the outside temperature is lower than inside one. Thus, the bypass of the AHU should be turned on
to avoid the heat exchanger and in the same time, the airflow rate should be increased. The rule ρ 5 occurs
when neither the bypass is not turned on and the airflow rate is not increased. To identify such fault, four
sub-rules are required. The first one detects a period when free-cooling is favorable. It is based on a moving
average over three values for the outside T out and inside T ret temperatures. Free-cooling should happen
when T ret − T out > 2 ◦C . Second sub-rule ρ 5.2 looks at the state of the bypass b . Sub-rule ρ 5.3 checks
if the value of the moving average flow rate Q exh is in the range of 10% of its nominal value at low speed
0.114 kg . s−1. Last, the rule checks if the outside temperature is higher than 0 ◦C , to avoid inducing any
discomfort in case of building occupation. The rule ρ 6 corresponds to a scenario where the bypass is turned
on and the airflow does not increase. First sub-rule concerns the state of the bypass, second the airflow rate
value and last the electrical consumption of the fan. The latter verifies its nominal operation. The rule ρ 7
occurs when the bypass is not turned on but the airflow rate is increased. The first subrule is the same
rule as ρ 5.1 to detect if it is a free-cooling period. The second subrule looks at the bypass state, while the
third one the airflow rate and the fan electrical power. Rule ρ 8 deals with filter fouling similarly to the one
defined for winter period.

3.1.3 Maps of the system operation

After the filtering of the data using the so-called expert rules, the Hastie algorithm is used to select
NH = 500 most representative points. Then, using the dimensionality reduction technique, two maps are
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Table 1. Coefficients values for the expert rules to detect fault system operation during the winter season.

Faults Rule Sub-rule Physical quantity U i U j U∞ β

Supply fan failure ρ 1
ρ 1.1 Supply airflow rate 0 Q v , sup −0.036 0.01

ρ 1.2 Supply fan electrical power 0 P v , sup −25 8

Exhaust fan failure ρ 2
ρ 2.1 Exhaust airflow rate 0 Q v , exh −0.036 0.01

ρ 2.2 Exhaust fan electrical power 0 P v , exh −25 8

Frost coil failure ρ 3
ρ 3.1 Frost coil electrical power 0 P b , fro −2.5 1

ρ 3.2 Outside air temperature 0 T out −5 1

Heat coil failure ρ 4
ρ 4.1 Heat coil electrical power 0 P b , hc −2.5 1

ρ 4.2 Supply air temperature T c , sup T sup 1 1

Exhaust fan belt breakdown ρ 5
ρ 5.1 Exhaust airflow rate 0 Q v , exh −0.01 0.003

ρ 5.2 Exhaust fan electrical power P v , exh 0 25 4

Frost coil regulation ρ 6

ρ 6.1 Outside air temperature 0 T out −5 1

ρ 6.2 Frost coil electrical power P b , fro 0 2.5 1

ρ 6.3 Supply fan electrical power P v , sup 0 10 1

ρ 6.4 pre-heating temperature time derivative T ′pre 0 0 0.1

Heat coil regulation ρ 7

ρ 7.1 Supply air temperature T c , sup T sup 0 1

ρ 7.2 Heat coil electrical power P b , hc 0 5 1

ρ 7.3 Supply fan electrical power P v , sup 0 10 1

ρ 7.4 supply temperature time derivative T ′sup 0 0 0.1

Filter fouling ρ 8
ρ 8.1 Supply airflow rate 0 Q v , sup −0.036 0.015

ρ 8.2 Supply fan electrical power P v , sup 0 40 2.5

constructed, one for each season. Indeed, the AHU has two different operations depending on winter and
summer seasons. It permits to have a clear reading of the system operation.

The winter map obtained using the dimensionality reduction technique is illustrated in Figure 6(a). The
500 points of the operation system are represented in the map. As remarked, several clusters are identified
with a major one in the middle of the map and a dozen minors around. However, this map cannot be used
for fault detection. In other words, the operator cannot interpret this map since it only shows the results
of the dimensionality reduction, i.e. points placed in a two-dimensional space. To use those results for
fault detection, it is important to color the map according to the intensity of the indicator λ . It leads to
Figure 6(b). This representation enables to identify the areas of faulty operation (when λ > 0), i.e. at
least one rule is strictly higher than zero, and nominal operation (when λ = 0). One may note that the
nominal operation of the system is located in the map center. Surrounding clusters corresponds to faulty
system operation. Particularly, when λ > 1 it represents points of coupled faulty operation, i.e. two faults
occur at the same time. Such faults are located on the west and southeast sides of the map. Last, another
filtering is carried out by associating a color to each of the fault to produce the map in Figure 6(c). Note
that the coloration is possible since the magnitude of the severity indicator of the generated data is known.
It enables to provide a clear two-dimensional representation of the system operation. Each cluster with a
specific color indicates a faulty case, while black points depict a nominal activity. The coupled faults have
a bi- or tri-color representation and are placed at the border between the two concerned fault zones.

Results for the summer period are presented in Figure 7. As for the previous map, the methodology
permits to separate several clusters each corresponding to a specific case. The nominal operation is located
in the center. Each fault is associated to an area close to a peripheral area. In this modeling results, there
is only one point for coupled faults based in the south region.
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Table 2. Coefficients values for the expert rules to detect fault system operation during the summer season.

Faults Rule Sub-rule Physical quantity U i U j U∞ β

Supply fan failure ρ 1
ρ 1.1 Supply airflow rate 0 Q v , sup −0.03 0.01

ρ 1.2 Supply fan electrical power 0 P v , sup −25 0.1

Exhaust fan failure ρ 2
ρ 2.1 Exhaust airflow rate 0 Q v , exh −0.03 0.01

ρ 2.2 Exhaust fan electrical power 0 P v , exh −25 0.1

Exhaust fan belt breakdown ρ 3
ρ 3.1 Exhaust airflow rate 0 Q v , exh −0.01 0.001

ρ 3.2 Exhaust fan electrical power P v , exh 0 35 8

Supply fan belt breakdown ρ 4
ρ 4.1 Supply airflow rate 0 Q v , sup −0.01 0.001

ρ 5.2 Supply fan electrical power P v , sup 0 35 8

Bypass regulation failure n ◦1 ρ 5

ρ 5.1 Moving average temperature T ret T out 2 1

ρ 5.2 Bypass state 0 b −1 0.1

ρ 5.3 Moving average airflow rate Q sup 0 0.114 0.001

ρ 5.4 Outside air temperature T out 0 0 0.1

Bypass regulation failure n ◦2 ρ 6

ρ 6.1 Bypass state b 0 0 0.1

ρ 6.2 Supply airflow rate 0 Q v , sup −0.114 0.001

ρ 6.3 Supply fan electrical power P v , sup 0 2.5 1

Bypass regulation failure n ◦3 ρ 7

ρ 7.1 Moving average temperature T ret T out 2 1

ρ 7.2 Bypass state 0 b −1 0.3

ρ 7.3 Moving average airflow rate Q sup 0 0.055 0.001

ρ 7.4 Supply fan electrical power P v , sup 0 55 1

Filter fouling ρ 8
ρ 8.1 Supply airflow rate 0 Q v , sup −0.3579 0.02

ρ 8.2 Supply fan electrical power P v , sup 0 150 2.5

3.2 Online phase: projection of experimental data

After the map construction, the online phase is carried out by projecting experimental data obtained in
[14]. by monitoring an AHU unit. The experimental data set includes nominal and faulty operations of
the system for both summer and winter periods. Before projecting the experimental data on the maps, the
first step is to compute the severity indices of the rules defined in Section 3.1.2. The required parameters
are gathered in Tables 1 and 2. Then severity indices are projected on the corresponding map (winter or
summer) using the RBF interpolation. The issue is to validate the methodology for fault detection and
diagnosis.

3.2.1 Winter map

The results are first illustrated for the winter map and the rule ρ 2 concerning the exhaust fan failure.
Figure 8(a) shows the time evolution of the exhaust fan airflow and power consumption. As remarked, for
t > 0 , both airflow and power consumption decrease to zero. Accordingly, the severity index drops from 0
to 1 in Figure 8(b). It highlights a failure of the exhaust fan since it does not operate in nominal condition.
The severity index σ 2 is projected on the winter map in Figure 8(c). As the index is negative, the projected
points remain in the nominal area. When the indicator becomes positive, the points move toward the orange
North-West area of the map. This area corresponds to the exhaust fan fault. Thus, a precise diagnosis of
the appearing fault is done.

The reliability of the approach is also shown for the rule regarding the heat coil failure. Figure 9(a)
gives the heat coil power consumption together with the supply air temperature and the set-point heat coil
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temperature. When t < 0, the heat coil is operating with a power consumption around 600 W . At t = 0,
the coil fails and its power consumption vanishes. At the same time, the supply air temperature starts to
decrease, becoming lower than the heat coil set-point temperature of 26 ◦C . At this time, the failure of
the system is stated and the severity index reaches 1 as remarked in Figure 9(b). The results of the index
projection on the winter map are shown in Figure 9. When the severity index is positive, the projected data
are located in the correct fault area.

Three other faults have been generated experimentally for the winter season: the supply fan failure (ρ 1),
the frost coil failure (ρ 3) and the exhaust fan belt breakdown (ρ 5). Figure 10 presents the results of the
projection. For the three faults, the data are first located in the nominal area and progressively slide to the
corresponding fault area. Thus, the diagnosis of the failure is carried out with accuracy.

3.2.2 Summer map

An illustration of the process is shown in Figure 11. For the sake of compactness, the figures are presented
for a time horizon of 6 minutes where t = 0 corresponds to the appearance of the fault. Figure 11(a) shows
the concerned measurements of the supply air fan flow rate and power consumption that enable to detect
the fan failure. Both measurements start decreasing at t = 0 indicating a failure of the supply fan. By
filtering this data using the expert rules ρ 1, the severity index is computed and presented in Figure 11(b).
By definition, the index is lower than 0 in case of nominal operation. The index grows as the fault appears
to reach almost 1 when the fan failure is established. The data of the severity index are projected on the
so-called summer map in Figure 11(c). The first data, when t < 0, are located in the nominal operation
(black zone). Then, when t > 0 and σ > 1, the data are projected into the red zone, corresponding to a
supply failure fault. Thus, the methodology enables to project the experimental data into the correct zone
to permit a fast and accurate fault detection and diagnosis.

Another demonstration of the validity of the methodology is proposed for the rule ρ 7 , in Figure 12. This
fault is detected by 4 sub-rules. The first one detects a free-cooling period since the outside temperature
is lower (around 15 ◦C) than the inside one (around 24 ◦C). The next sub-rules observes that the bypass
is not turned on since the b remains null for the whole sequence. However, it can be remarked with the
airflow rate and fan electrical power increases for t > 0 . This bypass regulation failure is highlighted with
the severity index reaching 1 as shown in Figure 12(b). The projection of the severity index on the data
permits to detect the fault. The index is first projected on a nominal operation region and then on the
bypass regulation fault 3 .

The efficiency of the methodology has been verified for four other faults of the summer period using
experimental data. Results of the projection are given in Figure 13. The projection of the severity index
systematically corresponds to the correct region (nominal or fault) allowing a clear, intuitive and fast
diagnosis of the fault. Note that in Figure 13(d), the approach enables to detect a slow degradation of
the system regarding the bypass regulation fault ρ 2 . There is a slow transition between black (nominal
operation to green (bypass fault 1) and finally light blue (bypass fault 2)).

3.3 Complementary remarks

The reliability of the method to carry out fault and detection diagnosis has been demonstrated using
experimental results. Some complementary remarks can be noted. One may notice some differences between
the summer and winter operation map of the system in Figures 6(c) and 7. Particularly, the winter map
is more detailed with spread areas. On the contrary, the summer map is less exhaustive. For instance, the
supply and exhaust fan faults are represented by one singular points. This lack of details is a consequence
of the offline phase and the generation of numerical results. The model does not enable to generate values
of some severity indicators with smooth transition between −1 and 1. Some improvements of the simulation
programs are required to better refine the indicator space. Given the results from [28], the use of experimental
data may lead to more refined maps. In the context of real building operation, one can build a first map
using a simulation program. After the first monitoring season, a possibility to explore is to re-generate the
map using a combined numerical and obtained experimental data.
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The computational burden of the method arises from the algorithm used for dimensionality reduction
during the offline phase to create the map. The complexity of the algorithm scales with O(N 2 ) , where N
is the total number of data generated using the building simulation programs. In our case N scales with
O( 10 5 ) (Nm = 12 measurements generated for a time grid of N t = 70080 points) so the complexity of
the algorithm is very high. For this reason the number of data is reduced to NH = 500 using the Hastie
algorithm. The latter enables to select the most representative points outs. For the winter and summer
map, 10 clusters are expected (8 to 9 faults plus nominal state). Thus, NH = 500 corresponds roughly
to 50 points to represent each cluster, which is a satisfying number for the representation of the system
operation. Furthermore, parametric studies for different value of NH highlights that it corresponds to a
good compromise between computational cost and accuracy of the map. Note that for this value, the map
construction requires 3 min on a normal laptop.

After the offline phase, a map of the system operation is generated. As presented in Figures 6(c) and
7 some regions are highlighted for nominal and faulty operations. The nominal operation is located in the
center while the faulty configurations are around. For the moment, the fault detection is based on the
position of the measured data projection compared to the identified areas. However, it could be possible to
detect the fault according to the euclidean distance on the map between the nominal region (i.e. the center
of the circle) and the position of the projection. For each faulty region, a threshold could be defined.

Note that the fault detection is almost immediate. As soon as the experimental data of the building
energy management system are recorded, the computation of the severity indexes and their projection on
the map are very fast on a normal-cost laptop equipped with an Intel Core i5 processor and 12GB RAM.
Actually, the detection depends on the monitoring time step of the building energy management system and
the transition between nominal and faulty operations. In Figures 11(b), 8(b), 9(b) and 12(b), the transition
between nominal and faulty operations scales with one minute as the fault detection.

4 Conclusion
Within the environmental issues, fault diagnosis methods are of major importance to detect HVAC system

failures. It enables to avoid excessive consumption and improve occupants comfort. Within this context, an
innovative FDD approach is presented based on a two phase procedure. The first phase is realized before the
diagnosis. It aims at elaborating a map of the system operations with distinct areas. Each area corresponds
to the nominal operation or to a specific system faults. The map is built using a dataset of both nominal
and faulty states. The dataset can originate from time varying experimental measurement and/or numerical
results. The dataset are then filtered according to expert rules to construct a set of severity indicators.
The results are subsequently treated using a dimension reduction method to approximate the data structure
by a low dimensional representation of a subset of the points, corresponding to the map of the system
operation. Note that the analyze per se of the experts rules could be sufficient to detect faulting operations.
However, as mentioned in [10], the interpretability of faults by operations staff is an important limitation.
FDD tools based on experts rules generate some alarms without including operators to address them. The
energy management systems fail in consolidating the data into a clear and understandable format [12, 13].
Therefore, the proposed FDD tool combined the experts rules analysis with a data-driven approach which
enables to produce one map of the system. It provides a synthesis of the nominal and faulty operations.
This representation is easily understandable by operators to engage solutions. The second phase of the FDD
method is online, i.e. it occurs during the monitoring by the building energy management system. It aims at
detecting the faults. The measured data are filtered following the same expert rules to compute the severity
indices. Those indices are then projected a posteriori on the maps built during the preliminary phase using
radial basis function interpolation. The projection enables to locate the actual state of the system in the
map, namely in a nominal or faulty region.

The reliability of this method has been evaluated for a AHU unit that could be used in a small office or
house. The maps are generated using numerical results from the EnergyPlus program. Faulty and nominal
operation of the system has been modeled to generate a total of 12× 70 080 data. Then, eight expert rules
have been defined for both winter and summer season. The failures concern the supply and exhaust fans,
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the heat and frost coils, the belt breakdown, the coils and bypass regulations and the filter fouling. Then,
each set of eight severity indices is approximated by a reduced dimension space. It permits to elaborate two
maps (one for each season) of the system operation. Each map has a nominal operation area in the middle
and eight faulty region in the peripheral region. The region are well separated and coupled faults are also
correctly highlighted. This first phase enables to produce a clear and understandable representation of the
system operation. Then, the accuracy of the fault detection is evaluated using experimental data generated
in previous work [14]. Those data have been obtained through an experimental campaign representative of
a monitoring by a building energy management. Each experimental data are filtered according to the expert
rules and then projected on each map. For each of eleven faults, the method projects the new data into the
correct area. If the system operates in a nominal state, then the data are projected into the middle zone.
Respectively, if the system has a fault, the data are projected in the corresponding fault area. Therefore,
the reliability of the method to detect and diagnose the faults is verified.

Future works should focus on evaluating the approach with more complex experimental data obtained
from a real building monitoring system. Particularly, the efficiency of the approach should be evaluated to
detect slow degradation of HVAC system.

Nomenclature

Latin letters

Symbols Description Units

P Power [W]

Q airflow [kg . s−1]

T Temperature [ ◦C]

t Time [s]

Abbreviation

Symbols Description

Exh. In the exhaust duct

fro. frost coil

hc. heat coil

Nom. At the nominal value

Out. At the outdoor air location

Ret. At the return air location

Sup. In the supply duct
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Figure 6. Map of the system operation for winter: (a) results of the dimensionality reduction, (b) display
of total severity λ and (c) fault type representation.
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Figure 8. Experimental data obtained during the winter campaign: exhaust fan airflow and power
consumption (a). Computed severity index according to the expert rules (b). Projection of the experimental
data on the winter map for fault detection of exhaust air fan failure (ρ 2).
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Figure 9. Experimental data obtained during the winter campaign: heat coil power and supply air
temperature (a). Computed severity index according to the expert rules (b). Projection of the experimental
data on the winter map for fault detection of heat coil failure (ρ 4).
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Figure 10. Results of the projection of the experimental data on the winter map for the supply fan failure
(ρ 1) (a), frost coil failure (ρ 3) (b) and exhaust fan belt breakdown (ρ 5) (c).
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Figure 11. Experimental data obtained during the summer campaign: supply fan airflow and power
consumption (a). Computed severity index according to the expert rules (b). Projection of the experimental
data on the summer map for fault detection of supply air fan failure (ρ 1).
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Figure 12. Experimental data obtained during the summer campaign: moving average temperatures, bypass
state, supply fan airflow and power consumption (a). Computed severity index according to the expert rules
(b). Projection of the experimental data on the summer map for fault detection of bypass regulation n ◦3
(ρ 7).
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Figure 13. Results of the projection of the experimental data on the summer map for the exhaust fan
failure (ρ 2) (a), exhaust fan belt breakdown (ρ 3) (b), bypass regulation failure n ◦1 (ρ 5) (c) and bypass
regulation failure n ◦2 (ρ 6) (d).
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